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Abstract

The purpose of this paper is to study the dynamics of a quantum coherent feedback network composed of two two-level systems
(qubits) driven by two counter-propagating photons, one in each input channel. The coherent feedback network enhances
the nonlinear photon-photon interaction inside the feedback loop. By means of quantum stochastic calculus and the input-
output framework, the analytic form of the steady-state output two-photon state is derived. Based on the analytic form, the
applications on the Hong-Ou-Mandel (HOM) interferometer and marginally stable single-photon devices using this coherent
feedback structure have been demonstrated.
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1 Introduction

The last few decades have witnessed rapid advances in
experimental demonstration and theoretical investiga-
tion of quantum control systems due to their promis-
ing applications in a wide range of areas such as quan-
tum communication, quantum computing, and quan-
tum metrology [1], [32], [20], [3], [26], [49], [10], [47],
[2], [39] [54], [44], [35], [58]. From a signals and sys-
tems point of view, quantum linear systems, prepared
in Gaussian states and driven by Gaussian input states,
have been well studied; results like quantum filtering and
measurement-based feedback control have been well es-
tablished [20], [36], [49], [35]. In addition to Gaussian
states there are other types of non-classical states, for ex-
ample single- and multi-photon states. Roughly speak-
ing, a light field is in an `-photon state if there is a def-
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inite number of ` photons in this field. A continuous-
mode `-photon state is characterized by the frequency
(or equivalently, temporal) profiles of these photons. In-
teraction between photons and quantum finite-level sys-
tems has received considerable attention recently, as the
precise control of the interactions between photons and
matter is fundamentally important for quantum infor-
mation processing [21], [22], [27], [40]. Two-photon in-
teraction induced by finite-level systems is of particular
interest since it introduces nonlinearity to the steady-
state response.

Photons do not interact in free space. Physically, the
interaction can be mediated by quantum finite-level sys-
tems (quantum emitters). A simple example is the inter-
action of two photons by coupling to a qubit. In [42,12],
two-photon transport properties have been studied by
considering a one-dimensional waveguide coupled to a
qubit. Intuitively, the response of the systems can be
engineered by exploiting various configurations of quan-
tum emitters. A scattering matrix analysis has shown
that any localized quantum emitter inevitably induces
frequency mixing and entanglement between two pho-
tons [12,50]. The response of a two-level system to two
continuous-mode photons has recently been investi-
gated in [8]. These two photon can either co-propagate
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or counter-propagate along the waveguide. By means
of a transfer function approach, the output field states
for both cases are derived analytically. The problem of
two photons scattering off a two-level emitter residing
in a 1D waveguide is studied in [28], where it is demon-
strated that photon transport properties depend on the
excitation of the emitter. Moreover, correlations and
entanglement between the two output photons induced
by a two-level emitter are also investigated. The effect of
the pulse shapes of two counter-propagating wavepack-
ets on the correlations of the output photons is studied
in [29], where the output intensity spectra are studied
when the input photons are of Gaussian pulse shapes. In
[30], both time and frequency correlations between out-
put photons are discussed. Furthermore, the relation-
ship between induced photon-photon correlations and
the atomic excitation efficiency is investigated. When a
two-level system is driven by two counter-propagating
indistinguishable single photons, it is shown in [8] that
the maximal excitation probability attains at γ = 5κ
for rising exponential pulse shapes, and Ω = 2 ∗ 1.46κ
for Gaussian pulse shapes. In [43], quantum filters for
a Markovian quantum system driven by an arbitrary
number of photons in a single channel have been derived.
Quantum filters are constructed in [9] for a two-level
atom driven by two counter-propagating photons, where
numerical analysis reveals interesting scaling relations
between atom-photon coupling strength and photonic
pulse shape for maximum atomic excitation. The scat-
tering of two photons from two distant qubits embedded
in a 1D waveguide has been studied in [56,25]. Due to the
distance between the two emitters, non-Markovian ef-
fects exist in this setup, as numerically demonstrated by
means of the Lippmannn-Schwinger equation in [56] and
analytically investigated in terms of a Green function in
[25]. The generalizations to an array of multiple emitters
can be found in [13]. An experiment that demonstrates
photon-mediated qubit-qubit interactions is performed
in [45]. By increasing the number of emitters, stronger
photon-photon correlation can be obtained, which often
provides more control options for generating entangled
quantum states, engineering transmission properties,
and synthesizing quantum gates [41,23,4,5,24,11]. The
reason for the stronger correlation with multi-qubit set-
ting is that photons could interact multiple times at the
emitters, or interact at several different sites [4,5]. As an
application, a controlled-PHASE (CPHASE) quantum
gate is proposed in [5]. Moreover, persistent oscillations
of quantum correlations [56] have been observed if the
two photons are allowed to bounce back after interact-
ing with a qubit. Inspired by [56,25], we investigate the
steady-state response of a two-qubit system driven by
two continuous-mode photons; Fig. 1. We model the sys-
tem such that photons can be fed back after interacting
with the other qubit, which provides a way for the pho-
tons to interact multiple times using a minimum number
of qubits. This coherent feedback configuration could
be realized using standard waveguide quantum electro-
dynamics (QED) devices [40], [27]. One-dimensional

Fig. 1. Traveling photons are confined to a one-dimensional
waveguide, which means they can only travel in two oppo-
site directions. Due to the coupling between the photon and
each qubit at the interaction location, the photon will ei-
ther keep the original traveling direction or be reflected with
probabilities that sum to 1, leading to a coherent feedback
mechanism.

waveguides can be realized in photonic nanostructures,
or transmission lines in superconducting microwave
circuits. Each qubit can be realized as an artificial su-
perconducting circuit that is directly integrated with
the waveguide. Alternatively, the qubit can be realized
as an atomic ensemble or a single atom embedded in a
cavity that is strongly coupled to the waveguide.

Numerical and analytical results have been obtained for
a similar configuration which includes a feedback mech-
anism [56,25,13]. These previous works have considered
two photons interacting with two distant qubits, which
results in numerical and exact solutions characterizing
spatial propagation of the photon wave functions. Non-
Markovianity has also been considered in these works. In
this paper, an alternative quantum network formalism
is adopted [19,14,16,15]. Based on Markovian quantum
stochastic differential equations (QSDEs), this control-
theoretic approach studies the steady-state response
which captures the time-correlation of the output pho-
tons. Moreover, this formalism facilitates a network
analysis which is applicable to any generic configura-
tion. For example, the physical configuration in Fig. 1
can be translated using the SLH language [16,6] into a
standard coherent feedback network structure; Fig. 2.
The feedback network has two input channels, each con-
taining one photon described in terms of its continuous-
mode pulse shape. Two-photon scattering via a single
qubit has been studied with the quantum network for-
malism [37,8] or an equivalent input-output formalism
[12,7] before. However, the steady-state response has
not been solved for a marginally stable system, which is
our case. (The notion of “a marginally stable system”
is interpreted in Remark 2.) In this paper, the steady-
state output of a coherent feedback network with two
continuous-mode photons as the input has been derived
for the first time. A novel two-photon process has been
found in the nonlinear response of the system. Based on
the analytical results of the system response, it is possi-
ble to synthesize photonic systems to achieve desirable
dynamics using the enhanced nonlinearity. We have
demonstrated the results with a tunable HOM design
and a marginally-stable single-photon device.

The rest of the paper is organized as follows. The co-
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Fig. 2. G1 and G2 are two-level systems. The coherent feed-
back network is driven by two photons, one in each input
channel designated by bL and bR respectively. bout,L and
bout,R denote the two output channels.

herent quantum feedback network and two-photon in-
put state are introduced in Sec. 2. The main result of
this paper, an analytic form of the steady-state output
two-photon state, is presented in Sec. 3. Two direct ap-
plications are discussed in Sec. 4. Sec. 5 concludes this
paper.

Notation. x∗ denotes the complex conjugate of a com-
plex number x or the adjoint of an operator x. The com-
mutator of two operators X and Y is defined as [X,Y ] ,
XY − Y X. For a column vector X = [xi] with number
or operator entries, X# = [x∗

i ] and X† = (X#)T . Ik is
the identity matrix and 0k the zero matrix in Ck×k. δij
denotes the Kronecker delta and δ(t) denotes the Dirac
delta.

2 Coherent feedback network and input state

In this section, we introduce the coherent feedback net-
work, as is shown in Fig. 2. We also introduce the two-
photon input state for this feedback network.

2.1 Coherent feedback network

The open quantum system under study can be properly
modeled using a triplet (S,L,H) [19,16,53,6]. Here, S is
a scattering operator, and the system is coupled to the
photonic fields through the operator L. H is the inherent
Hamiltonian of the system. The overall dynamics of an
open quantum system interacting with the input fields is
governed by a unitary operator U(t, t0), where t0 is the
initial time of the interaction. The dynamical equation
of U(t, t0), t ≥ t0, is given by [19]

dU(t, t0) = {b†(t)L−L†Sb(t)− (
1

2
L†L+ iH)}U(t, t0)dt

(1)
with U(t+ dt, t0) = U(t, t0) + dU(t, t0) and U(t0, t0) =
I ⊗ I being the identity operator of the composite sys-
tem. b(t) is a vector of annihilation operators for the
input field modes. Physically, b(t) and b#(t) can be un-
derstood as the annihilation and creation of photons in
the fields at time t. Note that Markovian approxima-
tion has been invoked in the derivation of dU(t, t0). The
Heisenberg-picture evolution of a system operator X can
be calculated by X(t) = U∗(t, t0)(X⊗ I)U(t, t0), with I

being the identity operator on the fields. The dynamical
equation of X(t) is then given by the following QSDE
[19,16]

Ẋ(t) = L∗(X(t))

+b†(t)S†[X(t), L(t)] + [L†(t), X(t)]Sb(t) (2)

where

L∗(X(t)) , −i[X(t),H(t)] + L†(t)X(t)L(t)

−1

2
L(t)†L(t)X(t)− 1

2
X(t)L†(t)L(t)

is the Lindblad operator and the other two are noise
terms. Moreover, the output bout(t) is related to the in-
put b(t) via the following relation [17]

bout(t) = U∗(t, t0)(I ⊗ b(t))U(t, t0), (3)

whose dynamics is given by

bout(t) = L(t) + Sb(t).

The coherent feedback network, as shown in Fig. 2, has
two inputs represented by annihilation operators bL and
bR respectively. G1 and G2 are two-level systems, whose
ground and excited state vectors are |gj〉 and |ej〉 (j =
1, 2) respectively.

Assumption 1 The coherent feedback network in Fig.
2 is assumed to satisfy the following conditions.

• The central frequencies of the two input fields bL and
bR are the same, denoted by ωo.

• G1 and G2 have the same transition frequency between
the ground state and excited state, denoted by ωa.
Thus, the detuning frequency is ωc = ωo − ωa.

• G1 and G2 have the same coupling strength κ to the
optical fields.

Under Assumption 1, the triplet (S,L,H) for the two-
level systems are given by [16,53,6,35]

Gj =

(
I2,

[
1

1

]
√
κσ−,j ,

ωc

2
σz,j

)
, j = 1, 2, (4)

where σ−,j = |gj〉 〈ej | is the lowering ladder operator
and σz,j = |ej〉 〈ej | − |gj〉 〈gj | is the Pauli Z operator
for the system Gj . As the coupling operators are the
lowering ladder operators, the two-level systems G1 and
G2 undergo amplitude damping, [34, Chapter 8].

As can be seen from the above equation, there are two
coupling channels for each Gj , which model the interac-
tion with the left-going and right-going photons. Recall
that t0 is the time when the system and its inputs start
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to interact. What we are interested in this paper is the
steady-state dynamics of the coherent feedback network
in the limit t0 → −∞ and t → ∞; i.e., the interaction
occurs in the remote past and we look at the dynamics
in the distant future; see e.g., [12], [54], [51], [37]. Define

α , −iωc − κ. (5)

Substituting the (S,L,H) parameters in (4) into the sys-
tem equation (2) and the input-output relation (3), it
can be readily shown that the QSDEs for the two-level
system G1 are

σ̇−,1(t) = ασ−,1(t) +
√
κσz,1(t)bL(t) +

√
κσz,1(t)b4(t),

b3(t) =
√
κσ−,1(t) + bL(t),

bout,R(t) =
√
κσ−,1(t) + b4(t), t ≥ t0.

Likewise, the QSDEs for the two-level system G2 are

σ̇−,2(t) = ασ−,2(t) +
√
κσz,2(t)b3(t) +

√
κσz,2(t)bR(t),

bout,L(t) =
√
κσ−,2(t) + b3(t),

b4(t) =
√
κσ−,2(t) + bR(t), t ≥ t0.

Consequently, the QSDEs for the coherent feedback net-
work in Fig. 2 are[

σ̇−,1(t)

σ̇−,2(t)

]
= α

[
σ−,1(t)

σ−,2(t)

]
+ κ

[
σz,1(t)σ−,2(t)

σz,2(t)σ−,1(t)

]

+
√
κ

[
σz,1(t)

σz,2(t)

]
(bL(t) + bR(t)) , (6a)

bout(t) =
√
κ C

[
σ−,1(t)

σ−,2(t)

]
+ bin(t), t ≥ t0, (6b)

where

C =

[
1 1

1 1

]
, (7)

and

bin(t) ,

[
bL(t)

bR(t)

]
, bout(t) ,

[
bout,L(t)

bout,R(t)

]

are input and output fields for the feedback network
respectively.

In what follows, we present the Fourier transform of op-
erators and functions to be used in the sequel. For the
vector of inputs bin(t) in the time domain, we define its
Fourier transform as

bin[iω] ,
1√
2π

∫ ∞

t0

dt e−iωtbin(t), ω ∈ R. (8)

The inverse Fourier Transform is

bin(t) =
1√
2π

∫ ∞

−∞
dω eiωtbin[iω], t ≥ t0. (9)

Remark 1 As mentioned above, the initial time t0 will
be sent to −∞ later, thus Eq. (8) is indeed the con-
ventional Fourier transform. The same is true for the
Fourier transform of other operators or functions to be
presented in the sequel.

The adjoint b†in[iω] of bin[iω] is obtained by conjugating
both sides of Eq. (8), specifically,

b†in[iω] =
1√
2π

∫ ∞

t0

dt eiωtb†in(t), ω ∈ R. (10)

Noticing

lim
t0→−∞

1

2π

∫ ∞

t0

dt eiωt = δ(ω), (11)

and the commutation relation

[bin(t), b
†
in(r)] = δ(t− r)I2, t, r ≥ t0, (12)

we have that for arbitrary ω1, ω2 ∈ R,

lim
t0→−∞

[bin[iω1], b
†
in[iω2]]

= lim
t0→−∞

1

2π

∫ ∞

t0

dt e−i(ω1−ω2)tI2 = δ(ω1 − ω2)I2.

Similarly, we denote the Fourier transform of the vector
of outputs bout(t) by bout[iω], whose adjoint is denoted
by b†out[iω]. Finally, the Fourier transform of σ−(t) is

σ−[iω] =
1√
2π

∫ ∞

t0

dt e−iωtσ−(t), (13)

whose adjoint is

σ+[iω] = (σ−[iω])
∗ =

1√
2π

∫ ∞

t0

dt eiωtσ+(t), (14)

where σ+(t), the raising ladder operator, is the adjoint
of σ−(t).

2.2 Two-photon input state

In this subsection, we introduce the input to the feed-
back network in Fig. 2. The left-going input field is in the
continuous-mode single-photon state b∗L(ξL) |0L〉, where
|0L〉 denotes the vacuum state of this field, and the op-
erator bL(ξL) is defined to be

bL(ξL) ,
∫ ∞

t0

bL(t)ξ
∗
L(t)dt
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with ξL ∈ L2(R,C) satisfying the normalization con-
dition ‖ξL‖ ≡

√∫∞
t0

|ξL(t)|2dt = 1. In other words,
‖ξL‖ = 1 guarantees that the state b∗L(ξL) |0L〉 is normal-
ized. The physical interpretation of ξ(t) is that |ξ(t)|2dt
is the probability of finding the photon in the time in-
terval [t, t+ dt). Similarly, the right-going input field is
in the continuous-mode single-photon state b∗R(ξR) |0R〉,
where |0R〉 denotes the vacuum state of this field, and
the operator bR(ξR) is defined to be

bR(ξR) ,
∫ ∞

t0

bR(t)ξ
∗
R(t)dt

with ξR ∈ L2(R,C) being the temporal pulse function
of the photon and satisfying ‖ξR‖ = 1. The adjoints of
bL(ξL) and bR(ξR) are

b∗L(ξL) , (bL(ξL))
∗ =

∫ ∞

t0

b∗L(t)ξL(t)dt, (15a)

b∗R(ξR) , (bR(ξR))
∗ =

∫ ∞

t0

b∗R(t)ξR(t)dt, (15b)

respectively. Thus, the two-photon input field state is

|Ψin(t0)〉 = b∗L(ξL)b
∗
R(ξR) |0L0R〉 . (16)

Similar to Eq. (8), the Fourier transform of a function
ξ ∈ L2(R,C) is

ξ[iν] =
1√
2π

∫ ∞

t0

dt e−iνtξ(t), (17)

whose inverse Fourier transform is

ξ(t) =
1√
2π

∫ ∞

−∞
dν eiνtξ[iν], t ≥ t0. (18)

Example 1 For the purpose of demonstration, we con-
sider two single-photon states of Lorentzian-type pulse
shape

ξj [iν] =
1√
2π

√
γj

i(ν − ωo)− γj

2

, j = L,R, (19)

which in the time-domain are

ξj(t) =

{
0, t ≥ 0,

−√
γje

(
γj
2 +iωo)t, t < 0,

, j = L,R. (20)

Here, ωo is the central frequency of the fields, as discussed
in Assumption 1. In particular, when γL = γR = γ,
the two photons have the same pulse shape ξL = ξR ≡ ξ,
given by

ξ[iν] =
1√
2π

√
γ

i(ν − ωo)− γ
2

. (21)

For Lorentzian-type pulse shapes, γ is commonly called
the full width at half maximum (FWHM); see, e.g., [31,
Chapter 2]. It has been shown that a Lorentzian-type sin-
gle photon, which has a temporal pulse shape of the form
(20), is able to excite a two-level atom fully; see, e.g.,
[48], [51], [38].

More discussions on continuous-mode single- and multi-
photon states can be found in, e.g., [31], [27], [52].

3 Steady-state output field state

In this section, we derive the steady-state output field
state of the 2-qubit coherent feedback network driven by
two photons, as described in the previous section.

3.1 Basic set-up

Let the two-level systems G1 and G2 be initialized in the
ground states |g1〉 and |g2〉 respectively, and the input
be in the two-photon state as given in Eq. (16). The
abbreviation |0〉 = |g1g2〉 is used for the ground state.

Assumption 2 The initial joint system-field state is

|Ψ(t0)〉 = |Ψin(t0)〉 |0〉 = b∗L(ξL)b
∗
R(ξR) |0L0R0〉 .

In the Schrödinger picture, the system-field state under-
goes a unitary evolution. At time instant t ≥ t0, the joint
system-field state is

|Ψ(t)〉 = U(t, t0) |Ψ(t0)〉 .

In the steady-state limit (t0 → −∞, t → ∞), the pho-
tons are in the two output channels, leaving the two-level
systems in their ground state. Then the steady-state out-
put field state |Ψout〉 can be obtained by tracing out the
system state; i.e.,

|Ψout〉 = lim
t0→−∞,t→∞

〈0|Ψ(t)〉 . (22)

As the system-field interaction does not generate pho-
tons, i.e. the combined system is passive, |Ψout〉 is a two-
photon state with the time-domain basis{

1

2

∫ ∞

−∞
dp1

∫ ∞

−∞
dp2 |1Lp11Lp2〉 〈1Lp11Lp2 | ,∫ ∞

−∞
dp1

∫ ∞

−∞
dp2 |1Lp11Rp2〉 〈1Lp11Rp2 | ,

1

2

∫ ∞

−∞
dp1

∫ ∞

−∞
dp2 |1Rp1

1Rp2
〉 〈1Rp1

1Rp2
|
}
, (23)

where the notation

|1jt〉 ≡ b∗j (t) |0j〉 , t ≥ t0, j = L,R (24)
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denotes the instantaneous generation of a left-going
(right-going) photon at time t in the fields. By inserting
Eq. (23) into the RHS of Eq. (22) and noticing Eq. (3),
we obtain

|Ψout〉 (25)

= lim
t0→−∞

1

2

∫ ∞

−∞
dp1

∫ ∞

−∞
dp2 |1Lp1

1Lp2
〉

×
∫ ∞

t0

dt1

∫ ∞

t0

dt2 ξL(t1)ξR(t2)

× 〈0L0R0| bout,L(p1)bout,L(p2)b∗L(t1)b∗R(t2) |0L0R0〉

+ lim
t0→−∞

∫ ∞

−∞
dp1

∫ ∞

−∞
dp2 |1Lp1

1Rp2
〉

×
∫ ∞

t0

dt1

∫ ∞

t0

dt2 ξL(t1)ξR(t2)

× 〈0L0R0| bout,L(p1)bout,R(p2)b∗L(t1)b∗R(t2) |0L0R0〉

+ lim
t0→−∞

1

2

∫ ∞

−∞
dp1

∫ ∞

−∞
dp2 |1Rp1

1Rp2
〉

×
∫ ∞

t0

dt1

∫ ∞

t0

dt2 ξL(t1)ξR(t2)

× 〈0L0R0|bout,R(p1)bout,R(p2)b∗L(t1)b∗R(t2)|0L0R0〉.

Note that since U(t, t0)|0L0R0〉 = θ(t)|0L0R0〉, |θ(t)| = 1
holds by Lemma 3 in [38], an irrelevant overall phase
factor θ(t) has been omitted in Eq. (25). Next, we go
to the frequency domain by applying the Fourier trans-
form to the time variables t1, t2 and p1, p2, respectively.
According to Eqs. (9) and (18), we have the following
frequency-domain counterpart of Eq. (25)

|Ψout〉 (26)

=
1

2

∫
ω1,ω2,ν1,ν2

ξL[iν1]ξR[iν2] |1Lω1
1Lω2

〉

× 〈0L0R0| bout,L[iω1]bout,L[iω2]b
∗
L[iν1]b

∗
R[iν2] |0L0R0〉

+

∫
ω1,ω2,ν1,ν2

ξL[iν1]ξR[iν2] |1Lω1
1Rω2

〉

× 〈0L0R0| bout,L[iω1]bout,R[iω2]b
∗
L[iν1]b

∗
R[iν2] |0L0R0〉

+
1

2

∫
ω1,ω2,ν1,ν2

ξL[iν1]ξR[iν2] |1Rω11Rω2〉

× 〈0L0R0| bout,R[iω1]bout,R[iω2]b
∗
L[iν1]b

∗
R[iν2] |0L0R0〉 ,

where we have used the abbreviation

∫
ω1,ω2,ν1,ν2

≡
∫ ∞

−∞
dω1

∫ ∞

−∞
dω2

∫ ∞

−∞
dν1

∫ ∞

−∞
dν2.

Hence, in order to find an analytical expression for
|Ψout〉, we have to calculate the following quantities:

〈0L0R0|bout,L[iω1]bout,L[iω2]b
∗
L[iν1]b

∗
R[iν2]|0L0R0〉,

(27a)
〈0L0R0|bout,L[iω1]bout,R[iω2]b

∗
L[iν1]b

∗
R[iν2]|0L0R0〉,

(27b)
〈0L0R0|bout,R[iω1]bout,R[iω2]b

∗
L[iν1]b

∗
R[iν2|0L0R0〉.

(27c)

The terms (27a)-(27c) characterize the input-output re-
lation of two photons. For example, Eq. (27a) charac-
terizes the process of transferring two input counter-
propagating photons at frequencies ν1, ν2 to two left-
going output photons at frequencies ω1, ω2. The expres-
sion of the steady-state output field state |Ψout〉 in Eq.
(26) is fairly complicated. The purpose of the next sub-
section is to present a much simpler version of it; cf.
Theorem 1.

3.2 The steady-state output state

Define a matrix

A ,

[
α −κ

−κ α

]
= −

[
iωc + κ κ

κ iωc + κ

]
, (28)

where α is given in Eq. (5). It is easily found that the
eigenvalues of the matrix A are −2κ − iωc and −iωc.
Clearly, A is marginally stable as it has an imaginary
eigenvalue. A being only marginally stable has a great
impact on the derivation of Eq. (27a)-(27c). To be more
specific, the standard procedure to solve Eq. (27a)-(27c)
is to relate bout(t) which is the time-domain counterpart
of bout[iω], to bin(t) via Eq. (6b), see, e.g., [12]. Then the
remaining task is to solve the corresponding dynamics
of σ−,i(t). For example, the following equation is a key
part in the derivation

〈0L0R0|

[
σ̇−,1(t)

σ̇−,2(t)

]
(29)

=A 〈0L0R0|

[
σ−,1(t)

σ−,2(t)

]
−
√
κC 〈0L0R0| bin(t),

which is based on Eq. (6a) and the fact that

〈0L0R0|σz,i(t) = 〈0L0R0|U†(t, t0)σz,iU(t, t0)

= −〈0L0R0| . (30)
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Integrating both sides of Eq. (29) from t0 to t yields

〈0L0R0|

[
σ−,1(t)

σ−,2(t)

]

= eA(t−t0) 〈0L0R0|

[
σ−,1(t0)

σ−,2(t0)

]

−
∫ t

t0

dτ
√
κeA(t−τ)C 〈0L0R0| bin(τ). (31)

When A is Hurwitz, the first term in the RHS of Eq.
(31) can be removed by taking the steady-state limit
t0 → −∞. However, since A is only marginally stable in
our case, the initial time constant t0 has to be included
in the calculation and the steady-state limit can only
be taken when appropriate. Furthermore, in contrast to
the Hurwitz stable case, quantum Itô calculus has to
be explicitly invoked for the calculation of the nonlinear
terms, which can be seen from the proof of Lemma A.1
in the APPENDIX.

For later use, we define a matrix function

gG(t) ,

{
δ(t)− κCeAtC, t ≥ 0,

0, t < 0.
(32)

Remark 2 Formally, Equations (29) and (6b) define a
linear system with system matrices (A,−

√
κC,

√
κC). In

this sense, gG(t) defined in Eq. (32) is of the form of
an impulse response function, which is very commonly
used in classical linear systems theory. Actually, impulse
response functions play an important role in quantum
linear systems theory, see, e.g., [46, Chapter 7], [20],
[49, Chapter 6], [54], [51], [38], [35], [55] and refer-
ences therein. Moreover, since the matrix A in Eq. (28)
is marginally stable, the linear system given by equations
(29) and (6b) is marginally stable in the sense of linear
systems theory. With slight abuse of notation, we also say
that our coherent feedback network in Fig. 2 is marginally
stable.

For the time domain function gG(t) defined in Eq. (32),
we define its Laplace transform to be

G[s] ,
∫ ∞

0

dt gG(t)e
−st. (33)

Substituting Eq. (32) into Eqs. (33), we obtain

G[iω] =
1

ω + ωc − 2iκ

[
ω + ωc 2iκ

2iκ ω + ωc

]

,

[
ΘL[iω]

ΘR[iω]

]
≡

[
Θ1[iω] Θ2[iω]

Θ2[iω] Θ1[iω]

]
. (34)

The following lemma presents expressions for the quan-
tities in Eqs. (27a)-(27c).

Lemma 1 In the limit t0 → −∞, Eq. (27a)-(27c) can
be calculated by

〈0L0R0|bout,L[iω1]bout,L[iω2]b
∗
L[iν1]b

∗
R[iν2]|0L0R0〉

=Θ2[iν2]δ(ω1 − ν2)δ(ω2 − ν1)

+ 2
√
κΘL[iω1]

[
f(ω1, ω2, ν1, ν2)

f(ω1, ω2, ν1, ν2)

]
, (35a)

〈0L0R0|bout,L[iω1]bout,R[iω2]b
∗
L[iν1]b

∗
R[iν2]|0L0R0〉

=Θ1[iν1]δ(ω1 − ν1)δ(ω2 − ν2)

+ 2
√
κΘL[iω1]

[
f(ω1, ω2, ν1, ν2)

f(ω1, ω2, ν1, ν2)

]
, (35b)

〈0L0R0|bout,R[iω1]bout,R[iω2]b
∗
L[iν1]b

∗
R[iν2]|0L0R0〉

=Θ2[iν1]δ(ω1 − ν1)δ(ω2 − ν2)

+ 2
√
κΘR[iω1]

[
f(ω1, ω2, ν1, ν2)

f(ω1, ω2, ν1, ν2)

]
, (35c)

where

f(ω1, ω2, ν1, ν2) =g(ω1, ω2, ν1, ν2)δ(ν1 + ν2 − ω1 − ω2)

−
√
κ

i(ω2 + ωc) + 2κ
δ(ω1 − ν2)δ(ν1 − ω2)

with

g(ω1, ω2, ν1, ν2) (36)

,− i
κ3/2

π

ν1 + ν2 + 2ωc − 4iκ

(ω1 + ωc + 2iκ)(ω2 + ωc − 2iκ)

× ν1 + ν2 + 2ωc

(ν1 + ωc − 2iκ)(ν2 + ωc − 2iκ)(ν1 + ν2 + 2ωc − 2iκ)
.

The proof of Lemma 1 is given in the APPENDIX.

Remark 3 The Dirac delta function δ(ν1+ν2−ω1−ω2)
in f(ω1, ω2, ν1, ν2) relates to the nonlinear frequency scat-
tering of two photons. The output photons with frequen-
cies ω1 and ω2 can be generated by any pair of inci-
dent photons with frequencies ν1, ν2 satisfying ν1 + ν2 =
ω1+ω2. That is, the frequencies of the input photons may
not be preserved.

Remark 4 Compared with the result for a two-photon
single-qubit system [12], there is an additional coefficient
(ν1 + ν2 +2ωc)/(ν1 + ν2 +2ωc − 2iκ) in g(ω1, ω2, ν1, ν2)
that is associated with the nonlinear frequency scattering.
Apparently, this term characterizes a two-photon process,
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where the two photons are taken as a single object with the
frequency ν1+ν2 and interact with the combined two-qubit
system with the detuning frequency 2ωc. In particular,
when the two photons are in resonance with the combined
two-qubit system, i.e. ν1 + ν2 + 2ωc = 0, the nonlinear
frequency scattering can be completely suppressed, which
is impossible for a single-qubit system.

On the basis of Lemma 1 presented above, we are able
to derive the main result of this paper.

Theorem 1 The steady-state output two-photon state
in Eq. (26) can be calculated as

|Ψout〉 (37)

=
1

2

∫
ω1,ω2

dω1dω2 TLL[ω1, ω2]b
∗
L[iω1]b

∗
L[iω2] |0L0R〉

+

∫
ω1,ω2

dω1dω2 TLR[ω1, ω2]b
∗
L[iω1]b

∗
R[iω2] |0L0R〉

+
1

2

∫
ω1,ω2

dω1dω2 TRR[ω1, ω2]b
∗
R[iω1]b

∗
R[iω2] |0L0R〉 ,

where

TLL[ω1, ω2] (38a)
=(1 + T (ω1))S(ω2)ξL[iω1]ξR[iω2] + χ(ω1, ω2),

TLR[ω1, ω2] (38b)

=
(1 + T (ω1))(1 + T (ω2))

4
ξL[iω1]ξR[iω2]

+S(ω1)S(ω2)ξL[iω2]ξR[iω1] + χ(ω1, ω2),

TRR[ω1, ω2] (38c)
=(1 + T (ω2))S(ω1)ξL[iω1]ξR[iω2] + χ(ω1, ω2)

with

T (ωi) ,
ωi + ωc + 2iκ

ωi + ωc − 2iκ
, S(ωi) ,

2iκ

ωi + ωc − 2iκ
,

(39a)

χ(ω1, ω2) , 2
√
κT (ω1)

∫ ∞

−∞
dν1 ξL[iν1]

× ξR[i(ω1 + ω2 − ν1)]g(ω1, ω2, ν1, ω1 + ω2 − ν1).
(39b)

Proof. Applying Lemma 1 to Eq. (26) proves the theo-
rem. �

Remark 5 It can be readily verified that the function
χ(ω1, ω2) defined in Eq. (39b) satisfies χ(ω1, ω2) =

χ(ω2, ω1). Again, the nonlinear frequency scattering
term χ(ω1, ω2) can be suppressed under the condition of
two-photon resonance ν1 + ν2 + 2ωc = 0, cf. Remark 4.
The physical meanings of the steady-state output field
state |Ψout〉 in Eq. (37) is clear: it is a superposition
state composed of three terms, which are two photons in
the left-going channel, one in each channel, and two in
the right-going channel respectively.

The following result presents a special case of Theorem
1.

Corollary 1 Sending κ → 0 while fixing all the other
parameters, the steady-state output field state becomes

|Ψout〉 (40)

=

∫ ∞

−∞
dω1ξL[iω1]b

∗
L[iω1]|0L〉

∫ ∞

−∞
dω2ξR[iω2]b

∗
R[iω2]|0R〉.

That is, the left-going output channel contains a single-
photon packet ξL, and the right-going output channel
contains a single-photon packet ξR. On the other hand,
Sending κ → ∞ while fixing all the other parameters, the
steady-state output field state is

|Ψout〉 (41)

=

∫ ∞

−∞
dω1ξR[iω1]b

∗
L[iω1]|0L〉

∫ ∞

−∞
dω2ξL[iω2]b

∗
R[iω2]|0R〉.

That is, the left-going output channel contains a single-
photon packet ξR, and the right-going output channel con-
tains a single-photon packet ξL.

Remark 6 On one hand, when the coupling strength κ
is small, the interaction between the two-level systems
and the input photons is weak. In the limit κ → 0, the
left- (right-) going photon will be in the left (right) output
channel. This interprets in Eq. (40). On the other hand,
in the strong coupling limit κ → ∞, each two-level system
acts as a mirror so that each input photon is bounced
back. This interprets Eq. (41).

3.3 The probabilities

Let PLL denote the probability of finding two photons in
the left-going output channel bout,L, PRR the probability
of finding two photons in the right-going output channel
bout,R, and PLR the probability of finding one photon
in each output channel, respectively. By Theorem 1, we
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Fig. 3. The two continuous-mode output photons are either
left-going or right-going simultaneously, with equal proba-
bility. There is no possibility of finding one photon in an
output channel and the other in another output channel.

have

PLL =
1

4

∫
ω1,ω2

|TLL[ω1, ω2]|2 + T ∗
LL[ω1, ω2]TLL[ω2, ω1],

PLR =

∫
ω1,ω2

|TLR[ω1, ω2]|2 ,

PRR =
1

4

∫
ω1,ω2

|TRR[ω1, ω2]|2 + T ∗
RR[ω1, ω2]TRR[ω2, ω1].

In particular, when ξL ≡ ξR, we get

PLL = PRR =
1

2

∫
ω1,ω2

|TLL[ω1, ω2]|2 , (42a)

PLR =

∫
ω1,ω2

|TLR[ω1, ω2]|2 . (42b)

4 Synthesis of systems using the coherent feed-
back structure

4.1 Tunable Hong-Ou-Mandel (HOM) interferometer

The HOM effect refers to a two-photon interference effect
that occurs when two identical photons enter a balanced
beam splitter, one in each input port [18]. In our case,
the left-going and right-going input photons enter the
system in different ports; Fig. 1. In the classical HOM
experiment, due to the destructive interference, the two
output photons appear in the same output port, with
equal probability. In our case, it means that the two
photons simultaneously leave the network from either
the left- or right-going channel with equal probability;
Fig. 3.

By Corollary 1, if κ → 0 or κ → ∞ while all the other
parameters are fixed, in the steady state there will be
one photon in each output channel. In this subsection,
we show that controlling the detuning ωc can turn the

coherent feedback network into a tunable HOM interfer-
ometer. Notice that the detuning ωc is indeed physically
controllable using artificial qubits [33], [56], [25].

Fig. 4. |TLR(ω1, ω2)|2 with parameters
γ = 1, ωo = 1, κ = 1.5, ωc = 0 (for the upper subfigure),
and ωc = 3 (for the lower subfigure).

Assume ξL = ξR ≡ ξ. Let ωc = ζκ for some ζ ≥ 0.
According to Eqs. (56) and (39b), for any given ω1, ω2 ∈
R, limκ→∞ χ(ω1, ω2) = 0. As a result

lim
κ→∞

TLR[ω1, ω2]

= lim
κ→∞

(ω1 + ζκ)(ω2 + ζκ)− 4κ2

(ω1 + ζκ− 2iκ)(ω2 + ζκ− 2iκ)
ξ[iω1]ξ[iω2]

=
ζ2 − 4

(ζ − 2i)2
ξ[iω1]ξ[iω2].

Thus, when ζ = 2, limκ→∞ TLR[ω1, ω2] = 0. Then, by
Eq. (42b), limκ→∞ PLR = 0. In a similar way, it can be
shown that limκ→∞ PLL = limκ→∞ PRR = 1

2 . That is,
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two photons simultaneously appear in the left- or right-
going channel with equal probability. This is the famous
HOM interference phenomenon. Let us look at an exam-
ple. In Fig. 4, the identical input photons have a wave-
packet of Lorentzian type with FWHM γ = 1 and car-
rier frequency ωo = 1. In the upper subfigure the detun-
ing frequency ωc = 0, while in the lower subfigure the
detuning frequency ωc = 3 = 2κ. It can be seen clearly
that in the lower subfigure TLR[ω1, ω2] is very close to
zero. Indeed, when ωc = 2κ, numerical simulations show
that PLR → 0 as κ → ∞.

In that follows we demonstrate that the continuous-
mode setting discussed in this paper is also applicable
to the single-mode setting. Let the two single-photon in-
put states be those in Example 1. In this case, ξL[iν] =
ξR[iν] = ξ[iν]. Notice that

lim
γ→0

|ξ[iν]|2 = lim
γ→0

1

π

γ/2

(ν − ωo)2 + (γ/2)2
= δ(ν − ωo).

(43)
In other words, in the limit γ → 0, the inputs turn to
monochromatic lights, i.e. photons with single frequency
ωo. It is easy to verify that limκ→0 χ(ω1, ω2) = 0, where
χ(ω1, ω2) is defined in Eq. (39b). Now consider ωo+ωc =
βκ in which ωc is no longer a fixed value but dependent
on κ. By Eq. (43), it can be shown that

lim
γ→0

∫
ω1,ω2

|(1 + T (ω1))S(ω2)ξ[iω1]ξ[iω2]|2

= |(1 + T (ωo))S(ωo)|2 =

(
4β

β2 + 4

)2

.

As a result, when β = 2, by Eq. (42a), limγ,κ→0 PLL =
PRR = 1

2 . Similarly, it can be shown that limγ,κ→0 PLR =
0. In other words, the two photons simultaneously leave
the network from either the left- or right-going channel
with equal probability.

4.2 Marginally stable single-photon device

As shown in [51], [38], the interaction between a two-level
system and a single photon can be fully analyzed using
a transfer function approach. Similarly, if the coherent
feedback network in Fig. 2 has a single-photon input
(e.g., the left-going input field bL contains a single pho-
ton while the right-going input field bR is in the vacuum
state), then essentially the network dynamics can be in-
vestigated by means of linear systems theory. Unfortu-
nately, as the matrix A in Eq. (28) is not Hurwitz stable,
the linear transfer function approach in [51], [38] is not
applicable. However, the general input-output analysis
presented in Section 3 indeed works in the single-photon
case.

Let us assume that the left-going input field bL is still in
the single-photon state b∗L(ξL)|0L〉, and the right-going

input field bR is in the vacuum state |0R〉. Then, the joint
system-field state is

|Ψ(t)〉 = U(t, t0)b
∗
L(ξ1) |0L0R0〉 .

In the steady-state case (t0 → −∞, t → ∞), the single
photon leaves the feedback-connected two-level systems
in their ground state. As a result, the steady-state output
single-photon state is

|Ψout〉 = lim
t0→−∞,t→∞

〈0|Ψ(t)〉

= lim
t0→−∞,t→∞

〈0|U(t, t0)b
∗
L(ξL) |0L0R0〉 .(44)

With the time-domain 1-photon basis for the input field
given by{∫ ∞

−∞
dp1 |1Lp1

〉 〈1Lp1
| ,
∫ ∞

−∞
dp1 |1Rp1

〉 〈1Rp1
|
}
,

Eq. (44) can be simplified as

|Ψout〉

= lim
t0→−∞

∫ ∞

−∞
dp1 |1Lp1

〉
∫ ∞

t0

dt1ξL(t1)

×〈0L0R0| bout,L(p1)b∗L(t1) |0L0R0〉

+ lim
t0→−∞

∫ ∞

−∞
dp1 |1Rp1

〉
∫ ∞

t0

dt1 ξL(t1)

× 〈0L0R0| bout,R(p1)b∗L(t1) |0L0R0〉 . (45)

As with the two-photon case, we go to the frequency do-
main by applying the Fourier transform to the time vari-
ables t1 and p1, respectively. In the frequency domain,
Eq. (45) becomes

|Ψout〉 (46)

=

∫
ω1,ν1

ξL[iν1] |1Lω1
〉 〈0L0R0| bout,L[iω1]b

∗
L[iν1] |0L0R0〉

+

∫
ω1,ν1

ξL[iν1] |1Rω1
〉 〈0L0R0| bout,R[iω1]b

∗
L[iν1] |0L0R0〉 .

Therefore, we have to calculate the following quantities:

〈0L0R0| bout,L[iω1]b
∗
L[iν1] |0L0R0〉 , (47a)

〈0L0R0| bout,R[iω1]b
∗
L[iν1] |0L0R0〉 . (47b)

First, we consider Eq. (47a). By Eqs. (6b) and (75) in
the APPENDIX we have

〈0L0R0| bout,L(p1)b∗L[iν1] |0L0R0〉 (48)

=
1√
2π

∫
ω1

eiω1p1 〈0L0R0|ΘL[iω1]bin[iω1]b
∗
L[iν1] |0L0R0〉 .
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Using (61) in the APPENDIX, in the limit t0 → −∞,
Eq. (48) can be simplified to be

1√
2π

∫
ω1

eiω1p1 〈0L0R0|

× (Θ1[iω1]bL[iω1] + Θ2[iω1]bR[iω1])b
∗
L[iν1] |0L0R0〉

=
1√
2π

Θ1[iν1]e
iν1p1 . (49)

By Eqs. (48)-(49), we have

〈0L0R0| bout,L[iω1]b
∗
L[iν1] |0L0R0〉 = Θ1[iν1]δ(ω1 − ν1).

(50)
Eq. (47b) can be calculated via a similar way as

〈0L0R0| bout,R[iω1]b
∗
L[iν1] |0L0R0〉

=
1√
2π

∫
p1

e−iω1p1
1√
2π

Θ2[iν1]e
iν1p1

= Θ2[iν1]δ(ω1 − ν1). (51)

Substituting Eqs. (50) and (51) into Eq. (46) yields the
steady-state output single-photon state, which is

|Ψout〉

=

∫
ω

ξL[iω]

(
1 + T (ω)

2
b∗L[iω] + S(ω)b∗R[iω]

)
|0L0R〉

=

∫
ω

(
G[iω]

[
ξL[iω]

0

])T

b#in[iω] |0L0R〉 . (52)

Denote

ηL[iω] =
ω + ωc

ω + ωc − 2iκ
ξL[iω] =

1 + T (ω)

2
ξL[iω],

ηR[iω] =
2iκ

ω + ωc − 2iκ
ξL[iω] = S(ω)ξL[iω],

and substitute them into Eq. (52) yields

|Ψout〉 =
∫
ω

(ηL[iω]b
∗
L[iω] + ηR[iω]b

∗
R[iω]) |0L0R〉 .

(53)
|Ψout〉 is normalized since |ηL[iω]|2+|ηR[iω]| = |ξL[iω]|2.
Clearly,

lim
κ→0

|Ψout〉 =
∫ ∞

−∞
dω ξL[iω]b

∗
L[iω]|0L〉 ⊗ |0R〉. (54a)

lim
κ→∞

|Ψout〉 =|0L〉 ⊗
∫ ∞

−∞
dω (−ξL[iω])b

∗
R[iω]|0R〉,

(54b)

which are consistent with Eqs. (40)-(41).

Remark 7 According to Eq. (52), the pulse shape of
the photon in the output channels is obtained by linearly
transforming that of the input photon by G[iω]. This looks
like a linear dynamics. Indeed, as shown in [51,38], the
interaction between a two-level system and a single pho-
ton can be fully analyzed in a transfer function approach.
Unfortunately, as the coherent feedback network studied
in this paper is only marginally stable, the linear transfer
function approach in [51,38] is not applicable. However,
as shown above, the general framework presented Section
3 indeed works.

Remark 8 It is worthwhile to notice that Eq. (54b) is
consistent with [57, Fig. 3] for single-photon Fock-state
scattering. That is, for strong coupling, a two-level atom
appears as a mirror so that the input single photon is
reflected. This is true even with the existence of a nonzero
detuning ωc.

5 Conclusion

In this paper, we have studied a coherent feedback
network which consists of two identical qubits and is
marginally stable. The coherent feedback network can
be physically realized by integrating a two-qubit system
with one-dimensional waveguide, which is suitable for
applications in nano-photonic quantum networks and
information processing on-chip. Due to the feedback
loop, the two input photons can be confined between
the qubits with a probability, leading to multiple times
of photon-photon interaction and enhanced nonlinear-
ity. The previous works [56,25,13] have not analyti-
cally solved for the steady-state system response when
the network is only marginally stable and modeled by
Markovian QSDEs. In this paper, we introduce the
input-output formalism and study the system response
in the steady-state limit [54,12] which fully captures the
time-correlation of the output photons. More impor-
tantly, by Theorem 1 we have provided an end-to-end
solution that exactly describes the input-output relation
for two generic continuous-mode photons.

A novel two-photon process has been found in the non-
linear response of this coherent feedback network, which
provides additional options for controlling the nonlin-
earity. In particular, under a condition of two-photon
resonance the nonlinear frequency scattering can be
completely suppressed, which is never possible for two
photons that interact via a single qubit. The coherent
feedback system is readily integrable with the exist-
ing nanophotonic circuitry. Since one- and two-photon
operations are sufficient for universal optical quantum
computing, the method of this paper is easily scalable to
practical-sized quantum information processing circuits.
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Appendix.

In order to prove Lemma 1, we need to establish Lemma
A.1.

For i = 1, 2, define functions

fL,i(ω1, ω2, ν1, ν2) (55a)
, 〈0L0R0| bL[iω1]σ−,i[iω2]b

∗
L[iν1]b

∗
R[iν2] |0L0R0〉 ,

and

fR,i(ω1, ω2, ν1, ν2) (55b)
, 〈0L0R0| bR[iω1]σ−,i[iω2]b

∗
L[iν1]b

∗
R[iν2] |0L0R0〉 ,

respectively.

Lemma A.1 The functions defined in Eqs. (55a)-(55b)
satisfy

fL,1(ω1, ω2, ν1, ν2) = fL,2(ω1, ω2, ν1, ν2)

= fR,1(ω1, ω2, ν1, ν2) = fR,2(ω1, ω2, ν1, ν2)

= g(ω1, ω2, ν1, ν2)δ(ν1 + ν2 − ω1 − ω2)

−
√
κ

i(ω2 + ωc) + 2κ
δ(ω1 − ν2)δ(ν1 − ω2). (56)

Proof of Lemma A.1. For the matrix A defined in Eq.
(28), we have its matrix exponential

eA = e−iωc−κ

[
coshκ − sinhκ

− sinhκ coshκ

]
. (57)

Thus,
eAtC = e−(iωc+2κ)tC. (58)

Substituting Eq. (58) into Eq. (31), together with the
commutation relations in Eq. (12), we get

〈0L0R0|

[
σ−,1(t)

σ−,2(t)

]
b∗L(r) |0L0R0〉

= 〈0L0R0|

[
σ−,1(t)

σ−,2(t)

]
b∗R(r) |0L0R0〉

= −
√
κ

∫ t

t0

dτ e−(iωc+2κ)(t−τ)δ(τ − r)

[
1

1

]
. (59)

Applying the Fourier transform to Eq. (59) with respect
to the time variable r yields

〈0L0R0|

[
σ−,1(t)

σ−,2(t)

]
b∗L[iω] |0L0R0〉

= 〈0L0R0|

[
σ−,1(t)

σ−,2(t)

]
b∗R[iω] |0L0R0〉

=i

√
κ

2π
eiωt 1− e−(2κ+i(ωc+ω))(t−t0)

(ωc + ω)− 2iκ

[
1

1

]
. (60)

Adjoining both sides of Eq. (60) and by Eqs. (10)-(12),
it is straightforward to show that

〈0L0R0| bL(t)b∗L[iω] |0L0R0〉
= 〈0L0R0| bR(t)b∗R[iω] |0L0R0〉

=
1√
2π

eiωt, as t0 → −∞. (61)

By means of Eqs. (6a) and the fact that σz = 2σ+σ−−I,

differentiating the vector functions

[
fL,1(ω1, p2, ν1, ν2)

fL,2(ω1, p2, ν1, ν2)

]
with respect to the time variable p2 yields

∂

∂p2

[
fL,1(ω1, p2, ν1, ν2)

fL,2(ω1, p2, ν1, ν2)

]

=A

[
fL,1(ω1, p2, ν1, ν2)

fL,2(ω1, p2, ν1, ν2)

]

+ 2κ 〈0L0R0| bL[iω1]

[
σ+,1(p2)

σ+,2(p2)

]
|0L0R0〉

× 〈0L0R0|σ−,1(p2)σ−,2(p2)b
∗
L[iν1]b

∗
R[iν2] |0L0R0〉

+ 2
√
κ 〈0L0R0| bL[iω1]

×

[
σ+,1(p2) 0

0 σ+,2(p2)

]
|0L0R0〉

× 〈0L0R0|

[
σ−,1(p2)

σ−,2(p2)

]
(bL(p2) + bR(p2))

× b∗L[iν1]b
∗
R[iν2] |0L0R0〉

−
√
κ

[
1

1

]
〈0L0R0| bL[iω1] (bL(p2) + bR(p2))

× b∗L[iν1]b
∗
R[iν2] |0L0R0〉 . (62a)

The non-homogeneous terms of the ODEs (62a) can be
calculated using Eqs. (60) and (61) except

Πij(t) , 〈0L0R0|σ−,i(t)σ−,j(t)b
∗
L[iν1]b

∗
R[iν2] |0L0R0〉

(63)
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whose initial condition are

Πij(t0) (64)
= 〈0L0R0|σ−,i(t0)σ−,j(t0)b

∗
L[iν1]b

∗
R[iν2] |0L0R0〉

=0.

Re-write Eq. (6a) in the Itô form,

dσ−,1(t) = ασ−,1(t)dt+ κσz,1(t)σ−,2(t)dt

+
√
κσz,1(t) (dBL(t) + dBR(t)) ,

dσ−,2(t) = ασ−,2(t)dt+ κσz,2(t)σ−,1(t)dt

+
√
κσz,2(t) (dBL(t) + dBR(t)) ,

where dBj(t) ≡
∫ t+dt

t
bj(τ)dτ are Itô increments, (j =

L,R). By Itô calculus we have

d(σ−,1(t)σ−,1(t))

= ασ−,1(t)σ−,1(t)dt+ κσz,1(t)σ−,1(t)σ−,2(t)dt

+
√
κσz,1(t)σ−,1(t) (dBL(t) + dBR(t))

+ασ−,1(t)σ−,1(t)dt+ κσ−,1(t)σ−,2(t)σz,1(t)dt

+
√
κσ−,1(t)σz,1(t) (dBL(t) + dBR(t))

+κσz,1(t)
2 (dBL(t) + dBR(t))

2

= 2ασ−,1(t)σ−,1(t),

where the fact

σ−,1(t)σz,1(t) = σ−,1(t), σz,1(t)σ−,1(t) = −σ−,1(t)

have been used to derive the last step. Therefore dΠ11 =
2αΠ11dt, which, under the initial condition (64), has the
trivial solution

Π11(t) ≡ 0, t ≥ t0. (65)

Similarly, it can be shown that

Π22(t) ≡ 0, t ≥ t0. (66)

Next, we look at Π12(t) (which equals Π21(t)). By Itô
calculus,

d(σ−,1(t)σ−,2(t)) (67)
= ασ−,1(t)σ−,2(t)dt+ κσz,1(t)σ

2
−,2(t)dt

+
√
κσz,1(t)σ−,2(t) (dBL(t) + dBR(t))

+ασ−,1(t)σ−,2(t)dt+ κσz,2(t)σ
2
−,1(t)dt

+
√
κσz,2(t)σ−,1(t) (dBL(t) + dBR(t))

+κσz,1(t)σz,2(t) (dBL(t) + dBR(t))
2
.

Noticing

〈0L0R0|σz,1(t)σz,2(t) (dBL(t) + dBR(t))
2

× b∗L[iν1]b
∗
R[iν2] |0L0R0〉

= 〈0L0R0| dBL(t)
2b∗L[iν1]b

∗
R[iν2] |0L0R0〉

+ 〈0L0R0| dBR(t)
2b∗L[iν1]b

∗
R[iν2] |0L0R0〉

+ 2 〈0L0R0| dBL(t)dBR(t)b
∗
L[iν1]b

∗
R[iν2] |0L0R0〉

=0,

Eq. (67) yields

dΠ12 (68)

= 2αΠ12dt−
√
κ√
2π

eiν1t 〈0L0R0| (σ−,1(t) + σ−,2(t))

×b∗R[iν2] |0L0R0〉 dt

−
√
κ√
2π

eiν2t 〈0L0R0| (σ−,1(t) + σ−,2(t))b
∗
L[iν1] |0L0R0〉 dt.

Moreover, by Eq. (60) we can explicitly calculate the
non-homogeneous terms of Eq. (68) and get

dΠ12

=2αΠ12dt− 2i
κ

2π
ei(ν1+ν2)t

1− e−(2κ+i(ωc+ν2))(t−t0)

(ωc + ν2)− 2iκ
dt

− 2i
κ

2π
ei(ν1+ν2)t

1− e−(2κ+i(ωc+ν1))(t−t0)

(ωc + ν1)− 2iκ
dt,

which in the limit t0 → −∞ reduces to

Π̇12

=2αΠ12

− iκ

π

(
1

(ωc + ν2)− 2iκ
+

1

(ωc + ν1)− 2iκ

)
ei(ν1+ν2)t,

whose solution is

Π12(t)

= − iκ

π

2ωc + ν1 + ν2 − 4iκ

((ωc + ν2)− 2iκ)((ωc + ν1)− 2iκ)

×
∫ t

t0

e2α(t−r)ei(ν1+ν2)r

→ −i
κ

π

2ωc + ν1 + ν2 − 4iκ

((ωc + ν2)− 2iκ)((ωc + ν1)− 2iκ)

× ei(ν1+ν2)t

i(ν1 + ν2)− 2α
, as t0 → −∞. (69)

As a result, the Fourier transform of the ODEs (62a)
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with respect to the time variable p2 can be written as

iω2

[
fL,1(ω1, ω2, ν1, ν2)

fL,2(ω1, ω2, ν1, ν2)

]

= A

[
fL,1(ω1, ω2, ν1, ν2)

fL,2(ω1, ω2, ν1, ν2)

]

−2κ5/2

π

2ωc + ν1 + ν2 − 4iκ

((ωc + ν2)− 2iκ)((ωc + ν1)− 2iκ)

× δ(ν1 + ν2 − ω1 − ω2)

((ωc + ω1) + 2iκ)(i(ν1 + ν2)− 2α)

[
1

1

]

+
κ3/2

π

2ωc + ν1 + ν2 − 4iκ

((ωc + ν2)− 2iκ)((ωc + ν1)− 2iκ)

×δ(ν1 + ν2 − ω1 − ω2)

(ωc + ω1) + 2iκ

[
1

1

]

−
√
κδ(ω1 − ν1)δ(ν2 − ω2)

[
1

1

]
. (70a)

The expression of

[
fL,1(ω1, p2, ν1, ν2)

fL,2(ω1, p2, ν1, ν2)

]
is then derived

using Eq. (70a). The expression of

[
fR,1(ω1, p2, ν1, ν2)

fR,2(ω1, p2, ν1, ν2)

]
can be obtained similarly, which completes the proof. �

Proof of Lemma 1. By Lemma A.1, we can write
fL,1(ω1, ω2, ν1, ν2) = fL,2(ω1, ω2, ν1, ν2) = fR,1(ω1, ω2, ν1, ν2) =
fR,2(ω1, ω2, ν1, ν2) ≡ f(ω1, ω2, ν1, ν2). Fourier trans-
forming both sides of Eq. (31) with respect to the time
variable t yields

〈0L0R0|

[
σ−,1[iω]

σ−,2[iω]

]
(71)

=
1√
2π

∫ ∞

t0

dt e−(iω−A)te−At0 〈0L0R0|

[
σ−,1(t0)

σ−,2(t0)

]

−
√
κ√
2π

∫ ∞

t0

dt e−iωt

∫ t

t0

dr eA(t−r)C 〈0L0R0| bin(r).

First, we look at the second term on the right-hand side
of Eq. (71). By Eqs. (9) and (58), we get

√
κ√
2π

∫ ∞

t0

dt e−iωt

∫ t

t0

dr eA(t−r)C 〈0L0R0| bin(r)

=

√
κ

2κ+ i(ωc + ω)
C 〈0L0R0| bin[iω]. (72)

Next, we look at the first term on the right-hand side of
Eq. (71). Performing eigen-structure decomposition on

iω −A gives

iω −A = V

[
i(ω + ωc) 0

0 2κ+ i(ω + ωc)

]
V,

where the columns of the matrix

V ,
1√
2

[
−1 1

1 1

]

are eigenvectors of the matrix iω −A. Then

∫ ∞

t0

dt e−(iω−A)t =
e−(2κ+i(ω+ωc))t0

2 (2κ+ i(ω + ωc))
C

+
π

2
δ(ω + ωc)e

−i(ω+ωc)t0

[
1 −1

−1 1

]
.

(73)

Thus, the solution of Eq. (71) is obtained as

〈0L0R0|

[
σ−,1[iω]

σ−,2[iω]

]
(74)

=
1√
2π

e−(2κ+i(ω+ωc))t0

2 (2κ+ i(ω + ωc))
Ce−At0

×〈0L0R0|

[
σ−,1(t0)

σ−,2(t0)

]

+
1√
2π

π

2
δ(ω + ωc)e

−i(ω+ωc)t0

[
1 −1

−1 1

]

×e−At0 〈0L0R0|

[
σ−,1(t0)

σ−,2(t0)

]

−
√
κ

2κ+ i(ωc + ω)
C 〈0L0R0| bin[iω].

Similarly, we can establish the following equation.

〈0L0R0|

[
bout,L[iω]

bout,R[iω]

]
(75)

=

√
κ√
2π

e−iωt0

2κ+ i(ω + ωc)
C 〈0L0R0|

[
σ−,1(t0)

σ−,2(t0)

]
+G[iω] 〈0L0R0| bin[iω].
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By Eq. (6b) and Eq. (75), we have

〈0L0R0| bout,L(p1)bout,L(p2)b∗L[iν1]b∗R[iν2] |0L0R0〉

(76a)

=
1√
2π

∫ ∞

−∞
dω1 eiω1p1 〈0L0R0|

× bout,L[iω1]bout,L(p2)b
∗
L[iν1]b

∗
R[iν2] |0L0R0〉

=
κ

2π

∫ ∞

−∞
dω1

eiω1(p1−t0)

2κ+ i(ω1 + ωc)

× 〈0L0R0| (σ−,1(t0) + σ−,2(t0))

× [1 1]

[
σ−,1(p2)

σ−,2(p2)

]
b∗L[iν1]b

∗
R[iν2] |0L0R0〉 (76b)

+

√
κ

2π

∫ ∞

−∞
dω1

eiω1(p1−t0)

2κ+ i(ω1 + ωc)

× 〈0L0R0| (σ−,1(t0) + σ−,2(t0))

× bL(p2)b
∗
L[iν1]b

∗
R[iν2] |0L0R0〉 (76c)

+

√
κ√
2π

∫ ∞

−∞
dω1 eiω1p1ΘL[iω1] 〈0L0R0|

× bin[iω1]
[
1 1

] [ σ−,1(p2)

σ−,2(p2)

]
× b∗L[iν1]b

∗
R[iν2] |0L0R0〉 (76d)

+
1√
2π

∫ ∞

−∞
dω1 eiω1p1 〈0L0R0|ΘL[iω1]

× bin[iω1]bL(p2)b
∗
L[iν1]b

∗
R[iν2] |0L0R0〉 . (76e)

Firstly, notice

〈0L0R0| (σ−,1(t0) + σ−,2(t0))

× bL(p2)b
∗
L[iν1]b

∗
R[iν2] |0L0R0〉 = 0.

Secondly, by (61), in the limit t0 → −∞, Eq. (76e) can
be simplified to be

1√
2π

∫ ∞

−∞
dω1 eiω1p1Θ2[iω1] 〈0L0R0|

×δ(ω1 − ν2)δ(ω2 − ν1)

=
1

2π
Θ2[iν2]e

iν2p1eiν1p2 . (77)

Thirdly, denote

hij(p2, ν1, ν2)

, 〈0L0R0|σ−,i(t0)σ−,j(p2)b
∗
L[iν1]b

∗
R[iν2] |0L0R0〉 ,

(78)

and substitute Eq. (78) into Eq. (76b) yields

2∑
i,j=1

κ

2π

∫ ∞

−∞
dω1

eiω1(p1−t0)

2κ+ i(ω1 + ωc)
hij(p2, ν1, ν2)

= κ
√
2πe−(2κ+iωc)(p1−t0)

2∑
i,j=1

hij(p2, ν1, ν2), (79)

where the fact

∫ ∞

−∞

eiωt

iω + (2κ+ iωc)
dω =

{
2πe−(2κ+iωc)t, t ≥ 0,

0, t < 0

(80)
has been used. Since limt0→−∞ e−(2κ+iωc)(p1−t0) = 0,
Eq. (76b) goes to 0 as t0 → −∞. Finally, Eq. (76d) can
be written as

2
√
κ√

2π

∫ ∞

−∞
dω1 eiω1p1ΘL[iω1]

[
f(ω1, p2, ν1, ν2)

f(ω1, p2, ν1, ν2)

]
. (81)

Consequently, in the limit t0 → −∞, Eq. (76a) becomes

〈0L0R0| bout,L(p1)bout,L(p2)b∗L[iν1]b∗R[iν2] |0L0R0〉

(82)

=
1

2π
Θ2[iν2]e

iν2p1eiν1p2

+
2
√
κ√

2π

∫ ∞

−∞
dω1 eiω1p1ΘL[iω1]

[
f(ω1, p2, ν1, ν2)

f(ω1, p2, ν1, ν2)

]
.

By applying the Fourier transform to Eq. (82) we ob-
tain Eq. (35a). Eqs. (35b)-(35c) can be established in a
similar way. �
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