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Abstract

Performance of adaptive control policies is assessed through the regret with respect to the optimal regulator, which reflects the
increase in the operating cost due to uncertainty about the dynamics parameters. However, available results in the literature do
not provide a quantitative characterization of the effect of the unknown parameters on the regret. Further, there are problems
regarding the efficient implementation of some of the existing adaptive policies. Finally, results regarding the accuracy with
which the system’s parameters are identified are scarce and rather incomplete.

This study aims to comprehensively address these three issues. First, by introducing a novel decomposition of adaptive
policies, we establish a sharp expression for the regret of an arbitrary policy in terms of the deviations from the optimal
regulator. Second, we show that adaptive policies based on slight modifications of the Certainty Equivalence scheme are
efficient. Specifically, we establish a regret of (nearly) square-root rate for two families of randomized adaptive policies. The
presented regret bounds are obtained by using anti-concentration results on the random matrices employed for randomizing
the estimates of the unknown parameters. Moreover, we study the minimal additional information on dynamics matrices that
using them the regret will become of logarithmic order. Finally, the rates at which the unknown parameters of the system are
being identified are presented.

Key words: Regret Analysis; Certainty Equivalence; Randomized Algorithms; Thompson Sampling; System Identification;
Adaptive Policies.

1 Introduction

This work studies the problem of designing adaptive
policies for the following Linear-Quadratic (LQ) system.
Given an initial state x(0) ∈ Rp, the system evolves as

x(t+ 1) =A0x(t) +B0u(t) + w(t+ 1), (1)

for t ≥ 0, where the vector x(t) ∈ Rp corresponds to
the state (and also output) of the system at time t,
u(t) ∈ Rr is the control input, and {w(t)}∞t=1 denotes a
sequence of random disturbances. Further, the instanta-
neous quadratic cost of the control law π̂ is denoted by

ct (π̂) = x(t)′Qx(t) + u(t)′Ru(t), (2)

where Q ∈ Rp×p, R ∈ Rr×r are symmetric positive defi-
nite matrices, and x(t)′, u(t)′ denote the transpose of the
vectors x(t), u(t). The dynamics of the system, i.e., both
the transition matrix A0 ∈ Rp×p, as well as the input
matrix B0 ∈ Rp×r, are fixed and unknown, while Q,R
are assumed known. The overall objective is to adap-
tively regulate the system in order to minimize its long-
term average cost.

Although regulation of LQ systems represents a canon-
ical problem in optimal control, adaptive policies have

not been adequately studied in the literature. In fact, a
large number of classical papers focuses on the setting of
adaptive tracking, where the objective is to steer the sys-
tem to track a reference trajectory [1,2,3,4,5,6,7,8,9]. So,
because the operating cost is not directly a function of
the control signal (i.e., R = 0), analysis of adaptive reg-
ulators becomes different and less technically involved.
Therefore, existing results are not applicable to general
LQ systems, wherein both the state and the control in-
put impact the operating cost. The adaptive Linear-
Quadratic Regulators (LQR) problem has been studied
in the literature [10,11,12,13,14,15,16,17], but there are
still gaps that the present work aims to fill by addressing
cost optimality, parameter estimation, and the trade-off
between identification and control.

Since the system’s dynamics are unknown, learning the
key parameters A0, B0 is needed for designing an op-
timal regulation policy. However, the system operator
needs to apply some control inputs, in order to collect
data (observations) for parameter estimation. A popu-
lar approach to design an adaptive regulator is Certainty
Equivalence (CE) [18]. Intuitively, its prescription is to
apply a control policy as if the estimated parameters
are the true ones guiding the system’s evolution. In gen-
eral, the inefficiency (as well as the inconsistency) of CE
[12,19,20] has led researchers to consider several modifi-
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cations of the CE approach.

One idea is to use the principle of Optimism in the Face
of Uncertainty (OFU) [13,14,15] (also known as bet on
the best [12], and the cost-biased approach [10]). OFU
recommends to apply the optimal regulators by treat-
ing optimistic approximations of the unknown matrices
as the true dynamics [21]. Another idea is to replace the
point estimate of the system parameters by a posterior
distribution which is obtained through Bayes law by in-
tegrating a prior distribution and the likelihood of the
data collected so far. One then draws a sample from this
posterior distribution and applies the optimal policy, as
if the system evolves according to the sampled dynam-
ics matrices. This approach is known as Thompson (or
posterior) sampling [16,17].

Note that most of the existing work in the literature is
purely asymptotic in nature so that it establishes the
convergence of the adaptive average cost to the opti-
mal value. It includes adaptive LQRs based on the OFU
principle [10,12], as well as those based on the method of
random perturbations being applied to continuous time
Ito processes [11]. However, results on the speed of con-
vergences are rare and rather incomplete. On the other
hand, from the identification viewpoint, consistency of
parameter estimates is lacking for general dynamics ma-
trices [22,23]. Moreover, accuracy rates for estimation
of system parameters are only provided for minimum-
variance problems [8,9]. Indeed, the estimation rate for
matrices describing the system’s dynamics is not cur-
rently available for general LQ systems.

Since in many applications the effective horizon is fi-
nite, the aforementioned asymptotic analyses are practi-
cally less relevant. Thus, addressing the optimality of an
adaptive strategy under more sensitive criteria is needed.
For this purpose, one needs to comprehensively examine
the regret; i.e., the cumulative deviation from the opti-
mal policy. Regret analyses are thus far limited to re-
cent work addressing OFU adaptive policies [13,14,15],
and results for TS obtained under restricted conditions
[16,17]. One issue with OFU is the computational in-
tractability of finding an optimistic approximation of the
true parameters, since it needs to solve lots of non-convex
matrix optimization problems. More importantly, we
show that the existing regret bounds [13,14,15,16,17] can
be achieved or improved through simpler adaptive reg-
ulators.

A key contribution of this work is a remarkably gen-
eral result to address the performance of control policies.
Namely, tailoring a novel method for regret decomposi-
tion, we utilize some results from martingale theory to
establish Theorem 1. It provides a sharp expression for
the regret of arbitrary regulators in terms of the devia-
tions from the optimal feedback. Leveraging Theorem 1,
we analyze two families of CE-based adaptive policies.

First, we show that the growth rate of the regret is
(nearly) square-root in time (of the interaction with the
system), if the CE regulator is properly randomized. Per-
formance analyses are presented for both common ap-
proaches of additive randomization and posterior sam-
pling. Then, the adaptive LQR problem is discussed
when additional information (regarding the unknown
dynamics parameters of the system) is available. In this
case, a logarithmic rate for the regret of generalizations
of CE adaptive policies is established, assuming that the
available side information satisfies an identifiability con-
dition. Examples of side information include constraints
on the rank or the support of dynamics matrices, that in
turn lead to optimality of the linear feedback regulator,
if the closed-loop matrix is accurately estimated. Fur-
ther, the identification performance of the correspond-
ing adaptive regulators is also addressed. To the best
of our knowledge, this work provides the first compre-
hensive study of CE-based adaptive LQRs, for both the
identification and the regulation problem.

The remainder of the paper is organized as follows. The
problem is formulated in Section 2. Then, we provide an
expression for the regret of general adaptive policies in
Subsection 3.1. Subsequently, the consistency of estimat-
ing the dynamics parameter is given in Subsection 3.2.
In Section 4, we study the growth rate of the regret, as
well as the accuracy of parameter estimation, for two
randomization schemes. Finally, in Section 5 we study a
general condition which leads to significant performance
improvements in both regulation and identification.

Remark 1 (Stochastic statements) All probabilis-
tic equalities and inequalities throughout this paper hold
almost surely, unless otherwise explicitly mentioned.

The following notation will be used throughout this
paper. For a matrix A ∈ Ck×`, A′ denotes its trans-
pose. When k = `, the smallest (respectively largest)
eigenvalue of A (in magnitude) is denoted by λmin(A)
(respectively λmax(A)). For v ∈ Cd, define the norm

||v|| =

(
d∑
i=1

|vi|2
)1/2

. We also use the following nota-

tion for the operator norm of matrices. For A ∈ Ck×`
let |||A||| = sup

||v||=1

||Av||. In order to show the dimension

of the manifold M we employ dim (M). Finally, to
indicate the order of magnitude, we use an = O (bn)
whenever lim sup

n→∞
|an/bn| < ∞, employ an = Ω (bn) for

lim inf
n→∞

|an/bn| > 0, and write an � bn, as long as both

an = O (bn) , an = Ω (bn) hold.

2 Problem Formulation

We start by defining the adaptive LQR problem this
work is addressing. The stochastic evolution of the sys-
tem is governed by the dynamics (1), where for all t ≥ 1,
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w(t) is the vector of random disturbances satisfying:
E [w(t)] = 0, E [w(t)w(t)′] = C, and |λmin (C)| > 0.
For the sake of simplicity, the noise vectors {w(t)}∞t=1 are
assumed to be independent over time t. The latter as-
sumption is made to simplify the presentation, and gen-
eralization to martingale difference sequences (adapted
to a filtration) is straightforward 1 . Further, the follow-
ing moment condition for the noise process is assumed.

Assumption 1 (Moment condition) There is α >
4, such that α-th moments exist: sup

t≥1
E [||w(t)||α] <∞.

In addition, we assume that the true dynamics of the un-
derlying system are stabilizable, a minimal assumption
for the optimal control problem to be well-posed.

Assumption 2 (Stabilizability) The true dynamics
[A0, B0] is stabilizable: there exists a stabilizing feedback
L ∈ Rr×p such that |λmax (A0 +B0L)| < 1.

Note that Assumption 2 implies stabilizability in the

average sense: lim sup
n→∞

n−1
n∑
t=0
||x(t)||2 <∞.

Definition 1 Henceforth, for A ∈ Rp×p, B ∈ Rp×r, we
use θ to denote [A,B]. So, θ ∈ Rp×q, where q = p+ r.

We assume perfect observations; i.e., the output of the
system corresponds to the state vector x(t). Next, an
admissible control policy is a mapping π that designs
the input according to the dynamics matrices A0, B0,
the cost matrices Q,R, and the history of the system:

u(t) = π
(
A0, B0, Q,R, {x(i)}ti=0 , {u(j)}t−1

j=0

)
,

for all t ≥ 0. An adaptive policy such as π̂, is oblivious
to the dynamics parameter θ0; i.e.,

u(t) = π̂
(
Q,R, {x(i)}ti=0 , {u(j)}t−1

j=0

)
.

When applying the policy π, the resulting instantaneous
quadratic cost at time t defined in (2) is denoted by
ct (π). For an arbitrary policy π, let J π (A0, B0) denote
the expected average cost of the system: J π (A0, B0) =

lim sup
n→∞

n−1
n−1∑
t=0

E [ct (π)]. Note that the dependence of

J π (θ0) to the known cost matrices Q,R is suppressed.
Then, the optimal expected average cost is defined as
J ? (A0, B0) = min

π
J π (A0, B0), where the minimum is

taken over all admissible control policies. The following

1 It suffices to replace the involved terms with those consist-
ing of the conditional expressions (w.r.t. the corresponding
filtration).

proposition provides an optimal policy for minimizing
the average cost, based on the Riccati equations:

K (θ) =Q+A′K (θ)A

−A′K (θ)B (B′K (θ)B +R)
−1
B′K (θ)A, (3)

L (θ) =− (B′K (θ)B +R)
−1
B′K (θ)A. (4)

Accordingly, define the linear time-invariant policy π?:

π? : u(t) = L (θ0)x(t), t = 0, 1, 2, · · · . (5)

Proposition 1 (Optimal policy [24,25,26]) If
[A0, B0] is stabilizable, (3) has a unique solution, and
π? defined in (5) is an optimal regulator. Conversely,
if K (θ0) is a solution of (3), L (θ0) defined by (4) is a
stabilizer.

In the latter case of Proposition 1, the solution K (θ0)
is unique and π? is an optimal regulator. Note that
although π? is the only optimal policy among the time-
invariant feedback regulators, there are uncountably
many time varying optimal controllers.

To rigorously set the stage, we denote the linear reg-
ulator u(t) = Ltx(t) by π = {Lt}∞t=0, where Lt is a
r × p matrix determined according to A0, B0, Q,R,
{x(i)}ti=0 , {u(j)}t−1

j=0. For time-invariant policy π0 =

{L0}∞t=0, we use π0 and L0 interchangeably. For an
adaptive operator, the dynamics matrices A0, B0 are

unknown. Hence, adaptive policy π̂ =
{
L̂t

}∞
t=0

con-

stitutes the linear feedbacks u(t) = L̂tx(t), where

L̂t ∈ Rr×p is required to be determined according to
Q,R, {x(i)}ti=0 , {u(j)}t−1

j=0. In order to measure the effi-
ciency of an arbitrary regulator π, the resulting instan-
taneous cost will be compared to that of the optimal
policy π? defined in (5). Specifically, the regret of policy
π at time n is defined as

Rn (π) =

n−1∑
t=0

[ct (π)− ct (π?)] . (6)

The comparison between adaptive control policies is
made according to regret, which is the cumulative de-
viation of the instantaneous cost of the corresponding
adaptive policy from that of the optimal controller π?.

An analogous expression for regret is previously used for
the problem of adaptive tracking [1,2]. An alternative
definition of the regret that has been used in the existing
literature [13,14,15,16,17] is the cumulative deviations

from the optimal average cost:
n−1∑
t=0

[ct (π)− J ? (θ0)].

The expression above differs from Rn (π) by the term
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n−1∑
t=0

ct (π?)− nJ ? (θ0), which is studied in the following

result.

Proposition 2 We have

lim sup
n→∞

n−1∑
t=0

ct (π?)− nJ ? (θ0)

n1/2 log n
<∞.

Therefore, the aforementioned definitions for the regret
are indifferent, as long as one can establish an upper
bound ofO

(
n1/2

)
magnitude (modulo a logarithmic fac-

tor) for either definition. However, defining the regret by
(6) leads to more accurate analyses and tighter results
(e.g. the regret specification of Theorem 1, and the log-
arithmic rate of Theorem 5). To proceed, we introduce
the following definition.

Definition 2 For a stabilizable parameter θ ∈ Rp×q,
define L̃ (θ) =

[
Ip, L (θ)

′]′ ∈ Rq×p.

We can then express the closed-loop matrices based on

θ, L̃ (θ). For arbitrary stabilizable θ1, θ2, if one applies
the optimal feedback matrix L (θ1) to a system with
dynamics parameter θ2, the resulting closed-loop matrix

is A2 +B2L (θ1) = θ2L̃ (θ1).

3 General Adaptive Policies

Next, we study the properties of general adaptive regula-
tors. First, we study the regulation viewpoint in Subsec-
tion 3.1, and examine the regret of arbitrary linear poli-
cies. Then, from an identification viewpoint, consistency
of parameter estimation is considered in Subsection 3.2.

3.1 Regulation

The main result of this subsection provides an expression
for the regret of an arbitrary (i.e., either adaptive or non-
adaptive) policy. According to the following theorem,
the regret of the regulator {Lt}∞t=0 is of the same order
as the summation of the squares of the deviations of the
linear feedbacks Lt from L (θ0). Note that it is stronger
than the previously known result that expressed the re-
gret as the summation of the deviations from L (θ0) (not
squared) [13,14,15,16,17]. As will be shown shortly, this
difference changes the nature of both the lower-bound,
as well as the upper-bound of the regret.

Theorem 1 (Regret specification) Suppose that
π = {Lt}∞t=0 is a linear policy. Letting {x? (t)}∞t=0 be
the trajectory under the optimal policy π?, we have

0 < lim inf
n→∞

Rn (π)

χn + %n
≤ lim sup

n→∞

Rn (π)

χn + %n
<∞,

where %n = x? (n)
′
K (θ0)x? (n)−x(n)′K (θ0)x(n), and

χn =
n−1∑
t=0
||(L (θ0)− Lt)x(t)||2.

The above specification for the regret is remarkably gen-
eral, since policy π does not need to satisfy any con-
dition. Even for destabilized systems, the exponential
growth of the state (and so the regret) is captured by
χn. Conceptually, χn captures the effect of the past sub-
optimality {Lt}n−1

t=0 on the regret, while the influence of
the sub-optimal feedback {Lt}∞t=n to be applied hence-
forth is reflected in %n. This is formally stated in the
following result, which also addresses the magnitude of
||x? (n)||. According to Assumption 1, Corollary 1 shows

that lim sup
n→∞

n−1/2%n = 0.

Corollary 1 We have lim sup
n→∞

n−β ||x? (n)|| = 0, for all

β > 1/α. Further, letting Lt = L (θ0) for t ≥ n, and
π = {Lt}∞t=0, we get 0 < R∞ (π) /χ∞ <∞.

Theorem 1 can be used for the sharp specification of the
performance of adaptive regulators. The immediate con-
sequence of Theorem 1 provides a tight upper bound for
the regret of an adaptive policy, in terms of the linear
feedbacks. Indeed, since the presented result is bidirec-
tional and not just an upper bound, it will also provide
a general information theoretic lower bound for the re-
gret of an adaptive regulator. For stabilized dynamics,
it is shown that the smallest estimation error when us-
ing a sample of size t is at least of the order t−1/2 [27].
Thus, at time t, the error in the identification of the un-
known dynamics parameter θ0 is at least of the same
order. Therefore, for the minimax growth rate of the re-
gret, Theorem 1 implies the lower bound log n.

In other words, for an arbitrary adaptive policy π̂, it
holds that lim inf

n→∞
(log n)

−1Rn (π̂) > 0. In general, the

information theoretic lower bound above is not known
to be operationally achievable because of the common
trade-off between estimation and control. We will dis-
cuss the reasoning behind the presence of such a gap in
Section 4, which leads to the operational lower bound
lim inf
n→∞

n−1/2Rn (π̂) > 0. Nevertheless, in Section 5 we

discuss settings where availability of some side informa-
tion leads to an achievable regret of logarithmic order.

Next, we provide some intuition behind Theorem 1 and
Corollary 1. The expression is in nature similar to the
concept of memorylessness, as discussed below. The
dynamics of the system in (1) indicate that the influ-
ence of non-optimal control inputs lasts forever. That
is, if Lt1x(t1) 6= L (θ0)x(t1), then for all t > t1, the
state vector x(t) deviates from the optimal trajectory
{x? (t)}∞t=0, and future control inputs {u(t)}∞t=t1+1 can
not fully compensate this deviation. However, according
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to Theorem 1, the regret is dominated by the magni-
tude of the square of the deviations of the non-optimal
feedbacks from L (θ0). In other words, if switching to
the optimal feedback L (θ0) occurs, then the regret re-
mains of the same order of the effect of the non-optimal
control inputs previously applied, and so is memoryless.

3.2 Identification

Another consideration for an adaptive policy is the esti-
mation (learning) problem. Since in general the operator
has no knowledge regarding the dynamics parameter θ0,
a natural question to address is that of identifying θ0,
in addition to examining cost optimality. In this subsec-
tion, we address the asymptotic estimation consistency
of general adaptive policies. That is, a rigorous formula-
tion of the relationship between the estimable informa-
tion (through observing the state of the system), and
the desired optimality manifold is provided.

On one hand, for a linear feedback L, the best one can
do by observing the state vectors is “closed-loop iden-
tification” [5,15]; i.e., estimating the closed-loop matrix
A0 + B0L accurately. On the other hand, an adaptive
policy is at least desired to provide a sub-linear regret;

lim sup
n→∞

Rn (π̂)

n
= 0. (7)

The above two aspects of an adaptive policy provide
the properties of the asymptotic uncertainty about
the true dynamics parameter θ0. By the uniqueness of
L (θ0) according to Proposition 1, the linear feedbacks

of the adaptive policy π̂ =
{
L̂t

}∞
t=0

require to converge

to L (θ0). Further, π̂ uniquely identifies the asymptotic

closed-loop matrix lim
t→∞

A0 +B0L̂t. This matrix accord-

ing to (7) is supposed to be θ0L̃ (θ0). Putting the above
together, the asymptotic uncertainty is reduced to the
set of parameters θ∞ that satisfy

L (θ∞) = L (θ0) , θ∞L̃ (θ0) = θ0L̃ (θ0) . (8)

To rigorously analyze this uncertainty, we introduce
some additional notation. First, for an arbitrary stabi-
lizable θ1, introduce the shifted null-space of the linear

transformation L̃ (θ1) : Rp×q → Rp×p by N (θ1) as:

N (θ1) =
{
θ ∈ Rp×q : θL̃ (θ1) = θ1L̃ (θ1)

}
. (9)

So, N (θ1) is indeed the set of parameters θ, such that
the closed-loop transition matrix of two systems with
dynamics parameters θ, θ1 will be the same, if apply-
ing the optimal linear regulator in (4) calculated for θ1.
Hence, if the operator regulates the system by feedback
L (θ1), one can not identify θ, θ1. In other words, N (θ1)

is the learning capability of adaptive regulators. Then,
we define the desired planning of adaptive policies as fol-
lows. For an arbitrary stabilizable θ1, define S (θ1) as
the level-set of the optimal controller function (4), which
maps θ ∈ Rp×q to L (θ) ∈ Rr×p:

S (θ1) =
{
θ ∈ Rp×q : L (θ) = L (θ1)

}
. (10)

Therefore, S (θ1) is in fact the set of parameters θ, such
that the calculation of optimal linear regulator (4) pro-
vides the same feedback matrix for both θ, θ1. Intuitively,
N (θ0) reflects the identification aspect of the adaptive
regulators by specifying the accuracy of the parameter
estimation procedure. Similarly, S (θ0) reflects the con-
trol aspect, and specifies the regulation performance in
terms of optimality of the cost minimization procedure.
Hence, the asymptotic uncertainty about the true pa-
rameter θ0 is according to (8) limited to the set

P0 = S (θ0) ∩N (θ0) . (11)

The system theoretic interpretation is as follows. Assum-
ing (7), P0 is the smallest subset of dynamics parameters
θ that one can identify according to the state and the in-
put sequences. Thus, the consistency of identifying the
true dynamics parameter θ0 is equivalent to P0 = {θ0}.
The following result establishes the properties of P0, and
will be used later to discuss the operational optimality
of adaptive regulators. It generalizes some results in the
literature [22,23].

Theorem 2 (Consistency) The set P0 defined
in (11) is a shifted linear subspace of dimension
dim (P0) = (p− rank (A0)) r.

Therefore, consistency of estimating θ0 is automatically
guaranteed for an adaptive policy with a sublinear re-
gret, only if A0 is a full-rank matrix. In other words,
effective control (exploitation) suffices for consistent es-
timation (exploration) only if rank (A0) = p. For exam-
ple, the sublinear regret bounds of OFU [13,15] imply
consistency, assuming A0 is of the full rank. Intuitively,
a singular A0 precludes unique identification of both of
A0, B0 by (8). Note that the converse is always true:
consistency of parameter estimation implies the sublin-
earity of the regret. Clearly, full-rankness of A0 holds for
almost all θ0 (with respect to Lebesgue measure).

4 Randomized Adaptive Policies

The classical idea to design an adaptive policy is the
following procedure known as CE. At every time n, its
prescription is to apply the optimal regulator provided

by (4), as if the estimated parameter θ̂n coincides exactly
with the truth θ0. According to (1), a natural estimation
procedure is to linearly regress x(t+1) on the covariates
x(t), u(t), using all observations collected so far; 0 ≤ t ≤
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n − 1. Formally, the CE policy is
{
L
(
θ̂n

)}∞
n=1

, where

θ̂n is a solution of the least-squares estimator using the
data observed until time n. That is,

θ̂n = arg min
θ∈Rp×q

n−1∑
t=0

∣∣∣∣∣∣x(t+ 1)− θL̃
(
θ̂t

)
x(t)

∣∣∣∣∣∣2.
The issue with CE is that it is capable of adapting to
a non-optimal regulation. Technically, CE possibly fails
to falsify an incorrect estimation of the true parame-
ter [12]. Suppose that at time n, the hypothetical esti-

mate of the true parameter is θ̂n 6= θ0. When applying

the linear feedback L
(
θ̂n

)
, the true closed-loop tran-

sition matrix will be θ0L̃
(
θ̂n

)
. Then, if this matrix is

the same as the (falsely) assumed closed-loop transition

matrix θ̂nL̃
(
θ̂n

)
, the estimation procedure can fail to

falsify θ̂n. So, if L
(
θ̂n

)
6= L (θ0), the adaptive policy is

not guaranteed to tend toward a better control feedback,
and a non-optimal regulator will be persistently applied.

Fortunately, if slightly modified, CE can avoid unfalsifi-
able approximations of the true parameters. More pre-
cisely, we show that the set of unfalsifiable parameters
defined below is of zero Lebesgue measure;

U (θ0) =
{
θ ∈ Rp×q : θ0L̃ (θ) = θL̃ (θ)

}
. (12)

Note that by (9), θ1 ∈ U (θ2) if and only if θ2 ∈ N (θ1).
Recalling the discussion in the previous section, N (θ1)
captures the estimation ability of adaptive regulators.
That is, the set U (θ0) contains the matrices θ for which
the hypothetically assumed closed-loop matrix is indis-
tinguishable from the true one. The next lemma sets the
stage for the subsequent results which show that CE can
be efficient, if it is suitably randomized.

Lemma 1 (Unfalsifiable set) The set U (θ0) defined
in (12) has Lebesgue measure zero.

4.1 Randomized Certainty Equivalence

According to Lemma 1, we can avoid the pathological set
U (θ0). As subsequently explained, it suffices to random-
ize the least-squares estimates of θ0, with a small (dimin-
ishing) perturbation. First, such perturbations are cho-
sen to be continuously distributed over the parameter
space Rp×q, in order to evade U (θ0). Further, since the

linear transformation L̃
(
θ̂n

)
is randomly perturbed, we

can estimate the unknown dynamics parameter θ0. Note
that as discussed in the previous section, the sequence

{
L̃
(
θ̂n

)}∞
n=0

relates the estimation of θ0 to the accu-

rate identification of the closed-loop matrix θ0L̃
(
θ̂n

)
.

Finally, according to Theorem 1, the magnitude of the
random perturbation needs to diminish sufficiently fast.
Indeed, while a larger magnitude perturbation helps to
the improvement of estimation, an efficient regulation
requires it to be sufficiently small. Addressing this trade-
off is the common dilemma of adaptive control. At the
end of this section, we will examine this trade-off based
on properties of estimation methods and the tight spec-
ification of the regret in Theorem 1.

In the sequel, we present the Randomized Certainty
Equivalence (RCE) adaptive regulator. RCE is an
episodic algorithm as follows. First, when identifying
a linear dynamical system using n observations, the
estimation accuracy scales at rate n−1/2. Therefore,
one can defer updating of the parameter estimates un-
til collecting sufficiently more data. This leads to the
episodic adaptive policies, where the linear feedbacks
are updated only after episodes of exponentially growing
lengths [15]. In RCE, the randomization of the parame-
ter estimate is episodic as well. Thus, calculation of the

linear feedbacks L
(
θ̂n

)
by (4) will occur sparsely (only

O (log n) times, instead of n times), which remarkably
reduces the computational cost of the algorithm.

Algorithm 1 : RCE

Input: γ > 1, and σ0 > 0

Let L
(
θ̂0

)
be a stabilizer

for m = 0, 1, 2, · · · do
while n < bγmc do

Apply u(n) = L
(
θ̂n

)
x(n)

θ̂n+1 = θ̂n
end while
Update the estimate θ̂n by (13)

end for

To formally define RCE, let {φm}∞m=0 be a sequence of

i.i.d. p× q random matrices with independent N
(
0, σ2

0

)
entries, for a fixed σ0 > 0. This sequence will be used to
randomize the estimates. RCE has an arbitrary param-
eter γ > 1 for determining the lengths of the episodes,

and starts by an arbitrary initial estimate θ̂0 such that

L
(
θ̂0

)
stabilizes the system. To find such initial esti-

mates, one can employ the existing adaptive algorithm
to stabilize the system in a short period [26]. Later on,
we will briefly discuss the aforementioned stabilization
algorithm. Then, for each time n ≥ 0, we apply the lin-

ear feedback L
(
θ̂n

)
. If n satisfies n = bγmc for some
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m ≥ 0, we update the estimate by

θ̂n = θ̃n + arg min
θ∈Rp×q

n−1∑
t=0

∣∣∣∣∣∣x(t+ 1)− θL̃
(
θ̂t

)
x(t)

∣∣∣∣∣∣2, (13)

where θ̃n =
(
n−1/4log1/4 n

)
φm is the random pertur-

bation. Otherwise, for n 6= bγmc, the policy does not up-

date the estimates: θ̂n = θ̂n−1. Note that since the dis-

tribution of θ̃n over p× q matrices is absolutely continu-

ous with respect to Lebesgue measure, θ̂n is stabilizable
(as well as controllable [28,29]). Therefore, by Proposi-

tion 1, the adaptive feedback L
(
θ̂n

)
is well defined.

Remark 2 (Non-Gaussian Randomization) In gen-
eral, it suffices to draw {φm}∞m=0 from an arbitrary dis-
tribution with bounded probability density functions on

Rp×q such that sup
m≥1

E
[
|||φm|||4+ε

]
<∞, for some ε > 0.

As mentioned before, the rate γ determines the lengths of

the episodes during which the algorithm uses θ̂n, before
updating the estimate. Smaller values of γ correspond to
shorter episodes and thus more updates and additional
randomization; i.e., the smaller γ is, the better the esti-
mation performance of RCE is. Although we will shortly
see that such an improvement will not provide a better
asymptotic rate for the regret, it speeds up the conver-
gence and so is suitable if the actual time horizon is not
very large. Further, it increases the number of times the
Riccati equation (4) needs to be computed. Therefore, in
practice the operator can decide γ according to the time
length of interacting with the system, and the desired
computational complexity. It is important especially if
the evolution of the real-world plant under control re-
quires the feedback policy to be updated fast (compared
to the time the operator needs to calculate the linear
feedback). The following theorem addresses the behav-
ior of RCE, and shows that adaptive policies based on
OFU [13,14,15] do not provide a better rate for the re-
gret, while they impose a large computational burden
by requiring solving a matrix optimization problem.

Theorem 3 (RCE rates) Suppose that π̂ is RCE,

and θ̂n is the parameter estimate at time n. Then, we
have

lim sup
n→∞

Rn (π̂)

n1/2 log n
<∞, lim sup

n→∞

∣∣∣∣∣∣∣∣∣θ̂n − θ0

∣∣∣∣∣∣∣∣∣2
n−1/2 log n

<∞.

Note that the analysis of RCE strongly leverages the
specification of the regret presented in Theorem 1. Fig. 1
illustrates the results of Theorem 3 by depicting the per-
formance of RCE for γ = 1.2, and the dynamics and

Figure 1. RCE performance: normalized regret(
n−1/2 log−1 n

)
Rn (π̂) vs n (top), and normalized estima-

tion error
(
n1/4 log−1/2 n

) ∣∣∣∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣∣∣∣ vs n (bottom).

cost matrices in (14). Curves of the normalized values of
both the regret and the estimation error are depicted as
a function of time, with the colors of the various curves
corresponding to different replicates of the stochastic dy-
namics, as well as the adaptive policy RCE.

4.2 Thompson Sampling

Another approach in existing literature is Thompson
Sampling (TS), which has the following Bayesian inter-
pretation. Applying an initial stabilizing linear feedback,

TS updates the estimate θ̂n through posterior sampling.

That is, the operator draws a realization θ̂n of the Gaus-
sian posterior for which the mean and the covariance
matrix are determined by the data observed to date.

Formally, let Σ0 ∈ Rq×q be a fixed positive definite (PD)
matrix, and choose a coarse approximation µ0 ∈ Rp×q
of the truth θ0. We will shortly explain an algorithmic
procedure for computing such coarse approximations.
Further, similar to RCE, fix the rate γ > 1. Then, at

each time n ≥ 0, we apply L
(
θ̂n

)
, where θ̂n is designed

as follows. If n satisfies n = bγmc for some m ≥ 0, θ̂n is
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A0 =


1.04 0 −0.27

0.52 −0.81 0.83

0 0.04 −0.90

 , B0 =


−0.47 0.61 −0.29

−0.50 0.58 0.25

0.29 0 −0.72

 , Q =


0.65 −0.08 −0.14

−0.08 0.57 0.26

−0.14 0.26 2.50

 , R =


0.20 0.05 0.08

0.05 0.14 0.04

0.08 0.04 0.24

 . (14)

drawn from a Gaussian distributionN
(
µm,Σ

−1
m

)
, where

µm = arg min
µ∈Rp×q

bγmc−1∑
t=0

∣∣∣∣∣∣x(t+ 1)− µL̃
(
θ̂t

)
x(t)

∣∣∣∣∣∣2, (15)

Σm = Σ0 +

bγmc−1∑
t=0

L̃
(
θ̂t

)
x(t)x(t)′L̃

(
θ̂t

)′
. (16)

Algorithm 2 : TS

Input: γ > 1

Let Σ0 ∈ Rq×q be PD, and L
(
θ̂0

)
be a stabilizer

for m = 0, 1, 2, · · · do
while n < bγmc do

Apply u(n) = L
(
θ̂n

)
x(n)

θ̂n+1 = θ̂n
end while
Calculate µm,Σm by (15), (16)

Draw all rows of θ̂n from N
(
µm,Σ

−1
m

)
end for

Namely, for 1 ≤ i ≤ p, the i-th row of θ̂n is drawn in-
dependently from a multivariate Gaussian distribution

of mean µ
(i)
m (the i-th row of µm), and covariance ma-

trix Σ−1
m . Otherwise, for n 6= bγmc the policy does not

update: θ̂n = θ̂n−1. Clearly, µm is the least-squares es-
timate and Σm is the (unnormalized) empirical covari-
ance of the data observed by the end of episode m. Note
that unlike RCE, the randomization in TS is based on
the state and control signals. The following result estab-
lishes the performance rates for TS.

Theorem 4 (TS rates) Let the adaptive policy π̂ be

TS, and the parameter estimate be θ̂n. Then, we have

lim sup
n→∞

Rn (π̂)

n1/2 log2 n
<∞, lim sup

n→∞

∣∣∣∣∣∣∣∣∣θ̂n − θ0

∣∣∣∣∣∣∣∣∣2
n−1/2 log2 n

<∞.

Note that the above upper-bounds differ by those of
Theorem 3 by a logarithmic factor. The performance of
TS for γ = 1.2, and the matrices A0, B0, Q,R in (14)
is depicted in Fig. 2. Clearly, the curves of the normal-
ized regret and the normalized estimation error in Fig. 2
fully reflect the rates of Theorem 4. For TS based adap-
tive LQRs, the Bayesian regret (i.e., the expected value

Figure 2. TS performance: normalized regret(
n−1/2 log−1 n

)
Rn (π̂) vs n (top), and normalized estima-

tion error
(
n1/4 log−1/2 n

) ∣∣∣∣∣∣∣∣∣θ̂n − θ0∣∣∣∣∣∣∣∣∣ vs n (bottom).

of the regret, wherein the expectation is taken under the
assumed prior) has been shown to be of a similar mag-
nitude [17]. Of course, this heavily relies on a Gaussian
prior imposed on the true θ0, and the (non-Bayesian)
regret is known to be of O

(
n2/3

)
magnitude [16]. There-

fore, Theorem 4 provides an improved regret bound for
TS, thanks to Theorem 1. By assuming stronger assump-
tions (e.g. boundedness of the state), a similar result has
been recently established for the case p = 1, which holds
uniformly over time [30].

For the sake of completeness, we briefly discuss an ex-
isting adaptive stabilization procedure that one can
employ before utilizing RCE or TS. First, in the work
of Faradonbeh et al. [26], it is shown that for some

fixed ε0 > 0, a coarse approximation θ̂0 that satisfies∣∣∣∣∣∣∣∣∣θ̂0 − θ0

∣∣∣∣∣∣∣∣∣ ≤ ε0, is sufficient for stabilizing the sys-

tem [26]. Note that the closed-loop matrix can be un-
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stable before termination of an stabilization procedure.
On the other hand, there exists a pathological subset
of unstable matrices such that if the closed-loop tran-
sition matrix belongs to that subset, it is not feasible
to be accurately estimated [31]. Specifically, in order to
ensure consistency, the true unstable closed-loop tran-
sition matrix during the stabilization period needs to
be regular, as defined below [31]. The unstable square
matrix D is regular if the eigenspaces corresponding
to the eigenvalues of D outside the unit circle are one
dimensional [31]. Then, it is established that random
linear feedback matrices preclude the closed-loop irreg-
ularity [26]. Therefore, the method of random feedback
matrices guarantees that a coarse approximation of
θ0 is achievable in finite time, and a stabilization set
can be constructed [26]. Thus, we assume that the ini-

tial linear feedback matrix L
(
θ̂0

)
is a stabilizer (i.e.,∣∣∣λmax

(
θ0L̃

(
θ̂0

))∣∣∣ < 1), and the system remains stable

when RCE or TS is being employed. More details for
establishing finite time adaptive stabilization are pro-
vided in the aforementioned reference [26]. As a matter
of fact, closed-loop regularity is not guaranteed, if only
the control signals {u(t)}∞t=0 are randomized. Further,
the classical framework of persistent excitation is not
applicable due to the possible instability of the closed-
loop matrix [31,32,33,34].

4.3 Optimality

Next, we discuss the reason for the presence of a signifi-
cant gap between the operational regrets of Theorem 3
and Theorem 4, and the information theoretic lower
bound mentioned in Subsection 3.1. In fact, the follow-
ing discussion shows that the logarithmic lower bound is
not practically achievable. Nevertheless, in the next sec-
tion we show how using additional information for the
true dynamics parameter yields a regret of logarithmic
order. In the sequel, we discuss an argument that leads
to the following conjecture: the regret is operationally
of order n1/2. For this purpose, we first state the follow-
ing lemma about the level-set manifold S (θ0) defined
in (10). It is a generalization of a previously established
result for full-rank matrices [22,23].

Lemma 2 (Optimality manifold) The optimality
level-set S (θ0) is a manifold of dimension dim (S (θ0)) =
p2 + (p− rank (A0)) (r − rank (B0)) at point θ0.

By Theorem 2, we have dim (S (θ0)) − dim (P0) = k,
where k = p2 − (p− rank (A0)) rank (B0). The tan-
gent space of the manifold S (θ0) at point θ0, shares
(p− rank (A0)) r of its dimensions with N (θ0), and the
other k dimensions are apart from N (θ0). Intuitively,
N (θ0) reflects the constraint of estimating the dynam-
ics parameter, and S (θ0) is the desired information to
design an optimal policy. Thus, those k dimensions of
S (θ0) which are not in N (θ0), can not be estimated

unless the subspace N (θ0) is sufficiently perturbed.
Such a perturbation is available only through applying
non-optimal feedbacks, which yields a larger regret than
the logarithmic rate mentioned in Subsection 3.1.

Next, we carefully analyze the regret based on the lim-
its in falsifying the parameters not belonging to S (θ0).
First, inefficiency of an adaptive regulator compared to
the optimal feedback L (θ0) is determined by the un-
certainty for the exact specification of the optimality
manifold S (θ0). As an extreme example, suppose that
S (θ0) is provided to an operator who does not know
θ0. Then, denoting the adaptive policy above by π̂, we
have Rn (π̂) = 0. Theorem 1 states that if at time n
the adaptive regulator approximates S (θ0) with error
εn, the growth in the regret is in magnitude ε2n. Thus,
it suffices to examine the estimation accuracy εn that in
turn depends both on the identification accuracy of the
closed-loop transition matrix, as well as the falsification
of dynamics parameters θ /∈ S (θ0).

Now, suppose that the objective is to falsify θ1 ∈ N (θ0),
such that |||θ1 − θ0||| = σn, and θ1 − θ0 is orthogonal to
the linear manifold P0 defined in (11). The latter prop-
erty of θ1 dictates lim inf

n→∞
σ−1
n |||L (θ1)− L (θ0)||| > 0. The

key point is that in order to falsify θ1, non-optimal lin-
ear feedbacks need to be applied sufficiently many times.
For instance, if applying L (θ0), the estimation provides
N (θ0), i.e., θ1 can never get falsified. More generally,
assume that L is a δn-perturbation of the optimal feed-
back: |||L− L (θ0)||| = δn. The shifted subspace of un-
certainty when applying L deviates from N (θ0) by at
most O (δn) (in the sense of inner products of the unit
vectors). Next, assume that the operator applies L (or a
similar δn-perturbed feedback) for a duration of n time
points. Note that the closed-loop estimation error is at
least of the order of n−1/2 [27]. Thus, the operator can
falsify θ1 only if lim inf

n→∞
n1/2δnσn > 0. In other words,

the adaptive regulator can avoid applying control feed-
backs of distance at least n−1/2δ−1

n from the optimal
feedback, only if control feedbacks of distance δn are in
advance applied for a period of length n. Hence, we ob-
tain lim inf

n→∞
σ−2
n (Rn+1 (π̂)−Rn (π̂)) > 0 by using Theo-

rem 1, which also implies that such perturbed feedbacks
impose a regret of the order nδ2

n. Putting together, we
get lim inf

n→∞
Rn (π̂) (Rn+1 (π̂)−Rn (π̂)) > 0. It leads to

the following conjecture which constitutes an interesting
direction for future work.

Conjecture 1 (lower bound) For an arbitrary
adaptive policy π̂ we have lim inf

n→∞
n−1/2Rn (π̂) > 0.

Note that if the above conjecture is true, RCE and TS
provide a nearly optimal bound for the regret. Even the
logarithmic gap between the lower and upper bounds is
inevitable, due to the existence of an analogous gap in
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the closed-loop identification of linear systems [27]. Fur-
ther, the above discussion explains the intuition behind
the design of RCE. Specifically, the magnitude of the

perturbation
∣∣∣∣∣∣∣∣∣θ̃n∣∣∣∣∣∣∣∣∣ according to the above discussion is

optimally selected, since it satisfies 0 < lim inf
n→∞

σ−1
n δn ≤

lim sup
n→∞

σ−1
n δn < ∞, modulo a logarithmic factor. In-

deed, if randomization is (significantly) smaller in mag-
nitude than n−1/4, the portion of the regret due to such
a perturbation will reduce. However, it also reduces the
accuracy of the parameter estimate. Thus, the other por-
tion of the regret due to estimation error will increase.
A similar discussion holds for larger magnitudes of the

perturbation θ̃n. On the other hand, the magnitude of
randomization in TS is determined by the collected ob-
servations. As one can see in the proof of Theorem 4,
a similar magnitude of randomization is automatically
imposed by the structure of TS adaptive LQR.

5 Generalized Certainty Equivalence

It is possible that the operator has additional informa-
tion on the dynamics. Examples of such information are
the set of non-zero entries of θ0, the rank of θ0, or a
plant whose subsystems evolve independently of each
other. Another example comes from large network sys-
tems, where a substantial portion of the matrix θ0 en-
tries are zero [29]. Further, it is easy to see that the tran-
sition matrix of a system whose dynamics exhibit longer
memory has a specific form [7,31].

In such cases, this additional structural information on
θ0 can be used by the operator in order to obtain a
smaller regret for the adaptive regulation of the system.
Nevertheless, a comprehensive theory needs to formalize
how this side information can provide theoretical sharp
bounds for the regret. In this section, we provide an iden-
tifiability condition that ensures that the adaptive LQRs
attain the informational lower bound of logarithmic or-
der. In addition to the classical CE adaptive regulator,
we also consider the family of CE-based schemes which
provide a logarithmic order of magnitude for the regret.

First, we introduce the Generalized Certainty Equiv-
alence (GCE) adaptive regulator. GCE is an episodic
algorithm with exponentially growing duration of
episodes. Instead of randomizing the parameter esti-
mate similar to RCE and TS, in GCE the least-squares

estimate is perturbed with an arbitrary matrix θ̃n. Sup-
pose that the operator knows that θ0 ∈ Γ0, based on side
information Γ0 ⊂ Rp×q. Then, fixing the rate γ > 1, at

time n ≥ 0, we apply the controller L
(
θ̂n

)
. If n satisfies

n = bγmc for some m ≥ 0, we update the estimate by

θ̂n = θ̃n + arg min
θ∈Γ0

n−1∑
t=0

∣∣∣∣∣∣x(t+ 1)− θL̃
(
θ̂t

)
x(t)

∣∣∣∣∣∣2, (17)

where θ̃n is arbitrary, and satisfies lim sup
n→∞

n1/2
∣∣∣∣∣∣∣∣∣θ̃n∣∣∣∣∣∣∣∣∣ <

∞. For n 6= bγmc the policy does not update: θ̂n = θ̂n−1.

Note that if θ̃n = 0, we get the episodic CE adaptive
regulator. To proceed, we define the following condition.

Algorithm 3 : GCE

Inputs: γ > 1, Γ0 ⊂ Rp×q

Let L
(
θ̂0

)
be a stabilizer

for m = 0, 1, 2, · · · do
while n < bγmc do

Apply u(n) = L
(
θ̂n

)
x(n)

θ̂n+1 = θ̂n
end while
Update the estimate θ̂n by (17)

end for

Definition 3 (Identifiability) Suppose that there is
Γ0 ⊂ Rp×q such that θ0 ∈ Γ0. Then, θ0 is identifiable,
if for some β0 <∞ and all stabilizable θ1, θ2 ∈ Γ0:

|||L (θ2)− L (θ0)||| ≤ β0

∣∣∣∣∣∣∣∣∣(θ2 − θ0) L̃ (θ1)
∣∣∣∣∣∣∣∣∣. (18)

Intuitively, the definition above describes settings where
side information Γ0 is sufficient in the sense that an
ε-accurate identification of the closed-loop matrix (the
RHS of (18)) provides an O (ε)-accurate approximation
of the optimal linear feedback (the LHS of (18)). Sub-
sequently, we provide concrete examples of Γ0, such as
presence of sparsity or low-rankness in θ0. Essentially,
a finite union of manifolds of proper dimension in the
space Rp×q suffices for identifiability. To see that, we use
the critical subsetsN (θ0) ,S (θ0), and P0 defined in (9),
(10), and (11), respectively.

First, note that P0 ⊂ S (θ0) provides the opti-
mal linear feedback L (θ0). Hence, for θ1 ∈ N (θ0),
|||L (θ1)− L (θ0)||| and inf

θ∈P0

|||θ1 − θ||| are of the same

order of magnitude. Then, according to Theorem 2,
both N (θ0) and P0 are shifted linear subspaces pass-
ing through θ0. Since dim (N (θ0)) = pr, the null-space
N (θ0) shares (p− rank (A0)) r dimensions with P0, and
has dim (N (θ0)) − dim (P0) = rank (A0) r dimensions
orthogonal to P0. The regret of an adaptive regulator
π̂ becomes larger than a logarithmic function of time,
because of the uncertainty N (θ0)/P0. In other words,
although the RHS of (18) is estimated accurately, the
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aforementioned uncertainty precludes obtaining an
accurate approximation for the LHS of (18). In Defi-
nition 3, additional knowledge about θ0 removes such
uncertainty. Thus, a manifold (or a finite union of man-
ifolds) of dimension pq − rank (A0) r implies the afore-
mentioned identifiability condition. Below, we provide
some examples of Γ0.

(i) Optimality manifold: obviously, a trivial example is
Γ0 = S (θ0). In this case, the LHS of (18) vanishes.
(ii) Support condition: let Γ0 be the set of p × q ma-
trices with a priori known support I. That is, for
some set of indices I ⊂ {(i, j) : 1 ≤ i ≤ p, 1 ≤ j ≤ q},
entries of all matrices θ ∈ Γ0 are zero outside of I;
Γ0 = {θ = [θij ] : θij = 0 for (i, j) /∈ I}. Then, Γ0 is a
(basic) subspace of Rp×q and can satisfy the identifia-
bility condition (18). Note that it is necessary to have
dim (Γ0) = |I| ≤ pq − rank (A0) r.
(iii) Sparsity condition: let Γ0 be the set of all p × q
matrices with at most pq− rank (A0) r non-zero entries.
Then, Γ0 is the union of the matrices with support I for
different sets I. Hence, the previous case implies that
Γ0 is a finite union of manifolds of proper dimension.
(iv) Rank condition: let Γ0 be the set of p × q matrices
θ such that rank (θ) ≤ d. Then, Γ0 is a finite union
of manifolds of dimension at most d (p+ q − d) [35].
Hence, if d (p+ q − d) ≤ pq − rank (A0) r, and (18)
holds, θ0 is identifiable.
(v) Subspace condition: for k = rank (A0) r, let

{θi}ki=1 be p × q matrices such that θiL̃ (θ0) = 0.
Suppose that θ1, · · · , θk are linearly independent:

if
k∑
i=1

aiθi = 0, then a1 = · · · = ak = 0. Define

Γ0 = {θ + θ0 : tr (θ′θi) = 0 for all 1 ≤ i ≤ k}. If for all
1 ≤ i ≤ k it holds that θ0 + θi /∈ P0, then Γ0 satisfies
the identifiability condition of Definition 3.

The following Theorem establishes the optimality of
GCE under the identifiability assumption. As men-
tioned in Section 4, a logarithmic gap between the lower
and upper bounds for the regret is inevitable due to
similar limitations in system identification [27].

Theorem 5 (GCE Rates) Suppose that θ0 is identi-
fiable and the adaptive policy π̂ corresponds to GCE.

Defining P0 by (11), let θ̂n be the parameter estimate
at time n. Then, we have

lim sup
n→∞

Rn (π̂)

log2 n
<∞, lim sup

n→∞

inf
θ∈P0

∣∣∣∣∣∣∣∣∣θ̂n − θ∣∣∣∣∣∣∣∣∣2
n−1 log n

<∞.

Comparing the above result with Theorem 3 and The-
orem 4, the identifiability assumption leads to signif-
icant improvements in rates of both the regret and
the estimation error. Moreover, if rank (A0) = p, then
P0 = {θ0}. Thus, the estimation accuracy in Theorem 5

becomes: lim sup
n→∞

n
(
log−1 n

) ∣∣∣∣∣∣∣∣∣θ̂n − θ0

∣∣∣∣∣∣∣∣∣2 < ∞. Finally,

Theorem 5 improves an existing result for identifiable
systems. That is, under stronger assumptions, Ibrahimi
et al. [14] show the regret bound O

(
n1/2 log2 n

)
for

adaptive policies based on OFU. However, according to
Theorem 5, the regret of GCE is O

(
log2 n

)
.

6 Concluding Remarks

The performances of adaptive policies for LQ systems is
addressed in this work, including both aspects of regu-
lation and identification. First, we established a general
result which specifies the regret of an arbitrary adaptive
regulator in terms of the deviations from the optimal
feedback. This tight bidirectional result provides a pow-
erful tool to analyze the subsequently presented policies.
That is, we show that slight modifications of CE provide
a regret of (nearly) square-root magnitude. The modi-
fications consist of two basic approaches of randomiza-
tion: additive randomness, and Thompson sampling. In
addition, we formulated a condition which leads to log-
arithmic regret. The rates of identification are also dis-
cussed for the corresponding adaptive regulators.

Rigorous establishment of the proposed operational
lower bound for the regret is an interesting direction for
future works. Besides, extending the developed frame-
work to other settings such as switching systems, or
those with imperfect observations are topics of interest.
On the other hand, extensions to the dynamical mod-
els illustrating network systems (e.g., high-dimensional
sparse dynamics matrices) is a challenging problem for
further investigation.
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A Proofs of Main Results

The proofs of the main theorems are given next. Proofs
of auxiliary lemmas are deferred to the appendix.

A.1 Proof of Theorem 1 and Corollary 1

Given n ≥ 1, and the linear policy π = {Lt}n−1
t=0 , define

the sequence of policies π0, · · · , πn as follows.

π0 = {L (θ0) , · · · , L (θ0)} ,
π1 = {L0, L (θ0) , · · · , L (θ0)} ,

...

πn = {L0, L1, · · · , Ln−1} .

Indeed, the policy πi applies the same feedback as π at
every time t < i, and then for t ≥ i switches to the
optimal policy π?. Clearly, π0 = π?, and πn = π. Since

Rn (π) =

n∑
k=1

n−1∑
t=0

[ct (πk)− ct (πk−1)] , (A.1)

it suffices to find ct (πk)− ct (πk−1), for 1 ≤ k ≤ n, and

0 ≤ t ≤ n − 1. Fixing k, let {x(t)}n−1
t=0 , {y(t)}n−1

t=0 be
the state trajectories under πk, πk−1, respectively. So,
letting D = A0 +B0L (θ0) andDk−1 = A0 +B0Lk−1, we
have x(t) = y(t) for 0 ≤ t ≤ k − 1, as well as ct (πk) =
ct (πk−1) for 0 ≤ t ≤ k − 2, and x(k) = Dk−1x(k − 1) +
w(k). Further, if k ≤ t ≤ n− 1, then

y(t) = Dt−k+1x(k − 1) +

t∑
j=k

Dt−jw(j),

x(t) = Dt−kDk−1x(k − 1) +

t∑
j=k

Dt−jw(j).

Therefore, we have x(t) = y(t) +Dt−k∆k−1x(k− 1), for
k ≤ t < n, where

∆k−1 = Dk−1 − D = B0 (Lk−1 − L (θ0)) .

Thus, for we obtain

ck−1 (πk)− ck−1 (πk−1)

= x(k − 1)′
(
L′k−1RLk−1 − L (θ0)

′
RL (θ0)

)
x(k − 1).

Similarly, denote P0 = Q+ L (θ0)
′
RL (θ0), and replace

for x(t) to see that if k ≤ t < n, then

ct (πk)− ct (πk−1)

=
(
2y(t) + Dt−k∆k−1x(k − 1)

)′
P0Dt−k∆k−1x(k − 1).

To proceed, plug-in for y(t) to get
ct (πk)− ct (πk−1) = x(k−1)′Fk−1(t)x(k−1) +ηk−1(t),
where ∆k−1 = Dk−1 − D leads to

ηk−1(t) = 2x(k − 1)′∆′k−1D′
t−k

P0

t∑
j=k

Dt−jw(j),

Fk−1(t) =D′k−1D′
t−k

P0Dt−kDk−1 − D′t−k+1
P0Dt−k+1.

Next, letting zk =
n−1∑
t=k

ηk−1(t), and

Gk = L′k−1RLk−1 − L (θ0)
′
RL (θ0) +

n−1∑
t=k

Fk−1(t),

clearly

n−1∑
t=0

[ct (πk)− ct (πk−1)] = x(k − 1)′Gkx(k − 1) + zk.(A.2)

To proceed, for 0 ≤ j ≤ n let Kj =
∞∑

`=n−j
D′`P0D`. So,

n−1∑
t=k

Fk−1(t) = D′k−1 (Kn −Kk)Dk−1 − D′ (Kn −Kk)D

implies Gk = Ek +Hk, where

Ek =−D′k−1KkDk−1 + D′KkD,
Hk =L′k−1RLk−1 − L (θ0)

′
RL (θ0)

−D′KnD +D′k−1KnDk−1.

The Lyapunov equation (see [26])

K (θ0)− D′K (θ0)D = P0, (A.3)

leads to Kn = K (θ0). Thus, letting X = Lk−1 −L (θ0),
M = B′0K (θ0)B0 +R, since ML (θ0) = −B′0K (θ0)A0,
after doing some algebra we get

Hk =L (θ0)
′
RX +X ′RL (θ0) + D′K (θ0)B0X

+X ′RX +X ′B′0K (θ0)D +X ′B′0K (θ0)B0X

=X ′MX

Hence, adding up the terms in (A.2), (A.1) implies that

Rn (π) = Zn + Sn + Tn, (A.4)

where Zn =
n∑
k=1

zk, Sn =
n−1∑
k=0

x(k)′Ek+1x(k), and Tn =

n−1∑
k=0

∣∣∣∣M1/2 (Lk − L (θ0))x(k)
∣∣∣∣2. In order to investigate

Sn, we use the dynamics x(k) = Dk−1x(k − 1) + w(k),
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as well as D′Kk+1D = Kk, to get

x(k)′D′Kk+1 Dx(k) = x(k − 1)′D′k−1KkDk−1x(k − 1)

+ w(k)′Kkw(k) + 2w(k)′KkDk−1x(k − 1),

for 0 < k < n. Substituting in the expression for Sn, and
denoting w(0) = x(0), the telescopic differences vanish:

Sn + x(n)′K (θ0)x(n)

=

n−1∑
k=0

2w(k + 1)′Kk+1Dkx(k) +

n∑
k=0

w(k)′Kkw(k).(A.5)

Plugging

Dkx(k) =

k∑
j=0

(
Dj+1w(k − j) + Dj∆k−jx(k − j)

)
,

as well as x? (n) =
n∑
j=0

Dn−jw(j), in (A.5), we have S̃n =

Sn + x(n)′Knx(n)− x? (n)
′
Knx

? (n) =
n∑
k=1

w(k)′Kkξk,

where ξk = 2
k∑̀
=1

D`−1∆k−`x(k − `). Moreover, it is

straightforward to show that Zn =
n−1∑
j=1

ζ ′jw(j), where

ζj = 2
j∑̀
=1

n−1∑
t=j

D′t−jP0Dt−`∆`−1x(`− 1).

Hence, ζj = (Kn −Kj) ξj implies S̃n+Zn =
n∑
k=1

w(k)′Knξk.

Next, we use the following lemma.

Lemma 3 [19] Suppose that for all t ≥ 0, y(t+ 1), v(t)
are Gt measurable, Gt ⊆ Gt+1, and E [v(t+ 1)|Gt] = 0.

Define the martingale ψn =
n∑
t=1

y(t)′v(t), and let ϕn =

n∑
t=1
||y(t)||2. If sup

t≥0
E
[
||v(t+ 1)||2

∣∣∣Gt] <∞, then

lim sup
n→∞

|ψn| <∞ on ϕ∞ <∞,

lim sup
n→∞

ψn

ϕ
1/2
n logϕn

= 0 on ϕ∞ =∞.

Taking Gt = σ
(
{w(i)}ti=1 , {x(i)}ti=0

)
, and v(t) = w(t),

y(t) = ξt, we can use Lemma 3 since Assumption 1 holds.
So, stability of D (Proposition 1), and |λmin (M)| > 0,

lead to
n∑
k=1

||ξk||2 = O (Tn). Thus, by (A.4), we get the

desired result since S̃n + Zn = O
(
T

1/2
n log Tn

)
.

Next, the first statement in Corollary 1 follows from The-
orem 1 in the work of Lai and Wei [36]. To prove the
second result, first observe that S∞ = Sn, T∞ = Tn,
and Z∞ = Zn. Furthermore, note that for t ≥ n we have
ct (π) = x(t)′P0x(t), ct (π?) = x? (t)

′
P0x

? (t), as well as

x(t) = Dt−nx(n) +

t∑
j=n+1

Dt−jw(j),

x? (t) = Dt−nx? (n) +

t∑
j=n+1

Dt−jw(j).

So, letting

δn = 2

∞∑
t=n

t∑
j=n+1

(x(n)− x? (n))
′ D′t−nP0Dt−jw(j),

by (A.3) the following holds:

∞∑
t=n

[ct (π)− ct (π?)] = x(n)′Knx(n)− x? (n)
′
Knx

? (n) + δn.

Finally,

||x(n)− x? (n)||2 =

∣∣∣∣∣∣
∣∣∣∣∣∣
n−1∑
j=0

Dn−1−j∆jx(j)

∣∣∣∣∣∣
∣∣∣∣∣∣
2

= O (Tn) ,(A.6)

together with Lemma 3 imply δn = O
(
T

1/2
n log Tn

)
.

A.2 Proof of Theorem 2

First, for an arbitrary θ ∈ P0, since θ ∈ N (θ0), we have

A+BL (θ0) = A0 +B0L (θ0) = D0. (A.7)

Next, for an arbitrary fixed unit matrix (in the Frobe-
nius norm) X ∈ Rr×p, let L = L (θ0) + εX be a lin-
ear feedback matrix which stabilizes the system of dy-
namics parameters θ. Note that according to Proposi-

tion 1, θ ∈ S (θ0) leads to
∣∣∣λmax

(
θL̃ (θ0)

)∣∣∣ < 1. Thus,

|λmax (A+BL)| < 1, as long as ε is sufficiently small.

Then, applying L to the system θ, we get J L (θ) =
tr (P (ε)C), where P (ε) is the unique solution of the
Lyapunov equation

P (ε)− (A+BL)
′
P (ε) (A+BL) = Q+ L′RL. (A.8)

Note that according to (A.3) and (A.7), it holds that
P (0) = K (θ0). Letting ∆ (X) = lim

ε→0
ε−1 (P (ε)− P (0)),
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(A.8) leads to

∆ (X)−D′0∆ (X)D0 = X ′N +N ′X, (A.9)

where N = RL (θ0) +B′K (θ0)D0. Next, θ ∈ S (θ0) im-
plies that L (θ0) is an optimal linear feedback for the sys-
tem of dynamics parameter θ. So, the directional deriva-
tive ofJ L (θ) with respect toL is zero in all directions. In
the direction of X, the derivative is tr (∆ (X)C). Since
all above statements hold regardless of the positive defi-
nite matrix C, (A.9) and tr (∆ (X)C) = 0 imply N = 0;

D′0K (θ0)B = −L (θ0)
′
R. (A.10)

Therefore, (A.10) is a necessary condition for θ ∈ P0.
Note that according to (A.3) and (A.7), the necessary
condition (A.10) implies the necessity of D′0K (θ0)A =
K (θ0) − Q. Further, for every input matrix B which
satisfies (A.10), the transition matrix A will be uniquely
determined by (A.7) as A = D0 −BL (θ0).

Conversely, suppose that B is an arbitrary matrix which
satisfies (A.10). Letting A = D0 − BL (θ0), we show
that [A,B] = θ ∈ P0. For this purpose, since the above
definition of A automatically leads to θ ∈ N (θ0), it suf-
fices to show θ ∈ S (θ0). Writing Y = B − B0, we get
A = A0 − Y L (θ0). Moreover, define G = A′K (θ0)A,
H = B′K (θ0)A, M = B′0K (θ0)B0 + R, and S =
B′0K (θ0)Y + Y ′K (θ0)B0 + Y ′K (θ0)Y . Then, we cal-
culate the matrix

V =Q+G−H ′ (M + S)
−1
H = Q+A′K (θ0)A

−A′K (θ0)B (B′K (θ0)B +R)
−1
B′K (θ0)A.

Writing A,B,G,H in terms of A0, B0,M, S, Y , we have

V = Q+A′0K (θ0)A0 + L (θ0)
′
SL (θ0)−

[
B′0K (θ0)A0

− SL (θ0)
]′

(M + S)
−1 [

B′0K (θ0)A0 − SL (θ0)
]

Then, using (M + S)
−1

= M−1 − (M + S)
−1
SM−1,

(3), and ML (θ0) = −B′0K (θ0)A0, V can be written as
V = K (θ0) + L (θ0)

′
SW , where

W =L (θ0)− (M + S)
−1

(SL (θ0) +B′0K (θ0)A0)

=L (θ0)− (M + S)
−1

(S +M)L (θ0) = 0;

i.e., V = K (θ0) is a solution of the Riccati equation
(3) for θ. According to Proposition 1, the solution is
unique; which is K (θ) = K (θ0). Moreover, L (θ) =

− (M + S)
−1
H = L (θ0) shows that θ ∈ S (θ0). So far,

we have shown that θ ∈ P0, if and only if (A.7) and
(A.10) hold. Next, (A.10) is essentially stating that ev-
ery column of B − B0 (which is a vector in Rp), is
orthogonal to the all columns of K (θ0)D0. This veri-
fies that (A.10) specifies a shifted linear subspace. To
find the dimension, since B has r columns, and (A.7)

uniquely determines A in terms of B, we get dim (P0) =
(p− rank (K (θ0)D0)) r. Finally, by positive definiteness
of Q, (A.3) implies rank (K (θ0)) = p. Further, since
D0 =

[
Ip −B0M

−1B′0K (θ0)
]
A0, it suffices to show

rank
(
Ip −B0M

−1B′0K (θ0)
)

= p. (A.11)

If (A.11) does not hold, there exists v ∈ Rp such that
v 6= 0 and v = B0M

−1B′0K (θ0) v. So, v = B0ṽ where
ṽ = M−1B′0K (θ0) v ∈ Rr. Thus,

B′0K (θ0)B0ṽ = B′0K (θ0) v = Mṽ = [B′0K (θ0)B0 +R] ṽ,

or equivalently, Rṽ = 0. Positive definiteness of R im-
plies that ṽ = 0, which contradicts B0ṽ 6= 0. This proves
(A.11), which completes the proof.

A.3 Proof of Theorem 3

The proof is based on a sequence of intermediate results.
First, for i ≥ 1, let Vi be the (unnormalized) state co-

variance during the i-th episode: Vi =
bγic−1∑
t=bγi−1c

x(t)x(t)′.

Lemma 4 For the matrix Vi defined above, the follow-
ings hold: |λmax (Vm)| = O (γm), lim inf

m→∞
γ−m |λmin (Vm)| ≥

(γ − 1) |λmin (C)|.

Then, in order to study the behavior of the least-squares
estimate in (13), define

Ui =

bγic−1∑
t=0

L̃
(
θ̂t

)
x(t)x(t)′L̃

(
θ̂t

)′
.

Note that since the parameter θ̂t remains set (not chang-
ing) during each episode, Ui can be written in terms of
V1, · · · , Vi as follows. First, for all bγi−1c ≤ t ≤ bγic−1,

the parameter estimate θ̂t does not change. So, if t be-
longs to the i-th episode, define the linear feedback ma-

trix is Li = L
(
θ̂t

)
. Letting L̃i = L̃

(
θ̂t

)
, we have

Ui =
i∑

j=1

L̃jVjL̃
′
j . Then, the smallest eigenvalue of Ui

follows a different lower bound compared to that of Vi:

Lemma 5 Define Um as above. Then, we have
lim inf
m→∞

γ−m/2 |λmin (Um)| > 0, and |λmax (Um)| =

O (γm).

Next, the following result states that the estimation ac-
curacy is determined by the eigenvalues of Ui.

Lemma 6 [19] For n = bγmc, define θ̂n, θ̃n according
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to (13). Then, we have∣∣∣∣∣∣∣∣∣θ̂n − θ̃n − θ0

∣∣∣∣∣∣∣∣∣2 = O

(
log |λmax (Um)|
|λmin (Um)|

)
.

Therefore, Lemma 5 leads to
∣∣∣∣∣∣∣∣∣θ̂n − θ̃n − θ0

∣∣∣∣∣∣∣∣∣ =

O
(
n−1/4 log1/2 n

)
. Using the moment condition in Re-

mark 2, Markov’s inequality gives P
(
|||φm||| > m1/4

)
=

O
(
m−1−ε/4). Thus, an application of the Borel-Cantelli

Lemma leads to |||φm||| = O
(
m1/4

)
; i.e.,

∣∣∣∣∣∣∣∣∣θ̃n∣∣∣∣∣∣∣∣∣ =

O
(
n−1/4 log1/2 n

)
. So, we get the desired result about

the identification rate:
∣∣∣∣∣∣∣∣∣θ̂n − θ0

∣∣∣∣∣∣∣∣∣ = O
(
n−1/4 log1/2 n

)
.

To proceed, we present the following auxiliary result
which shows that a similar rate holds for the deviations
from the optimal linear feedback.

Lemma 7 [15] There exist 0 < ε0, βL < ∞, such that
for all stabilizable θ satisfying |||θ − θ0||| < ε0, the fol-
lowing holds: |||L (θ)− L (θ0)||| ≤ βL|||θ − θ0|||.

So, utilizing Lemma 7, we have

∣∣∣∣∣∣∣∣∣L(θ̂n)− L (θ0)
∣∣∣∣∣∣∣∣∣ = O

(
log1/2 n

n1/4
+
∣∣∣∣∣∣∣∣∣θ̃n∣∣∣∣∣∣∣∣∣) . (A.12)

On the other hand, since the policy is not being up-
dated during each episode, we can write down the re-
gret in terms of the matrices Vi. Henceforth in the proof,
suppose that the time n belongs to the m-th episode:
bγm−1c ≤ n < bγmc. Then, applying Theorem 1 and
Corollary 1, we get

Rn (π̂) =O

(
m∑
i=0

(Li − L (θ0))Vi (Li − L (θ0))
′
+ γm/2

)

=O

(
m∑
i=0

γi|||Li − L (θ0)|||2 + γm/2

)
,

where in the last equality above we applied Lemma 4.

Based on the definition of the perturbation θ̃n in terms
of the random matrix φm, define

Sm =

m∑
i=0

i1/2γi/2|||φi|||2, Tm =

m∑
i=0

i3/4γi/2|||φi|||.

So, by (A.12), the regret is in magnitude dominated by
Sm, Tm, and mγm/2: Rn (π̂) = O

(
Sm + Tm +mγm/2

)
.

Note that as m and n grow, the magnitudes of n1/2 log n
and mγm/2 is the same. Finally, the following lemma
leads to the desired result:

Lemma 8 For the terms Sm, Tm defined above the fol-
lowings hold: Sm = O

(
mγm/2

)
, Tm = O

(
mγm/2

)
.

A.4 Proof of Theorem 4

In this proof, we use the following result.

Lemma 9 For the matrix Σm defined in (16) we
have lim inf

m→∞
γ−m/2m1/2 |λmin (Σm)| > 0, |λmax (Σm)| =

O (γm).

Hence, since µm is the least-squares estimate, and Σm is
the unnormalized empirical covariance matrix, Lemma 6
leads to |||µm − θ0||| = O

(
γ−m/4m

)
. Then, because ev-

ery row of θ̂bγmc − µm is a mean zero Gaussian with co-

variance matrix Σ−1
m , by Lemma 9 we have

∞∑
m=0

P
(∣∣∣∣∣∣∣∣∣θ̂bγmc − µm

∣∣∣∣∣∣∣∣∣ > γ−m/4m
)
<∞.

Thus, Borel-Cantelli Lemma leads to the desired re-

sult about the identification rate:
∣∣∣∣∣∣∣∣∣θ̂bγmc − θ0

∣∣∣∣∣∣∣∣∣ =

O
(
γ−m/4m

)
. By Lemma 7, a similar rate holds

for the linear feedbacks:
∣∣∣∣∣∣∣∣∣L(θ̂bγmc

)
− L (θ0)

∣∣∣∣∣∣∣∣∣ =

O
(
γ−m/4m

)
. Finally, plugging in the expression of

Theorem 1, and utilizing Corollary 1, we get the desired
result for the regret:

Rbγmc (π̂) =O

(
m∑
i=0

γi
∣∣∣∣∣∣∣∣∣L(θ̂bγmc

)
− L (θ0)

∣∣∣∣∣∣∣∣∣2 + γm/2

)

=O

(
m∑
i=0

γi/2i2

)
= O

(
γm/2m2

)
.

A.5 Proof of Theorem 5

Define Vi, Ui, Li, L̃i similar to the proof of Theorem 3.
Further, for i ≥ 1, let ni = bγic − 1 be the end time of
episode i, and denote

Li (θ) =
ni−1∑
t=0

∣∣∣∣∣∣x(t+ 1)− θL̃
(
θ̂t

)
x(t)

∣∣∣∣∣∣2.

Letting θ? = arg min
θ∈Rp×q

Li (θ) for a fixed i, it is straight-

forward to show that

Li (θ) = tr
(
(θ − θ?)Ui (θ − θ?)′

)
− tr (θ?Uiθ

′
?) .
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Therefore, since θ0 ∈ Γ0, (17) implies thatLi
(
θ̂ni
− θ̃ni

)
≤

Li (θ0). So, the triangle inequality leads to

tr

((
θ̂ni
− θ̃ni

− θ0

)
Ui

(
θ̂ni
− θ̃ni

− θ0

)′)
≤ 4tr

(
(θ? − θ0)Ui (θ? − θ0)

′)
Hence, the normal equation (θ? − θ0)Ui =

ni−1∑
t=0

w(t +

1)x(t)′L̃
(
θ̂t

)′
, in addition to Lemma 5 and Lemma 6

imply that

tr

((
θ̂ni − θ̃ni − θ0

)
Ui

(
θ̂ni − θ̃ni − θ0

)′)
= O (i)

Applying Lemma 4, we obtain

i∑
j=0

γj
∣∣∣∣∣∣∣∣∣(θ̂ni

− θ̃ni
− θ0

)
L̃j

∣∣∣∣∣∣∣∣∣2 = O (i) . (A.13)

Since θ̃nj
= O

(
n
−1/2
j

)
, by Lemma 7 we have∣∣∣∣∣∣∣∣∣Lj − L(θ̂nj − θ̃nj

)∣∣∣∣∣∣∣∣∣ = O
(
γ−j/2

)
. Hence,

i∑
j=0

γj
∣∣∣∣∣∣∣∣∣(θ̂ni

− θ̃ni
− θ0

)
L̃
(
θ̂nj
− θ̃nj

)∣∣∣∣∣∣∣∣∣2 = O (i) .

Using θ̂nj − θ̃nj ∈ Γ0, (18) leads to∣∣∣∣∣∣∣∣∣L(θ̂ni
− θ̃ni

)
− L (θ0)

∣∣∣∣∣∣∣∣∣ = O
(
i1/2γ−i/2

)
, which by

Lemma 7 implies that∣∣∣∣∣∣∣∣∣L(θ̂ni

)
− L (θ0)

∣∣∣∣∣∣∣∣∣ = O
(
i1/2γ−i/2

)
. (A.14)

Thus, we have

nm−1∑
t=0

||(L (θ0)− Lt)x(t)||2 =O

(
m∑
i=0

γi|||Li − L (θ0)|||2
)

=O
(
m2
)
. (A.15)

Moreover, putting Assumption 1, Corollary 1, (A.6), and
(A.14) together, we obtain ||x(nm)− x? (nm)||||x? (nm)|| =
O (m), which in turn leads to

x? (nm)
′
K (θ0)x? (nm)− x(nm)′K (θ0)x(nm) = O (m) . (A.16)

Then, (A.15) and (A.16) lead to the desired result for the
regret: Rnm

(π̂) = O
(
m2
)
. Further, (A.13) and (A.14)

imply that∣∣∣∣∣∣∣∣∣(θ̂nm
− θ̃nm

− θ0

)
L̃ (θ0)

∣∣∣∣∣∣∣∣∣ = O
(
γ−m/2m1/2

)
;

i.e., inf
θ∈N (θ0)

∣∣∣∣∣∣∣∣∣θ̂nm − θ
∣∣∣∣∣∣∣∣∣ = O

(
γ−m/2m1/2

)
. Finally, since

(A.14) implies a similar result for S (θ0), the desired
result for P0 holds.

B Proofs of Auxiliary Results

Proof of Proposition 2 Under the optimal regula-
tor π? the closed-loop transition matrix is D = A0 +
B0L (θ0). Denoting P = Q+L (θ0)

′
RL (θ0), the instan-

taneous cost is ct (π?) = x(t)′Px(t). So, by Proposition
1 we have

n−1∑
t=0

x(t)′Px(t)− nJ ? (θ0) = tr (PVn)− ntr (K (θ0)C) ,

where Vn =
∑n−1
t=0 x(t)x(t)′. Then, define the following

matrices:

Un =

n−1∑
t=0

[Dx(t)w(t+ 1)′ + w(t+ 1)x(t)′D′] ,

Cn =

n∑
t=1

w(t)w(t)′,

En =Un + Cn + x(0)x(0)′ − x(n)x(n)′.

Using the dynamics equation x(t+1) = Dx(t)+w(t+1),
after doing some algebra we get the Lyapunov equation

Vn = DVnD
′+En; i.e. Vn =

∞∑
k=0

DkEnD
′k. Using (A.3),

we can write

tr (PVn)− ntr (K (θ0)C)

= tr ((Cn − nC + Un + x(0)x(0)′ − x(n)x(n)′)K (θ0)) .

According to Corollary 1, we have ||x(0)||2 + ||x(n)||2 =

O
(
n1/2

)
. Further, Lemma 3 implies that Un =

O
(
n1/2 log n

)
. Since the moment condition of Assump-

tion 1 implies sup
t≥1

E
[
|||w(t)w(t)′ − C|||2

]
< ∞, applying

Lemma 3 we get Cn − nC = O
(
n1/2 log n

)
, which

completes the proof.

Proof of Lemma 1 Clearly, we can write

U (θ0) =

p⋃
k=0

Xk,
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where

Xk = {θ ∈ U (θ0) : rank (A) = k} ∈ Rp×q.

Then, for a fixed 0 ≤ k ≤ p, suppose that θ1 ∈ Xk is
arbitrarily chosen. Note that θ1 ∈ U (θ0) is equivalent to
θ0 ∈ N (θ1). If there exists some θ2 ∈ S (θ1) such that
θ2 ∈ U (θ0), then

θ2L̃ (θ1) = θ2L̃ (θ2) = θ0L̃ (θ2) = θ0L̃ (θ1) = θ1L̃ (θ1) ,

i.e. θ2 ∈ N (θ1). Therefore, according to (11), the matrix
θ2 belongs to the shifted linear subspace N (θ1)∩S (θ1),
and

dim (N (θ1) ∩ S (θ1)) = (p− k) r. (B.1)

Next, for k = 0, 1, · · · , p, define

Yk = {L (θ) : θ ∈ Xk} ⊂ Rr×p.

For θ1 ∈ Xk, it holds that rank (A1) = k. Let the vectors
v1, · · · , vp−k ∈ Rp be such that A1vj = 0, for 1 ≤ j ≤
p− k. Then, according to the definition of L (θ1) in (4),
we have L (θ1) vj = 0, for 1 ≤ j ≤ p − k. Hence, since
every matrix L (θ) has r rows, we get

dim (Yk) = kr. (B.2)

To proceed, using

Xk =
⋃
L∈Yk

{θ ∈ U (θ0) : L (θ) = L} ,

(B.1), (B.2) imply

dim (Xk) ≤ dim (Yk) + dim (N (θ1) ∩ S (θ1)) = pr.

So, dim (U (θ0)) = pr, which yields to the desired result.

Proof of Lemma 2 For θ ∈ S (θ0), let θ = θ0 +
ε [M,N ], where M ∈ Rp×p, N ∈ Rp×r. First, we calcu-
late the matrix

∆ = lim
ε→0

K (θ)−K (θ0)

ε
.

Define D = θL̃ (θ) , D0 = θ0L̃ (θ0). Note that

lim
ε→0

D −D0

ε
= M +NL (θ0) ,

since L (θ) = L (θ0). Further, according to (A.3), ∆ is
the unique solution of the Lyapunov equation

∆−D′0∆D0 = D′0Z + Z ′D0,

where Z = K (θ0) (M +NL (θ0)).

Then, defining the matrices

X =B′0∆A0 +B′0K (θ0)M +N ′K (θ0)A0,

Y =B′0∆B0 +B′0K (θ0)N +N ′K (θ0)B0,

the followings hold:

lim
ε→0

B′K (θ)A−B′0K (θ0)A0

ε
=X,

lim
ε→0

B′K (θ)B −B′0K (θ0)B0

ε
= Y.

Using (4), after doing some algebra we getX+Y L (θ0) =
0. Substituting for X,Y it leads to

B′0Z + (N ′K (θ0) +B′0∆)D0 = 0. (B.3)

Thus, the tangent space of S (θ0) at point θ0 consists
of matrices [M,N ] which satisfy (B.3). Note that ∆ is
uniquely determined according to Z.

To find the dimension of solutions of (B.3), first let Z ⊂
Rp×p be the set of matrices Z, such that the equation
B′0Z = TD0 has a solution T ∈ Rr×p. Further, for k =
p−rank (D0), let v1, · · · , vk ∈ Rp be orthonormal vectors
satisfying D0vi = 0. Putting the above vectors together,
define the matrix V = [v1, · · · , vk]. Similarly, denote the
orthonormal basis of the columns of B0 by b1, · · · , bm,
where m = rank (B0). Now, the equation B′0Z = TD0

has a solution if and only if B′0ZV = 0. So,

Z =
{
Z ∈ Rp×p : B′0ZV = 0

}
=
{
Z ∈ Rp×p : tr

(
Zvib

′
j

)
= 0,∀1 ≤ i ≤ k, ∀1 ≤ j ≤ m

}
.

Note that tr (·) is an inner product on the set of p × p
matrices. Moreover, all matrices vib

′
j , 1 ≤ i ≤ k, 1 ≤ j ≤

m are orthogonal, and so linearly independent. To see
that, calculating the inner products, as long as i1 6= i2
or j1 6= j2, we have

tr
(
bj1v

′
i1vi2b

′
j2

)
= v′i1vi2b

′
j2bj1 = 0.

Therefore,

dim (Z) = p2 − (p− rank (D0)) rank (B0) . (B.4)

Similar to the proof of Theorem 2, for any fixed matrix
Z ∈ Z, the set of matrices N satisfying (B.3) is of di-
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mension

(p− rank (D0)) r. (B.5)

Note that since K (θ0) is invertible, every pair Z,N
uniquely determines the matrix M . Putting (B.4)
and (B.5) together, the desired result is implied since
rank (D0) = rank (A0) (see the proof of Theorem 2).

Proof of Lemma 4 First, once the system is stabilized,

we have x(t) = Dix(t − 1) + w(t), where of Di = θ0L̃i
is the stable closed-loop matrix during the i-th episode.
Thus,

Vi =

bγic−1∑
t=bγi−1c

x(t)x(t)′

= x(bγi−1c)x(bγi−1c)′ − x(bγic)x(bγic)′

+

bγic−1∑
t=bγi−1c

(Dix(t) + w(t+ 1)) (Dix(t) + w(t+ 1))
′

=DiViD
′
i + Ci + Ei + Fi,

where

Ci =

bγic−1∑
t=bγi−1c

w(t+ 1)w(t+ 1)′,

Ei =

bγic−1∑
t=bγi−1c

Dix(t)w(t+ 1)′ + w(t+ 1)x(t)′D′i,

Fi = x(bγi−1c)x(bγi−1c)′ − x(bγic)x(bγic)′.

Then, by the Law of Large Numbers, Assumption 1 im-
plies that

lim
m→∞

γ−m+1Cm = (γ − 1)C. (B.6)

In addition, by the Martingale Convergence Theorem,

lim sup
m→∞

γ−m|||Em||| = 0. (B.7)

Finally, since the system is stable in the average sense,
similar to Corollary 1 we have

lim sup
m→∞

γ−m|||Fm||| = 0. (B.8)

Putting (B.6), (B.7), and (B.8) together, the Lyapunov
equation Vm = DmVmD

′
m + Cm + Em + Fm has the

solution

lim
m→∞

γ−m+1Vm = (γ − 1) lim
m→∞

∞∑
k=0

Dk
mCD

′
m
k
.

By stability of Dm, the RHS of the above equation is
O (1); i.e. |λmax (Vm)| = O (γm). Moreover,∣∣∣∣∣λmin

( ∞∑
k=0

Dk
mCD

′
m
k

)∣∣∣∣∣ ≥ |λmin (C)|

leads to the desired result about the smallest eigenvalue
of Vm.

Proof of Lemma 5 First, Lemma 4 implies that
|λmax (Um)| = O (γm). To show the desired result on the
smallest eigenvalue of Um, let v ∈ Rq be an arbitrary
unit vector (||v|| = 1). Then, for i = 1, · · · ,m, define the

p dimensional vectors zi = γi/4L̃′iv. Using Lemma 4 we
get

γ−m/2v′Umv

≥
m∑

i=bm/2c

γ−m/2−i/2z′iVizi

≥ (γ − 1) |λmin (C)|
m∑

i=bm/2c

γ−m/2+i/2||zi||2

≥ (γ − 1) |λmin (C)| γ−k/2
m∑

i=m−k

||zi||2,

where k is large enough to satisfy kp ≥ q + 4. Next,
define the (k + 1)p× q matrix

Mm =


γ(m−k)/4Ip γ(m−k)/4L′m−k

...
...

γ(m−1)/4Ip γ(m−1)/4L′m−1

γm/4Ip γm/4L′m

 . (B.9)

On the event |λmin (Um)| 6= Ω
(
γm/2

)
, we have:

lim inf
m→∞

m∑
i=m−k

||zi||2 = 0,

Since
[
z′m−k, · · · , z′m−1, z

′
m

]′
= Mmv, the latter equality

yields to

lim inf
m→∞

||Mmv|| = 0.
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Now, taking an arbitrary ε > 0, it suffices to show that

P
(

inf
||v||=1

||Mmv|| < ε, i.o. for m

)
= 0. (B.10)

Remember that Lm−k, · · · , Lm are all random matrices
thanks to the randomizations φm−k, · · · , φm being used
by RCE adaptive regulator. Further, since the distribu-
tions of φm−k, · · · , φm are absolutely continuous with

respect to Lebesgue measure, we have rank
(
Ât

)
= p,

for all t = 1, 2, · · · . So, Lemma 2 implies that for all
m− k ≤ i ≤ m,

dim ({θ : L (θ) = Li}) = p2.

Consider the set of matrices Mm such that there exists
a vector v ∈ Rq to satisfy ||v|| = 1, as well as Mmv = 0.
For a fixed

v = [v′1, v
′
2]
′
, v1 ∈ Rp, v2 ∈ Rr,

the equality Mmv = 0 implies L′iv2 = −v1, for m− k ≤
i ≤ m; i.e. every Li belongs to a p(r − 1) dimensional
shifted linear subspace. Putting all above together, the
set of p× q matrices θ1, · · · , θk+1 such that there exists
some v satisfying

[
Ip, L (θi)

′]
v = 0 for all 1 ≤ i ≤ k + 1

is of the dimension

d1 = q − 1 + (k + 1)p2 + (k + 1)p(r − 1).

Denote the set above by X ⊂ R(k+1)p×q. On the other
hand, the set of all p× q matrices θ1, · · · , θk+1 is of the
dimension

d2 = (k + 1)pq.

Now, for 1 ≤ i ≤ k+ 1, suppose that θi is the parameter
estimate after episode m− i+ 1:

θi = θ̂bγm−i+1c.

So, according to the definition of Mm in (B.9), the in-
equality inf

||v||=1
||Mmv|| < ε, implies that the (k + 1)p× q

dimensional matrix[
m1/4φm, · · · , (m− k)

1/4
φm−k

]
belongs to an ε-neighborhood of a d1 = dim (X ) dimen-
sional set. Since k is sufficiently large to satisfy d2−d1 ≥
5, we get

P
(

inf
||v||=1

||Mmv|| < ε

)
= O

(
m−5/4ε5

)
. (B.11)

Applying Borel-Cantelli Lemma, we get the desired re-
sult in (B.10).

Proof of Lemma 8 First, note that

lim sup
m→∞

m−1γ−m/2Sm

≤ lim sup
m→∞

m−1/2
m∑
i=0

γ−i/2|||φm−i|||2,

≤ lim sup
m→∞

m−1/2
m1/2∑
i=0

|||φm−i|||2

+ lim sup
m→∞

γ−m
1/2/2

m∑
i=m1/2

|||φm−i|||2.

Since γm
1/2/2 = Ω (m), we get

lim sup
m→∞

m−1γ−m/2Sm

≤ lim sup
m→∞

m−1/2
m1/2∑
i=0

|||φm−i|||2

+ lim sup
m→∞

m−1
m∑

i=m1/2

|||φm−i|||2.

Applying the Law of Large Numbers, according to (2)
both above terms are O (1), which is the desired result.
A similar discussion holds for Tm.

Proof of Lemma 9 For the largest eigenvalue, Lemma
4 implies that |λmax (Σm)| = O (γm). To prove of the
desired result on the smallest eigenvalue of Σm, we use
the approach developed in the proof of Lemma 5.

For i = 0, 1, · · · , let vi ∈ Rq be the eigenvector corre-
sponding to the smallest eigenvalue of Σi. Further, de-

fine φi =
(
θ̂bγic − µi

)
Σ

1/2
i . Note that according to the

structure of TS, every row of φi is a standard normal (i.e.
mean zero Gaussian with covariance Iq). We examine

the effect of the randomization Σ
−1/2
i φi on L

(
θ̂bγic

)
.

First, we have∣∣∣∣∣∣∣∣∣θ̂bγic − µi
∣∣∣∣∣∣∣∣∣ ≥ φiΣ−1/2

i vi = |λmin (Σi)|−1/2 ||φivi||.

Note that φivi is a random vector satisfying

||φivi|| = Ω
(
i−3/2

)
,

||φivi|| =O
(
i1/2

)
.
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Then, according to(
θ̂bγic − µi

)
Σi

(
θ̂bγic − µi

)′
= φiφ

′
i,

since |||φi||| = O
(
i1/2

)
, Lemma 4 implies that for j < i,∣∣∣∣∣∣∣∣∣(θ̂bγic − µi

)
L̃
(
θ̂bγjc

)∣∣∣∣∣∣∣∣∣ = O
(
γ−j/2i1/2

)
. (B.12)

Letting

Dj = θ̂bγjcL̃
(
θ̂bγjc

)
,

Z =K
(
θ̂bγjc

)(
θ̂bγic − µi

)
L̃
(
θ̂bγjc

)
,

∆ =

∞∑
t=0

D′j
t (
Z ′Dj +D′jZ

)
Dj

t,

(B.12) implies that |||Z||| = O
(
γ−j/2i1/2

)
, |||∆||| =

O
(
γ−j/2i1/2

)
. Hence, using (B.3) for θ̂bγjc, if j ≥ i− k

for some constant k, the following holds:

∣∣∣∣∣∣∣∣∣L(θ̂bγic

)
− L

(
θ̂bγjc

)∣∣∣∣∣∣∣∣∣ = Ω

(
||φivi||

|λmin (Σi)|1/2

)
,(B.13)

as long as

lim sup
i→∞

γ−i/2i1/2

|λmin (Σi)|−1/2 ||φivi||
= 0.

To proceed, denote the feedback matrix of episode i by

Li; i.e. Li = L
(
θ̂bγic

)
. Suppose that k is sufficiently

large to satisfy (k+1)p ≥ q+3, and define the (k+1)p×q
matrix

Mm =


(m− k)1/4γ(m−k)/4

[
Ip, L

′
m−k

]
...

(m− 1)1/4γ(m−1)/4
[
Ip, L

′
m−1

]
m1/4γm/4 [Ip, L

′
m]

 .

Then, on the event |λmin (Σm)| 6= Ω
(
γm/2m−1/2

)
, for an

arbitrary ε > 0, the following holds for infinitely many
values of m:

inf
||v||=1

||Mmv|| < ε. (B.14)

LetY ⊂ R(k+1)p×r be the set of matrices
[
L′m−k, · · · , L′m

]
such that Mmv = 0, for some unit vector v ∈ Rq. One

can see that

d1 = dim (Y) = q − 1 + (k + 1)p(r − 1).

Whenever (B.14) holds,
[
L′m−k, · · · , L′m

]
belongs to

an O
(
m−1/4γ−m/4ε

)
-neighborhood of Y. Thus, (B.13)

leads to

P
(

inf
||v||=1

||Mmv|| < ε

)
= O

((
m−1/2ε

)(k+1)pr−d1
)
.

By the choice of k, the above terms are summable. So,
Borel-Cantelli Lemma implies that with probability one,
(B.14) can not hold for infinitely many m.
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