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Abstract

The efficient exchange of information is an essential aspect of intelligent collective behavior. Event-triggered control and
estimation achieve some efficiency by replacing continuous data exchange between agents with intermittent, or event-triggered
communication. Typically, model-based predictions are used at times of no data transmission, and updates are sent only when
the prediction error grows too large. The effectiveness in reducing communication thus strongly depends on the quality of
the prediction model. In this article, we propose event-triggered learning as a novel concept to reduce communication even
further and to also adapt to changing dynamics. By monitoring the actual communication rate and comparing it to the one
that is induced by the model, we detect a mismatch between model and reality and trigger model learning when needed.
Specifically, for linear Gaussian dynamics, we derive different classes of learning triggers solely based on a statistical analysis
of inter-communication times and formally prove their effectiveness with the aid of concentration inequalities.

Key words: Networked Control Systems; Statistical Analysis, Event-triggered Control.

1 Introduction

Modern communication technology allows for con-
necting many devices and systems in unprecedented
ways. Thus, enabling applications such as mobile sen-
sor networks, distributed robotics, and multi-vehicle
systems, often subsumed as networked control systems
(NCSs) (Hespanha et al. 2007). Alongside the potential
of NCSs come significant challenges for control design
such as delayed transmission, packet drops, or limited
bandwidth, which originate from the fact that a shared
network is used for feedback. Many methods that have
been proposed for addressing these challenges rely on
accurate dynamics models. For instance, model-based
predictions in event-triggered state estimation and con-
trol (Heemels et al. 2012, Lemmon 2010, Miskowicz
2015, Shi et al. 2015) can replace periodic communica-
tion up to a certain extent. Only if predictions become
inaccurate, communication of sensor measurements is
indispensable and thus triggered when necessary. In this
article, we propose to extend the paradigm of event trig-
gering to model learning and introduce the novel idea
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of event-triggered learning (ETL). With ETL, we de-
tect a mismatch between model and true dynamics and
trigger identification of a new model whenever needed.
We built ETL on top of a typical event-triggered state
estimation architecture (see Fig. 1) and show that the
new architecture can cope with changing dynamics and
yields further communication savings in an NCS.

The ability to learn is thus, a fundamental aspect of fu-
ture autonomous systems that are facing uncertain and
changing environments. However, the process of learn-
ing a new model or behavior typically does not come
for free but involves a certain cost. For example, gath-
ering informative data can be challenging due to phys-
ical constraints, or updating models can require exten-
sive computation. Moreover, learning for autonomous
agents often requires exploring new behavior and thus,
typically means deviating from nominal or desired be-
havior. Hence, the question when to learn is essential for
the efficient operation of autonomous systems. We ad-
dress this question with ETL, and this article develops
the concept specifically in the context of NCSs.

Main Idea: Event-triggered Learning

We explain the main idea of event-triggered learning us-
ing the schematic in Fig. 1. The figure depicts a canonical
problem, where one agent (‘Sending agent’ on the left)
has information that is relevant for another agent at a
different location (‘Receiving agent’). For instance, this

ar
X

iv
:1

90
4.

03
04

2v
2 

 [
cs

.S
Y

] 
 2

3 
M

ar
 2

02
0



setting is representative of remote monitoring scenarios,
distributed sensor fusion, or two agents of a multi-agent
network. For resource-efficient communication, a stan-
dard event-triggered state estimation (ETSE) architec-
ture is used (shown in blue). The main contribution of
this work is to incorporate learning into the ETSE ar-
chitecture. By designing an event trigger also for model
learning (in green), learning tasks are performed only
when necessary. Next, we explain the core components
of the proposed framework.

The sending agent in Fig. 1 monitors the state of a dy-
namic process (either directly measured or obtained via
state estimation) and can transmit this state informa-
tion to the remote agent. The true parameters θ of the
process are unknown to both agents. An event-triggered
protocol is used to save network resources. The receiving

agent uses a model (with parameters θ̂) of the process for
predicting the state at times of no communication. The
sending agent implements a copy of the same prediction
and compares it to the current state in the ‘State Trig-
ger’, which triggers a state communication whenever the
prediction deviates too much from the actual state. This
general scheme is standard in ETSE literature (see (Shi
et al. 2015, Trimpe 2017, Trimpe & Campi 2015) and
references therein). The effectiveness of this scheme will
generally depend on the accuracy of the prediction, and,

thus, the quality of the model θ̂.

The key idea of this work is to trigger model learn-
ing when communication rates deviate significantly from
what is expected. Because performing a learning task
is costly itself (e.g., involving computation and com-
munication resources, as well as possibly causing de-
viation from the control objective), we propose event-
triggering rules also for model learning (‘Learning Trig-
ger’). Newly learned models are then shared with the re-
mote agent to improve its predictions. Since communica-
tion itself is triggered by model-based state predictions,
we obtain a tractable feature to quantify model accuracy
by analyzing the communication pattern. Further, we
avoid analyzing raw output data, which is possibly mul-
tidimensional and highly correlated. Thus, we propose
a method to obtain improved models from data when
needed, which leads to superior communication rates.

While the idea of using event triggering to save communi-
cation in estimation or control is quite common by now,
this work proposes event triggering also on a higher level.
Triggering of learning tasks yields improved prediction
models, which are the basis for ETSE at the lower level.

Related Work

Various event-triggered control (Heemels et al. 2012,
Lemmon 2010, Miskowicz 2015) and state estima-
tion (Lemmon 2010, Shi et al. 2015, Trimpe 2017,
Trimpe & Campi 2015) algorithms have been proposed
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Fig 1. Proposed event-triggered learning architecture for a net-
worked control problem between two agents. Based on a typical

event-triggered state estimation architecture (in blue), we pro-

pose event-triggered learning (in green) to improve predictions
and lower communication between Sending and Receiving agents.

Learning experiments are themselves triggered as necessary by

comparing empirical with expected inter-communication times.

for improving resource usage in NCSs. Approaches dif-
fer, among others, in the type of models that are used
for predictions. The send-on-delta protocol (Miskowicz
2006) triggers data transmission when the difference be-
tween the current and last communicated value passes
a threshold. This protocol is extended to linear pre-
dictions in (Suh 2007), which are obtained by approxi-
mating the signal derivative from data. More elaborate
protocols use dynamics models of the observed process,
which typically leads to more effective triggering (Bat-
tistelli et al. 2018, Han et al. 2015, Sijs et al. 2014, Sijs
& Lazar 2012, Trimpe & Baumann 2019, Trimpe &
D’Andrea 2011, 2014, Wu et al. 2013).

Recent articles proposed to improve and augment typ-
ical event-triggered state estimation (Battistelli et al.
2018, Huang et al. 2017, Shi et al. 2014) and control algo-
rithms (Baumann et al. 2018, Narayanan & Jagannathan
2017, Vamvoudakis & Ferraz 2018, Vamvoudakis et al.
2019) with data-based techniques. In these works, learn-
ing is used to approximate intractable conditional prob-
ability densities that arise in distributed problems or to
obtain tractable solutions to Hamilton-Jacobi-Bellman
equations that yield optimal control policies, e.g., with
model-free methods such as Q-learning, or based on neu-
ral networks based. However, none of these works con-
siders principled decision making on model learning in
order to improve prediction accuracy, as we do herein.
Thus, we address the fundamentally different question
of when to learn, leading to the new concept of ETL.

In order to obtain effective learning triggers, we take
a probabilistic view on inter-communication times
(i.e., the time between two communication events) and
trigger learning experiments whenever the expected
communication differs from the empirical. A similar
probabilistic interpretation of inter-communication
times is considered in (Xu & Hespanha 2004), where
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NCSs are modeled as jump-diffusion processes, and the
expected value of inter-communication times is consid-
ered. In this article, we analyze the statistical properties
in a more general context and propose the design of
learning triggers based on inter-communication times
and concentration inequalities.

Adaptive control (Åström & Wittenmark 2013) aims to
improve control performance by adapting model param-
eters continuously. Under certain persistent excitation
conditions and for certain system classes, convergence to
a reference trajectory and even parameter convergence
can be guaranteed. However, divergence is a serious con-
cern during nominal operation, where the persistent ex-
citation conditions are not necessarily satisfied. This can
often be a significant issue in practice. Here, we propose
a different concept: rather than adapting or learning pa-
rameters all the time, we make a specific decision about
when to learn a new model or parameters. By separating
learning from nominal behavior, we ensure resource ef-
ficiency and informative data, which is collected in ded-
icated learning experiments.

Adaptive filtering, change, fault, and anomaly detection
have been developed to identify defective and malfunc-
tioning systems for a variety of applications (see (Gertler
2013, Gustafsson 2000, Isermann 1984, 2006) for an
overview). In this article, we develop a method that is
conceptually related to these research areas but closely
tailored to NCSs with intermittent communication. In
ETL, we combine tools from stochastic calculus and
statistics to predict and analyze inter-communication
times. Inter-communication times are independent,
identically distributed, and scalar-valued. Due to these
advantageous statistical properties, we can provide
guarantees for the developed learning triggers.

Comparing expected behavior with observed realiza-
tions is also common in cognitive science to model
human learning (Butz et al. 2003a). This effect is often
quantified with the aid of internal models and antici-
pation along surprisal boundaries (Butz et al. 2003b).
Interestingly, these ideas are very similar to ETL from
an abstract point of view. However, the considered
systems, concrete implementation, and developed the-
ory differ significantly. Notwithstanding, there exists a
conceptual connection to learning in biological systems.

Contributions

We propose the novel idea of event-triggered learning
and develop the concept in the context of networked
control systems. In particular, we derive data-driven
learning triggers based on statistical properties of inter-
communication times. These triggers make principled
decisions on when to learn a new model.

In detail, this article makes the following contributions:

• introducing event-triggered learning with proba-
bilistic guarantees ensuring the effectiveness of the
proposed learning triggers;

• treatment of both cases, perfect state measure-
ments and output measurements (Kalman filter-
ing), and analysis of their differences; and

• demonstration of improved prediction accuracy and
reduced communication in numerical simulations.

Preliminary results were presented in the conference pa-
per (Solowjow et al. 2018). This article significantly ex-
tents this paper and presents the full ETL framework.
While (Solowjow et al. 2018) considered only learning
triggers based on the expected value and the perfect
state measurement case, we generalize to improved trig-
gers based on the full distribution and also extent to the
more relevant case of output measurements (Kalman fil-
tering). Furthermore, the theoretical properties of the
sample-based triggers are improved, and new illustrative
examples are presented.

2 Problem Formulation

In this section, we make the problem of event-triggered
learning precise for linear Gaussian time-invariant sys-
tems. The framework is developed in the context of NCSs
and primarily focuses on limited bandwidth. Informa-
tion exchange over networks is abstracted to be ideal
in the sense that there are no packet drops or delays.
First, we state the problem formulation for continuous
time systems. We then address the discrete time case
separately since the technical details differ slightly. In
Sec. 7.1, the problem is extended to output measure-
ments and, in particular, the Kalman filter setting.

2.1 Continuous Time Formulation

Let (S,F , (Ft)t∈R+ ,P) be a filtered probability space and
X(t) ∈ Rn a stochastic process, indexed by time t ≥ 0.
Furthermore, assume X(t) (cf. ‘Process’ block in Fig. 1)
is a solution to the following linear stochastic differential
equation (SDE)

dX(t) = AX(t)dt+QdW (t), X(0) = x0. (1)

Solutions to the SDE (1) are well investigated and also
known as Ornstein-Uhlenbeck (OU) processes (Øksendal
2003). Further, let A ∈ Rn×n be a matrix with nega-
tive eigenvalues, which may in practice be obtained by
applying local feedback control and considering the sta-
ble closed-loop dynamics. Assume Q ∈ Rn×n is a pos-
itive definite matrix, W (t) ∈ Rn a standard Wiener
process that models process noise, and the initial point
x0 ∈ Rn is known. We denote the system parameters as

θ = (A,Q) and models as θ̂ = (Â, Q̂).

For the model-based predictions (‘Model-based Predic-
tions’ in Fig. 1), we use the expected value of system (1),
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which coincides with the open-loop predictions of the de-
terministic system dX̌(t) = ÂX̌(t)dt, with X̌(0) = x0.
Due to the stochasticity of the system, the prediction er-
ror will almost surely leave any predefined domain after
sufficient time. Event-triggered communication (‘State
Trigger’ in Fig. 1) bounds the prediction error by reset-
ting the open-loop predictions X̌(t) to the current state
X(t). Further, the binary event trigger

γstate = 1 ⇐⇒ ‖X(t)− X̌(t)‖2 ≥ δ, (2)

is only activated when the error threshold δ > 0 is
crossed and hence, limits communication to necessary
instances. The corresponding inter-communication time
is defined as

τ := inf{t ∈ R : ‖X(t)− X̌(t)‖2 ≥ δ}, (3)

and realizations of this random variable are denoted
as τ1, . . . , τn and can be directly measured as the time
between communication instances.

Assumption 1 We assume τ ≤ τmax <∞.

Bounded communication times are usually implemented
in real-world applications to detect defect agents, which
never communicate. Hence, communication is enforced
after τmax. For the design of the final learning trigger to
be derived in this article, the assumption can be omitted.
However, it is useful for intermediate results, such as the
expectation-based learning trigger.

We address the problem of designing learning trig-
gers (‘Learning Trigger’ in Fig. 1) based on inter-
communication time analysis. Since the probability
distribution of τ can be fully parameterized by θ, we
can derive an expected distribution based on the model

θ̂ and test if empirical inter-communication times are
drawn from that distribution. Further, this statistical
analysis yields theoretical guarantees, which are ob-
tained from concentration inequalities and ensure that
the derived learning triggers are effective. Therefore,
we design a method to perform dedicated learning

experiments on necessity and update models θ̂ in an
event-triggered fashion.

2.2 Discrete Time Formulation

Since processing on microcontrollers or sensors mostly
happens on synchronously sampled data, we provide an
alternative discrete time formulation of the considered
problem. In principle, the problem formulation does not
change. However, some essential details differ; for exam-
ple, the inter-communication times from (3) need to be
treated differently due to discontinuities in the states.

The discrete time analogue to (1) is

x(k + 1) = Ax(k) + ε(k), x(0) = x0, (4)

with discrete time index k ∈ N and state x(k) ∈ Rn.
Furthermore, we assume A ∈ Rn×n has all eigenvalues
strictly within the unit sphere and ε(k) ∼ N (0, Q) with
Q ∈ Rn×n being symmetric and positive definite. The
model-based predictions are obtained through the equa-
tion x̌(k + 1) = Âx̌(k), which yields the trigger

γstate = 1 ⇐⇒ ‖x(k)− x̌(k)‖2 ≥ δ. (5)

We define the system parameters and model as θ =

(A,Q) and θ̂ = (Â, Q̂). Hence, we obtain the inter-
communication times

τd := min{k ∈ N : ‖x(k)− x̌(k)‖2 ≥ δ}. (6)

3 Communication as Stopping Times

In this section, we characterize inter-communication
times (Eq. (3)) as stopping times of the prediction error
process. The inter-communication time τ is a random
variable and depends on the stochastic system (1). We
seek to compare model-based expectations to observed
data in order to detect significant inconsistencies be-

tween θ and θ̂. The core idea of the learning triggers
comes down to deriving expected stopping time distri-

butions based on the model θ̂ and then analyzing how
likely it is that observed stopping times τ1, . . . , τn are
drawn from this distribution.

Assuming θ̂ = θ, we derive model-based statistical prop-
erties of τ . Later on, we will test the hypothesis that
empirical inter-communication times are indeed drawn
from the derived distribution of τ—if not, this will indi-

cate θ̂ 6= θ; that is, the model does not match reality.

3.1 Theoretical Properties

We define the error process as Z(t) := X(t)− X̌(t). Due
to linearity, it follows immediately that Z(t) is an OU
process as well and that Z(0) = 0. Next, we introduce
inter-communication times with respect to the stochas-
tic process Z(t). Assume Ft = σ(Zs : s ≤ t) is the natu-
ral filtration on the given probability space and τ a stop-
ping time with respect to Ft. In particular, we consider
the first exit time of the stochastic process Z(t) from a
sphere with radius δ, i.e., τ := inf{t ∈ R : ‖Z(t)‖2 > δ},
which precisely coincides with (3). Hence, we use the
terms stopping times and inter-communication times
synonymously in this article.

After each communication instance, we reset the pro-
cess Z(t) and set it to zero again by correcting X̌(t) to
X(t). The sample paths of the process Z(t) are (almost
surely) continuous between two inter-communication
times, which follows from the existence and uniqueness
theorem of solutions to SDEs (cf. (Øksendal 2003)).
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Therefore, we can precisely quantify the moment when
the error threshold (2) is crossed. Further, it is possi-
ble to quantify statistical properties of τ such as the
expected value (Pavliotis 2014, Sec. 7.2) or the distri-
bution (Patie & Winter 2008) with the aid of certain
boundary value problems. In particular, there are exis-
tence and uniqueness theorems (Patie & Winter 2008)
that imply that τ is mathematically well behaved.

3.2 Monte Carlo Approximations

Next, we describe how we obtain statistical properties of
τ such as expected value E[τ ], variance V[τ ], and cumu-
lative distribution function (CDF) F (t) with the aid of
sample-based methods and hence, without solving non-
linear boundary value problems. Given the system pa-
rameters θ, we can simulate trajectories of the stochastic
process (1) with the aid of numerical sample methods
such as the Euler-Maruyama scheme (cf. (Kloeden &
Platen 2011, Sec. 10.2) for an introduction to numerical
solutions of SDEs).

In order to obtain independent and identically dis-
tributed (i.i.d.) samples τ1, . . . , τn, we sample the
process Z(t) and restart from zero after reaching the
threshold δ. Alternatively, we could also simulate X(t)
and X̌(t) and set the predictions X̌(τ) to the true value
X(τ) when communication is triggered. The statistical
properties of the corresponding stopping times do not
differ because the processes Z(t) and X(t) − X̌(t) are
indistinguishable. Further, stable OU processes are sta-
tionary and satisfy the strong Markov property, which
generalizes the Markov property to stopping times.

For given i.i.d. random variables, we can approximate
the expected value with 1

n

∑n
i=1 τi and the CDF with

Fn(t) := 1
n

∑n
i=1 1τi≤t, where 1 is the indicator func-

tion. Quantifying the convergence speed of the above ap-
proximation will be vital in designing learning triggers.

4 Learning Trigger Design for Continuous Time

In this section, we design the learning trigger γlearn
(cf. Fig. 1) to detect a mismatch between model and true
dynamics based on the inter-communication time τ .

4.1 Concentration Inequalities

The following results will form the backbone of the later
derived learning triggers. Concentration inequalities
quantify the convergence speed of empirical distribu-
tions to their analytical counterparts. In particular,
Hoeffding’s inequality bounds the expected deviation
between mean and expected value. Further, we also
consider the Dvoretzky-Kiefer-Wolfowitz (DKW) in-
equality, which compares empirical and analytical CDF

functions, and bounds the error between them uni-
formly. Essentially, we test if observed data fits the

distribution, which is induced by the model θ̂; that is,

which was derived with θ̂ = θ (cf. Sec. 3). If the distri-
butions do not match, we conclude an unfit model and

update θ̂ through model learning.

Lemma 2 (Hoeffding (1963)) Let τ1, . . . , τn be i.i.d.
bounded random variables, s. t. τi ∈ [0, τmax]. Then

P

[∣∣∣∣∣ 1n
n∑
i=1

τi − E[τ ]

∣∣∣∣∣ > κ

]
≤ 2 exp

(
−2nκ2

τ2max

)
. (7)

We will first design learning triggers around the Hoeffd-
ing’s inequality and later move on to richer statistical
information. Therefore, we also want to analyze the con-
vergence speed of the empirical CDF function.

Lemma 3 (DKW Inequality (Massart 1990))
Assume τ1, . . . , τn are i.i.d. random variables with CDF
F (t) and empirical CDF Fn(t). Then

P
[
sup
t∈R
|Fn(t)− F (t)| > κ

]
≤ 2 exp(−2nκ2). (8)

4.2 Expectation-based Learning Trigger

We propose a first learning trigger γlearn based on the
expected value E[τ ].

4.2.1 Exact Learning Trigger

Based on the foregoing discussion, we propose the fol-
lowing learning trigger:

γlearn = 1 ⇐⇒

∣∣∣∣∣ 1n
n∑
i=1

τi − E[τ ]

∣∣∣∣∣ ≥ κexact, (9)

where γlearn = 1 indicates that a new model shall be
learned; E[τ ] is the analytical expected value, which is

based on the model θ̂; and τ1, τ2, . . . , τn are the last n
empirically observed inter-communication times (τi the
duration between two state triggers (2)). The horizon
n is chosen to yield robust triggers in the sense that
a larger time horizon allows the detection of smaller
changes. However, it also increases the delay until the
n samples are actually observed. The threshold param-
eter κexact quantifies the error we are willing to tolerate.
There are some examples where it is possible to compute
E[τ ] analytically. In general, however, it is intractable.
Hence, we also propose the approximated learning trig-
ger, which takes the approximations for the statistical
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analysis into account. We denote (9) as the exact learn-
ing trigger because it involves the exact expected value
E[τ ], as opposed to the trigger derived in the next sub-
section, which is based on a Monte Carlo approximation
of the expected value.

Even though the trigger (9) is meant to detect inaccu-
rate models, there is always a chance that the trigger
fires not due to an inaccurate model, but instead due to
the randomness of the process (and thus randomness of
inter-communication times τi). Such false positives are
inevitable due to the stochastic nature of the problem.
However, we obtain a confidence interval, which contains
the empirical mean with high confidence. If observations
violate the derived confidence interval, we conclude that
distributions do not match, and learning is beneficial.
Therefore, we propose to choose κexact to yield effective
triggering with a user-defined confidence level. We then
have the following result for the trigger (9):

Theorem 4 (Exact learning trigger) Assume
τ and τ1, . . . , τn are i.i.d. random variables and the pa-
rameters α, n, and τmax are given. If the trigger (9) gets
activated (γlearn = 1) with

κexact = τmax

√
1

2n
ln

2

α
, (10)

then

P

[∣∣∣∣∣ 1n
n∑
i=1

τi − E[τ ]

∣∣∣∣∣ ≥ κexact
]
≤ α. (11)

PROOF. Substituting κexact into the right-hand side
of Hoeffding’s inequality yields the desired result. 2

The theorem quantifies the expected convergence rate
of the empirical mean to the expected value for a per-
fect model. This result can be used as follows: the user
specifies the desired confidence level α, the number n of
inter-communication times considered in the empirical
average, and the maximum inter-communication time
τmax. By choosing κexact as discussed, the exact learning
trigger (9) is guaranteed to make incorrect triggering de-
cisions (false positives) with a probability of less than α.

4.2.2 Approximated Learning Trigger

As discussed in Sec. 3, obtaining E[τ ] can be difficult
and computationally expensive. Instead, we propose to
approximate E[τ ] by sampling τ . For this, we simulate
the processZ(t) and average the obtained stopping times
τ̂1, . . . , τ̂m. This yields the approximated learning trigger

γlearn = 1 ⇐⇒

∣∣∣∣∣ 1n
n∑
i=1

τi −
1

m

m∑
i=1

τ̂i

∣∣∣∣∣ ≥ κapprox. (12)

The Monte Carlo approximation leads to a choice of
κapprox, which is different from κexact for small m. For
m→∞ we see that κapprox converges to κexact.

Theorem 5 (Approximated Learning Trigger)
Assume τ1, . . . , τn, and τ̂1, . . . , τ̂m are i.i.d. random vari-
ables. If the trigger (12) gets activated (γlearn = 1) with

κapprox = τmax

√
n+m

2nm
ln

2

α
, (13)

then

P

[∣∣∣∣∣ 1n
n∑
i=1

τi −
1

m

m∑
i=1

τ̂i

∣∣∣∣∣ ≥ κapprox
]
≤ α. (14)

PROOF. First, we introduce an alternative formula-
tion of Hoeffding’s inequality (7)

P

[∣∣∣∣∣ 1n
n∑
i=1

τi −
1

m

m∑
i=1

τ̂i − (E[τ ]− E[τ̂ ])

∣∣∣∣∣ > κapprox

]

≤ 2 exp

(
−

2κ2approx
(m−1 + n−1)τ2max

)
,

which was already stated in the original article by Ho-
effding (Hoeffding 1963) as a corollary (Eq. 2.6). Here,
we assume that τ and τ̂ are identically distributed and,
therefore, the analytical expected values cancel out. Re-
arranging for κapprox yields the desired result. 2

4.3 Density-based Learning Trigger

Analyzing the expected values is, in general, not enough
to distinguish random variables since higher moments
such as variance can differ. Therefore, we propose to look
at the CDF, build learning triggers around the DKW in-
equality (8), and thus use richer statistical information.
We propose the following learning trigger:

γlearn = 1 ⇐⇒ sup
t∈R
|F (t)− Fn(t)| > κexact. (15)

The density-based learning trigger has the following
property:

Theorem 6 (Exact Density Learning Trigger)
Assume τ1, . . . , τn are i.i.d. random variables with CDF
F (t) and empirical CDF Fn(t). If the learning trigger
(15) gets activated (γlearn = 1) with

κexact =

√
1

2n
ln

2

α
, (16)
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then

P
[
sup
t∈R
|F (t)− Fn(t)| > κexact

]
≤ α. (17)

PROOF. Follows directly from the DKW Inequality. 2

Finally, we can follow the reasoning as before and obtain
the sample-based version of the trigger (15)

γlearn = 1 ⇐⇒ sup
t∈R
|F̂m(t)− Fn(t)| > κapprox, (18)

where F̂m(t) = 1
m

∑m
i=1 1τ̂i≤t and τ̂i are obtained by

creating samples based on the model θ̂. This trigger is
essentially the well established two-sample Kolmogorov-
Smirnov (KS) test (Hodges 1958).

Theorem 7 (Two-sample KS Learning Trigger)
Assume τ1, . . . , τnand τ̂1, . . . , τ̂m are i.i.d. random vari-
ables with empirical CDFs Fn(t) and F̂m(t). If the trigger
(18) gets activated with

κapprox =

√
n+m

2nm
ln

(
2

α

)
, (19)

then

P
[
sup
t∈R
|F̂m(t)− Fn(t)| > κapprox

]
≤ α. (20)

PROOF. Follows from the two-sample KS test. 2

The density-based learning triggers do not depend on
τmax and consider richer statistical information, which
can be an advantage and will be discussed in detail in
the experimental sections.

5 Learning Trigger Design for Discrete Time

Based on the previous discussion, we will now high-
light how to apply the derived learning triggers to
discrete time systems (4). The random variables τ
(cf. Eq. (3)) and τd (cf. Eq. (6)) can differ significantly
due to discretization effects. Intuitively, this effect can
be thought of as the continuous time process crossing
the δ-threshold and returning within the discretization
time. Therefore, the discrete-time process has no pos-
sibility of observing the crossing, and hence, stopping
times tend to be larger for discrete time systems. For
small time steps, the difference tends to be negligible,
and τd converges to τ in the limit.

In this section, we show that the approximated learning
triggers transfer without any modification to the dis-
crete time system. It is important to adjust the system

parameters θ = (A,Q) and the model θ̂ = (Â, Q̂) to
discrete time (cf. Sec. 2.2) in order to sample from the
correct distribution (i.e., sampling from the continuous
time model, while the true dynamics are discrete, or vice
versa). Only based on statistical tests, irrelevant of the
actual shape, we decide if they coincide.

Theorem 8 (Discrete Time Learning Trigger)

Assume θ and θ̂ correspond to the discrete time system
(4). Then, the previously derived approximated learning
triggers (12) and (18) are applicable without any further
modification.

PROOF. The derived learning triggers test if given
observations of inter-communication times τ1, . . . , τn
are drawn from the same distribution as τ̂1, . . . , τ̂m and

therefore, if θ = θ̂. The concrete shape of the distribu-
tion is irrelevant for the test. 2

Remark 9 It is also possible to consider more complex
noise models such as colored noise. The main challenge
lies in identifying the system and, in particular, the noise
model from data.

6 Numerical Example – Reduced Communica-
tion

The learning triggers derived in the previous two sec-
tions are the core element in the proposed ETL archi-
tecture (Fig. 1, block ‘Learning Trigger’). For ‘Model
Learning’ in the context of linear Gaussian systems con-
sidered herein, one can use standard techniques for lin-
ear systems identification (Ljung 1999), which we do not
elaborate further. Thus, all components of the proposed
ETL method in Fig. 1 are complete, and we present a
first numerical example to illustrate the main ideas of
the developed learning triggers.

6.1 Setup

Next, we introduce the system, and afterward, we ap-
ply the learning trigger in order to demonstrate how to
detect an inaccurate model. We consider the first-order
dynamical system x(k+ 1) = 0.9x(k) + ε(k), with noise
ε(k) ∼ N (0, 1). Further, we assume the disturbed model

θ̂ = (0.8, 1) and hence, we obtain the predictions with
the equation x̌(k + 1) = 0.8x̌(k). To bound the predic-
tion error, we deploy the state trigger (5) with δ = 3. In
Fig. 2, we can see in the first graph a trajectory of states
x(k) as a black dashed line and the model-based pre-
dictions x̌(k) in blue. Whenever γstate = 1, we set x̌(τ)
to x(τ). The error signal never crosses the δ-threshold
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Fig 2. Example of model-based state predictions, which are reset

to the exact state whenever the error would exceed the prede-

fined threshold δ = 3. States, error signals, and the first ten com-
munication instances τi are depicted in the three graphs (top to

bottom).
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Fig 3. Average inter-communication times. The dashed blue line
illustrates the model-based expected value and the yellow line the

empirical mean. The shaded blue area around the dashed blue line
indicates the confidence interval that should contain the empirical

mean with 95% probability. Every new communication instant
is added to a buffer of size n = 300. Afterward, the learning

trigger compares the expected value with empirical mean and
updates the model if the yellow line is outside the blue area. A
new model-based expected value is computed, and the empirical
mean coincides with it. Further, the inter-communication times

increase, which corresponds to a decrease in communication.

and is depicted in the second graph. The communication
instances are shown in the third graph. The distances
between two consecutive communication instances cor-
responds to the inter-communication times. Further, we
set α = 0.05, τmax = 100, n = 300, and m = 100 000.

6.2 Expectation-based Learning Trigger

The proposed learning triggers analyze the statistical
properties of the observed inter-communication times
and compare them to model-induced quantities. For
instance, in Fig. 3, the corresponding average inter-
communication rate is shown (yellow line). The first
n inter-communication times are stored in a buffer,
and the empirical mean is computed. Based on the

model θ̂ and with the aid of m Monte Carlo simula-
tions, we derive E[τ̂ ] ≈ 28.6 (dashed blue line). The
model-based confidence interval is obtained with the
aid of Theorem 5. After the buffer is successfully filled
(at k = 4961), the learning trigger (12) compares if the
buffered average inter-communication rate (yellow line)
lies outside the expected confidence interval, which is
the case here. Therefore, the learning trigger discovers
an inaccurate model and triggers a learning experiment.

Here, we abstract learning and set model θ̂ to the true
parameters θ. A more detailed discussion on the learn-
ing aspect of ETL can be found in (Solowjow et al.
2018), where we demonstrated the effectiveness of ETL
in hardware experiments on a cart-pole system.

After updating the model (at k = 4961), we empty
the buffer, start collecting new stopping times, and re-
set the average inter-communication time accordingly.
This causes the initial fluctuation of the signal. However,
we see fast convergence to the model-based expectation.
Further, the average inter-communication time was in-
creased after updating the model (yellow line converges
to a larger value), which results in less communication.

The test statistic is also depicted in Fig. 4 for the ini-
tial inaccurate model and in Fig. 5 for the exact model.
The dashed blue line again represents the model-based
expected value, while the dashed red line depicts the em-
pirical mean at the moment of triggering.

6.3 Density-based Learning Triggers

Next, we will discuss the density-based learning trig-
ger (18), which is also illustrated in Fig. 4 and Fig. 5.
The solid blue line represents the model-based CDF
function F̂m(t), and the solid red line is the empiri-
cal CDF Fn(t) based on observed inter-communication
times. Here, both triggers detect the inaccurate model
(cf. Fig. 4) and have high confidence in the true model
since the model-based and empirical quantities coincide,
which is depicted in Fig. 5. The confidence interval is de-
rived with Theorem 7 and tighter than the expectation-
based. Hence, inaccurate models can be detected faster.

6.4 Expected Value is not Enough

Here, we assume the model θ̂ = (0.5, 1.7) with n = m =
10 000. Intuitively, process noise and stability have op-
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Fig 4. Statistical properties of expected communication τ̂ (blue)

and observed inter-communication times τ (red). The dashed

lines capture the expected values, and the shaded blue region is a
confidence interval that should contain the dashed red line with

a 95% probability (cf. (12)). As there is a significant deviation

between observation and expectation, the learning trigger initiates
to relearn the model. The solid lines represent the CDF functions,

and also here, the empirical distribution is not contained within

the confidence bounds, which triggers learning (cf. (18)).
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Fig 5. After updating the model θ̂ to the true system parameters
θ, the estimated stopping times τ̂ coincide with empirical stopping

times τ . As a direct consequence, communication behavior is

improved as the stopping times increase.
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Fig 6. Counterexample showing that the expected value of inter–
communication times (learning trigger (12)) may not be sufficient

to detect an inaccurate model. Furthermore, the CDF-based trig-
ger (18) detects the mismatch reliably.

posite effects on the communication behavior. We con-
struct the counterexamples by creating a hypersurface

of models θ̂, where the noise and stability effects cancel
out. Figure 6 shows the expected and empirical expected
values of inter-communication times, which are almost
identical – bad performance is expected and also real-
ized due to the bad prediction model. The CDF-based
trigger is still able to detect the inaccuracy, which is a
big advantage over the expectation-based learning trig-

gers. Clearly, the highest inter-communication time is

realized when θ̂ = θ, which can be observed when com-
paring Fig. 5 with Fig. 6, where the inter-communication
time is twice as high.

Clearly, the model has also to be communicated at some
point. However, this happens very rarely and, in particu-
lar, when there is a significant change in the system. We
conclude that both learning triggers are effective in de-
tecting a mismatch between model and true dynamics.
Also, average communication was successfully reduced
after updating the model.

7 Extensions and Insights

So far, we assumed that perfect measures of the full state
x(k) are available at the sending agent. In the following,
we will drop this assumption and consider systems where
only part of the state can be measured.

7.1 Output Measurements

Assume the following system

x(k + 1) = Ax(k) + ε(k), y(k) = Cx(k) + ν(k), (21)

with output measurements y(k) ∈ Rm. Further, let A ∈
Rn×n andC ∈ Rn×m. The system is again assumed to be
stochastic with process noise ε(k) ∼ N (0, Q) and obser-
vation noise ν(k) ∼ N (0, R), which are independent of
each other. We also assume that A is stable, and the pair
(A,C) is observable. Hence, the system is parameterized

by θ = (A,C,Q,R) and modeled by θ̂ = (Â, Ĉ, Q̂, R̂). To
reconstruct the full state, we use a Kalman filter (KF),
which is the optimal filter for linear Gaussian systems
with exact models (Anderson & Moore 2012). Here, we
consider the steady-state KF and obtain

x̂(k + 1) = Âx̂(k) +K
(
y(k + 1)− ĈÂx̂(k)

)
, (22)

where K ∈ Rm×n is the corresponding gain. Further, as-
sume the process has already converged to stationarity.

Ideally, we want to use the KF states x̂(k) on the re-
ceiving agent’s site. However, this would require peri-
odic communication of the estimates x̂(k), or the mea-
surements y(k), which we try to avoid. Exactly as in
Sec. 2, we run a model-based prediction step in the ab-
sence of data, obtain x̌(k + 1) = Âx̌(k), and employ
the state trigger ‖x̂(k) − x̌(k)‖2 ≥ δ. Hence, the inter-
communication time is defined as τo := min{k ∈ N :
‖x̂(k) − x̌(k)‖2 ≥ δ}. Extending ETL to output mea-
surements is based on treating the KF sequence as a
stochastic process in its own right and investigating the
distribution of x̂(k). With the aid of the innovation se-
quence, we can derive an auto-regressive structure. The
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Fig 7. Communication behavior of a system with output mea-

surements. In the first graph, we see the test statistic for an inac-

curate model and in the second for θ̂ = θ. Both learning triggers
((12) and (18)) are effective in detecting the model mismatch. In-

terestingly, updating the model results in more communication,
as can be seen by a decrease in the actual average inter-commu-

nication time E[τ ] (dashed red) between top and bottom. With

the improved model, the KF tracks the true states better, and
thus, we obtain more communication.

innovation of the KF is defined as I(k) = y(k)−Cx̂(k).
Furthermore, it is well known that I(1), . . . , I(n) are
independent normal distributed random variables with
I(k) ∼ N (0, S) (Anderson & Moore 2012). The co-
variance is given by S = CPCᵀ + R, where P is the
stationary error covariance matrix of the KF and can
be obtained by solving the corresponding Riccati equa-
tion (Anderson & Moore 2012, Equation (4.4)). Hence,
we reformulate the KF as

x̂(k + 1) = Ax̂(k) +KI(k), (23)

and regard I(k) ∼ N (0, S) as a random variable. By re-
garding KI(k) as process noise, we are back to the pre-
viously discussed problem (cf. (4)) and can apply the
derived tools and learning triggers. Hence, we can ef-
fectively analyze the distribution of the corresponding
stopping time with the previously derived tools – sam-
pling (23) to obtain model-based stopping times τ̂o.

7.2 Better Models may Result in more Communication

More accurate models result in better predictions. Thus,
one may expect that improved models also lead to re-
duced communication of state information from sender
to receiver (cf. Fig. 1). While this is indeed the case
for perfect state measurements (as has been observed
in the example of Sec. 6), it may actually be the op-
posite for the KF setting. Here, we present an example

that demonstrates this rather unexpected effect – better
models may lead to more communication. The reason is
as follows: better models increase the KF performance,
and thus, it is possible to track the unobserved states
better. Therefore, it is possible to construct examples
where communication increases, which is desirable for
performance, though counterintuitive. Consider system
(21) with the matrices

A =


1.000 0.010 −0.005 0.000

0.017 1.027 −0.301 −0.061

0.000 0.000 0.997 0.009

0.046 0.067 −0.507 0.850

, Cᵀ =


1 0

0 0

0 1

0 0


(24)

which is obtained by linearizing the closed-loop dynam-
ics of a stabilized inverted pendulum. We assume pro-
cess noise ε(k) ∼ N (0, 0.1I4) and observation ν(k) ∼
N (0, 0.1I2), where In is the identity matrix of dimen-
sion n. Further, we assume that ν̂(k) ∼ N (0, 0.5I2) and
that the model otherwise coincides with the true system
parameters. We consider the KF states x̂(k) (cf. (22)),
the predictions x̌(k), and the state trigger

γstate = 1 ⇐⇒ ‖x̂(k)− x̌(k)‖2 ≥ 1. (25)

We initialize x(0) = x̂(0) = x̌(0) = 0 and obtain the dis-
tribution over stopping times depicted in Fig. 7. The ex-
pected model-based communication is derived via Monte
Carlo simulation of the innovation process (23), where
we set τmax = 100 and m = n = 5000.

In the first graph in Fig. 7, we can see that the empirical
inter-communication times are higher than the model-
based. Updating the model actually reduces the aver-
age inter-communication time (more communication),
which is because the KF improves and tracks the states
x(k) better, which is illustrated in Fig. 8. The first plot
shows the tracking performance when a perfect model is

used θ̂ = θ (KF states in yellow). For the second plot,
we changed the covariance of ν(k) to N (0, 0.5I2), as dis-
cussed above. In the third plot, we exaggerated this ef-
fect even further by assuming ν(k) ∼ N (0, 10I2) in the
model. In all three plots, we consider the first k = 150
time steps and stop afterward. In the third graph, we can
see that the KF states deviate a lot from the true under-
lying states. However, they are still close to the open-
loop predictions, and hence, there is very little com-
munication. Despite the counterintuitive link between
model accuracy and average communication, the exam-
ple shows that the derived learning triggers are effective
in detecting model mismatch.

8 Discussion and Future Work

Event-triggered learning is proposed in this article as a
novel concept to trigger model learning when needed.
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Fig 8. State trajectories of the first dimension of the four-dimen-

sional system with output measurements (24). The state trigger
(25) is applied and therefore, communication triggered when x̂(k)

and x̌(k) deviate by δ. Communication instances are depicted

with dotted vertical lines. In the first graph, we can see how well
the KF x̂(k) (yellow) tracks the true states x(k) (dashed blue).

The red line depicts the open-loop predictions x̌(k). By worsen-

ing the model from the first to the second graph, the KF per-
formance gets worse, which results in less communication. From

the second to the third graph, we worsen the model even more,

which results in even less communication, because the KF is not
able to track the states.

This article focuses on the rigorous design of learning
triggers, and we obtained (provably) effective learn-
ing triggers utilizing statistical tests. The concept of
ETL has also already been applied in hardware experi-
ments (Solowjow et al. 2018) and shown to yield reduced
communication.

While event-triggered learning has been motivated as an
extension to already existing methods to reduce commu-
nication in NCSs, the concept generally addresses the
fundamental question of when to learn and potentially
has much broader relevance. Here, we ultimately care
about communication, and thus, it is a natural idea to
analyze inter-communication times and trigger model
learning based on these. Furthermore, they show advan-
tageous statistical properties, such as being i.i.d. and
scalar-valued. Depending on the concrete problem at

hand, the signal used for triggering learning should be
chosen accordingly. Using control performance as such a
triggering signal is a potential extension, and first steps
in this direction were taken in (Baumann et al. 2019).
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