
Stochastic Predictive Control under IntermittentObservations and
Unreliable Actions

Prabhat K. Mishra a Debasish Chatterjee b Daniel E. Quevedo c

aCoordinated Science Laboratory, University of Illinois at Urbana-Champaign, USA. m.prabhat@outlook.com

bSystems & Control Engineering, Indian Institute of Technology Bombay, India. dchatter@iitb.ac.in
cDepartment of Electrical Engineering (EIM-E), Paderborn University , Germany. dquevedo@ieee.org

Abstract

We propose a provably stabilizing and tractable approach for control of constrained linear systems under intermittent observations and
unreliable transmissions of control commands. A smart sensor equipped with a Kalman filter is employed for the estimation of the states
from incomplete and corrupt measurements, and an estimator at the controller side optimally feeds the intermittently received sensor
data to the controller. The remote controller iteratively solves constrained stochastic optimal control problems and transmits the control
commands according to a carefully designed transmission protocol through an unreliable channel. We present a (globally) recursively
feasible quadratic program, which is solved online to yield a stabilizing controller for Lyapunov stable linear time invariant systems under
any positive bound on control values and any non-zero transmission probabilities of Bernoulli channels.

Key words: stochastic predictive control, packet dropouts, output feedback, Kalman filtering, networked systems.

1 Introduction

Predictive techniques for networked control systems (NCSs)
have significantly advanced over the past decade. Emphasis
has been placed on information loss [1, 2], recursive fea-
sibility issue [3], stability analysis [4, 5], and focus on ap-
plications such as drinking water networks [6, 7]. In addi-
tion, NCSs have been constructed in diverse, interesting and
important applications including haptic collaboration over
the internet [8–10], building automation [11], vehicle con-
trol [12], mobile sensor networks [13] to name only a few.
Predictive techniques make the controller capable of han-
dling constraints while optimizing a desired performance
objective.

Most of the predictive control techniques neglect uncertain-
ties when designing the objective function, e.g., [4], or con-
sider only the worst case scenario over uncertainties, e.g., [6].
In both cases the resulting controllers are conservative and
do not take advantage of the available statistics. However,
while controller design without incorporating such statisti-
cal information is easier and simpler than otherwise, this re-
sults in a decline in the desired performance [14]. Stochastic
predictive controllers offer a way out of such conservatism.
Two major challenges need to be overcome in the stochas-
tic controller design – tractability of the underlying con-
strained stochastic optimal control problem (CSOCP) and

guaranteeing stability in some suitable sense. We refer the
readers to [15, 16] for discussions on the underlying chal-
lenges in stochastic predictive control under the settings of
perfect channels. Recently, [14, 17, 18] designed tractable
and stabilizing controllers for networked systems that take
the probability distributions of the uncertainties and net-
work induced effects into account at the synthesis stage.
However, [14,17,18] rely on the assumption that the sensor
channel is perfect and there are dropouts only in the con-
trol channel. This assumption is reasonable for applications
as mentioned in [19, 20], but in a wide range of applica-
tions available sensor-communication channels are unreli-
able. Therefore, an extension of [14,17,18] to the setting of
an unreliable sensor channel is important for a large class of
applications, and lies at the heart of the current work.

Apart from unreliable communication channels, typically
measurements are corrupted by sensor noise and/or full state
information are not available. Moreover, since actuators are
physical devices, constraints on the control actions must be
satisfied for all realizations of the uncertainties. Although
the synthesis of stabilizing constrained control under incom-
plete and corrupt observations is an interesting problem,
the literature on this topic is sparse, apart from [21, 22]. In
both of these articles a stochastic predictive controller was
proposed over ideal communication channels with an affine
saturated innovation feedback policy employing a Kalman
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Fig. 1. The red blocks are situated at the plant and the green blocks at the remote controller. The red and the green blocks communicate via
erasure channels. The Kalman filter employs the measurement yt and the applied control uat to estimate the state x̂t+1. The acknowledgements
of successful transmissions of control commands are causally available to the controller and the estimator. The estimator is also aware of
the sensor channel dropout st at time t.

filter and constant negative drift conditions. However, their
implementation over unreliable networks is non-trivial due
to boundedness issues in Kalman filtering with intermittent
observations [23, 24].

Several interesting methods have been proposed to estimate
the system states over unreliable sensor channels [23–34].
However, to the best of our knowledge the case of sensor
channel erasure under the settings of stochastic predictive
constrained control has not been examined so far due to, as
already mentioned, boundedness issues involved in Kalman
filtering. To be precise, the conditional error covariance ma-
trix exhibits unbounded oscillations almost surely, and is
therefore computationally difficult to deal with. In this arti-
cle we adapt the idea of smart sensors [33, 34] and present
a controller that has a computationally tractable underlying
optimal control problem. The proposed controller ensures
stability of the closed-loop states in a suitable sense un-
der any positive bound on control and any successful trans-
mission probabilities of the sensor and the control chan-
nels. Our results hold for the largest class (to date) of lin-
ear time invariant (LTI) discrete dynamical systems known
to be stabilizable under bounded control actions even with-
out dropouts. For that purpose, we generalize the approach
of [14, 17, 18, 21, 22] by considering the unreliable sensor
channel in the network system architecture.

The main features and contributions of the proposed ap-
proach are as follows:

• We consider an LTI system, with incomplete and corrupt
measurements, remotely controlled over unreliable chan-
nels.
• We present a tractable and recursively feasible quadratic
program to be solved periodically online, which provides
optimal control that minimizes the expected quadratic cost
function and ensures a good closed-loop behaviour of
states.

• In order to compensate the effect of packet dropouts in
the sensor channel, we employ a remote estimator. We
show that the remote estimator provides the conditional
expectation of states given causally available information
at the estimator.
• We employ a novel class of feedback policies and show
convexity of the underlying optimization program.
• For systems having all eigenvalues inside the unit circle
and semi-simple eigenvalues on the boundary (if any), we
show mean-square boundedness of the controlled system
for any positive bound on the control actions. Mean-square
boundedness of the controlled states is guaranteed for any
non-zero probabilities of successful transmissions in both
the sensor channel and the control channel.

This article exposes as follows: In Section 2 we discuss the
basic assumptions and formally define the problem state-
ment. The system setup is presented in Section 3. We de-
velop our main results on tractability and stability in Section
4 and Section 5, respectively. We validate our theoretical re-
sults by numerical experiments in Section 6 and conclude
in Section 7. Some proofs are presented in the Appendix.

Notation

Let R,N0,Z+ denote the set of real numbers, the non-
negative integers and the positive integers, respectively. We
use the symbol 0 to denote a matrix of appropriate dimen-
sions with all elements 0. For any vector sequence (vn)n∈N0
taking values in some Euclidean space, let vn:k denote the
vector

[
v>n v>

n+1 · · · v
>
n+k−1

]>
, k ∈ Z+. The notations Ez[·]

and E[· | z] are interchangeably used for the conditional
expectation with given z. For a vector v, its ith element
is denoted by v(i). Similarly, M (j,:) denotes the j th row of
a given matrix M . Let σ1(M) denote the largest singular
value of M , and M† its Moore-Penrose pseudo inverse. A
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block diagonal matrix M with diagonal entries M1, · · · ,Mn

is represented as M = bdiag{M1, · · · ,Mn} and Id is the d×d
identity matrix. For a real quantity ξ, its positive component
ξ+ and negative component ξ− are defined to be max{0, ξ}
and max{0,−ξ}, respectively. For a given positive semi-
definite (or definite) matrix P and a vector v, the notation
‖v‖2P is used to denote the scalar v>Pv.

2 Problem Statement

Let us consider a discrete time dynamical system

xt+1 = Axt +Bua
t +wt (1a)

yt = Cxt + ςt, (1b)

where t ∈N0, and xt ∈Rd , ua
t ∈Rm, yt ∈Rq are the states,

the applied control to the plant and the measurements, re-
spectively, at time t. The additive process noise wt ∈Rd and
the measurement noise ςt ∈ Rq are zero-mean Gaussian.
System matrices A,B and C are known matrices of appro-
priate dimensions and the matrix pair (A,B) is stabilizable.
At each time t the control ua

t is constrained to take values
in the admissible set

UB {v ∈ Rm | ‖v‖∞ 6 umax}, (2)

where the (uniform) bound umax > 0 is preassigned.

Remark 1 Admissible control set of the form

U′ B

{
v ∈ Rm

����� ���v(i)��� 6 Ui for i = 1, . . .,m

}
,

for not necessarily equal valuesUi , can be transformed easily
into U as in (2). Please see [35, Remark 1] for more details.

The sensor channel and the control channel both are unre-
liable with successful transmission probabilities, ps and pc ,
respectively. We represent the dropout at time t in the sensor
and the control channel by i.i.d. Bernoulli random variables
st and νt , respectively, see Fig. 1. We have the following
assumption:

(A1) The dropout processes (νt )t∈N0 and (st )t∈N0 are mutu-
ally independent and individually i. i. d. They are also
independent of the process noise and the measurement
noise processes (wt )t∈N0 and (ςt )t∈N0 , respectively.

The inclusion of the constraint (2) at the synthesis stage
is achieved by the following constrained stochastic optimal
control problem (CSOCP) that is solved iteratively over time,
and that constitutes the backbone of predictive control tech-
niques:

minimize
control policies

a quadratic objective function

subject to
{
system dynamics (1),
hard constraint on control (2).

(3)

It is well known that the stochastic optimal control prob-
lem in the form of (3) is computationally intractable even in
the presence of the full state information and perfect chan-
nels. An affine feedback policy based approach is often used
to present a tractable surrogate of CSOCP (3) when an ex-
pected quadratic cost is used as objective function [36]. In
order to mitigate the effect of incomplete and corrupt mea-
surements, a Kalman filter (see Section 3.2) at the sensor
with the following assumptions is employed.

(A2) The matrix pair (A,C) is observable.
(A3) The initial condition x0, the process and the mea-

surement noise vectors are normally distributed
and mutually independent, i.e. x0 ∼ N(0,Σx0 ),
wt ∼ N(0,Σw), ςt ∼ N(0,Σς ), with Σx0 � 0, Σw � 0 and
Σς � 0.

(A4) The matrix pair (A,Σ1/2
w ) is controllable.

At the controller end, an optimal estimator is employed to
mitigate the effects of sensor channel dropouts; see Fig. 1 for
a schematic. In one hop communication links, it is a standard
practice to transmit error free receipt acknowledgements (or
negative acknowledgements) [37, page 207]. Therefore, the
estimator is aware of the previously applied controls to the
plant. Accordingly, we have the following assumption:

(A5) The acknowledgements of the successfully transmitted
control commands are causally available to the con-
troller and the estimator.

The objective of this paper is to present a tractable surrogate
of CSOCP (3) and ensure stability (in some suitable sense)
of the closed-loop system (1a) when control is computed
by iteratively solving (3). Since in the examined situation
asymptotic stability of the origin cannot be achieved due to
the unbounded support of the additive process noise and the
measurement error, we are interested in the notion of mean
square boundedness, as defined below:

Definition 1 (Mean square boundedness) An Rd-valued
random process (xt )t∈N0 is said to be mean-square bounded
(MSB) if there exists some γ > 0 such that

sup
t∈N0

EYs
0
[‖xt ‖2]6 γ,

where Ys
0 is the information available at t = 0.

It is well known that, even with perfect communication
channels, an LTI system of the form (1) with system ma-
trix A having eigenvalues outside the unit circle cannot be
(globally) stabilized by any control technique with help of
bounded control actions [38, Abstract], [39, Theorem 1.7].
Consequently, for the present networked case, we impose the
following assumption:
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(A6) The system matrix A has all eigenvalues on the unit
disk and those on the unit circle are semi-simple.1

Dynamical systems satisfying Assumption (A6) are well-
studied as Lyapunov stable systems [40]. In the presence of
unbounded disturbances, an open-loop Lyapunov stable (but
not asymptotically stable) system leads to unstable trajec-
tories with probability one, unless the control is designed
with sufficient care. Such designs are non-trivial if hard con-
straints on the control have to be satisfied at all times. Tra-
ditional MPC for LTI systems under hard bounds on con-
trol inputs has been widely studied [41]. Unfortunately, the
approaches in [41] do not guarantee mean square bounded-
ness in the presence of unbounded disturbances. The con-
trol strategy developed in the present article is for stochas-
tic systems (additive disturbance has unbounded support as
well as observations are intermittent and control commands
are unreliable) where most of the well developed tools of
deterministic MPC do not carry over. In particular, tools de-
veloped assuming deterministic settings mostly rely on ter-
minal set and cost methods [4,42]. Further, the construction
of suitable positively invariant sets in the presence of dis-
turbances with unbounded support is impossible [43, §3];
please also see [44, Lemma 1]. In order to transcend beyond
the regime of terminal set and cost method drift conditions
are used for stochastic systems. We do not invoke martingale
arguments directly for our drift conditions. Instead, our re-
sult is based on the approach in [45, Theorem 1]. The latter
work contains a delicate proof of their main result relying
on the Burkholder’s inequality, Doob decomposition in the
theory of martingales and some other arguments. We recall
the following result:

Theorem 2 ( [45, Theorem 1, Corollary 2]) Let (Xt )t∈N0
be a family of real valued random variables on a probability
space (Ω,F,P), adapted to a filtration (Ft )t∈N0 . Suppose that
there exist scalars a,b,c > 0 such that

EFt [Xt+1− Xt ]6 −a on the event Xt > b,

E
[
|Xt+1− Xt |4

�� X0, . . .,Xt

]
6 c for all t ∈N0.

Then there exists a constant γ > 0 such that

sup
t∈N0

E
[
((Xt )+)2 | F0

]
6 γ.

The first condition of the above theorem is called the con-
stant negative drift condition and it is active when Xt is larger
than some b > 0. The second condition is called skip-free
condition and is needed to avoid long jumps when Xt 6 b.
The above theorem gives sufficient conditions for the mean

1 The stabilizability of LTI systems with non-semi-simple eigen-
values on the unit circle under bounded control actions remains
an open problem [39]. Therefore, the considered class of systems
is the largest class of LTI systems, known till date, stabilizable
under bounded control actions.

square boundedness of the positive component (Xt )+ of a
scalar process (Xt )t∈N0 and extended for the vector processes
in [39] utilizing the Assumption (A6) and decomposition of
the system dynamics into orthogonal and Schur stable sub-
systems, which is given explicitly in Section 5. We utilized
the above theorem and the idea of decomposition in our pre-
vious works [14,35] in a limited context. A part of our sta-
bility result is along the lines of [39, Theorem 1.2] but satis-
faction of the second condition of Theorem 2 is non-trivial
in the setting of the present article. In particular, [39, Theo-
rem 1.2] shows the existence of a stabilizing history depen-
dent feedback policy by considering a κ−subsampled pro-
cess when the system matrix A is orthogonal with reach-
ability index κ and channels are perfect. In this article we
extend the stability analysis of [39,46] under the settings of
unreliable channels.

Remark 2 The recursive feasibility of stochastic predic-
tive control techniques under state constraints is challeng-
ing whenever involved noise processes have unbounded sup-
port [47]. The inclusion of state constraints within our frame-
work can be investigated along the lines of [48, 49]. For
simplicity of the presentation we have not considered state
constraints in this article.

The problem statement of the present article is formally
given below:

Problem Statement 1 Present a tractable, stabilizing and
recursively feasible surrogate of CSOCP (3) under the as-
sumptions (A1) – (A6).

3 Setup

As illustrated in Fig. 1, we employ a Kalman filter at the
sensor and an estimator at the controller. The information of
the past outputs and previously applied control is available
at the filter. At each time t the filtered state x̂t and output yt
are transmitted through the sensor channel. Since, the sensor
channel is affected by Bernoulli dropouts, either the trans-
mitted information reaches the estimator or it is lost. For
the sake of computational tractability we consider quadratic
cost functions, which are minimized over a class of poli-
cies. Control commands obtained by solving the optimiza-
tion programs are transmitted through an erasure channel.
To mitigate the effects of dropouts in the control channel
we employ ad-hoc transmission strategies. A detailed dis-
cussion on the above features is presented below:

3.1 Expected quadratic cost

Let us fix an optimization horizon N ∈Z+ and recalculation
interval (control horizon) Nr 6 N . Let Ys

t be the information
available at the controller/estimator at the time of optimiza-
tion t (see Section 3.3 for a precise definition). The cost Vt

is defined to be the conditional expectation of the quadratic
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cost in one optimization horizon with given information Ys
t .

We define Vt as

Vt B EYs
t

[
N−1∑
k=0
(‖xt+k ‖2Q +



ua
t+k



2
R
)+ ‖xt+N ‖2QN

]
, (4)

where, Q,QN are given symmetric positive semi-definite
matrices of appropriate dimensions and R is given symmet-
ric positive definite matrix. The compact form representa-
tion of the system (1) over one optimization horizon is as
follows:

xt:N+1 =Axt +Bua
t:N +Dwt:N (5a)

yt:N+1 = Cxt:N+1+ ςt:N+1, (5b)

where A, B, C and D are standard matrices of appropriate
dimensions. The cost function (4) can also be written in a
compact form for later use as follows:

Vt = EYs
t

[
‖xt:N+1‖2Q +



ua
t:N



2
R

]
, (6)

where Q and R are standard block diagonal matrices of
appropriate dimensions.

3.2 Kalman filter

In this section we recall the framework of stochas-
tic predictive control using Kalman filtering. The de-
tailed discussion is available in [21]. For each t let
Yt B {y0, · · · , yt,ua

0 , · · · ,u
a
t−1} denote the set of observations

up to time t. For t, s ∈N0, t > s, let us define x̂t |s B EYs [xt ]
and Pt |s B EYs

[
(xt − x̂t |s)(xt − x̂t |s)>

]
, and for brevity of

notation, we denote x̂t |t by x̂t and Pt |t by Pt . We need
the following result related to Kalman filtering for which
recursions are [50, p.102]:

x̂t+1 = x̂t+1 |t +Kt (yt+1−Cx̂t+1 |t )
Pt+1 = Pt+1 |t −KtCPt+1 |t

(7)

where x̂t+1 |t = Ax̂t + Bua
t , Pt+1 |t = APt A> + Σw and Kt =

Pt+1 |tC>
(
CPt+1 |tC>+Σς

)−1
. We intialize the Kalman filter

by setting x̂0 |−1 = 0,P0 |−1 = Σx0 , we get x̂0 = K0(Cx0 + ς0).
Let us recall the results of [21, Lemma 8] and [51, Lemma
4.2.2] that there exists a constant ρ > 0 such that

EYt

[
‖xt − x̂t ‖2

]
6 ρ for all t . (8)

Let us define filtered output ŷt B Cx̂t , the innovation term
It B yt − ŷt and Kalman filter error et B xt − x̂t . A straight-
forward calculation gives the innovation term for one opti-
mization horizon as follows:

It:N+1 = CFtet +Otwt:N + (I −CHt )ςt:N+1 (9)

where

Ft B



Id

φt

φt+1φt
...

φt+N−1 · · ·φt



Ot B



0 · · · 0 0

Γt · · · 0 0

φt+1Γt · · · 0 0
... · · ·

...
...

φt+N−2 · · ·φt+1Γt · · · Γt+N−1 0

φt+N−1 · · ·φt+1Γt · · · φt+N−1Γt+N−2 Γt+N−1



Ht B



0 0 · · · 0 0

0 Kt · · · 0 0

0 φt+1Kt · · · 0 0

0
... · · ·

...
...

0 φt+N−2 · · ·φt+1Kt · · · Kt+N−1 0

0 φt+N−1 · · ·φt+1Kt · · · φt+N−1Kt+N−2 Kt+N−1


The dynamics of x̂t can be given by

x̂t+1 = Ax̂t +Bua
t + ŵt, (10)

where ŵt = Kt (CAet +Cwt + ςt+1). The above equations (9)
and (10) are standard in literature and can be found by us-
ing (1) and (7). Since ŵt is a linear sum of three mutually
independent Gaussian random variables, it is also Gaussian
with a time varying and bounded variance due to Kt .

3.3 Optimal estimator

For each t let Mt B
{
st yt, st x̂t, st,ua

t−1
}

and Ys
t B{

M0, . . .,Mt

}
denote the set of data available at the esti-

mator up to time t, with the convention that ua
−1 = 0. We

have the following results:

Lemma 3 Let x̃t B E
[
xt | Ys

t

]
. Then

x̃t = st x̂t + (1− st )
(
Ax̃t−1+Bua

t−1
)
. (11)

A proof of Lemma 3 is given in the appendix. The estima-
tor (11) has been widely used in the literature. The above
Lemma 3 proves that it is optimal under the settings of the
present article. We define the estimation error ẽt B x̂t − x̃t
and initialize x̃−1 = 0, ẽ−1 = 0.
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3.4 Affine saturated received innovation feedback policy

Affine feedback parametrizations in terms of the innova-
tion sequence are standard in the literature [52]. Since the
optimization is carried over a particular class of policies,
the obtained solution is sub-optimal. In order to satisfy
hard bounds on the control actions while retaining computa-
tional tractability, affine saturated innovation feedback poli-
cies are used in [21,22]. Since innovation terms are affected
by sensor channel dropouts under the settings of this arti-
cle, a received innovation term is employed in the feedback
parametrization used in the present article. We consider the
following causal feedback policy class for ` = 0, · · · ,N −1,

ut+` = ηt+` +
∑̀
i=0

θ`,t+iψi(st+iIt+i)

= ηt+` +
∑̀
i=0

st+iθ`,t+iψi(It+i),
(12)

where ψi :Rq −→ Rq is a measurable map for each i such
that ‖ψi(yt+i − ŷt+i)‖∞ 6 ψmax. Let us denote Ĩt B stIt for
brevity. The above control policy class (12) can be repre-
sented in a compact form as follows:

ut:N = ηt +Θtψ(Ĩt:N ) (13)

where ηt ∈RmN , ψ B
[
ψ>1 · · · ψ

>
N

]
andΘt is the following

block triangular matrix

Θt =



θ0,t 0 · · · 0 0
θ1,t θ1,t+1 · · · 0 0
...

...
...

...
...

θN−1,t θN−1,t+1 · · · θN−1,t+N−2 θN−1,t+N−1


, (14)

with each θk,` ∈ Rm×q and

ψ(Ĩt:N )

∞ 6 ψmax.

We choose ψi’s to be component-wise odd functions, e.g.,
standard saturation function, sigmoidal function, etc.

Lemma 4 The hard constraint on control (2) under the class
of control policies (12) is equivalent to the following con-
straint: ���η(i)t ���+ 


Θ(i,:)t





1
ϕmax 6 umax (15)

PROOF. In view of the dropout process νt ∈ {0,1},

ua
t:N




∞ 6 umax ⇐⇒ ‖ut:N ‖∞ 6 umax

⇐⇒


ηt +Θtψ(It:N )




∞ 6 umax.

Now the assertion follows from [53, Proposition 3].

ηt,Θt

Controller

ut+`

(ηt )`m+1:mNr

empty

Buffer

Actuator
νt+`

ηt,Θt

Controller

ut+`

non-empty

Buffer

Actuator
νt+`

Fig. 2. Control channel and buffer at time t+` for (TP): The blue
blocks are transmitted only if the buffer is empty and the yellow
blocks are transmitted at each time.

3.5 Transmission protocol

In order to mitigate the effects of packet dropouts in the
control channel, several transmission protocols are discussed
in [14]. We consider one of them, which is formally defined
below. Our approach remains valid for the other protocols
as well, provided minor adjustments are made.

(TP) At the beginning of each optimization instant (t =
0,Nr,2Nr, . . .), the buffer is emptied. For ` 6 Nr − 1,
ut+` is transmitted and directly applied to the plant
if successfully received at the actuator. In additon,
ηt+`+1, . . ., ηt+Nr−1 are also transmitted until the first
successful reception to store in a buffer near the actu-
ator. In case of the loss of ut+` at t+`, ηt+` is applied
to the plant if it is already present in buffer, otherwise
null control is applied.

Since the optimization problem is solved after each
recalculation interval, only Nr 6 N blocks of con-
trols in (13) are applied to the plant, the rest of them
are discarded. Therefore, the above protocol transmits
(ηt )`m+1:mNr =

[
η>
t+`+1 . . . η>

t+Nr−1

]>
repetitively until the

first successful transmission and store them in a buffer at the
actuator node. In order to avoid any addition operation at
the actuator, ut+` is transmitted at each t + ` and applied to
the plant if successfully received at the actuator otherwise
the corresponding ηt+` from the buffer is applied. In a worst
case, if the buffer is empty and packets are also lost, then
null control is applied to the plant. The plant input sequence
using (TP) can therefore be represented in compact form as:

ua
t:N B Gtηt +StΘtψ(Ĩt:N ), (16)
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where

St B



Im ⊗ νt
. . .

Im ⊗ νt+κ−1

Im(N−κ)


,

and the matrix Gt has (N×N) blocks in total, each of dimen-
sion m×m. For i = 1, · · · ,N and j = 1, · · · ,N , the matrix Gt
can be given in terms of the blocks G(i, j)t each of dimension
m×m as follows:

G(i, j)t B


gt+i−1Im if i = j 6 Nr,

Im if i = j > Nr,

0m otherwise,
(17)

where gt = νt , gt+` = gt+`−1 + (1− gt+`−1)νt+` , and Θt and
ψ(Ĩt:N ) are as defined in (13). The term gt+` captures the
effect of (TP). Note that (TP) requires storage at the actuator,
but no advanced computation capacity.

4 Tractability

In this section we present a tractable surrogate of the
optimal control problem (3) under the system setup
discussed in Section 3. Let us define µGt B E[Gt ],
ΣGt B E

[
G>t αGt

]
, α B B>QB +R, µSt B E[St ], ΣSt B

E[S>t αSt ], ΣGt St B E[G>t αSt ], Πyt B ψ0(Ĩt )ψ0(Ĩt )>,
Σψ B E

[
ψ ′(Ĩt+1:N−1)ψ ′(Ĩt+1:N−1)>

]
,

Σψ′w B E

[
ψ ′(Ĩt+1:N−1)w>t:N

]
, Σeψ′ B E

[
ψ ′(Ĩt+1:N−1)e>t

]
,

Θ
(:,t)
t B

[
θ>0,t θ

>
1,t · · · θ

>
N−1,t

]>
, QA B A>QB and

QD B D>QB. We have the following Lemma:

Lemma 5 The objective function (6) can be represented in
terms of the decision variables as follows:

V ′t = η
>
t ΣGtηt + tr(ΣStΘ

(:,t)
t Πyt (Θ

(:,t)
t )>)+ tr(ΣStΘ′tΣψ(Θ′t )>)

+2(η>t ΣGt St + x̃>t QAµSt )Θ
(:,t)
t ψ0(Ĩt )+2x̃>t QAµGtηt

+2tr(QD µStΘ′tΣψ′w)+2tr
(
QAµStΘ′tΣeψ′

)
.

(18)

A proof of the Lemma 5 is given in the appendix. At each
optimization time t, the above objective function is updated
by substituting new information Ĩt and x̃t . The matrices µGt ,
ΣGt , µSt ,ΣSt ,ΣGt St ,Σψ,Σψ′w,Σeψ′ incorporate all elements
of the problem setup (Section 3). These matrices are com-
puted offline by using Monte-Carlo simulations to reduce the
burden of online computation. We have the following result:

Proposition 6 For every time t = 0,Nr,2Nr, · · · , the optimal
control problem (3) can be written as the following convex
quadratic, (globally) feasible program:

minimize
ηt,Θt

(18)

subject to (15) (19)

PROOF. The objective function (18) is convex quadratic in
decision variables ηt and Θt , and the constraint (15) is a
convex affine function of the decision variables. Since (15)
does not depend on xt , the optimization program (19) is
feasible for all xt ∈ Rd for all t ∈N0.

5 Stability

In this section, we show that the system setup discussed
in Section 3 leads to the mean square boundedness of the
controlled states if carefully designed stability constraints
are also included in the optimization program (19). Let us
first represent the estimator process recursion (11) in terms
of the matrix pair (A,B) as follows:

x̃t+1 = Ax̃t +Bua
t + w̃t, (20)

where w̃t B st+1(Aẽt + ŵt ). Note that a Lyapunov stable sys-
tem matrix A can be decomposed into a Schur stable com-
ponent As and an orthogonal component Ao as:[

x̃o
t+1

x̃s
t+1

]
=

[
Ao x̃ot
As x̃st

]
+

[
Bo

Bs

]
ua
t +

[
w̃o
t

w̃s
t

]
, (21)

where x̃st ∈ Rds , x̃ot ∈ Rdo , and d = do + ds . Let us define
the reachability matrix

Rκ(A,B)B
[
Aκ−1B . . . AB B

]
. (22)

By the stabilizability of (A,B), there exists an integer κ such
that the reachability matrix Rκ(Ao,Bo) has full row rank.
The integer κ is called reachability index of the matrix pair
(Ao,Bo). The reachability index is important in our approach.
We can choose Nr > κ but for simplicity, in our subsequent
analysis we use Nr = κ. We consider the orthogonal compo-
nent of the κ-subsampled process of (20), which is given by

x̃oκ(t+1) = Aκo x̃oκt +Rκ(Ao,Bo)ua
κt:κ +Rκ(Ao, I)w̃o

κt:κ . (23)

Let us define zt B
(
(Aκto )> x̃oκt

)
then the process (zt )t∈N0

can be considered as a d-dimensional random walk with
recursion

zt+1 = zt + (Aκ(t+1)
o )>

(
Rκ(Ao,Bo)ua

κt:κ +Rκ(Ao, I)w̃o
κt:κ

)
.

(24)
We present the following lemma:
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Lemma 7 Consider the recursions (20) and (24). Suppose
that ua

t is constrained in the set U for each t and that there
exist a,r > 0 such that for j = 1,2, · · · ,do, the following con-
ditions hold

EYs
κ t

[
(zt+1)(j)−(zt )(j)

]
6 −a whenever (zt )(j) > r, (25a)

EYs
κ t

[
(zt+1)(j)−(zt )(j)

]
> a whenever (zt )(j) < −r, (25b)

E

[���(zt+1)(j)−(zt )(j)
���4 | z(j)0 , . . ., z(j)t

]
6 M for all t . (25c)

Then there exists γ̄ > 0 such that EYs
0

[
‖ x̃t ‖2

]
6 γ̄ for all

t > 0. Moreover, there exists a κ-history dependent class of
policies uκt:κ of the form (13) such that (25) and (2) are sat-

isfied for ζ ∈
]
0, umax√

doσ1(Rκ (Ao,Bo )†)

]
and a = ζpc under the

transmission protocol (TP). Furthermore, for t = 0, κ,2κ, . . .,
the conditions (25) are equivalent to the following condi-
tions: (

(At+κ
o )>Rκ(Ao,Bo)EYs

t
[ut:κ]

) (j)
6 −ζ

whenever
(
(At

o)> x̃ot
) (j)

> r, (26a)(
(At+κ

o )>Rκ(Ao,Bo)EYs
t
[ut:κ]

) (j)
> ζ

whenever
(
(At

o)> x̃ot
) (j)

< −r . (26b)

A proof of Lemma 7 is given in the appendix. To embed the
drift conditions (26) in a tractable optimization program, we
consider the first κ blocks of (13)

ut:κ = (ηt )1:κm+ (Θt )1:κmψ(Ĩt:N ) (27)

for t = 0, κ, · · · , and substitute them in (26). We get the fol-
lowing stability constraints:(
(At+κ

o )>Rκ(Ao,Bo)
(
(ηt )1:κm+ (Θ(:,t)t )1:κmψ0(Ĩt )

)) (j)
6 −ζ

whenever
(
(At

o)> x̃ot
) (j)

> r, (28a)(
(At+κ

o )>Rκ(Ao,Bo)
(
(ηt )1:κm+ (Θ(:,t)t )1:κmψ0(Ĩt )

)) (j)
> ζ

whenever
(
(At

o)> x̃ot
) (j)

< −r, (28b)

where r, ζ and j are as in (26). We have the following result:

Theorem 8 Let the stability constraints (28) be included
in the optimization program of Theorem 6 and controls be
generated by successively solving the underlying optimiza-
tion program. Then the application of these controls ensures
mean-square boundedness of the states of (1) for any bound
umax > 0 and transmission probabilities ps, pc > 0 .

A proof of Theorem 8 is given in the appendix.
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Θt = 0
Θt = Θ̃t as in (29)
without (28)

Fig. 3. Empirical MSB when umax varies in the set {2,3,4,5,10}
while pc = ps = 0.8 remain fixed.
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Fig. 4. Empirical MSB when pc varies from 0.5 to 1 while umax = 5
and ps = 0.8 remain fixed.

6 Numerical Experiments

In this section, we present numerical experiments and record
the empirical mean of the quantities of interest to illustrate
our results by taking averages over 1000 sample paths for
120 time steps. We consider the four dimensional stochastic
LTI system (1) with matrices taken from [21], which can be
written in the form of (21) with As = 0.9, Bs = 0,

Ao =


1 0 0

0 0 −1

0 1 0

 , and Bo =


1

0

1

 .
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Fig. 5. Empirical MSB when ps varies from 0.5 to 1 while umax = 5
and pc = 0.8 remain fixed.

The reachability matrix (defined in (22))

R3(Ao,Bo) =


1 1 1

0 −1 0

−1 0 1


has full row rank for κ = 3. We repeatedly solved a finite-
horizon CSOCP reported in Theorem 8 corresponding to
states and control weights Q = I4,Q f = I4,R = 1, the op-
timization horizon, N = 5, recalculation interval Nr = κ =
3 and simulation data x0 ∼ N(0, I4), wt ∼ N(0,10I4), ςt ∼
N(0,10I4). We selected the nonlinear bounded term ψ(·) in
our policy, similar to [22], to be a vector of scalar sigmoidal
functions ϕ(ξ) = 1−e−ξ

1+e−ξ applied to each coordinate of the re-
ceived innovation sequence. We use a MATLAB-based soft-
ware package YALMIP [54] and a solver SDPT3-4.0 [55]
to solve the underlying optimization programs.

We compare the present approach with a simplified version
of our main result by setting Θt = 0 in (13) and using a
modified version of Θt as giveen below:

Θ̃t =



θ0,t 0 · · · 0 0
0 θ1,t+1 · · · 0 0
...

...
...
...

...

0 0 · · · 0 θN−1,t+N−1


. (29)

In particular, Θt = 0 represents the optimization over an
open-loop control sequence and Θt = Θ̃t represents the op-
timization over only one causal feedback term. In the above
three cases, we have used stability constraints (28) as men-
tioned in Theorem 8. In the fourth case, we have removed

stability constraints (28) and simulated with the same sim-
ulation data. Our observations from numerical experiments
are listed below.

(O1) In Fig. 3, we plot the empirical mean square bound
(MSB) with respect to umax picked from the set
{2,3,4,5,10} while ps = pc = 0.8 remain fixed. The
empirical MSB decreases with the increase in umax.
The empirical MSB is less when Θt is chosen accord-
ing to (14) and it further decreases when we remove
the constraints (28). The difference due to the removal
of (28) is more for the lower values of umax and it
vanishes when we further increase umax.

(O2) In Fig. 4, we plot the empirical MSB with respect to pc
picked from the set {i/10 | i = 5, . . .10} while ps = 0.8,
umax = 5 remain fixed. The empirical MSB decreases
with increase in pc with higher slope at smaller pc .
The empirical MSB forΘt = 0 is the highest of all con-
sidered cases and the difference increases with the in-
crease in pc . The lowest empirical MSB’s are achieved
in the absence of (28).

(O3) In Fig. 5, we plot the empirical MSB with respect
to ps picked from the set {i/10 | i = 5, . . .10} while
pc = 0.8, umax = 5 remain fixed. With increase in ps ,
we observe decrease in empirical MSB. In this case
also, the lowest empirical MSB’s are achieved in the
absence of (28).

(O4) In Fig. 6, we plot the empirical mean of actuator energy
(MAE) per stage with respect to umax by fixing the
parameters as in the observation (O1). The empirical
MAE per stage increases with the increase in umax.
The empirical MAE per stage in the absence of (28)
is the largest (slightly) for umax = 2 and the lowest for
umax = 10 of all considered cases.

(O5) In Fig. 7, we plot the empirical MAE per stage with
respect to pc by fixing the parameters as in the obser-
vation (O2). The empirical MAE per stage increases
with the increase in pc . In this observation, the em-
pirical MAE per stage is the lowest in the absence of
(28).

(O6) In Fig. 8, we plot the empirical MAE per stage with
respect to ps by fixing the parameters as in the obser-
vation (O3). The empirical MAE per stage does not
vary much with the increase in ps . The lowest empiri-
cal MAE per stage is obtained in the absence of (28).

The proposed class of policies performs better than open
loop control sequence (which is obtained by substituting
Θt = 0) in terms of empirical MSB and empirical MAE.
Moreover, numerical experiments demonstrate mean square
boundedness of controlled states for all considered cases.
The optimization over Θ̃t in place ofΘt results in significant
reduction in the number of decision variables (please also
see [40, Remark 1]) with minimal increase in MSB and
MAE.

We repeated the above experiments for one sample path on
intel i7-8750, 6 cores, 12 threads processor with 16 GB
DDR4 RAM without invoking parallel pool in MATLAB.
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In one sample path, there are 120 time steps and 40 opti-
mization instants. For each optimization instant, we compute
the percentage difference with respect to the case “Θt as in
(14)” and then take average over 40 optimization instants.
The solver-time for the case “Θt as in (14)” is considered the
base-value for the comparison. Our observations are given
below:

(O7) In Fig. 9, we plot the percentage difference in the
solver-time with respect to umax picked from the set
{2,3,4,5,10} while ps = pc = 0.8 remain fixed as in
the observation (O1). When Θt = 0, the solver-time is
around 64% less than the base-value with slight vari-
ations when we vary umax. When Θt = Θ̃t , the solver-
time is around 44% less than the base-value with slight
variations when we vary umax. The absence of (28)
does not affect much.

(O8) In Fig. 10, we plot the percentage difference in the
solver-time with respect to pc picked from the set
{i/10 | i = 5, . . .10} while ps = 0.8, umax = 5 remain
fixed as in the observation (O2). In this experiment,
the observations are same as in (O7) with a very slight
difference.

(O9) In Fig. 11, we plot the percentage difference in the
solver-time with respect to ps picked from the set
{i/10 | i = 5, . . .10} while pc = 0.8, umax = 5 remain
fixed as in the observation (O3). In this experiment
also, the observations are same as in (O7) with a very
slight difference.

In this article, we proposed an analytical framework, which is
applicable to control with mutually independent and individ-
ually i.i.d. channels. For numerical experiments we can also
consider that channels are mutually independent but packet
dropouts in each channel are correlated. Such channels are
often modelled by the Gilbert-Elliott channel model [56] as
given in Fig. 12. Here one assumes that each channel has
two states – good and bad, respectively. For simplicity, we
model both channels similarly. For both channels, the bad
state has successful transmission probability pb = 0, the tran-
sition probabilities from good to bad state and bad to good
state are pgb = 0.2 and pbg = 0.9, respectively. The success-
ful transmission probability of the good state of the control
channel is pgc and that of the sensor channel is pgs . Since
both channels are modelled similarly except their good state,
pgx in Fig. 12 takes value of pgc and pgs , respectively, de-
pending upon the channel. By considering the same experi-
mental data as in the first part of this section, we did two ex-
periments. In the first experiment, we fixed the good state of
the sensor channel pgx = pgs = 0.8 and vary the good state of
the control channel pgx = pgc in the set {i/10 | i = 5, . . .10}.
In the second experiment, we fixed the good state of the con-
trol channel pgx = pgc = 0.8 and vary the good state of the
control channel pgx = pgs in the set {i/10 | i = 5, . . .10}. We
record the following observations:

(O10) Empirical MSB decreases with increase in pgc and
fixed pgs . It also decreases with increase in pgs and
fixed pgc . But in the second case the rate is lower than
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Fig. 6. Empirical MAE per stage when umax varies in the set
{2,3,4,5,10} while pc = ps = 0.8 remain fixed.
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Fig. 7. Empirical MAE per stage when pc varies from 0.5 to 1
while umax = 5 and ps = 0.8 remain fixed.

that in the first case; See Fig. 13.
(O11) Empirical MAE per stage increases with increase in

pgc and fixed pgs . However, it does not vary much
when pgs increases and pgc remain fixed; See Fig. 14.

The above numerical experiments show that our approach
is computationally tractable in the presence of correlated
channel noise as well.

We further consider a three dimensional stochastic LTI sys-
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Fig. 9. Percentage difference in solver-time with respect to the
Theorem 8 when umax varies and pc = ps = 0.8 remain fixed.

tem (1) with matrices taken from [14]:

A =


0 −0.80 −0.60

0.80 −0.36 0.48

0.60 0.48 −0.64

 ,B =

0.16

0.12

0.14

 ,C = I4,

and simulation data x0 ∼ N(0, I4), wt ∼ N(0,2I3), ςt ∼
N(0,10I4), ps = pc = 0.8,umax = 15. We repeatedly solved a
finite-horizon CSOCP reported in Proposition 6 and Theo-
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Fig. 10. Percentage difference in solver-time with respect to the
Theorem 8 when pc varies and ps = 0.8, umax = 5 remain fixed.
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Theorem 8 when ps varies and pc = 0.8, umax = 5 remain fixed.
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Fig. 12. Transmission dropout model with a binary network state
(Υt )t∈{1,2}: when Υt = 1 the channel is reliable with high success-
ful transmission probabilities; Υt = 2 refers to a situation where
the channel is unreliable and transmissions are more likely to be
dropped.

rem 8 corresponding to states and control weights

Q = I3,Q f =


12 −0.1 −0.4

−0.1 19 −0.2

−0.4 −0.2 2

 ,R = 2,
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Fig. 14. Empirical MAE with Gilbert-Elliott channel model

the optimization horizon N = 4, and compare their corre-
sponding empirical ‖xt ‖ in Fig. 15. This is improtant to note
that the matrix A in this example is orthogonal and the ma-
trix pair (A,B) has reachability index κ = 3. Since the sta-
bility constraints (28) of Theorem 8 suggest us to choose
Nr > κ, we choose Nr = κ = 3 in our experiment. However,
Proposition 6 does not provide any such guideline to choose
Nr , we take the standard choice Nr = 1 in our experiment.
We simulated for 120 time steps and took average of 500
sample paths. We have the following observation:

(O12) Empirical ‖xt ‖ in case of Proposition 6 increases al-
most linearly. However, in case of Theorem 8 it is
bounded below 23 in 120 time steps; See Fig. 15.
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Fig. 15. Comparison between Proposition 6 and Theorem 8

The above experiment demonstrates that there may exist
a system, which can become unstable when stability con-
straints are not embedded in the corresponding optimization
program under the given simulation data.

7 Epilogue

We have employed a class of affine saturated received inno-
vation feedback policies for a tractable formulation of the
underlying CSOCP under the settings of unreliable chan-
nels. We proved that the proposed approach is tractable and
ensures mean square boundedness of the controlled states.
This approach can be extended for the class of policies
parametrized in terms of dropouts along the lines of [35].
Moreover, inclusion of the joint chance constraints along the
lines of [49, 57, 58] and the sparsity in the control vector
with help of a regularization term as in [35] will also be
interesting extensions of the present work.
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A Appendix

PROOF. [Proof of Lemma 3] On the event st = 1, we can
compute E

[
xt | Ys

t

]
as follows:

E
[
xt | Ys

t

]
= stE

[
xt | Ys

t

]
since st = 1

= stE
[
E[xt | Yt,Y

s
t ]

�� Ys
t

]
= stE

[
x̂t

�� Ys
t

]
= E

[
st x̂t

�� Ys
t

]
= st x̂t (A.1)

On the event st = 0, E
[
wt−1 | Ys

t

]
= 0 and E

[
xt−1 | Ys

t

]
=

E
[
xt−1 | Ys

t−1
]
. Therefore, we can compute E

[
xt | Ys

t

]
as

follows:

E
[
xt | Ys

t

]
= (1− st )E

[
xt | Ys

t

]
since st = 0

= (1− st )E
[
Axt−1+Bua

t−1+wt−1 | Ys
t

]
= (1− st )E

[
Axt−1+Bua

t−1+wt−1 | Ys
t

]
= (1− st )

(
E

[
Axt−1 | Ys

t

]
+Bua

t−1
)

= (1− st )
(
E

[
Axt−1 | Ys

t−1
]
+Bua

t−1
)

= (1− st )
(
Ax̃t−1+Bua

t−1
)
by definition of x̃t . (A.2)

Since E
[
xt | Ys

t

]
= st

[
xt | Ys

t

]
+ (1− st )E

[
xt | Ys

t

]
, the re-

sult follows by combining (A.1) and (A.2).

PROOF. [Proof of Lemma 5] Consider the objective func-
tion (6). We substitute the stacked state vector (5a) in the
objective function.

Vt = EYs
t

[
N−1∑
k=0
(‖xt+k ‖2Qk

+ ‖ut+k ‖2Rk
)+ ‖xt+N ‖2QN

]
= EYs

t

[

Axt +Bua
t:N +Dwt:N



2
Q +



ua
t:N



2
R

]
= EYs

t

[
‖Axt ‖2Q + ‖Dwt:N ‖2Q +



ua
t:N



2
α
+2(x>t A>QB

+w>t:ND>QB)ut:N +2x>t A>QDwt:N

]
.

Let βt B EYs
t

[
‖Axt ‖2Q + ‖Dwt:N ‖2Q +2x>t A>QDwt:N

]
=

EYs
t

[
‖Axt ‖2Q + ‖Dwt:N ‖2Q

]
, then

Vt = EYs
t

[

ua
t:N



2
α
+2(x>t A>QB+w>t:ND>QB)ua

t:N

]
+ βt .

(A.3)
We now substitute the stacked control vector (16) in (A.3)
and for simplicity represent It = yt − ŷt and Ĩt = stIt to get
the following set of equations:

Vt = EYs
t

[

Gtηt +StΘtψ(Ĩt:N )


2
α
+2(x>t A>QB

+w>t:ND>QB)
(
Gtηt +StΘtψ(Ĩt:N )

) ]
+ βt

= η>t EYs
t

[
G>t αGt

]
ηt +EYs

t

[

StΘtψ(Ĩt:N )


2
α

+2(η>t G>t α+ x>t A>QB+w>t:ND>QB)StΘtψ(Ĩt:N )
]

+EYs
t

[
2(x>t A>QB+w>t:ND>QB)Gtηt

]
+ βt

= η>t ΣGtηt +EYs
t

[

StΘtψ(Ĩt:N )


2
α
+2η>t G>t αStΘtψ(Ĩt:N )

+2(x>t A>QB+w>t:ND>QB)StΘtψ(Ĩt:N )
]

+2EYs
t

[
x>t A>QBGtηt

]
+ βt .
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Since EYs
t
[xt ] = x̃t , we obtain:

Vt = η
>
t ΣGtηt +EYs

t

[

StΘtψ(Ĩt:N )


2
α
+2(η>t G>t α+ x>t A>QB

+w>t:ND>QB)StΘtψ(Ĩt:N )
]
+2x̃>t A>QBGtηt + βt .

(A.4)
Let us consider the term EYs

t

[
η>t G>t αStΘtψ(Ĩt:N )

]
on the

right hand side of (A.4) . By observing EYs
t

[
ψi(Ĩt+i)

]
= 0

for each i = 1, . . .,N , we get

EYs
t

[
η>t G>t αStΘtψ(Ĩt:N )

]
= η>t ΣGt StΘ

(:,t)
t ψ0(Ĩt ), (A.5)

where Θ(:,t)t B
[
θ>0,t θ

>
1,t . . . θ

>
N−1,t

]>
represents the first q

columns of the gain matrix Θt . Let us consider the term
EYs

t

[

StΘtψ(Ĩt:N )


2
α

]
on the right hand side of (A.4). In

order to simplify offline computations, we perform the fol-
lowing manipulation:

EYs
t

[

StΘtψ(Ĩt:N )


2
α

]
= EYs

t
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St [Θ(:,t)t Θ′t

] [
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]





2

α

]
= tr

(
ΣStΘ

(:,t)
t ψ0(Ĩt )ψ0(Ĩt )>(Θ(:,t)t )>

+ΣStΘ
′
tEYs

t

[
ψ ′(Ĩt+1:N−1)ψ ′(Ĩt+1:N−1)>

]
(Θ′t )>

)
= tr(ΣStΘ

(:,t)
t Πyt (Θ

(:,t)
t )>)+ tr(ΣStΘ′tΣψ(Θ′t )>), (A.6)

where Πyt = ψ0(Ĩt )ψ0(Ĩt )> and Σψ =
E

[
ψ ′(Ĩt+1:N−1)ψ ′(Ĩt+1:N−1)>

]
. We simplify the term

EYs
t

[
w>t:ND>QBStΘtψ(Ĩt:N )

]
in (A.4) as follows:

EYs
t
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= tr

(
D>QBµStΘ′tEYs

t

[
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])
= tr

(
D>QBµStΘ′tΣψ′w

)
, (A.7)

where Σψ′w =E

[
ψ ′(Ĩt+1:N−1)w>t:N

]
. Finally, we consider the

term EYs
t

[
x>t A>QBStΘtψ(Ĩt:N )

]
in (A.4) as follows:

EYs
t

[
x>t A>QBStΘtψ(Ĩt:N )

]

= EYs
t

[
(xt − x̂t )>A>QBStΘtψ(Ĩt:N )

]
+EYs

t

[
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]
= EYs

t

[
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]
+EYs
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(
Θ
(:,t)
t ψ0(Ĩt )+Θ′tψ ′(Ĩt+1:N−1)
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= EYs

t

[
e>t A>QBStΘtψ(Ĩt:N )

]
+ st x̃>t A>QBµStΘ

(:,t)
t ψ0(It )

= tr
(
A>QBµStΘ′tEYs

t

[
ψ ′(Ĩt+1:N−1)e>t
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+ x̃>t A>QBµStΘ

(:,t)
t ψ0(Ĩt )

= tr
(
A>QBµStΘ′tΣeψ′

)
+ x̃>t A>QBµStΘ

(:,t)
t ψ0(Ĩt ),

(A.8)

where Σeψ′ =E
[
ψ ′(Ĩt+1:N−1)e>t

]
. Expression (18) follows by

substituting (A.5), (A.6), (A.7), (A.8) in (A.4), and ignoring
the terms independent of the decision variables. Therefore,
the objective function in (6) is equivalent to (18) under the
constraints (5a) and (13).

We present lemmas 9 - 15 before the proof of Lemma 7.

Lemma 9 Suppose that the estimator is driven by the re-
cursion (11), and let assumptions (A1) – (A6) hold. Then
there exists ρ̃ > 0 such that

E
[
‖ẽt ‖2 | Ys

0
]
6 ρ̃ for all t > 0. (A.9)

PROOF. The estimation error is given by

ẽt = x̂t − x̃t = (1− st )(Aẽt−1+ ŵt−1). (A.10)

The matrix decomposition (21) allows us to write ẽt =

[
ẽot
ẽst

]
and ŵt =

[
ŵo
t

ŵs
t

]
, therefore

ẽot+1 = (1− st+1)(Ao ẽot + ŵ
o
t ) (A.11)

ẽst+1 = (1− st+1)(As ẽst + ŵ
s
t ). (A.12)

Let us first consider the expectationE
[
(ẽs

t+1)
>Pẽs

t+1 | ẽt,Y
s
0
]

for some symmetric positive definite matrix P � 0. Since ẽt
and ŵt are independent at t, we get that

E
[
(ẽst+1)

>Pẽst+1 | ẽt,Y
s
0
]
= (1− ps)(ẽst )>A>s PAs ẽst
+ (1− ps)E

[
(ŵs

t )>Pŵs
t

]
Since ŵt has bounded variance for all t > 0. We can assume
that there existsC1 <∞ such that (1−ps)E

[
(ŵs

t )>Pŵs
t

]
6C1
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for all t > 0. Further, since As is stable there exists some
λ1 ∈]0,1[ such that

E
[
(ẽst+1)

>Pẽst+1 | ẽt,Y
s
0
]
6 (1− ps)λ1ẽst Pẽst +C1

C λẽst Pẽst +C1

where λ = (1 − ps)λ1 < 1. Since E
[

ẽs

t+1



2 | ẽt−1,Y
s
0

]
=

E
[
E

[

ẽs
t+1



2 | ẽt,Ys
0

]
| ẽt−1,Y

s
0

]
, we can show that

E
[
(ẽst+1)

>Pẽst+1 | ẽ0,Y
s
0
]
6 λt+1(ẽs0)

>Pẽs0 +
C1

1−λ

Therefore,

E
[

ẽst+1



2 | Ys
0

]
6 λt+1 λmax(P)

λmin(P)
E

[

ẽs0


2 | Ys

0

]
+

C1

(1−λ)λmin(P)
,

where λmax(P) and λmin(P) are the largest and the smallest
eigenvalues of P, respectively. We can observe that on the
event s0 = 1, ẽ0 = 0, whereas on the event s0 = 0, ẽ0 = x̂0.
Under the given initialization of the Kalman filter, we can
easily see that x̂0 = K0(Cx0+ ς0). Since ς0 is independent of
Ys

0 on the event s0 = 0, we can conclude thatE
[

ẽs0



2 | Ys
0

]
=

(1− s0)E
[

x̂s0



2
]
6 (1− s0) tr(K>0 Σx0C>). Therefore, there

exists C2 > 0 such that E
[

ẽst



2 | Ys
0

]
6 C2 for all t > 0.

Similarly, we consider the expectation E
[

ẽo

t+1



2 | ẽt,Ys
0

]
and show that there exists C3 > 0 such that E

[

ẽot


2 | Ys

0

]
6

C3 which implies E
[
‖ẽt ‖2 | Ys

0
]
6C2+C3 C ρ̃ for all t > 0.

Lemma 10 Consider (20) and decomposition (21). If there
exist m3 > 0 such that E

[

ŵo
t



4
]
6 m3 for every t, then for

some h ∈ Z+, we have

E
[

Rh(Ao, Ido )ŵo

t:h


4

]
6 m3h4 for each t. (A.13)

PROOF. Let us begin with the term

Rh(Ao, Ido )ŵo
t:h



4
=

(

Ah−1
o ŵo

t + . . .+ ŵ
o
t+h−1



)4

6
(

ŵo

t



+ . . .+ 

ŵo
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)4
6 h2

(

ŵo
t



2
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ŵo
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2
)2

6 h3
(

ŵo

t



4
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4
)
.

We take expectation on both sides to get the bound

E
[

Rh(Ao, Ido )ŵo

t:h


4

]
6 h3E

[

ŵo
t



4
+ . . .+



ŵo
t+h−1



4
]

6 h4m3.

Lemma 11 Let us consider zt as defined in Lemma 7. There
exists m2 > 0 such that

E
[

w̃o

κt+`



4 | z0, . . ., zt
]
6 m2

for each t and ` = 0, . . ., κ−1.

PROOF. Let us consider the initialization ẽ−1 = 0 and de-
fine

τt B

{
sup{k 6 t | sk = 1} if maxk6t sk = 1,
−1 otherwise ,

.

then sτt = 1 and from (A.10) ẽτt = 0. In this way ẽτt+1 =
ŵτt and subsequently, ẽt = Rt−τt (A, I)ŵτt :t−τt if τt , t and 0
otherwise. From (20) we get

w̃t =

{
Rt−τt+1(A, I)ŵτt :t−τt+1 if st+1 = 1,
0 otherwise .

(A.14)

It is now clear that E
[

w̃o

κt+`



4 | z0, . . ., zt, s0, . . ., sκt+`
]
=

E
[

w̃o

κt+`



4 | sτκ t+` , . . ., sκt+`
]
. Let κt + ` + 1 − τκt+` B h,

then w̃o
κt+`
= sκt+`Rh(Ao, Ido )ŵo

τκ t+` :h . Since ŵt is Gaussian

for each t, there exists m3 > 0 such that E
[

ŵo

t



4
]
6 m3 for

each t. We can conclude that

E
[

w̃o

κt+`



4 | z0, . . ., zt
]

= ps
∞∑
h=1
E

[

Rh(Ao, Ido )ŵo
τκ t+`:h



4 | sκt+`−h+1, . . ., sκt+`
]

p(sκt+`−h+1 = 1, sκt+`−h+2 = . . . = sκt+` = 0)

6 ps
∞∑
h=1

h4m3(1− ps)h−1ps = m3p2
s

∞∑
h=1

h4(1− ps)h−1 B m2.

The last bound is implied by Lemma 10.

Lemma 12 Consider the system (21). If there exists γ1 > 0
such that EYs

0

[

x̃oκt


2

]
6 γ1 for all t, then there exists γo > 0

such that EYs
0

[

x̃ot


2

]
6 γo for all t.

PROOF. This result is standard in literature, i.e. [46]. We
provide proof for completeness. Letting ‖M ‖F denote the
Frobenius norm of a given matrix M , we compute a uniform
bound on E

[

x̃o
κt+`



2
]
for ` = 0, . . ., κ−1 as follows:

x̃oκt+` = A`o x̃oκt +R`(Ao,Bo)ua
κt:` +R`(Ao, I)w̃o

κt:`

x̃oκt+`


2

6 3
(

x̃oκt



2
+



R`(Ao,Bo)ua
κt:`



2
+



R`(Ao, I)w̃o
κt:`



2
)
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Since


R`(Ao,Bo)ua

κt:`



2
6 ‖R`(Ao,Bo)‖2



ua
κt:`



2

6 ‖R`(Ao,Bo)‖2F


ua
κt:`



2
∞ `m 6 ‖R`(Ao,Bo)‖2F u2

max`m

= (∑`−1
i=0



Ai
oBo



2
F
)u2

max`m = (
∑`−1

i=0 tr(B>o Bo))u2
max`m

6 (∑`−1
i=0 m (σ1(Bo))2)u2

max`m = `m (σ1(Bo))2 u2
max`m, we get



x̃oκt+`


2

6 3

(

x̃oκt


2
+ (`mσ1(Bo)umax)2+ `

`−1∑
i=0



w̃o
κt+i



2
)
.

By taking the conditional expectation on both sides we get

EYs
0

[

x̃oκt+`


2

]
6 3

(
γ1+ (`mσ1(Bo)umax)2

)
+3`2 max

i=0,...`−1
EYs

0

[

w̃o
κt+i



2
]

6 3
(
γ1+ (`mσ1(Bo)umax)2+ `2√m2

)
,

where m2 is computed in Lemma 11. Therefore for ` =
0, . . ., κ−1 and for each t,

EYs
0

[

x̃oκt+`


2

]
6 3

(
γ1+ (κmσ1(Bo)umax)2+ κ2√m2

)
C γo .

Lemma 13 Consider the recursion (20) and expression
(24). The constraint (25c) is satisfied when



ua
t




∞ 6 umax

for all t.

PROOF. Since ua
t is uniformly bounded there exists

m1 > 0 such that


Rκ(Ao,Bo)ua

κt:κ



∞ 6 m1 for all t. Let us

consider zt defined in (24). Further,
��(zt+1)(j)−(zt )(j)

�� 6
‖zt+1− zt ‖∞, the right side of which is bounded by

Rκ(Ao,Bo)ua

κt:κ +Rκ(Ao, Ido )w̃o
κt:κ




∞ by the definition

of zt . Therefore, we have
��(zt+1)(j)−(zt )(j)

�� 6 m1 +

Rκ(Ao, Ido )w̃o
κt:κ




∞ for each j = 1, . . .,do. Let us consider

the left hand side of (25c):

E

[���(zt+1)(j)−(zt )(j)
���4 | z(j)0 , . . ., z(j)t

]
6 E

[ (
m1+



Rκ(Ao, Ido )w̃o
κt:κ



)4 | z(j)0 , . . ., z(j)t
]

6 8
(
m4

1 +E
[

Rκ(Ao, Ido )w̃o

κt:κ


4 | z(j)0 , . . ., z(j)t

] )
.

Similar to the Lemma 10, we get

E
[

Rκ(Ao, Ido )w̃o

κt:κ


4 | z(j)0 , . . ., z(j)t

]
6 κ4 max

i=0,...,κ−1
E

[

w̃o
κt+i



4 | z(j)0 , . . ., z(j)t
]

6 κ4m2,

where the last bound is obtained by Lemma 11. Therefore,

E

[���(zt+1)(j)−(zt )(j)
���4 | z(j)0 , . . ., z(j)t

]
6 8

(
m4

1 + κ
4m2

)
C M .

Lemma 14 For a discrete time dynamical system (20),

E[w̃t:κ | Ys
t ] = 0 for each t and κ.

PROOF. We recall the expression (A.14)

w̃t = st+1Rt−τt+1(A, I)ŵτt :t−τt+1.

By taking the conditional expectation, we get

E[w̃t | Ys
t ] = psE[Rt−τt+1(A, I)ŵτt :t−τt+1 | Ys

t ]
= psE

[
Rt−τt+1(A, I)E[ŵτt :t−τt+1 | Yt ] | Ys

t

]
= 0.

Similarly, E[w̃t+` | Ys
t ] = E

[
E[w̃t+` | Ys

t+`
] | Ys

t+`

]
= 0 for

` = 0, . . ., κ−1. This completes the proof.

Lemma 15 There exists γs > 0 such that

sup
t∈N0

EYs
0

[

x̃st


2

]
6 γs .

PROOF. A part of this proof is standard in literature, i.e.
[46]. Let P � 0 be a symmetric positive definite matrix.

E[(x̃st+1)
>Px̃st+1 | x̃t,Y

s
0 ] =



x̃st


2
A>sPAs

+2(x̃st )>A>s PBsua
t

+


ua

t



2
B>s PBs

+E[(w̃s
t )>Pw̃s

t ].

Since As is Schur stable, there exists some λ ∈]0,1[ such
that A>s PAs 6 λP. We can also assume that there exists
m4 > 0 such that E[(ŵs

t )>Pŵs
t ]6 m4 for each t because ŵt

is Gaussian. We recall the expression (A.14) and compute
E[(w̃s

t )>Pw̃s
t ] as follows:

E[(w̃s
t )>Pw̃s

t ] = psE
[


Rt−τt+1(As, I)ŵs

τt :t−τt+1




2

P

]
= ps

∞∑
h=1
E

[


Rh(As, I)ŵs
τt :h




2

P
| t − τt +1 = h

]
× p(t − τt +1 = h)

= ps
∞∑
h=1
E

[


Rh(As, I)ŵs
τt :h




2

P
| t − τt +1 = h

]
ps(1− ps)h−1

6 p2
s

∞∑
h=1

h
h∑
i=1
E

[


Ai−1
s ŵs

τt+h−1




2

P
| t − τt +1 = h

]
(1− ps)h−1

6 p2
s

∞∑
h=1

h
h∑
i=1

λi−1E

[


ŵs
τt+h−1




2

P
| t − τt +1 = h

]
(1− ps)h−1

6 p2
s

∞∑
h=1

hm4(1− ps)h−1
h∑
i=1

λi−1

6
m4p2

s

1−λ

∞∑
h=1

h(1− ps)h−1 C m5.
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Further, for ε < 1−λ
λ the Peter-Paul inequality provides us

the bound 2(x̃st )>A>s PBsua
t 6 ε



x̃st


2
A>sPAs

+ 1
ε



ua
t



2
B>s PBs

.
Therefore,

E[(x̃st+1)
>Px̃st+1 | x̃t,Y

s
0 ]6 (1+ ε)



x̃st


2
A>sPAs

+ (1+ 1
ε
)


ua

t



2
B>s PBs

+m5

6 (1+ ε)λ


x̃st



2
P
+ (1+ 1

ε
)mλmax(B>s PBs)u2

max+m5.

Defining m6 B (1+ 1
ε )mλmax(B>s PBs)u2

max+m5 and iterating
the above expression we get

EYs
0

[
(x̃st+1)

>Px̃st+1
]
6 ((1+ ε)λ)t+1EYs

0

[

x̃st


2
P

]
+

m6

1−(1+ ε)λ
6 ((1+ ε)λ)t+1λmax(P)s0EYs

0

[

x̂st


2

]
+

m6

1−(1+ ε)λ
6 ((1+ ε)λ)t+1λmax(P)s0 tr(K>0 Σx0C>)+ m6

1−(1+ ε)λ

Since (1+ε)λ < 1, there exists γs > 0 such thatEYs
0

[

x̃st


2

]
6

γs for all t.

PROOF. [Proof of Lemma 7] The equations in (25) are
derived from Theorem 2 by substituting z(j)t in place of
Xt in Theorem 2. Therefore, there exists γ1 > 0 such that
EYs

0

[
‖zt ‖2

]
= EYs

0

[

x̃oκt


2

]
6 γ1 for all t. Then by Lemma

12 there exists γo > 0 such that EYs
0

[

x̃ot


2

]
6 γo for all

t. Defining γ̄ B γo + γs and by using Lemma 15 we get
EYs

0

[
‖ x̃t ‖2

]
6 γ̄ for all t. Now consider (25) and substitute

(24) to get that

EYs
κ t

[
(zt+1− zt )(j)

]
= EYs

κ t

[(
(Aκ(t+1)

o )>
(
Rκ(Ao,Bo)ua

κt:κ +Rκ(Ao, Ido )w̃o
κt:κ

) ) (j)]
= EYs

κ t

[(
(Aκ(t+1)

o )>Rκ(Ao,Bo)ua
κt:κ

) (j)]
,

where the last equality is due to Lemma 14. Since (25c) is
satisfied by Lemma 13, (25) are equivalent to the following
conditions for t = 0, κ,2κ, . . ., and j = 1, . . .,do:(

(At+κ
o )>Rκ(Ao,Bo)EYs

t
[ua

t:κ]
) (j)

6 −a

whenever
(
(At

o)> x̃ot
) (j)

> r, (A.15a)(
(At+κ

o )>Rκ(Ao,Bo)EYs
t
[ua

t:κ]
) (j)

> a

whenever
(
(At

o)> x̃ot
) (j)

< −r . (A.15b)

Let us define the component-wise saturation function Rdo 3
z 7−→ sat∞r,ζ (z) ∈ Rdo to be

(
sat∞r,ζ (z)

) (i)
=


z(i)ζ/r if

��z(i)�� ≤ r ,
ζ if z(i) > r , and
−ζ otherwise,

for each i = 1, . . .,do. Now consider (27) with Θt = 0 and
(ηt )1:κm = −Rκ(Ao,Bo)†At+κ

o sat∞r,ζ
(
(A>o )t x̃ot

)
. It is clear that

‖ut:κ ‖∞ 6 ‖ut:κ ‖2 6 σ1(Rκ(Ao,Bo)†)
√

doζ 6 umax. There-
fore, the given feedback policy satisfies (2). The control se-
quence ua

t:κ under the transmission protocol (TP) is given by

ua
t:κ = G̃tut:κ, (A.16)

where G̃t ∈ Rκm×κm is the principal submatrix of the diag-
onal matrix Gt and E[G̃t

(i,i)] > pc for each i = 1, . . ., κm.
Therefore, the given policy also satisfies (A.15) with a =
ζpc . We substitute E[ua

t:κ]> pcE[ut:κ] in (A.15) to get (26).
This completes the proof.

Lemma 16 Consider the system (1). There exists ρ > 0 such
that EYs

0

[
‖et ‖2

]
6 ρ for all t > 0.

PROOF. Let us first observe that

EYs
0

[
‖et ‖2

]
=

{
EY0

[
‖et ‖2

]
for s0 = 1

EYs
0

[
EY0

[
‖et ‖2

] ]
otherwise.

Since Ys
0 ⊂ Y

s
t for t > 0, the claim is implied by [51, Lemma

4.2.2] by using the tower property of the conditional expec-
tation.

PROOF. [Proof of Theorem 8] Since xt = xt − x̂t + x̂t − x̃t +
x̃t , let us consider the inequality

‖xt ‖2 6 3
(
‖xt − x̂t ‖2+ ‖ x̂t − x̃t ‖2+ ‖ x̃t ‖2

)
.

Let us apply the conditional expectation on the above in-
equality to obtain the bound:

EYs
0

[
‖xt ‖2

]
6 3

(
EYs

0

[
‖xt − x̂t ‖2

]
+EYs

0

[
‖ẽt ‖2

]
+EYs

0

[
‖ x̃t ‖2

] )
6 3

(
ρ+EYs

0

[
‖ẽt ‖2

]
+EYs

0

[
‖ x̃t ‖2

] )
from Lemma 16

6 3
(
ρ+ ρ̃+EYs

0

[
‖ x̃t ‖2

] )
from Lemma 9

6 3 (ρ+ ρ̃+ γ̄) from Lemma 7
C γ for all t > 0.
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