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Abstract

We address the problem of state estimation and attack isolation for general discrete-time nonlinear systems when sensors are
corrupted by (potentially unbounded) attack signals. For a large class of nonlinear plants and observers, we provide a general
estimation scheme, built around the idea of sensor redundancy and multi-observer, capable of reconstructing the system state
in spite of sensor attacks and noise. This scheme has been proposed by others for linear systems/observers and here we propose
a unifying framework for a much larger class of nonlinear systems/observers. Using the proposed estimator, we provide an
isolation algorithm to pinpoint attacks on sensors during sliding time windows. Simulation results are presented to illustrate
the performance of our tools.
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1 Introduction

Networked Control Systems (NCSs) have emerged as a
technology that combines control, communication, and
computation, and offers the necessary flexibility to meet
new demands in distributed and large scale systems. Re-
cently, security of NCSs has become a very important
issue as wireless communication networks increasingly
serve as new access points for adversaries trying to dis-
rupt the system dynamics. Cyber-physical attacks on
control systems have caused substantial damage to a
number of physical processes. A well-known example is
the attack on Maroochy Shire Council’s sewage control
system in Queensland, Australia. The attacker hacked
into the controllers that activate/deactivate valves caus-
ing a massive flooding to the surrounding areas. Another
more recent incident is the StuxNet virus that targeted
Siemens’ supervisory control and data acquisition sys-
tems which are used in many industrial processes. These
incidents show that strategic mechanisms to identify and
deal with attacks on NCSs are needed.

In [4, 5, 7, 14, 19–23, 30, 31], a range of topics related
to security of control systems have been discussed. In
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general, they provide analysis tools for quantifying the
performance degradation induced by different classes of
attacks and propose reaction and prevention strategies
to counter their effect on the system dynamics. Most
of the existing work, however, has considered control
systems with linear dynamics, although in many engi-
neering applications the dynamics of the plants being
monitored and controlled is highly nonlinear. There are
only a few results addressing the problem of state esti-
mation under attacks for some classes of nonlinear sys-
tems. The recent work in [16] addresses the problem
of sensor attack detection and state estimation for uni-
formly observable continuous-time nonlinear systems.
For a class of power systems under sensor attacks, the
authors in [9] provide an estimator of the system state
using compressed sensing techniques. In [23], satisfiabil-
ity modulo theory is used for state estimation for dif-
ferentially flat systems with corrupted sensors. In our
previous work [36, 37], the problem of state estimation
and attack isolation for a class of nonlinear systems with
positive-slope nonlinearities is considered. We provided
an observer-based estimation/isolation strategy, using a
bank of circle-criterion observers, which provides a ro-
bust estimate of the system state in spite of sensor at-
tacks and effectively pinpoints attacked sensors.

The core of our estimation scheme is based on the work in
[5], where the problemof state estimation for continuous-
time LTI systems is addressed. The authors propose a
multi-observer estimator, using a bank of Luenberger ob-
servers, which provides a robust estimate of the system
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state in spite of sensor attacks. In this manuscript, we ex-
tend the results in [5,36,37] by considering systems with
general nonlinear dynamics. We cast the multi-observer
estimation scheme in terms of the existence of a bank
of (local and practical) nonlinear observers with Input-
to-State-Stable (ISS) (with respect to disturbances) es-
timator error dynamics. We consider the setting where
the system has p sensors and up to q < p of them are
attacked. Following the multi-observer approach given
in [5], we use a bank of observers to construct an estima-
tor that provides a robust state estimate in the presence
of false data injection attacks and noise.

Themain idea behind themulti-observer estimator is the
following: Each observer in the bank is driven by a differ-
ent subset of sensors. Then, for every pair of observers in
the bank, the estimator computes the difference between
their estimates and selects the observers leading to the
smallest difference. If there are attacks on some of the
sensors, the observers driven by those sensors produce
larger differences than the attack-free ones, in general,
and thus they are not selected by the estimator. We first
consider the noise-free case and show that our estimator
converges to the true state of the system in spite of sen-
sor attacks. Next, we consider the case when process dis-
turbances and measurement noise are present. Assum-
ing each observer’s error is Input-to-State Stable (ISS)
with respect to measurement noise and disturbances in
the attack-free case, our estimator provides estimates
whose errors satisfy an ISS-like property with respect
to disturbances and independent of the attack signals.
Compared to the estimation methods given in [9, 23],
where no system disturbances and noise are considered,
our estimation framework can deal with a much larger
class of nonlinear systems at the price of having to design
multiple observers. Finally, we provide an algorithm for
isolating attacked sensors using the proposed estimator
and assuming that upper bounds on the system noise
are known. The idea behind our isolation algorithm is
the following: For each pair of observers, when driven by
attack-free sensors, the largest difference between their
estimates is proved to be bounded by a threshold that
depends on system noise bounds. For every time-step,
we select and take the union of all the subsets of sensors
such that the corresponding threshold is not crossed;
then, the remaining sensors are isolated as attacked ones.
To improve the isolation performance, we carry out the
isolation over windows of N time-steps. That is, we se-
lect the subset of sensors that is isolated most often in
every time window as the attacked ones. In [24, 29], the
problem of isolation of attacked sensors for LTI systems
is addressed using the majority-vote method and satis-
fiability modulo theory, respectively. Compared to those
results, our isolation algorithm can be applied to non-
linear and noisy systems.

The remaining of the paper is organized as follows. No-
tation is given in Section 2. In Section 3, we present the
multi-observer based estimator for the noise-free case.
In Section 4, for the case with sensor noise and process

disturbances, we prove that the observer-based estima-
tor given in Section 3 provides ISS-like estimates of the
system state (with respect to disturbances and noise)
that are independent of sensor attacks. An algorithm for
attack isolation is given in Section 5. Finally, we give
concluding remarks in Section 6.

2 Notation

For any vector v ∈ Rn, we denote vJ the stacking of

all vi, i ∈ J , J ⊂ {1, . . . , n}, |v| =
√
v⊤v, and the

support set of v as supp(v) = {i ∈ {1, . . . , n} |vi 6= 0}.
For matrices C ∈ Rp×n, C⊤ = (c⊤1 , . . . , c

⊤
p ), we de-

note CJ the stacking of all rows ci ∈ R1×n, i ∈ J ,
J ⊂ {1, . . . , n}. For a sequence of vectors {v(k)}∞k=0,
||v||∞ := supk≥0 |v(k)|. We say that a sequence {v(k)}
belongs to l∞, {v(k)} ∈ l∞, if ||v||∞ < ∞. We denote
uniformly distributed variablesm in the interval (z1, z2)
as m ∼ U(z1, z2) and normally distributed with mean µ
and variance σ2 as m ∼ N (µ, σ2). A continuous func-
tion α : [0, a) → [0,∞) is said to belong to class K, if
it is strictly increasing and α(0) = 0, [15]. Similarity, a
continuous function β : [0, a) × [0,∞) → [0,∞) is said
to belong to class KL if, for fixed s, the mapping β(r, s)
belongs to class K with respect to r and, for fixed r,
the mapping β(r, s) is decreasing with respect to s and
β(r, s) → 0 as s → ∞, [15].

3 Multi-Observer Estimator (Noise-free Case)

A multi-observer based estimator for continuous-time
LTI systems has been proposed in [5]. Similarly, in [36],
the authors give an estimator for nonlinear systems with
positive-slope nonlinearities. Here, we generalize these
results by considering general discrete-time nonlinear
systems. Consider the nonlinear system

{

x+ = f(x, u),

yi = hi(x, u, ai), i ∈ {1, . . . , p} , (1)

with state x ∈ Rn, input u ∈ Rnu , i-th sensor mea-
surement yi ∈ R, stacked output y := (y1, . . . , yp)

⊤ ∈
Rp, attack signal ai ∈ R, stacked attack vector a :=
(a1, . . . , ap)

⊤ ∈ Rp , and functions f : Rn × Rnu → Rn

and hi : R
n ×Rnu ×R → R. If the i-th sensor is not at-

tacked, ai(k) = 0 for k ≥ 0; otherwise, sensor i is under
attack and ai(k) is arbitrary and possibly unbounded.
The unknown set of attacked sensors is denoted as W ,
W ⊂ {1, . . . , p}.

Assumption 1 The set of attacked sensors does not
change over time, i.e., W is constant (time-invariant)
and supp(a(k)) ⊆ W , for all k ≥ 0.

Consider the observer
{

z+J = ΓJ(zJ , y
J , u),

x̂J = ηJ (zJ , y
J , u),

(2)

2



Convergence References

Global exponential [11,17,18,26,32,35,36]

Global asymptotic [3,33,34,38]

Local exponential [10,18,27,28]

Local asymptotic [2,6,8,12,25]

Finite-time [13,18]

Table 1
Systems/observers satisfying Definition 1 in the literature.

where yJ ∈ Rcard(J) denotes the stacking of all yi, i ∈ J ,
J ⊂ {1, . . . , n}, zJ ∈ RlJ is the observer state, x̂J ∈ Rn

denotes the estimate of the plant state, and ΓJ : RlJ ×
Rcard(J)×Rnu → RlJ and ηJ : RlJ×Rcard(J)×Rnu → Rn

are some functions.

Definition 1 (Local Asymptotic Practical Observer).
System (2) is said to be a local asymptotic practical ob-
server for system (1) if, for aJ(k) = 0, k ≥ 0, there exists
a set-valued map DJ(x) ⊆ RlJ , such that, for any pair
of initial conditions (x(0), zJ (0)) ∈ Rn × DJ(x(0)) and
eJ(k) := x̂J (k)−x(k), there exist KL-function βJ (·) and
νJ ≥ 0 satisfying: |eJ(k)| ≤ βJ (|eJ(0)|, k) + νJ , k ≥ 0.

In this manuscript, we assume that observers of form
described in Definition 1 exist and are known for dif-
ferent subsets of sensors yJ , J ⊆ {1, . . . , p}. Any tech-
nique available in literature can be used to construct
these observers as long as the corresponding convergence
properties satisfy Definition 1. Note that all observers
guaranteeing global (local) asymptotic convergence sat-
isfy Definition 1 with ν = 0. In Table 1, we present a
list of publications where design methods for nonlinear
observers satisfying Definition 1 are given. We also list
the corresponding convergence properties that these ob-
servers guarantee. The results in this paper apply to all
the listed systems/observers.

Assumption 2 At most q sensors are attacked, i.e.,

card(W ) ≤ q <
p

2
, (3)

where q denotes the largest integer such that for all J ⊂
{1, . . . , p} with card(J) ≥ p− 2q > 0, an observer of the
form (2) exists for any yJ ∈ Rcard(J).

Following the ideas in [5], we use a local asymptotic prac-
tical observer for each subset J ⊂ {1, . . . , p} of sensors
with card(J) = p− q and for each subset S ⊂ {1, . . . , p}
with card(S) = p − 2q. By Assumption 2, among the
p sensors, there exists at least one subset of sensors Ī,
Ī ⊂ {1, . . . , p}, with card(Ī) = p − q satisfying yĪ =

hĪ(x, u), i.e., there is a set Ī of sensors that is attack-

free and thus aĪ(k) = 0 for all k ≥ 0. Then, in general,
the difference between estimate x̂Ī(k) and the estimate
x̂S(k) given by any subset S ⊂ Ī with card(S) = p− 2q
is smaller than the other subsets J with card(J) = p− q
and aJ(k) 6= 0. This motivates the following estimation
strategy.

For each subset J ⊂ {1, . . . , p} with card(J) = p−q, de-
fine πJ (k) as the largest deviation between the estimates
x̂J(k) and x̂S(k) for any S ⊂ J with card(S) = p− 2q:

πJ (k) := max
S⊂J:card(S)=p−2q

|x̂J(k)− x̂S(k)|, (4)

for all k ≥ 0, and define the sequence σ(k) as

σ(k) := argmin
J⊂{1,2,...,p}:card(J)=p−q

πJ (k). (5)

Then, as proven below, the estimate indexed by σ(k):

x̂(k) = x̂σ(k)(k), (6)

is an asymptotic attack-free estimate of the system
state. The following result uses the terminology pre-
sented above.

Theorem 1 Consider system (1), observer (2), estima-
tor (4)-(6), and the estimation error e(k) = x̂σ(k)(k) −
x(k). Let Assumption 1-2 be satisfied; then, there exist a
constant ν ≥ 0 and a class KL-function β(·) satisfying:











|e(k)| ≤ β(e0, k) + ν,

e0 := max
J : card(J) = p − q

S : card(S) = p − 2q

{|eJ(0)|, |eS(0)|} , (7)

for all k ≥ 0.

We omit the proof of Theorem 1 since we later prove a
more general result in Section 4.

3.1 Application Examples

In this subsection, we show the performance of the pro-
posed estimation scheme for two classes of nonlinear sys-
tems and observers.

High Gain Observers: Consider the nonlinear system
{

x+ =f(x),

y =h(x) + a,
(8)

with state x ∈ Rn, output y ∈ Rp, attack vector a ∈ Rp,
and functions f : Rn → Rn and h : Rn → Rp.

Assumption 3 The origin of (8) is locally stable [15].

Consider the observer

x̂+
J = f(x̂J) +KJ(y

J − h(x̂J )), (9)

with state estimate x̂J ∈ Rn and observer gain matrix
KJ ∈ Rn×card(J). The observer gain KJ is designed fol-
lowing the results in [27].

Proposition 1 Let Assumption 3 be satisfied and q be
the largest integer such that for all J ⊂ {1, . . . , p} with
card(J) ≥ p− 2q an observer of the form (9) for system
(8) exists for any yJ ∈ Rcard(J). Then, for aJ (k) = 0,
k ≥ 0, there exists a set-valued map DJ(x) ( Rn, such
that, for any (x(0), x̂J (0)) ∈ Rn × DJ (x(0)), there are
λJ ∈ (0, 1) and cJ > 0 satisfying |eJ(k)| ≤ cJλ

k
J |eJ(0)|,

k ≥ 0, where eJ = x̂J − x.

3
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Fig. 1. Estimated states x̂ converges to the true states x

when a2 ∼ U(−10, 10). Legend: x̂ (blue), true states (black).

Proof: Proposition 1 follows from [27, Theorem 3].

By Proposition 1, system (8) with observer (9) satisfy
Definition 1 with β(|eJ (0)|, k) = cJλ

k
J |eJ(0)|, νJ = 0,

and some set-valued map DJ(x). Hence, we can write
the following corollary of Theorem 1 and Proposition 1.

Corollary 1 Consider system (8), observer (9), the es-
timator (4)-(6), and the corresponding estimation er-
ror e(k) = x̂σ(k)(k) − x(k). Let Assumptions 2 be sat-
isfied; then, there exist c > 0 and λ ∈ (0, 1) satisfying:
|e(k)| ≤ cλke0, k ≥ 0, for e0 as defined in (7).

Example 1: Consider the following nonlinear system
subject to sensor attacks



























x+
1 =x1 − x3

1 + x2x
2
1 − x2

2x
3
1,

x+
2 =− x2,

y1 =2x1 + x2
1,

y2 =x1 + x2 + a2,

y3 =2x1 + x2.

(10)

We have three sensors, i.e., p = 3. Using the design
method given in [27], we have found that observers of
the form (9) exist for each subset J ⊂ {1, 2, 3} with
card(J) ≥ 1. By Assumption 2, q = 1, i.e., at most
one sensor is attacked. We let W = {2} and design an
observer for each J ⊂ {1, 2, 3} with card(J) = 2 and
each S ⊂ {1, 2, 3} with card(S) = 1. Therefore, totally
(

3
2

)

+
(

3
1

)

= 6 observers are designed. We fix the ini-

tial condition of the observers to x̂(0) = [0, 0]⊤, select
(x1(0), x2(0)) ∈ N (0, 1), and let a2 ∼ U(−10, 10). For
k ∈ [0, 49], we use (9),(4)-(6) to construct x̂(k). The per-
formance of the estimator is shown in Figure 1.

Reduced Order Observers: Consider the system
{

x+ =Ax+ f(x, y),

y =Cx+ a,
(11)

0 2 4 6 8 10 12 14 16 18
1
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3

0 2 4 6 8 10 12 14 16 18

Time Step

-20
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Time Step

-50

0

50

Fig. 2. Estimated states x̂ converges to the true states x

when a2 ∼ U(−10, 10). Legend: x̂ (blue), true states (black)

with state x ∈ Rn, output y ∈ Rp, attack a ∈ Rp, ma-
trices A ∈ Rn×n and C ∈ Rp×n, and nonlinear function
f : Rn × Rp → Rn.

Assumption 4 f(x, y) is globally Lipschitz in x.

Consider the partial output vector yJ = CJx + aJ and
attack aJ , with yJ , aJ ∈ Rcard(J), and the reduced state
ζJ = LJx ∈ Rn−card(J), where LJ ∈ R(n−card(J))×n is

such that ( L⊤

J
(CJ )⊤ )

⊤
is nonsingular. Let

(NJ ,MJ) :=
(

LJ

CJ

)−1

;

then, x = NJζJ +MJy
J , and we can write the dynamics

of the reduced state ζJ as

ζ+J = AL,JζJ + LJφJ (ζJ , y
J) + BL,Jy

J , (12)

where AL,J := LJANJ ∈ R(n−card(J))×(n−card(J)),

BL,J := LJAMJ ∈ R(n−card(J))×card(J), and function
φJ(zJ , y

J) := f(NJzJ + MJy
J , yJ). Consider the re-

duced order observer











z+J =ALJzJ + φJ (zJ , y
J) +BLJy

J

+KJ(y
J+ − CJ x̂+

J ),

x̂J =NJzJ +MJy
J ,

(13)

with observer state ẑJ ∈ Rn−card(J), estimated state
x̂J ∈ Rn, and observermatrixKJ ∈ R(n−card(J))×card(J).
We design KJ following the results in [38].

Proposition 2 Let Assumption 4 be satisfied and q be
the largest integer such that for all J ⊂ {1, . . . , p} with
card(J) ≥ p−2q an observer of the form (13) for system
(12) exists for any yJ ∈ Rcard(J). Then, for aJ (k) = 0,
k ≥ 0, and any (x(0), zJ (0)) ∈ Rn × RlJ , there exists
a KL-function βJ (·) satisfying: |eJ(k)| ≤ βJ(|eJ(0)|, k),
k ≥ 0, where eJ = x̂J − x.

4



Proof: Proposition 2 follows from [38, Theorem 4].

By Proposition 2, system (11) with observer (13) sat-
isfy Definition 1 for some KL-function, νJ = 0, and set-
valued map DJ(x) = Rn. Hence, we can write the fol-
lowing corollary of Theorem 1 and Proposition 2.

Corollary 2 Consider system (11), observer (13), the
estimator (4)-(6), and the corresponding estimation er-
ror e(k) = x̂σ(k)(k) − x(k). Let Assumptions 2 be satis-
fied; then, there exists a class KL-function β(·) satisfy-
ing: |e(k)| ≤ β(e0, k), k ≥ 0, for e0 as defined in (7).

Example 2: Consider the following nonlinear system
under sensor attacks:


























































x+ =















0.5 0 0 0

0 0.8 1 0

0.5 0.1 0.3 0

0.3 1 0 0.5















x+















1

0

0

−1.25 tanhx4 − 0.6















,

y =









0 1 0 0

0 0 1 0

0 0 0 1









x+









0

a2

0









.

(14)
Using the design method proposed in [38], we have found
that observers of the form (13) exist for each subset
J ⊂ {1, 2, 3} with card(J) ≥ 1 and p = 3. By Assump-
tion 2, q = 1, i.e., at most one sensor is attacked. For
randomly selected initial conditions, we attack sensor
two, i.e., W = {2}, and let a2 ∼ U(−10, 10). We use
(13), (4)-(6) to reconstruct x(k). The performance of the
estimator is shown in Figure 2.

4 Robust Multi-Observer Based Estimator

The tools given in this section, generalize the results
in [5, 36] by considering systems with general nonlinear
dynamics, disturbances, and noise. Consider the system

x+ = F (x, u, d),

yi = gi(x, u,mi, ai), i ∈ {1, . . . , p} , (15)

with state x ∈ Rn, input u ∈ Rnu , disturbance d ∈ Rs,
{d(k)} ∈ l∞, i-th sensor measurement yi ∈ R, stacked
measurements y := (y1, . . . , yp)

⊤ ∈ Rp, attack signal
ai ∈ R, measurement noise mi ∈ R, {mi(k)} ∈ l∞,
and nonlinear functions F : Rn × Rnu × Rs → Rn and
gi : R

n × Rnu × R× R → R.

Consider the observer
{

z+J = ΓJ (zJ , y
J , u),

x̂J = ηJ (zJ , y
J , u),

(16)

where zJ ∈ RlJ is the observer state, x̂J ∈ Rn denotes
the state estimate, and ΓJ : RlJ ×Rcard(J)×Rnu → RlJ

and ηJ : RlJ ×Rcard(J)×Rnu → Rn are some functions.

Convergence References

Global exponential [17,26,32,36]

Global asymptotic [1]

Table 2
Systems/observers satisfying Definition 2 in the literature.

Definition 2 (Local ISS Practical Observer). System
(16) is said to be a local asymptotic practical observer
for system (15) if, for aJ(k) = 0, k ≥ 0, there exists
a set-valued map DJ (x) ⊆ RlJ , such that for any pair
of initial conditions (x(0), zJ (0)) ∈ Rn × DJ(x(0)) and
eJ = x̂J−x, there exist a KL-function βJ (·),K-functions
γ1,J(·) and γ2,J(·), and constant νJ ≥ 0 satisfying:

|eJ(k)| ≤βJ (|eJ(0)|, k) + γ1,J(||mJ ||∞)

+ γ2,J(||d||∞) + νJ , k ≥ 0.
(17)

We assume that observers of form given in Definition 2
exist and are known for different subsets of sensors yJ ,
J ⊆ {1, . . . , p}. In Table 2, we present a list of references
where design methods for nonlinear observers satisfying
Definition 2 can be found. All these observers can be
used to construct the proposed estimator.

Assumption 5 At most q sensors are attacked, i.e.,

card(W ) ≤ q <
p

2
, (18)

where q denotes the largest integer such that for all J ⊂
{1, . . . , p} with card(J) ≥ p− 2q > 0, an observer of the
form (16) exists for any yJ ∈ Rcard(J).

Theorem 2 Consider system (15), observer (16),
estimator (4)-(6), and the estimation error e(k) =
x̂σ(k)(k) − x(k). Let Assumptions 5 be satisfied; then,
there exist a class KL-function β(·), class K-functions
γ1(·) and γ2(·), and a constant ν ≥ 0 satisfying:











|e(k)| ≤ β(e0, k) + γ1(||m||∞) + γ2(||d||∞) + ν,

e0 := max
J : card(J) = p − q

S : card(S) = p − 2q

{|eJ(0)|, |eS(0)|} .

(19)
for all k ≥ 0 and {m(k)} , {d(k)} ∈ l∞.

Proof: Under Assumption 5, there exist at least one
subset Ī with card(Ī) = p − q and aĪ(k) = 0 for all
k ≥ 0. Then, by definition 2, there exist a KL-function
βĪ(·), class K-functions γ1,Ī(·) and γ2,Ī(·), and νĪ ≥ 0
such that

|eĪ(k)| ≤ βĪ(e0, k) + γ1,Ī(||mĪ ||∞) + γ2,Ī(||d||∞) + νĪ ,

(20)
for all k ≥ 0. For all S ⊂ Ī with card(S) = p− 2q, there
exist a KL-function βS(·), class K-functions γ1,S(·) and
γ2,S(·), and νS ≥ 0 such that

|eS(k)| ≤ βS(e0, k) + γ1,S(||mS ||∞) + γ2,S(||d||∞) + νS ,
(21)
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for all k ≥ 0, which yields

πĪ(k) =max
S⊂Ī

|x̂Ī(k)− x̂S(k)|

=max
S⊂Ī

|x̂Ī(k)− x(k) + x(k)− x̂S(k)|

≤|eĪ(k)|+max
S⊂Ī

|eS(k)|

≤2(β′(e0, k) + γ′
1(||mĪ ||∞) + γ′

2(||d||∞) + ν′),
(22)

for all k ≥ 0, where

γ′
1(||mĪ ||∞) = max

S⊂Ī

{

γ1,Ī(||mĪ ||∞), γ1,S(||mĪ ||∞)
}

,

γ′
2(||d||∞) = max

S⊂Ī

{

γ2,Ī(||d||∞), γ2,S(||d||∞)
}

.

Under Assumption 5, for each subset J ⊂ {1, . . . , p}with
card(J) = p−q, there exists S̄ ⊂ J with card(S̄) = p−2q

such that aS̄(k) = 0 for all k ≥ 0, and there exist a KL-
function βS̄(·), class K-functions γ1,S̄(·) and γ2,S̄(·), and
νS̄ ≥ 0 such that

|eS̄(k)| ≤ βS̄(e0, k) + γ1,S̄(||mS̄ ||∞) + γ2,S̄(||d||∞) + νS̄ ,

(23)
for all k ≥ 0. From (4), by construction

πσ(k)(k) = max
S⊃σ(k):card(S)=2q

|x̂σ(k)(k)− x̂S(k)|

≥|x̂σ(k)(k)− x̂S̄(k)|,
using the above lower bound on πσ(k)(k) and the triangle
inequality, we have that

|eσ(k)(k)| =|x̂σ(k)(k)− x(k)|
=|x̂σ(k)(k)− x̂S̄(k) + x̂S̄(k)− x(k)|
≤|x̂σ(k)(k)− x̂S̄(k)|+ |eS̄(k)|
≤πσ(k)(k) + |eS̄(k)|
≤πĪ(k) + |eS̄(k)|,

(24)

for all k ≥ 0. Hence, from (22) and (23), we have

|eσ(k)| ≤ 3(β1(e0, k) + γ1,1(||m||∞) + γ2,1(||d||∞) + ν1),
(25)

for all k ≥ 0, where

γ1,1(||m||∞) = max
{

γ′
1(||m||∞), γ1,S̄(||m||∞)

}

,

γ2,1(||d||∞) = max
{

γ′
1(||d||∞), γ1,S̄(||d||∞)

}

.

Inequality (25) is of the form (19) with KL-function
β(e0, k) = 3β1(e0, k), nonnegative constant ν = 3ν1,
and K-functions γ1(||m||∞) = 3γ1,1(||m||∞), and
γ2(||d||∞) = 3γ2,1(||d||∞). �

4.1 Application Example

The following class of systems has been included in our
preliminary work [36].

Circle-Criterion Observers: Consider the system
{

x+ =Ax+Gf(Hx) + ρ(u, y),

y =Cx+ a+m,
(26)

with state x ∈ Rn, control u ∈ Rnu , output y ∈ Rp,
measurement noise m ∈ Rp, {m(k)} ∈ l∞, and matrices
G ∈ Rn×r and H ∈ Rr×n. The term ρ(u, y) is a known
arbitrary real-valued vector that depends on the system
inputs and outputs. The state-dependent nonlinearity
f(Hx) is an r-dimensional vector which each entry is a
function of a linear combination of the states:

fi = fi





n
∑

j=1

Hijxj



 , i = 1, . . . , r (27)

where Hij are the entries of matrix H .

Assumption 6 For any i ∈ {1, . . . , r}:
fi(vi)− fi(wi)

vi − wi

≥ 0, ∀ vi, wi ∈ R, vi 6= wi. (28)

Consider the circle-criterion observer

x̂+
J =Ax̂J +Gf

(

Hx̂J +KJ(C
J x̂J − yJ)

)

+ LJ(C
J x̂J − yJ) + ρ(u, y),

(29)

with estimated state x̂J ∈ Rn and observer gainmatrices
KJ ∈ Rr×card(J) and LJ ∈ Rn×card(J). MatricesKJ and
LJ are designed following the results in [36].

Proposition 3 Let Assumption 6 be satisfied, and q be
the largest integer such that for all J ⊂ {1, . . . , p} with
card(J) ≥ p − 2q > 0 an observer of the form (29)
for system (26) exists for any yJ ∈ Rcard(J). Then, for
aJ(k) = 0, k ≥ 0, and any (x(0), x̂J (0)) ∈ Rn × Rn,
there exist cJ > 0, λJ ∈ (0, 1), and γ1,J > 0 satisfying:
|eJ(k)| ≤ cJλ

k
J |eJ(0)|+γ1,J ||m||∞, k ≥ 0, {m(k)} ∈ l∞,

where eJ = x̂J − x.

Proof: Proposition 3 follows from [36, Theorem 1].

By Proposition 3, system (26) with observer (29) satisfy
Definition 2 with β(|eJ (0)|, k) = cJλ

k
J |eJ(0)|, constant

d = 0, linear function γ1,J , νJ = 0, and set-valued map
DJ(x) = Rn. Hence, we can write the following corollary
of Theorem 2 and Proposition 3.

Corollary 3 Consider system (26), observer (29), the
estimator (4)-(6), and the corresponding estimation er-
ror e(k) = x̂(k)σ(k) − x(k). Let Assumptions 5 be satis-
fied; then, there exist c > 0, λ ∈ (0, 1), γ1 > 0 satisfying:
|e(k)| ≤ cλke0 + γ1||m||∞, k ≥ 0, {m(k)} ∈ l∞, for e0
as defined in (19).

Example 3: Consider the following system subject to
sensor noise and attacks































x+ =

[

1 0.1

0 1

]

x+

[

0.05 sin(x1 + x2)

0.1 sin(x1 + x2)

]

,

y =

[

3 3 6 1.2 1.5

0.3 0.6 0.9 12 15

]⊤

x+m+ a,

(30)
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Fig. 3. Estimated states x̂ converges to a neighbourhood
of the true states x when (a2, a5) ∼ U(−10, 10). Legend: x̂
(blue), true states (black)

with mi ∼ U(−0.1, 0.1), i ∈ {1, . . . , 5}. Using the design
method proposed in [36], we have found that observers of
the form (29) exist for each subset J ⊂ {1, 2, 3, 4, 5}with
card(J) ≥ 1 and p = 5. By Assumption 5, q = 2, i.e., at
most two sensors are attacked.We design an observer for
each J ⊂ {1, 2, 3, 4, 5} with card(J) = 3 and each S ⊂
{1, 2, 3, 4, 5} with card(S) = 1. Therefore, totally

(

5
3

)

+
(

5
1

)

= 15 observers are designed. We attack sensors two
and five, i.e., W = {2, 5}, and let (a2, a5) ∼ U(−10, 10).
For k ∈ [0, 199], we use (29),(4)-(6) to construct x̂(k).
The performance of the estimator is shown in Figure 3.

5 Isolation of Attacked Sensors

Using the proposed estimation scheme, in our previous
work [37], for a class of nonlinear systems with positive-
slope nonlinearities, we have provided an algorithm for
isolating sensor attacks. Here, we generalize this algo-
rithm to deal with the larger class of systems (15). Con-
sider system (15) and let q be the largest integer such
that an observer of the form (16) satisfying Definition
2 exists for each subset J ⊂ {1, . . . , p} with card(J) ≥
p− 2q.

Assumption 7 Bounds on the process disturbance d
and the sensor noise m are known, i.e.,

||d||∞ = d̄, ||m||∞ = m̄, (31)

where d̄ ≥ 0 and m̄ ≥ 0 are known constants.

To perform the isolation, we construct an observer sat-
isfying Definition 2 for each subset J ⊂ {1, . . . , p} of
sensors with card(J) = p − q and each subset S ⊂
{1, . . . , p} with card(S) = p − 2q. Hence, by Definition
2, for aS(k) = 0, k ≥ 0, there exist a KL-function, βS(·),
K-functions, γ1,S(·) and γ2,S(·), and νS ≥ 0 satisfying:

|eS(k)| ≤ βS(|e(0)|, k) + γ1,S(m̄) + γ2,S(d̄) + νS , (32)

for all k ≥ 0. Note that, there always exist a k∗S such
that βS(|e(0)|, k) ≤ ǫ, for any ǫ > 0 and k ≥ k∗S . Then,

|eS(k)| ≤ ǫ+ γ1,S(m̄) + γ2,S(d̄) + νS , (33)

for all k ≥ k∗S . Define k̄∗ := maxJ,S {k∗J , k∗S}. By As-
sumption 5, there are at most q sensors under attack;
then, we know there exists at least one Ī ⊂ {1, . . . , p}
with card(Ī) = p− q such that aĪ(k) = 0, k ≥ 0, and

|eĪ(k)| ≤ ǫ+ γ1,Ī(m̄) + γ2,Ī(d̄) + νĪ , (34)

for all k ≥ k∗
Ī
. Then, we have

πĪ(k) :=max
S⊂Ī

|x̂Ī(k)− x̂S(k)|

=max
S⊂Ī

|x̂Ī(k)− x(k) + x(k) − x̂S(k)|

≤|eĪ(k)|+max
S⊂Ī

|eS(k)|.
(35)

From (33) and (34), we obtain

πĪ(k) ≤ 2(ǫ+ γ′
1,Ī(m̄) + γ′

2,Ī(d̄) + ν′
Ī
),

for all k ≥ k̄∗, where

γ′
1,Ī(m̄) := max

S⊂Ī:card(S)=p−2q

{

γ1,Ī(m̄), γ1,S(m̄)
}

,

and

γ′
2,Ī(d̄) := max

S⊂Ī:card(S)=p−2q

{

γ2,Ī(d̄), γ2,S(d̄)
}

.

However, if the subset J of sensors is under attack at
time k, i.e., aJ(k) 6= 0, then x̂J(k) and x̂S(k) in πJ (k)
are more inconsistent and produce larger πJ(k). Define

π̄J := 2(ǫ+ γ′
1J (m̄) + γ′

2J(d̄) + ν′J ), (36)

for each J ⊂ {1, . . . , p} with card(J) = p− q, where

γ′
1,J(m̄) := max

S⊂J:card(S)=p−2q
{γ1,J(m̄), γ1,S(m̄)} ,

and

γ′
2,J(d̄) := max

S⊂J:card(S)=p−2q

{

γ2,J(d̄), γ2,S(d̄)
}

;

then, π̄J can be used as a threshold to isolate attacked
sensors. For all k ≥ k̄∗, we select from all the subsets
J ⊂ {1, . . . , p}with card(J) = p−q, the ones that satisfy

πJ (k) ≤ π̄J . (37)

Denote as W̄ (k) the set of sensors that we regard as
attack-free at time k. We construct W̄ (k) as the union
of all subsets J satisfying (37):

W̄ (k) :=
⋃

J⊂{1,...,p}:card(J)=p−q,πJ (k)≤π̄J

J. (38)

Thus, the set {1, . . . , p} \ W̄ (k) is isolated as the set of
attacked sensors at time k. Note, however, that, for small
persistent attacks, it is still possible that for some k ≥ k̄∗

and some J ⊂ {1, . . . , p}with card(J) = p−q, aJ(k) 6= 0
but (37) still holds. This implies that J ⊂ W̄ (k) even if
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Fig. 4. Attack isolation, a3 ∼ U(−2, 2).

aJ(k) 6= 0 and would result in wrong isolation at time k.
To improve the isolation performance, we carry out the
isolation over windows of N time-steps, N ∈ N. That is,
for each k ∈ [k̄∗ +(i− 1)N, k̄∗+ iN ], i ∈ N, we compute
and collect W̄ (k) for every k in the window and select
the subset J with card(J) ≥ p− q that is equal to W̄ (k)
most often in the i-th window. We denote this J as J(i).
Then, we select {1, . . . , p} \ J(i) as the set of sensors
under attack in the i-th window. This isolation strategy
is stated in Algorithm 1.

Example 4: Consider the nonlinear system subject to
measurement noise and sensor attacks































x+ =

[

1 0.1

0 1

]

x+

[

0.05 sin(x1 + x2)

0.1 sin(x1 + x2)

]

,

y =

[

3 3 6 1.2

0.3 0.6 0.9 12

]⊤

x+m+ a,

(39)

with mi ∼ U(−0.5, 0.5) for i ∈ {1, 2, 3, 4}. Using the
design method proposed in [36], we have found that
circle-criterion observers of the form (29) satisfying
Definition 2 exist for each subset J ⊂ {1, 2, 3, 4} with
card(J) ≥ 1 and p = 4. It follows that, by Assump-
tion 5, q = 1. We design a circle-criterion observer
for each J ⊂ {1, 2, 3, 4} with card(J) = 3 and each
S ⊂ {1, 2, 3, 4} with card(S) = 2. Therefore, in total,
(

4
3

)

+
(

4
2

)

= 10 observers are designed. We obtain their
ISS gains by Monte Carlo simulations, initialize the
observers at x̂(0) = x(0), select (x1(0), x2(0)) from a
standard normal distribution, and fix ǫ = 0. We let N =
50, 100, 200, and follow the evolution of Algorithm 1
for 1000 time-steps. We attack sensor three, i.e.,
W = {3}, and let a3 ∼ U(−2, 2). The isolation results
are shown in Figures 4. In this figure, for visualization
only, we depict Ãi = ∅ (no isolated sensors) by sensor 0
being isolated in the i-th time window.

Algorithm 1 Attack Isolation.

1. Design an observer satisfying Definition 2 for each
subset J ⊂ {1, . . . , p} with card(J) = p− q and each
subset S ⊂ {1, . . . , p} with card(S) = p− 2q.
2. Initialize the counter variable nJ (i) = 0 for all J
with card(J) ≥ p− q and all i ∈ Z>0.
3. Compute π̄J for each J with card(J) = p− q as (5).
4. For i ∈ Z>0 and ∀k ∈

[

k̄∗ + (i − 1)N, k̄∗ + iN − 1
]

,
compute πJ(k), ∀J with card(J) = p− q, as

πJ (k) = max
S⊂J:card(S)=p−2q

|x̂J(k)− x̂S(k)|.

5. For all k ∈
[

k̄∗ + (i− 1)N, k̄∗ + iN − 1
]

, take the
union of all the subsets J such that πJ (k) ≤ π̄J :

W̄ (k) =
⋃

J⊂{1,...,p}:card(J)=p−q,πJ (k)≤π̄J

J.

6. For k ∈
[

k̄∗ + (i− 1)N, k̄∗ + iN − 1
]

, if W̄ (k) = J

for some J with card(J) ≥ p − q, then update its
corresponding counter variable as nJ (i) = nJ (i) + 1.
7. For all i ∈ Z>0, select the subset J with card(J) ≥
p− q that is equal to W̄ (k) most often, i.e.,

J(i) = argmax
J∈{1,...,p}:card(J)≥p−q

nJ(i).

8. For all i ∈ Z>0, the set of sensors potentially under
attack is given by Ã(i) = {1, . . . , p} \ J(i).
9. For all i ∈ Z>0, return Ã(i).

6 Conclusion

Following the idea of sensor redundancy and multi-
observer in [5], a general estimation scheme has been
proposed for a large class of nonlinear plants and ob-
servers, which provides robust estimate of the system
state when a sufficiently small subset of sensors are
corrupted by (potentially unbounded) attack signals
and system plant as well as all sensors are affected by
bounded noise. We have posed the multi-observer esti-
mation scheme in terms of the existence of a bank of
(local and practical) nonlinear observers with ISS (with
respect to disturbances and noise) estimation error dy-
namics. We have proved that the proposed estimator
provides ISS-like estimates of the system state with re-
spect to disturbances only and independent of sensor
attacks. This scheme has been proposed in [5], for linear
systems/observers. Here, we have proposed a unifying
framework for a much larger class of nonlinear system-
s/observers and provided the corresponding stability
properties that the estimator yields in the nonlinear
case. Using the proposed estimator, we have provided
an isolation algorithm to pinpoint sensor attacks dur-
ing finite time windows. Simulations results have been
provided to illustrate the performance of our tools.
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