
Ensemble Observability of Bloch Equations
with Unknown Population Density

Xudong Chen1

Abstract

We introduce in the paper a novel observability problem for a large population
(in the limit, a continuum ensemble) of nonholonomic control systems with unknown
population density. We address the problem by focussing on a prototype of such
ensemble system, namely, the ensemble of Bloch equations which is known for its use
of describing the evolution of the bulk magnetization of a collective of non-interacting
nuclear spins in a static field modulated by a radio frequency (rf) field. The dynamics of
the equations are structurally identical, but show variations in Larmor dispersion and rf
inhomogeneity. We assume that the initial state of any individual system (i.e., individual
Bloch equation) is unknown and, moreover, the population density of these individual
systems is also unknown. Furthermore, we assume that at any time, there is only one
scalar measurement output at our disposal. The measurement output integrates a certain
observation function, common to all individual systems, over the continuum ensemble.
The observability problem we pose in the paper is thus the following: Whether one
is able to use the common control input (i.e., the rf field) and the single measurement
output to estimate both the initial states of the individual systems and the population
density? Amongst other things, we establish a sufficient condition for the ensemble
system to be observable: We show that if the common observation function is any
harmonic homogeneous polynomial of positive degree, then the ensemble system is
observable. The main focus of the paper is to demonstrate how to leverage tools from
representation theory of Lie algebras to tackle the observability problem. Although the
results we establish in the paper are for the specific ensemble of Bloch equations, the
approach we develop along the analysis can be generalized to investigate observability
of other general ensembles of nonholonomic control systems with a single, integrated
measurement output.

Key words: Ensemble observability, Ensemble system identification, Representation theory,
Spherical Harmonics

1 Introduction and Main result
We consider in the paper a large population (in the limit, a continuum) of independent
control systems—these individual systems are structurally identical, but show variations
in system parameters. We call such a population of control systems an ensemble system.

1X. Chen is with the ECEE Dept., CU Boulder. Email: xudong.chen@colorado.edu.
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A precise description of the system model will be given shortly. Control of an ensemble
system is about broadcasting a finite-dimensional control input to simultaneously steer all
the individual systems in the continuum ensemble. Questions such as whether an ensemble
system is controllable and how to generate a control input to steer the entire population of
systems have all been investigated to some extent in the literature. For control of linear
ensembles (i.e., ensembles of linear systems), we refer the reader to [1, 2, 3, 4] and [5,
Ch. 12]. For control of nonlinear ensembles, we first refer the reader to the work [6, 7] by
Li and Khaneja. The authors established controllability of a continuum ensemble of Bloch
equations [8] using a Lie algebraic method. A similar controllability problem has also been
addressed in [9]. But, the authors there have used a different approach that leverages tools
from functional analysis. Continuum ensembles of bilinear systems for formation control
has been investigated in [10]. We next refer the reader to [11] in which the Rachevsky-Chow
theorem (also known as the Lie algebraic rank condition) has been generalized so that it
can be used a sufficient condition to check whether a continuum ensemble of control-affine
systems is controllable. We have recently proposed in [12] a novel class of ensembles of
control-affine systems, termed distinguished ensembles, and shown that any such ensemble
system satisfies the generalized version of the Rachevsky-Chow theorem and, hence, is
ensemble controllable.

We address in the paper the counterpart of the ensemble control problem, namely the
ensemble estimation problem. Roughly speaking, estimation of an ensemble system is
about using a single, integrated measurement output (of finite-dimension) to estimate the
initial state of every individual system in the ensemble. Note that in its basic setup, the
ensemble estimation problem is addressed under the assumption that the entire knowledge
of the system model is available (See, for example, [12]). We consider in the paper a more
challenging but realistic scenario: We assume that the underlying population density of the
individual systems in the (continuum) ensemble is unknown.

The observability problem we will address in the paper is thus the problem about
feasibility of estimating both the initial states and the population density of the individual
systems in the ensemble. Note, in particular, that the problem can be viewed as a combination
of two interrelated subproblems: One is the “usual ensemble observability problem” in
which one has the complete knowledge of the ensemble model and aims to estimate the
initial states of its individual systems. The other one can be related to the problem of “system
identification” for which one treats the population density as an intrinsic parameter of an
ensemble system.

To the best of author’s knowledge, the ensemble observability problem we posed here
has not yet been addressed in the literature. One of the main contributions of the paper
is thus to develop methods for tackling such a problem. Our methods rely on the use
of representation theory of Lie algebras. To demonstrate such a connection between the
observability problem and the tools from the representation theory, we focus in the paper on
a prototype of an ensemble of nonholonomic control systems, namely, a continuum ensemble
of Bloch equations (the mathematical model will be given shortly). Although the results
established in the paper are for the specific ensemble of Bloch equations, the methods we
develop along the analysis can be extended to address other generals cases. We will address
such an extension toward the end of the paper.
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1.1 System model: Ensemble of Bloch equations
Bloch equation [8] is known for its use of describing the evolution of the bulk magnetization
of a collective of non-interacting nuclear spins in a static field modulated by a controlled
radio frequency (rf) field. When factors such as Larmor dispersion and rf inhomogeneity
matter, a continuum ensemble of Bloch equations is often used to model variations in these
system parameters. To this end, we let S2 be the unit sphere embedded in R3. For a point
x ∈ S2, we let x = (x1, x2, x3) be its coordinates. Next, we define three vector fields on S2

as follows:

f0(x) :=

 x2

−x1

0

 , f1(x) :=

 x3

0
−x1

 , f2(x) :=

 0
x3

−x2

 . (1)

Then, the dynamics of an ensemble of Bloch equations, parametrized by a pair of scalar
parameters (σ1, σ2), are described by the following differential equations:

ẋσ(t) = σ1f0(xσ(t)) + σ2

2∑
i=1

ui(t)fi(xσ(t)), (2)

where u1(t), u2(t) are scalar control inputs and the two parameters σ1, σ2 are used to
model Larmor dispersion and rf inhomogeneity, respectively. We assume in the paper that
σ1 ∈ [a1, b1] with a1 < b1 and σ2 ∈ [a2, b2] with 0 < a2 < b2. We let σ := (σ1, σ2) and

Σ := [a1, b1]× [a2, b2].

We call Σ the parameterization space.
If an individual Bloch equation is associated with the parameter σ, we call it system-σ.

Note that by (2), each system-σ is control-affine. We call f0 a drifting vector field and f1, f2

control vector fields. We note here that the same model (2) has been used in [6, 7, 9] for the
study of ensemble controllability problem.

For ease of notation, we let u(t) := (u1(t), u2(t)). Further, we let xΣ(t) be the collection
of current states xσ(t) of all individual systems in the ensemble:

xΣ(t) := {xσ(t) | σ ∈ Σ}.

We call xΣ(t) a profile. Note that each profile xΣ(t) can be thought as a function from Σ
to S2. Let C0(Σ, S2) be the set of continuous functions from Σ to S2. We assume in the
paper that each profile xΣ(t) belongs to C0(Σ, S2).

Next, we let µ be a positive Borel measure defined on the parameterization space Σ.
The measure µ will be used to describe the population density of the individual systems.
Specifically, we assume that for any given measurable subset Σ′ of Σ, the total amount of
individual systems, with their indices σ belonging to Σ′, is proportional to

∫
Σ′ dµ. For ease

of analysis, we assume that there is a continuous function ρ on Σ such that ρ(σ) ≥ 0 for all
σ and dµ = ρ(σ)dσ. We call ρ the density function.

With the measure µ defined above, we now introduce the estimation model as a
counterpart of (2). Following the problem formulation in [12], we assume that there is only
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one scalar measurement output, denoted by y(t), at our disposal. The measurement output
integrates a certain observation function φ (common to all individual systems) over the entire
parameterization space Σ. Specifically, we have that

y(t) :=

∫
Σ

φ(xσ(t))dµ,

where the observation function φ : S2 → R is assumed to be continuous. Consider, for
example, the map φ : x 7→ xi for some i = 1, 2, 3. Then, y(t) can be interpreted as the
projection of the bulk magnetization vector to the xi-axis. We consider in the paper general
observation functions that can render the ensemble system observable. A precise problem
formulation will be given soon.

By combining the control model (2) and the above estimation model, we obtain the
following ensemble system:

ẋσ(t) = σ1f0(xσ(t)) + σ2

∑2
i=1 ui(t)fi(xσ(t)),

y(t) =

∫
Σ

φ(xσ(t))dµ.
(3)

We assume in the paper that xσ(0) is unknown for all σ ∈ Σ and, moreover, the measure µ
is also unknown. We note here that system (3) can be viewed as a prototype of a general
ensemble of nonholonomic control systems with a single integrated measurement output.

1.2 Problem formulation: Ensemble observability
We formulate in the section the ensemble observability problem for system (3) with unknown
population density. We start with the following definition:

Definition 1. Let xΣ(0), x′Σ(0) be initial profiles and µ, µ′ be positive Borel measures on Σ.
Two pairs (xΣ(0), µ) and (x′Σ(0), µ′) are output equivalent, which we denote by

(xΣ(0), µ) ∼ (x′Σ(0), µ′),

if for any T > 0 and any integrable function u : [0, T ]→ R2 as a control input,∫
Σ

φ(xσ(t))dµ =

∫
Σ

φ(x′σ(t))dµ′, ∀t ∈ [0, T ].

Following the above definition, we introduce for each pair (xΣ(0), µ), the collection of
its output equivalent pairs as follows:

O(xΣ(0), µ) := {(x′Σ(0), µ′) | (x′Σ(0), µ′) ∼ (xΣ(0), µ)}.

Note that (xΣ(0), µ) always belongs to O(xΣ(0), µ). We next have the following definition:

Definition 2. System (3) is weakly ensemble observable if for any given (xΣ(0), µ), the set
O(xΣ(0), µ) is finite. Moreover, we require that if (x′Σ(0), µ′) belongs to O(xΣ(0), µ) and if
(x′Σ(0), µ′) 6= (xΣ(0), µ), then the following hold:
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(1) The two measures µ′ and µ are identical.

(2) For any σ ∈ Σ, x′σ(0) 6= xσ(0).

System (3) is ensemble observable if for any (xΣ(0), µ), O(xΣ(0), µ) = {(xΣ(0), µ)}.

Remark 1. We note that the above definition about (weak) ensemble observability is stronger
than the “usual” definition of ensemble observability introduced in [12]. The key difference
between the two definitions is that Def. 2 takes into account the fact that one needs to identify
the unknown population density as well. We also note that the two items in Def. 2 have the
following implication: If system (3) is weakly ensemble observable, then by knowing the
initial state xσ(0) of a single individual system-σ, one is able to estimate the entire initial
profile xΣ(0) and the measure µ.

The problemwe will address in the paper is the following: Given the control dynamics (2),
what kind of observation functionwill guarantee that the entire system (3) is (weakly) ensemble
observable? We provide below a partial solution to the above question by providing a class
of observation functions that can fulfill the requirement.

Figure 1: A large population (in the limit, a continuum) of Bloch equations over Σ =
[a1, b1]× [a2, b2]. Both initial states and the population density are unknown to the controller.

1.3 Main result
We state in the subsection the main result of the paper. To proceed, we first introduce a
few notations that are necessary to state the result. Let P be the space of all homogeneous
polynomials in variables x1, x2, and x3. For any nonnegative integer n, we let Pn be the space
of homogeneous polynomials of degree n. The dimension of Pn is given by (n+2)(n+1)/2.
Note that one can treat a polynomial p(x) as a function on S2 by restricting x ∈ R3 to x ∈ S2.
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Denote by4 the Laplace operator on R3:

4 :=
3∑
i=1

∂2/∂x2i .

We recall the following definition:

Definition 3. A polynomial p is harmonic if4p = 0.

LetHn be the space of harmonic homogeneous polynomials of degree n. The dimension
ofHn is 2n+ 1. For example, for n = 1, H1 is spanned by the basis {x1, x2, x3}; for n = 2,
H2 is spanned by the basis {x2

1 − x2
2, x

2
2 − x2

3, x1x2, x1x3, x2x3}.
For any real number r, we let brc be the largest integer such that brc ≤ r. Then, it is

known (see, for example, [13, Ch. 17.6]) that the space of Pn can be decomposed as a direct
sum as follows:

Pn =

bn/2c⊕
k=0

‖x‖2kHn−2k,

where ‖x‖2 :=
∑3

i=1 x
2
i .

We will now state the main result of the paper:

Theorem 1.1. Consider the ensemble system (3). Suppose that the observation function φ is
nonzero and belongs to Hn for some n ≥ 1; then, the following hold:

(1) If n is even, then system (3) is weakly ensemble observable. Moreover, for any pair
(xΣ(0), µ), we have that

O(xΣ(0), µ) = {(xΣ(0), µ), (−xΣ(0), µ)}. (4)

(2) If n is odd, then system (3) is ensemble observable.

Remark 2. We note here that if n is even, then O(xΣ, µ) contains at least the two pairs
in (4). We elaborate below on the fact. First, note that if two initial profiles are related by
x′Σ(0) = −xΣ(0), then for any control input u(t), it always holds that x′Σ(t) = −xΣ(t) for
all t. Next, note that if φ is a homogeneous polynomial of even degree, then for any x ∈ R3,
φ(−x) = (−1)nφ(x) = φ(x). It then follows that∫

Σ

φ(xσ(t))dµ =

∫
Σ

φ(−xσ(t))dµ,

and, hence, (−xΣ(0), µ) ∼ (xΣ(0), µ). But then, item (1) of Theorem 1.1 says that there is
no other pair (x′Σ(0), µ′) that can be output equivalent to (xΣ(0), µ).

Organization of the paper. In the remainder of the paper, we develop methods for
addressing the ensemble observability problem and prove Theorem 1.1. We will first
introduce in Sec. 2 key definitions and notations that will be frequently used throughout
the paper. Because our methods rely on the use of representation theory of sl(2,C) on the
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space of homogeneous polynomials (where sl(2,C) is the special linear Lie algebra of all
2× 2 complex matrices with zero trace), we present in Sec. 3 relevant results about such a
representation. Then, in Sec. 4, we demonstrate how the representation theory can be used
to addressed the ensemble observability problem. The proof of Theorem 1.1 will also be
established along the analysis. We provide conclusions and further discussions in Sec. 5. In
particular, we will discuss about connections with our earlier work [12] and extensions of
the methods developed in the paper to other general ensembles of nonholonomic control
systems.

2 Definitions and Notations
We introduce in the section key definitions and notations that will be frequently used
throughout the paper.

2.1 Differential geometry

For any two smooth vector fields f and g on S2, we let [f, g] be the Lie bracket defined as
follows:

[f, g](x) :=
∂g

∂x
f(x)− ∂f

∂x
g(x)

Note that [f, g] is also a vector field on S2. Recall that f0 is the drifting vector field and f1,
f2 are control vector fields defined in (1). We let g be the R-span of f0, f1, and f2. Then, g
is a (real) Lie algebra with the Lie bracket defined above. Note that if (i, j, k) is a cyclic
rotation of (0, 1, 2), then

[fi, fj] = fk.

The above structural coefficients then imply that g is isomorphic to so(3) (or simply
g ≈ so(3)), where so(3) is the Lie algebra of 3× 3 real skew-symmetric matrices. We also
note that so(3) is isomorphic su(2), i.e., the special unitary Lie algebra (as a real Lie algebra)
comprising all 2× 2 skew-Hermitian matrices with zero trace. Thus, g ≈ su(2) as well.

For a given vector field f ∈ g and a smooth function φ on S2, we let fφ be another
function on S2 defined as follows:

(fφ)(x) = lim
ε→0

φ(x+ εf(x))− φ(x)

ε
, ∀x ∈ S2.

Note that (fφ)(x) is nothing but the directional derivative of φ along f at x.
Let A be the collection of words over the alphabet {0, 1, 2}, i.e., A comprises all finite

sequences α = i1i2 · · · ik where each ij belongs to {0, 1, 2}. The length of a word α is
defined to be the total number of indices ij in it. Next, for a given word α = i1 · · · ik and a
smooth function φ on S2, we let

fαφ := fi1 · · · fikφ.

Note that if α = ∅, then we let fαφ := φ.
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Let T (g) be the vector space spanned by fα, i.e., each element η in T (g) is a linear
combination of finitely many fα for α ∈ A. Note that T (g) can be identified with the space
of tensors of g. Specifically, each fα can be viewed as a tensor in g⊗ · · · ⊗ g, where the
number of copies of g matches the length of α.

2.2 Lie algebra representation

For an arbitrary real vector space V , we let V C be the complexification of V , i.e., V C is a
complex vector space comprising all elements v + iw where i is the imaginary unit and v, w
belong to V . Recall that g ≈ su(2) and, hence, its complexification is given by [14, Ch 3.6]

gC ≈ sl(2,C),

where sl(2,C) is the Lie algebra of 2× 2 complex matrices with zero trace.
We also recall that Pn is the space of homogeneous polynomials of degree n in variables

x1, x2, and x3. Note that for any fi, with i = 0, 1, 2, and any p ∈ Pn, fip belongs to Pn.
Thus, Pn is closed under directional derivative along any f ∈ g. We now define a map
π : g× Pn → Pn as follows:

π : (f, p) 7→ π(f)p := fp.

Themap π is in fact a representation of g onPn, i.e., each π(f) for, f ∈ g, is an endomorphism
of Pn and satisfies the following relationship:

π([f, g]) = π(f)π(g)− π(g)π(f), ∀f, g ∈ g. (5)

We will use π(f)p and fp interchangeably.
Let P ′n be a subspace of Pn. We say that P ′n is invariant under π(g) if for any f ∈ g and

p ∈ P ′n, we have that π(f)p ∈ P ′n. Thus, if we let

π′ : g× P ′n → P ′n

be defined by restricting π to g× P ′n, then π′ is a representation of g on P ′n. We say that π′
is irreducible if there does not exist a nonzero, proper subspace P ′′n of P ′n such that P ′′n is
invariant under π(g).

We further note that the representation π can be naturally extended to gC × PC
n : For any

f, g ∈ g and any p, q ∈ Pn, let

π(f + ig)(p+ iq) := (π(f)p− π(g)q) + i(π(f)q + π(g)p). (6)

Then, with such an extension, π is a representation of gC on PC
n . We will present a few

relevant facts about the representation in Sec. 3.

2.3 Algebra of functions

Let Φ := {φi}li=1 be a set of functions on S2. Let n1, . . . , nl be nonnegative integers. We
call φn1

1 · · ·φ
nl
l a monomial. The degree of the monomial is

∑l
i=1 ni. Denote by S(Φ) the

algebra of generated by Φ, i.e., each element in S(Φ) is a linear combination of finitely many
monomials. Further, we let Sk(Φ) be the subspace of S(Φ) spanned by all monomials of
degree k.
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3 Representation on homogeneous polynomials
We present in the section a few relevant results (with Prop. 3.1 the main result) that will be of
great use in establishing Theorem 1.1. Some of the results are well known. For completeness
of presentation, we provide short proofs in the Appendices.

To proceed, we recall that A is the collection of words over the alphabet {0, 1, 2} and
T (g) is the vector space spanned by all fα for α ∈ A. Now, for a given word α ∈ A, we let

κ(α) := (κ1(α), κ2(α)) ∈ Z2

where κ1(α) and κ2(α) are defined as follows:{
κ1(α) := number of appearances of “0” in α,
κ2(α) := number of appearances of “1” and “2” in α

For example, if α = 0121, then κ(α) = (1, 3).
Next, with a slight abuse of notation, we let κ(fα) := κ(α). Further, we consider an

element ξ =
∑n

i=1 cifαi in T (g). Suppose that κ(fαi) = κ(fαj) for all i, j ∈ {1, . . . , n};
then, we can define without ambiguity that

κ(ξ) := κ(fαi), for some i ∈ {1, . . . , n}.

Note that if κ(ξ) is defined, then the lengths of all the words αi that are involved in ξ are
identical with each other.

We establish in the section the following result:

Proposition 3.1. There exist nonzero ξ and ζ in T (g) such that the following properties are
satisfied:

(1) Both κ(ξ) and κ(ζ) are well defined. Moreover,

κ1(ξ) > 0, and κ1(ζ) = 0.

(2) For any p ∈ Hn with n ≥ 1,
ξp = ζp = λp,

where λ is some nonzero constant.

We establish below Prop. 3.1. We will explicitly construct ξ and ζ in Sec. 3.1 and show
that they satisfy the two items toward the end of the section.

3.1 Variations of the Casimir element

Recall that the space T (g) can be identified with the space of all tensors in g⊗k for all k ≥ 0,
i.e., we identify fα = fi1 · · · fik with fi1 ⊗ · · · ⊗ fik . The so-called universal enveloping
algebra associated with g is defined as follows:
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Definition 4. Let J be a two sided ideal in T (g) generated by all fg − gf − [f, g] where
f, g ∈ g. Then, the universal enveloping algebra U(g) is given by the following quotient:

U(g) := T (g)/J.

We also need the following definition:

Definition 5. The center Z(g) of U(g) is the collection of elements in U(g) that commute
with the entire U(g), i.e.,

Z(g) := {η ∈ U(g) | η′η = ηη′, for all η′ ∈ U(g)}.

We present in the following lemma a specific element in Z(g). The result is, in fact, well
known:

Lemma 1. Let η∗ :=
∑2

i=0 f
2
i . Then, η∗ belongs to Z(g).

We provide a proof of the lemma in Appendix-A.

Definition 6. The element η∗ =
∑2

i=0 f
2
i is commonly referred to as the Casimir element.

Remark 3. Note that if an element η belongs to Z(g), then any polynomial in η (i.e.,∑n
k=0 ckη

k) belongs to Z(g) as well. The converse also holds for the case here. Precisely, it
is known [15, Ch. V] that if g ≈ so(3) ≈ su(2), then the center Z(g) is exactly the space
of all polynomials in η∗. We further note that for a general (complex) semi-simple Lie
algebra, the center of the associated universal enveloping algebra can be characterized via
the Harish-Chandra isomorphism [15, Theorem 5.44].

However, note that if we treat the Casimir element η∗ as an element in T (g), then κ(η∗)
is not well defined. To see this, we simply note that

κ(f 2
0 ) = (2, 0) and κ(f 2

1 ) = κ(f 2
2 ) = (0, 2).

We thus aim to find elements ξ and ζ in T (g) that satisfy the following two conditions:

(1) Both κ(ξ) and κ(ζ) are well defined and satisfy item (1) of Prop. 3.1.

(2) The two elements ξ and ζ are the same as the Casimir element η∗ when they are treated
as elements in U(g), i.e., all the three elements are equivalent modulo the ideal J (we
will simply write ξ ≡ ζ ≡ η∗).

One way to find such elements ξ and ζ is to use the commutator relations: [fi, fj] = fk
where (i, j, k) is a cyclic rotation of (0, 1, 2). We have the following result:

Lemma 2. Let ξ, ζ ∈ T (g) be defined as follows:
ξ := f0f1f2 + f1f2f0 + f2f0f1

−f0f2f1 − f1f0f2 − f2f1f0,

ζ := 3(f1f2f1f2 + f2f1f2f1)
−2(f1f

2
2 f1 + f2f

2
1 f2)− (f 2

1 f
2
2 + f 2

2 f
2
1 ).

Then, ξ ≡ ζ ≡ η∗ with κ(ξ) = (1, 2) and κ(ζ) = (0, 4).
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Proof. Proof. The lemma follows directly from computation. Specifically, we note that
f 2

0 ≡ f0f1f2 − f0f2f1,

f 2
1 ≡ f1f2f0 − f1f0f2,

f 2
2 ≡ f2f0f1 − f2f1f0.

The element ξ is then obtained by replacing f 2
i for i = 0, 1, 2 in η∗ with the terms on the

right hand side of the above expression. Further, by replacing each f0 in the expression of ξ
with (f1f2 − f2f1), we obtain ζ . �

Toward the end of the section, we will show that the two elements ξ and ζ defined in
Lemma 2 satisfy item (2) of Prop. 3.1. For that, we need to have a few preliminaries about
irreducible representation of sl(2,C), some of which will further be used in the proof of
Theorem 1.1. This will be done in the next subsection.

3.2 Irreducible representation of sl(2,C)

Recall that Pn is the (real) vector space of all homogeneous polynomials of degree n in
variables x1, x2, and x3. The space Pn is closed under directional derivative along any vector
field f ∈ g. The map π : g× Pn → Pn defined by

π : (f, p) 7→ π(f)p := fp

is a Lie algebra representation of g on Pn. We also recall that PC
n is the complexification

of Pn, i.e., PC
n is the space of homogeneous polynomials in (real) variables x1, x2, x3 with

complex coefficients.
One can extend π to gC × PC

n using (6) so that π is now a representation of gC on
PC
n . Note that gC ≈ sl(2,C). Representation of sl(2,C) is extensively investigated in the

literature [14, 15, 16]. We review in the subsection only a few basic facts that are relevant to
the paper.

To this end, we define a triplet (h, e+, e−) of elements in gC using the three elements
{fi}2

i=0 from g as follows:

h := 2if0, e+ := f1 + if2, e− := −f1 + if2, (7)

Then, by computation, we have the following standard commutator relationship for the triplet
(h, e+, e−) in sl(2,C):

[h, e+] = 2e+, [h, e−] = −2e−, [e+, e−] = h.

Denote by Ch, Ce+, and Ce− the vector spaces (over C) spanned by h, e+, and e−,
respectively. Then, Ch is known as a Cartan subalgebra of sl(2,C) while Ce+ and Ce−
are the two root spaces. Recall that an arbitrary representation π : sl(2,C) × V → V is
irreducible if there does not exist a nonzero, proper subspace V ′ of V such that π(V ′) ⊆ V ′.
The following result is well-known (see, for example, [14]) for finite-dimensional irreducible
representations of sl(2,C):
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Lemma 3. Let π : sl(2,C)× V → V be an arbitrary irreducible representation of sl(2,C)
on a (complex) vector space V of dimension (n+ 1) for n ≥ 0. Then, V can be decomposed
as a direct sum of one-dimensional subspaces V = ⊕nk=0Vn−2k, which satisfy the following
conditions:

π(e+)Vn−2k = Vn−2k+2, π(e−)Vn−2k = Vn−2k−2.

Moreover, for any v ∈ Vn−2k, π(h)v = (n− 2k)v.

Definition 7. The subspaces Vn−2k in the above lemma are weight spaces, and the integers
(n − 2k) are weights. The weight n (i.e., k = 0) is called the highest weight and,
correspondingly, any nonzero vector v in Vn is called a highest weight vector.

Note that by Lemma 3, if v is a highest weight vector (of weight n), then the set of vectors
{v, π(e−)v, · · · , πn(e−)v} is a basis of V . Each one-dimensional weight space Vn−2k is
spanned by the vector πk(e−)v. Conversely, we have the following fact:

Lemma 4. Let π : sl(2,C) × V → V be an arbitrary representation (not necessarily
irreducible). Suppose that there is a nonzero vector v ∈ V and an integer n ≥ 0 such that

π(h)v = nv and π(e+)v = 0;

then, the subspace V ′ spanned by {v, π(e−)v, · · · , πn(e−)v} is an invariant subspace of V
under π(sl(2,C)). Let π′ be defined by restricting π to sl(2,C)×V ′, then π′ is an irreducible
representation of sl(2,C) on V ′ with n the highest weight and v a highest weight vector.

The above lemma is an application of the Theorem of Highest Weight [15, Theorem 5.5].
We now return to the representation π : gC × PC

n → PC
n . We will see soon that π is not

irreducible. But, by the unitarian trick (see, for example, [15, Theorem 5.29]), any finite-
dimensional representation of a complex semi-simple Lie algebra is completely reducible.
Specifically, we first recall that Hn is the (real) vector space of harmonic homogeneous
polynomials of degree n. We let HC

n be its complexification. Then, we have the following
decomposition:

PC
n = HC

n ⊕ ‖x‖2HC
n−2 ⊕ · · · ⊕ ‖x‖2bn/2cHC

n−2bn/2c,

where ‖x‖2 =
∑3

i=1 x
2
i . The following fact is well-known [13, Ch. 17]:

Lemma 5. The subspace ‖x‖2kHC
n−2k is invariant under π(gC) for any k = 0, . . . , bn/2c.

Define
πk : gC × ‖x‖2kHC

n−2k → ‖x‖2kHC
n−2k

by restricting π to gC×‖x‖2kHC
n−2k. Then, πk is an irreducible representation with 2(n−2k)

the highest weight and
p∗k := ‖x‖2k(x1 + ix2)n−2k

a highest weight vector.

We provide a proof of the lemma in Appendix-B.



Ensemble observability of Bloch equations 13

3.3 Proof of Proposition 3.1
We establish in the subsection Prop. 3.1. With slight abuse of notation, we will now let

π : g×Hn → Hn

be the representation of g onHn. By Lemma 5, π is irreducible. The map π can naturally be
extended to T (g)×Hn, which we have implicitly used in the section. Specifically, for any
p ∈ Hn and any η ∈ T (g), we define π(η)p := ηp. Further, note that the relationship (5)
which we reproduce below:

π([f, g]) = π(f)π(g)− π(g)π(f), ∀f, g ∈ g.

allows us to pass the map π to the quotient U(g)×Hn, i.e., if two elements η and η′ in T (g)
are equivalent (i.e., η ≡ η′), then ηp = η′p for any p ∈ Hn.

Recall that η∗ =
∑2

i=0 f
2
i is the Casimir element. Let ξ and ζ be defined in Lemma 2

and we have that η∗ ≡ ξ ≡ ζ . Then, by the above arguments,

η∗p = ξp = ζp, ∀p ∈ Hn. (8)

The following fact is a consequence of Shur’s Lemma (see, for example, Lemma 1.69
in [15]):

Lemma 6. The Casimir element η∗ acts on Hn as a scalar multiple of the identity operator.
Specifically, for any p ∈ Hn, we have that

η∗p = −n(n+ 1)p.

We provide a proof of the lemma in Appendix-C.
Prop. 3.1 then follows from Lemmas 2 and 6. �

4 Analysis and Proof of Theorem 1.1
We establish in the section Theorem 1.1. The proof will be built upon two relevant facts,
Prop. 4.1 and Prop. 4.2, which will be presented and established in Subsections 4.1 and 4.2,
respectively. We will prove Theorem 1.1 in Subsection 4.3.

4.1 Analysis of output equivalent pairs
Recall that two pairs (xΣ(0), µ) and (x′Σ(0), µ′) are output equivalent if for any integrable
control input u(t), the two outputs y(t) and y′(t) with respect to the two pairs are identical
with each other (See Def. 1). We establish below the following result:

Proposition 4.1. Let the observation function φ of system (3) be nonzero and belong to Hn

for n ≥ 1. If (xΣ(0), µ) ∼ (x′Σ(0), µ′), then for any p ∈ Hn,

p(xσ(0))ρ(σ) = p(x′σ(0))ρ′(σ), ∀σ ∈ Σ,

where ρ and ρ′ are the density functions associated with µ and µ′, respectively.
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To establish the proposition, we need to have a few preliminary results. To proceed, we
recall that for an element fα ∈ T (g), we have that

κ(fα) = (κ1(fα), κ2(fα))

where κ1(fα) (resp. κ2(fα)) counts the number of “0” (resp. “1” and “2”) in the word α
over the alphabet A = {0, 1, 2}. For convenience, we introduce the following notation:

σκ(fα) := σ
κ1(fα)
1 σ

κ2(fα)
2 , ∀σ ∈ Σ,

which is a monomial in variables σ1 and σ2. We first have the following fact:

Lemma 7. Let φ be any smooth observation function. If (xΣ(0), µ) ∼ (x′Σ(0), µ′), then for
any fα with α ∈ A,∫

Σ

σκ(fα)(fαφ)(xσ(0))dµ =

∫
Σ

σκ(fα)(fαφ)(x′σ(0))dµ′. (9)

Proof. Proof. Let n be an arbitrary nonnegative integer number. We prove the lemma for
any word α of length n. The arguments used in the proof will be similar to the one used
in [12]: We will appeal to the class of piecewise constant control inputs to establish (9).

Define a piecewise constant control input u(t) as follows: First, let 0 < t1 < · · · < tn
be switching times. Then, we let u(t) := (ui1 , ui2) for t ∈ [ti−1, ti) where t0 := 0. Next,
for ease of notation, we define for each i = 1, . . . , n, the duration τi := ti − ti−1 and the
corresponding vector field over the period [ti−1, ti):

f̃i := σ1f0 + σ2(ui1f1 + ui2f2). (10)

We further introduce the following notation: For an arbitrary differential equation
ẋ(t) = f(x(t)), we let etfx(0) be the solution of the equation at time t with x(0) the initial
state. In the context here, we have that for any individual system-σ with σ ∈ Σ, the following
hold with respect to the piecewise constant control input:{

xσ(tn) = eτnf̃n · · · eτ1f̃1xσ(0),

x′σ(tn) = eτnf̃n · · · eτ1f̃1x′σ(0).

Thus, if (xΣ(0), µ) ∼ (x′Σ(0), µ′), then for any τi with i = 1, . . . , n, the following holds:∫
Σ

φ
(
eτnf̃n · · · eτ1f̃1xσ(0)

)
dµ =

∫
Σ

φ
(
eτnf̃n · · · eτ1f̃1x′σ(0)

)
dµ′.

We next take partial derivative ∂n/∂τ1···∂τn on both sides of the above expression and let
them be evaluated at τ1 = · · · = τn = 0. Then, by computation, we obtain∫

Σ

(f̃1 · · · f̃nφ)(xσ(0))dµ =

∫
Σ

(f̃1 · · · f̃nφ)(x′σ(0))dµ′.

Note that by (10), each f̃i depends on (ui1 , ui2) and the above expression holds for all
(ui1 , ui2) ∈ R2 and for all i = 1, . . . , n. Also, note that by expanding each f̃i using (10), we
have that f̃1 · · · f̃nφ is a linear combination of σκ(fα)fαφ for α any word of length n. It then
follows that (9) holds. �
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A set of functions {ψi}ni=1 on Σ is said to separate points if for any two distinct points σ
and σ′ in Σ, there exists a function ψi out of the set such that ψi(σ) 6= ψi(σ

′). We also recall
that by Lemma 2,

κ(ξ) = (1, 2) and κ(ζ) = (0, 4).

We define monomialsmξ andmζ in variables σ1 and σ2 as follows:{
mξ(σ) := σκ(ξ) = σ1σ

2
2,

mζ(σ) := σκ(ζ) = σ4
2.

(11)

We next have the following fact:

Lemma 8. The set {mξ,mζ} separates points and, moreover,mζ is everywhere nonzero.

Proof. Proof. First, we recall that Σ = [a1, b1] × [a2, b2] with 0 < a2 < b2. Thus, for
any σ = (σ1, σ2) ∈ Σ, we have that σ2 ∈ [a2, b2] and, hence, mζ is everywhere nonzero.
Next, we let σ = (σ1, σ2) and σ′ = (σ′1, σ

′
2) be two distinct points in Σ. If σ2 6= σ′2, then

mζ(σ) 6= mζ(σ
′). If σ2 = σ′2, then σ1 6= σ′1 and, hence,mξ(σ) 6= mξ(σ

′). �

With the above lemmas at hand, we prove Prop. 4.1:

Proof. Proof of Prop. 4.1. Recall that U(g) is the universal enveloping algebra associated
with g. Let p be any nonzero polynomial in Hn and

H ′n := U(g)p = {ηp | η ∈ U(g)}.

Let π : g×Hn → Hn be the representation defined in Sec. 3.3, i.e.,

π : (f, p) ∈ g×Hn 7→ π(f)p := fp.

Because Hn is closed under π(g), H ′n is a subspace of Hn. Also, note that by the definition,
H ′n itself is closed under π(g). Thus, by the fact that π is an irreducible representation
(Lemma 5), we must have that Hn = H ′n = U(g)p. Since U(g) is spanned by fα for α ∈ A
and dimHn = 2n+ 1, there exist fαi , for i = 1, . . . , 2n+ 1, such that fαip form a basis of
Hn. For convenience, we let

pi := fαip, ∀i = 1, . . . , 2n+ 1.

Let (x′Σ(0), µ′) ∼ (xΣ(0), µ) be two output equivalent profiles. Let ρ and ρ′ be the
density functions associated with µ and µ′, respectively. By Lemma 7, we have that for any
i = 1, . . . , 2n+ 1 and any word α over the alphabet {0, 1, 2}, the following holds:∫

Σ

σκ(fα)+κ(fαi )(fαpi)(xσ(0))dµ =

∫
Σ

σκ(fα)+κ(fαi )(fαpi)(x
′
σ(0))dµ′.

The above equality can be further strengthened by replacing fα with any η ∈ T (g) such that
κ(η) is well defined, i.e.,∫

Σ

σκ(η)+κ(fαi )(ηpi)(xσ(0))dµ =

∫
Σ

σκ(η)+κ(fαi )(ηpi)(x
′
σ(0))dµ′. (12)
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Now, let ξ and ζ be defined in Lemma 2. Then, by (8) and Lemma 6, we have that for
any N ≥ 0 and i = 1, . . . , 2n+ 1,

ξNpi = ζNpi = λNpi, (13)

with λ := −n(n+ 1). Thus, by replacing η in (12) with ξN or ζN and by omitting λN on
both sides, we obtain the following equalities:

∫
Σ

mN
ξ (σ)ψi(σ)dσ =

∫
Σ

mN
ξ (σ)ψ′i(σ)dσ,∫

Σ

mN
ζ (σ)ψi(σ)dσ =

∫
Σ

mN
ζ (σ)ψ′i(σ)dσ,

(14)

wheremξ,mζ are monomials given by (11) and ψi, ψ′i are defined as follows:{
ψi(σ) := σκ(fαi )pi(xσ(0))ρ(σ),

ψ′i(σ) := σκ(fαi )pi(x
′
σ(0))ρ′(σ),

for all i = 1, . . . , 2n+ 1.
Let C0(Σ) be the space of continuous functions on Σ and L2(Σ) be the space of square

integrable functions ψ on Σ, i.e.,
∫

Σ
‖ψ‖2dσ < ∞. Note that L2(Σ) is an inner-product

space: For any ψ and ψ′ in L2(Σ), we let their inner-product be defined as follows:

〈ψ, ψ′〉L2 :=

∫
Σ

ψ(σ)ψ′(σ)dσ.

By Lemma 8, the set {mξ,mζ} separates points and, moreover,mζ is everywhere nonzero on
Σ. Thus, by the Stone-Weierstrass Theorem (see, for example, [17]), the algebra generated
bymξ andmζ is dense in C0(Σ). Furthermore, since Σ is compact, C0(Σ) is dense in L2(Σ).
It then follows from (14) that ψi(σ) = ψ′i(σ) for almost all σ ∈ Σ. Since ψi and ψ′i are
continuous on Σ, the two functions are identical:

σκ(fαi )pi(xσ(0))ρ(σ) = σκ(fαi )pi(x
′
σ(0))ρ′(σ), ∀σ ∈ Σ.

Furthermore, by continuity of pi and ρ, we obtain that

pi(xσ(0))ρ(σ) = pi(x
′
σ(0))ρ′(σ), ∀σ ∈ Σ.

Note that the above holds for all i = 1, . . . , 2n + 1. Since {pi}2n+1
i=1 is a basis of Hn, we

conclude that Prop. 4.1 holds. �

Remark 4. Note that the two items of Prop. 3.1 are instrumental in establishing Prop. 4.1:
Item (1) of Prop. 3.1 guarantees that Lemma 8 is satisfied while item (2) of Prop. 3.1
guarantees that (14) holds.
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4.2 Constant function in quadratic form
If there were a harmonic homogeneous polynomial p∗ of positive degree such that p∗ is a
nonzero constant function over the entire S2, then by Prop. 4.1, we obtain that p∗ρ = p∗ρ′

and, hence, ρ = ρ′ (i.e., µ = µ′).
However, such harmonic homogeneous polynomial p∗ does not exist. Nevertheless, we

show in the section that there is a quadratic form in p ∈ Hn (for any n ≥ 1) which is exactly
a nonzero constant function on S2. We make the statement precise below.

We first recall that for a given set of functions Φ := {φi}li=1 on S2, we use S(Φ) to
denote the algebra generated by the set Φ, i.e., it comprises all linear combinations of finitely
many monomials φn1

1 · · ·φ
nl
l . Also, recall that S2(Φ) is the space of quadratic forms in φi

for i = 1, . . . , l, i.e., S2(Φ) is spanned by φiφj for 1 ≤ i ≤ j ≤ l.
We now let Φ = {pi}2n+1

i=1 be an arbitrary basis of Hn. Note that each q ∈ S2(Φ) is a
quadratic form in pi and each pi is a homogeneous polynomial of degree n in x1, x2, and x3.
Thus, each q ∈ S2(Φ) is a homogeneous polynomial of degree 2n in x1, x2, and x3.

We further let 1S2 be the constant function that takes value 1 everywhere on S2, i.e.,

1S2(x) := 1, ∀x ∈ S2.

We establish below the following result:
Proposition 4.2. For any basis Φ of Hn, S2(Φ) contains ‖x‖2n and, hence, the constant
function 1S2 .

Remark 5. We note that for any two bases Φ = {φk}2n+1
k=1 and Φ′ = {φ′k}2n+1

k=1 of Hn,

S2(Φ) = S2(Φ′).

This holds because S2(Φ) and S2(Φ′) are spanned by φiφj and φ′iφ′j , respectively, each
φiφj (resp. φ′iφ′j) can be expressed as a linear combination of φ′iφ′j (resp. φiφj). More
specifically, since Φ′ is a basis ofHn and φi, φj ∈ Hn, there are real coefficients ci,k and cj,k,
for k = 1, . . . , 2n+ 1 such that φi =

∑2n+1
k=1 ci,kφ

′
k and φj =

∑2n+1
k=1 cj,kφ

′
i. It then follows

that
φiφj =

∑
1≤k,k′≤2n+1

ci,kcj,k′φ
′
iφ
′
j.

By the same argument, we can express φ′iφ′j as a certain linear combination of φiφj as well.
Thus, by the above arguments, we only need to prove Prop. 4.2 for a particular basis Φ of
Hn. We will make a choice of Φ later in (19).

Before proving Prop. 4.2, we take an example for illustration of the statement:
Example 1. We demonstrate Prop. 4.2 for n = 1, 2, 3:

(1) If n = 1, then H1 is spanned by {x1, x2, x3}, so S2(Φ) contains ‖x‖2.

(2) If n = 2, then a basis of H2 is given by

p1 := x2
1 − x2

2, p2 := x2
2 − x2

3, p3 := x1x2, p4 := x1x3, p5 := x2x3.

By computation, we obtain that

‖x‖4 = p2
1 + p2

2 + p1p2 + 2
(
p2

3 + p2
4 + p2

5

)
.
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(3) If n = 3, then a basis of H3 is given by

p1 := x1(2x2
1 − 3x2

2 − 3x2
3),

p2 := x2(2x2
2 − 3x2

1 − 3x2
3),

p3 := x3(2x2
3 − 3x2

1 − 3x2
2),

p4 := x1(x2
2 − x2

3), p5 := x2(x2
1 − x2

3),

p6 := x3(x2
1 − x2

2), p7 := x1x2x3.

By computation, we obtain that

‖x‖6 =
1

4

(
p2

1 + p2
2 + p2

3

)
+

15

4

(
p2

4 + p2
5 + p2

6

)
+ 15p2

7.

We establish below Prop. 4.2. There are several different approaches for proving the
result. The approach we present below utilizes again the representation theory of sl(2,C).
One can also use the Addition Theorem for spherical harmonics [18, Ch. 12] to prove the
result. For that, we refer the reader to Appendix-F for detail.

To proceed, we first recall that by Lemma 5, the polynomial (x1 +ix2)n is a highest weight
vector (with the highest weight being 2n) associated with the irreducible representation
π : gC ×HC

n → HC
n . Let h, e+, and e− be defined in (7). We next define

pk(x) := πk(e−)(x1 + ix2)n, ∀k = 0, . . . , 2n. (15)

Then, by Lemma 3, each pk is a weight vector and

π(h)pk = (2n− 2k)pk. (16)

It should be clear from the definition that π(e−)pk = pk+1 for all k = 0, . . . , 2n − 1.
Conversely, for any k = 1, . . . , 2n, the following holds (see, for example, [13, Ch. 17]):

π(e+)pk = k(2n− k + 1)pk−1. (17)

Furthermore, we have the following fact:

Lemma 9. For any k = 0, . . . , n,

p2n−k = (−1)n−k
(2n− k)!

k!
p̄k, (18)

where p̄k is the complex conjugate of pk.

We provide a proof in Appendix-D. Note, in particular, that by (18), pn = p̄n and, hence,
pn is real.

With the pk define in (15), we now let

Φ := {pk}2n
k=0. (19)

By Lemma 4, Φ is a basis of HC
n over C. Let SC

2 (Φ) be the complexification of S2(Φ),
i.e., SC

2 (Φ) is the space of all quadratic forms in pk with complex coefficients. To establish
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Prop. 4.2, it now suffices to show that the monomial ‖x‖2n is contained in SC
2 (Φ) (note that

if this is the case, then ‖x‖2n is contained in S2(Φ) as well).
Note that SC

2 (Φ) is a subspace of PC
2n and is spanned by pipj for 0 ≤ i ≤ j ≤ 2n. Let π̃

be the representation of gC on PC
2n, i.e.,

π̃ : (f, φ̃) ∈ gC × PC
2n 7→ π̃(f)φ̃ := fφ̃ ∈ PC

2n.

We have the following fact:

Lemma 10. The subspace SC
2 (Φ) is invariant under π̃(g).

Proof. Proof. Because SC
2 (Φ) is spanned by pipj , for 0 ≤ i ≤ j ≤ 2n, it suffices to show

that for any such pipj and for any f ∈ gC, π̃(f)(pipj) belongs to SC
2 (Φ). But, this directly

follows from the Leibniz rule,

π̃(f)(pipj) = (fpi)pj + pi(fpj).

Note that both fpi and fpj belong to HC
n because HC

n is invariant under π(g). Thus, the
right hand side of the above expression belongs to SC

2 (Φ). �

By Lemma 10, one can obtain a representation of gC on SC
2 (Φ) by restricting π̃ to

gC×SC
2 (Φ). With slight abuse of notation, we will still use π̃ to denote such a representation.

The representation π̃ is, in general, not irreducible. But, by Lemma 5, we know that there
exist a positive integer N and nonnegative integers 0 ≤ k1 < · · · < kN ≤ n such that

SC
2 (Φ) = ‖x‖2k1HC

2n−2k1
⊕ · · · ⊕ ‖x‖2kNHC

2n−2kN
.

Moreover, π̃ is an irreducible representation when restricted to every subspace ‖x‖2kiHC
2n−2ki

for i = 1, . . . , N .
Note, in particular, that if kN = n, thenHC

0 = C and, hence, SC
2 (Φ) contains the desired

polynomial ‖x‖2n. We show below that this is indeed the case:

Proof. Proof of Prop. 4.2. Consider the following element in SC
2 (Φ):

q∗ :=
2n∑
k=0

(−1)n+kpkp2n−k.

We show below that q∗ = c‖x‖2n for some c > 0. First, note that by (18), q∗ can be re-written
as follows:

q∗ = q2
n + 2

n−1∑
k=0

(2n− k)!

k!
|pk|2.

Note that qn is real, so q∗ is strictly positive.
We next show that both π̃(h)q∗ and π̃(e+)q∗ are zero. For π̃(h)q∗, we have that

π̃(h)q∗ =
2n∑
k=0

(−1)n+kπ̃(h)(pkp2n−k) =
2n∑
k=0

(−1)n+k ((hpk)p2n−k + pk(hp2n−k)) = 0,
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where the last equality follows from (16).
For π̃(e+)q∗, we use the fact that e+p0 = 0 (because p0 is a highest weight vector) and

obtain that

π̃(e+)q∗ =
2n−1∑
k=0

(−1)n+k(pk(e+p2n−k)− (e+pk+1)p2n−k−1) (20)

It follows from (17) that{
e+p2n−k = (2n− k)(k + 1)p2n−k−1,
e+pk+1 = (k + 1)(2n− k)pn−2k,

and, hence, each addend on the right hand side of (20) is 0.
We now let Cq∗ be the one-dimensional subspace of SC

2 (Φ) spanned by q∗. Because both
π̃(h)q∗ and π̃(e+)q∗ are zero, we obtain by Lemma 4 that π̃ is an irreducible representation
when restricted to gC × Cq∗. Moreover, its highest weight of the representation is 0. Thus,
by Lemma 5,

Cq∗ = ‖x‖2nHC
0 .

Since q∗ is positive, we conclude that q∗ = c‖x‖2n for some positive constant c. �

4.3 Proof of Theorem 1.1
In the section, we prove Theorem 1.1. Besides the results established in the previous
subsections, we also need the following fact:

Lemma 11. For two points x and x′ in S2, if p(x) = p(x′) for all p ∈ Hn with n positive,
then x′ ∈ {x, (−1)n−1x}.

A proof of the lemma is provided in Appendix-E. We are now in a position to prove
Theorem 1.1:

Proof. Proof of Theorem 1.1. Let (xΣ(0), µ) be an arbitrary pair and (x′Σ(0), µ′) be any pair
that is output equivalent to (xΣ(0), µ). We show below that (x′Σ(0), µ′) is either (xΣ(0), µ)
or ((−1)n−1xΣ(0), µ).

Let Φ := {pi}2n+1
i=1 be an arbitrary basis of Hn. Then, by Prop. 4.1, we obtain that for

any σ ∈ Σ and any i = 1, . . . , 2n+ 1,

pi(xσ(0))ρ(σ) = pi(x
′
σ(0))ρ′(σ). (21)

Next, by Prop. 4.2, there exists a quadratic form q in pi such that the following holds:

q(x) =
∑

1≤i≤j≤2n+1

cijpi(x)pj(x) = 1, ∀x ∈ S2.

It then follows from (21) that for all σ ∈ Σ,

ρ2(σ) = ρ2(σ)q(xσ(0)) = ρ′2(σ)q(x′σ(0)) = ρ′2(σ).
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Because the two density functions ρ and ρ′ are nonnegative everywhere, we obtain that

ρ(σ) = ρ′(σ), ∀σ ∈ Σ.

Furthermore, it follows from (21) that for any σ ∈ Σ and any i = 1, . . . , 2n+ 1,

pi(xσ(0)) = pi(x
′
σ(0)).

Because {pi}2n+1
i=1 form a basis of Hn, we have that p(xσ(0)) = p(x′σ(0)) for all p ∈ Hn and

for all σ ∈ Σ. Thus, by Lemma 11, we obtain that

xσ(0) ∈ {xσ(0), (−1)n−1xσ(0)}, ∀σ ∈ Σ. (22)

Note, in particular, that if n is odd, then x′σ(0) = xσ(0) for all σ ∈ Σ. Thus, in this case,
system (3) is ensemble observable. We now assume that n is even and show that x′Σ(0)
is either xΣ(0) or −xΣ(0). But, this follows from the fact that both xσ(0) and x′σ(0) are
continuous in σ. To see this, consider a map δ : Σ → R defined by sending σ to the
Euclidean distance between xσ(0) and x′σ(0), i.e.,

δ : σ 7→ δ(σ) := ‖xσ(0)− x′σ(0)‖.

Because xσ(0) and x′σ(0) are continuous in σ, the map δ is continuous as well. On the other
hand, we note that by (22), there are only two cases:

(1) If x′σ(0) = xσ(0), then δ(σ) = 0.

(2) If x′σ(0) = −xσ(0), then δ(σ) = 2.

Thus, if x′σ(0) = xσ(0) (resp. x′σ(0) = −xσ(0)) for a certain σ ∈ Σ, then by continuity of δ,
x′Σ(0) = xΣ(0) (resp. x′Σ(0) = −xΣ(0)). This completes the proof. �

5 Conclusions
We have addressed in the paper the problem about observability of a continuum ensemble of
Bloch equations (3). We assume that the initial states xσ(0) of the individual systems are
unknown and, moreover, the measure µ that describes the overall population density of the
individual systems is also unknown. The problem is about whether one is able to estimate
xσ(0) for every σ ∈ Σ and the measure µ using only a scalar measurement output y(t).

We have provided a class of observation functions φ that guarantee (weak) ensemble
observability of the resulting system (3). Specifically, we have shown that if φ is a harmonic
homogeneous polynomial of positive degree, then two pairs (xΣ(0), µ) and (x′Σ(0), µ′) are
output equivalent if and only if µ = µ′ and x′Σ(0) ∈ {xΣ(0), (−1)n−1xΣ(0)}.

The proof of the result relies on the use of representation theory of sl(2,C). In particular,
the following two items are key to establishing the result:

(1) We have introduced the Casimir element η∗ (and its variants ξ and ζ defined in
Lemma 2) which acts on the space of harmonic homogeneous polynomials as a scalar
multiple of the identity operator. This fact is key to establishing Prop. 4.1.
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(2) We have used the fact that any finite-dimensional representation of sl(2,C) is reducible
and, then, decomposed the space of quadratic forms SC

2 (Φ) (with Φ a basis of HC
n )

into a direct sum of invariant subspaces under the representation. In particular, we
have shown that S2(Φ) contains the one-dimensional subspace spanned by ‖x‖2n,
which is the constant function 1S2 on S2. This fact is key to establishing Prop. 4.2.

The approach developed in the paper can be extended to analyze observability of other
ensemble systems defined on Lie groups and their homogenous spaces. The above two items
could serve as guidelines for the extension.

References
[1] J.-S. Li and J. Qi, “Ensemble control of time-invariant linear systems with linear

parameter variation,” IEEE Transactions on Automatic Control, vol. 61, no. 10, pp.
2808–2820, 2015.

[2] J.-S. Li, “Ensemble control of finite-dimensional time-varying linear systems,” IEEE
Transactions on Automatic Control, vol. 56, no. 2, pp. 345–357, 2011.

[3] U. Helmke and M. Schönlein, “Uniform ensemble controllability for one-parameter
families of time-invariant linear systems,” Systems & Control Letters, vol. 71, pp.
69–77, 2014.

[4] X. Chen, “Controllability issues of linear ensemble systems,” arXiv:2003.04529, 2020.

[5] P. A. Fuhrmann and U. Helmke, The Mathematics of Networks of Linear Systems.
Springer, 2015.

[6] J.-S. Li and N. Khaneja, “Control of inhomogeneous quantum ensembles,” Physical
Review A, vol. 73, no. 3, p. 030302, 2006.

[7] ——, “Ensemble control of Bloch equations,” IEEE Transactions on Automatic Control,
vol. 54, no. 3, pp. 528–536, 2009.

[8] F. Bloch, “Nuclear induction,” Physical Review, vol. 70, no. 7-8, p. 460, 1946.

[9] K. Beauchard, J.-M. Coron, and P. Rouchon, “Controllability issues for continuous-
spectrum systems and ensemble controllability of Bloch equations,” Communications
in Mathematical Physics, vol. 296, no. 2, pp. 525–557, 2010.

[10] X. Chen, “Controllability of continuum ensemble of formation systems over directed
graphs,” Automatica, vol. 108, p. 108497, 2019.

[11] A. Agrachev, Y. Baryshnikov, and A. Sarychev, “Ensemble controllability by Lie
algebraic methods,” ESAIM: Control, Optimisation and Calculus of Variations, vol. 22,
no. 4, pp. 921–938, 2016.



Ensemble observability of Bloch equations 23

[12] X. Chen, “Structure theory for ensemble controllability, observability, and duality,”
Mathematics of Control, Signals, and Systems, vol. 31, no. 2, pp. 1–40, 2019.

[13] B. C. Hall, Quantum Theory for Mathematicians. Springer, 2013, vol. 267.

[14] ——, Lie groups, Lie algebras, and Representations: An Elementary Introduction.
Springer, 2015, vol. 222.

[15] A. W. Knapp, Lie Groups Beyond an Introduction. Springer Science & Business
Media, 2013, vol. 140.

[16] J. E. Humphreys, Introduction to Lie Algebras and Representation Theory. Springer
Science & Business Media, 2012, vol. 9.

[17] W. Rudin, Principles of Mathematical Analysis. New York, NY: McGraw-Hill, Inc.,
1976.

[18] G. B. Arfken and H. J. Weber,Mathematical Methods for Physicists (Sixth Edition).
Elsevier Academic Press, 2005.

A Proof of Lemma 1

It suffices to show that η∗ commutes with every fi for i = 0, 1, 2. Recall that if (i, j, k) is
a cyclic rotation of (0, 1, 2), then [fi, fj] = fk. Thus, by symmetry, we only need to show
that η∗ commutes with f0. First, note that

f0f
2
1 = f 2

1 f0 + (f0f1 − f1f0)f1 + f1(f0f1 − f1f0)

= f 2
1 f0 + [f0, f1]f1 + f1[f0, f1] = f 2

1 f0 + f2f1 + f1f2.

Similarly, we obtain that

f0f
2
2 = f 2

2 f0 + (f0f2 − f2f0)f2 + f2(f0f2 − f2f0)

= f 2
2 f0 + [f0, f2]f2 + f2[f0, f2] = f 2

2 f0 − f1f2 − f2f1.

It then follows that f0 commutes with (f 2
1 + f 2

2 ) and, hence, with η∗ =
∑2

i=0 f
2
i as well. �

B Proof of Lemma 5
Let h, e+, e− be defined in (7). Then, by computation, we obtain that

π(h)p∗k = 2(n− 2k)p∗k and π(e+)p∗k = 0.

Let Vk be a subspace of PC
n spanned by πl(e−)p∗k for l = 0, . . . , 2(2n − k). Then, by

Lemmas 3 and 4, it suffices to show that Vk = ‖x‖2kHC
n−2k.
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First, note that the dimension ofHC
n−2k is 2(n−2k)+1, which is the same as the dimension

of the subspace Vk. Thus, we only need to show that each πl(e−)p∗k, for l = 0, . . . , 2(n−2k),
belongs to ‖x‖2kHC

n−2k.
Next, note that ‖x‖2 = 1 for all x ∈ S2. Thus, for any i = 1, 2, 3, fi‖x‖2 = 0 and, hence,

π(e−)‖x‖2 = 0. It follows that for any l = 0, . . . , 2(n− 2k),

πl(e−)p∗k = ‖x‖2kπl(e−)(x1 + ix2)n−2k.

It now remains to show that each πl(e−)(x1 +ix2)n−2k, for l = 0, . . . , 2(n−2k), belongs
to HC

n−2k. To see this, note that the Laplace operator 4 commutes with every fi, i.e.,
4fi = fi4 for all i = 1, 2, 3. In particular, it commute with π(e−). Thus,

4πl(e−)(x1 + ix2)n−2k = πl(e−)4(x1 + ix2)n−2k = 0

for all l = 0, . . . , 2(n− 2k). �

C Proof of Lemma 6

Because η∗ belongs to the center of U(g), η∗f = fη∗ for all f ∈ g. Then, by Schur’s
Lemma, there exists a constant λ ∈ C such that η∗p = λp for all p ∈ HC

n . To evaluate λ, we
let p∗ := (x1 + ix2)n be a highest weight vector in HC

n (with the highest weight being 2n).
Next, let h, e+, and e− be defined in (7). Note that

η∗ =
2∑
i=0

f 2
i = −1

4
h2 − 1

2
(e+e− + e−e+).

Then, using the fact that e+p
∗ = 0, we obtain that

η∗p∗ = −1

4
h2p∗ − 1

2
(e+e− + e−e+)p∗ = −1

4
h2p∗ − 1

2
(e+e− − e−e+)p∗.

Further, note that [e+, e−] = h and hp∗ = 2np∗. Thus,

η∗p∗ = −
(

1

4
h2 +

1

2
h

)
p∗ = −n(n+ 1)p∗,

which implies that λ = −n(n+ 1). �

D Proof of Lemma 9
We first show that for each k = 0, . . . , n, there exists a complex number ck such that
p2n−k = ckp̄k. To see this, we note that hpk = (2n − 2k)pk. Taking complex conjugate
on both sides, we have h̄p̄k = (2n − 2k)p̄k. Recall that h = 2if0, so h̄ = −h. Thus,
hp̄k = −(2n − 2k)p̄k, so p̄k belongs to the weight space corresponding to the weight
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−(2n − 2k). Because the weight space is one-dimensional (over C) and because p2n−k
belongs to the same weight space, there exists a ck ∈ C such that p2n−k = ckp̄k.

Next, we note that ckē+p̄k = ē+p2n−k. Recall that by (17), e+pk = k(2n− k + 1)pk−1,
so ē+p̄k = k(2n− k + 1)p̄k−1. From (7), we have that ē+ = −e− and, hence, ē+p2n−k =
−e−p2n−k = −p2n−k+1. It then follows that

ckk(2n− k + 1)p̄k−1 = ckē+p̄k = ē+p2n−k = −p2n−k+1 = ck−1p̄k−1,

which then implies that
ck−1 = −k(2n− k + 1)ck.

As a consequence, the following holds:

ck = cn(−1)n−k
(2n− k)!

k!
, ∀k = 0, . . . , n.

To establish the lemma, it now suffices to show that cn = 1. Note that cn satisfies
the condition cnp̄n = pn. As a consequence, cn = 1 if and only if pn is real. We write
pn =

∑l
i=1 γimi, where mi are monomials in variables x1, x2, and x3 and γi ∈ C are

coefficients. Note that if there is some i = 1, . . . , l, such that γi is real, then all the coefficients
are real. This holds because otherwise, pn and p̄n are linearly independent which contradicts
the fact that they both belong to the same weight space. With that in mind, we show below
that pn contains the monomial xn3 with nonzero, real coefficient. Recall that pn = en−p0

where p0 = (x1 + ix2)n and e− = −f1 + if2 with f1 and f2 defined in (1). Straightforward
computation shows that the coefficient of xn3 in pn is given by n!(−2)n. �

E Proof of Lemma 11

Recall that HC
n is the complexification of Hn. We fix an arbitrary x ∈ S2 and show that

if p(x′) = p(x) for all p ∈ HC
n , then x′ ∈ {x, (−1)n−1x}. Since the xi’s cannot be zero

simultaneously, we assume without loss of generality that x3 6= 0. Then, consider the
following three homogeneous polynomials in HC

n :

p1(x) := (x1 + ix2)n, p2(x) := x3(x1 + ix2)n−1, p3(x) := (x3 + ix1)n.

We assume that the values of the above polynomials at the given x are given by

p1(x) = c1, p2(x) = c2, p3(x) = c3,

for some c1, c2, c3 ∈ C. We provide below solutions x′ to the above polynomial equations.
If both x1 and x2 are 0, then, c1 = c2 = 0 and c3 is a (nonzero) real number. It follows

that x′1 = x′2 = 0 and x′n3 = xn3 = c3. Thus, in this case, x′ ∈ {x, (−1)n−1x}. Next, we
assume that x2

1 + x2
2 6= 0. Since x3 6= 0, every ci is nonzero. Then,

p1(x′)

p2(x′)
=
x′1 + ix′2
x′3

=
c1

c2

.
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Since x′1, x′2, and x′3 are real, we have that

x′1 = re(c1/c2)x
′
3 and x′2 = im(c1/c2)x

′
3. (23)

where re(·) and im(·) denote the real and imaginary part of a complex number, respectively.
On the other hand, we also have that

∑3
i=1 x

′2
i = 1. Thus, (23) determines x′ up to sign, i.e.,

x′ = ±x. If, further, n is odd, then

p1(−x) = −p1(x) = −c1 6= c1,

and, hence, x′ can only be x. Combining the above arguments, we conclude that x′ ∈
{x, (−1)n−1x}. �

F The Addition Theorem
We provide here another proof of Prop. 4.2 using the Addition Theorem for spherical
harmonics (see, for example, [18, Ch. 12]). Recall that the Cartesian coordinate system
(x1, x2, x3) and the spherical coordinate system (r, θ, ϕ) are related by

x1 = r sin θ cosϕ, x2 = r sin θ sinϕ, x3 = r cos θ. (24)

We next recall that spherical harmonics Y k
n (θ, ϕ) are defined as follows: For a given a

nonnegative integer n and an integer k with |k| ≤ n, we have that

Y k
n (θ, ϕ) := (−1)k

√
2n+ 1

4π

(n− k)!

(n+ k)!
Lkn(cos θ)eikϕ,

where Lkn is the associated Legendre polynomial define by

Lkn(x) :=
(−1)k

2nn!
(1− x2)k/2

dn+k

dxn+k
(x2 − 1)n.

It is known that {Y k
n }nk=−n is a basis ofHC

n (after change of coordinates (24)). In other words,
each harmonic homogeneous polynomial p ∈ HC

n can be expressed as a linear combination
of the spherical harmonics and vice versa. In fact, we note here that each Y k

n for |k| ≤ n is
linearly proportional to pn−k where pn−k is defined in (15).

We now reproduce the Additional Theorem for spherical harmonics: First, recall that the
ordinary Legendre polynomial Ln can be described by the Rodrigues’ formula:

Ln(x) :=
1

2nn!

dn

dxn
(x2 − 1)n.

Next, for two points (1, θ, ϕ) and (1, θ′, ϕ′) on the unit sphere S2, we let γ be the angle
between these two points, i.e.,

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′).

Then, the Addition Theorem for spherical harmonics is given by the following:



Ensemble observability of Bloch equations 27

Lemma 12 (Addition Theorem). For any two pairs (θ, ϕ) and (θ′, ϕ′), we have that

Ln(cos γ) :=
4π

2n+ 1

n∑
k=−n

Y k
n (θ, ϕ)Ȳ k

n (θ′, ϕ′),

where Ȳ k
n (θ′, ϕ′) is the complex conjugate of Y k

n (θ′, ϕ′).

Prop. 4.2 is then a corollary to the above result. To see this, we let (θ, ϕ) = (θ′, ϕ′).
Then, by the Addition Theorem, we have that for any (θ, ϕ),

4π

2n+ 1

n∑
k=−n

|Y k
n (θ, ϕ)|2 = Ln(1).

Finally, note that Ln(1) = 1 for any n ≥ 1, which then completes the proof of Prop. 4.2. �
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