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Abstract

This paper presents a first-order distributed continuous-time algorithm for computing the least-

squares solution to a linear equation over networks. Given the uniqueness of the solution, with nonin-

tegrable and diminishing step size, convergence results are provided for fixed graphs. The exact rate of

convergence is also established for various types of step size choices falling into that category. For the

case where non-unique solutions exist, convergence to one such solution is proved for constantly con-

nected switching graphs with square integrable step size, and for uniformly jointly connected switching

graphs under the boundedness assumption on system states. Validation of the results and illustration

of the impact of step size on the convergence speed are made using a few numerical examples.

1 Introduction

In modern engineering systems, there is a great demand for large-scale computing capabilities for solving

real-world mathematical problems. Centralized algorithms are effective tools if the computing center pos-

sesses the information of the entire problem. In some cases, however, due to the comparatively weak com-

puting power of any one agent or its limited access to the parameters and measurement data relevant to the

whole problem, the notion of distributed computation over networks has been developed [6,13,14,21,25,26].

Nowadays it is widely applied in the areas of analyzing the consensus of complex systems [20], solving

various optimization problems [17], carrying out distributed estimation [2] and filtering [7].

Solving systems of linear equations using distributed algorithms over networks emerges as one of the

basic tasks in distributed computation. In these scenarios, it is often assumed that each agent of the
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network only has access to one or a few of the individual linear equations making up the full system

due to security issues or memory limitation, and is only permitted to interact with a subset of the other

agents. A number of contributions have been made to the development of distributed solvable linear

equation solvers, where simple first-order distributed algorithms, in continuous-time or discrete-time [1,

8, 9, 12, 15, 16, 23, 27, 30], manage to deliver satisfactory solutions even for switching network structures.

As is known to all, however, another frequent case in practical problems is concerned with non-solvable

linear equations, in which we often seek a least-squares solution by minimizing the associated objective

function.

However, it seems a rather challenging problem in developing distributed least-squares solvers for net-

work linear equations, due to the mismatch between individual linear equations at each node and the

network least-squares solution. Despite the difficulties, there exist a few distributed algorithms developed

for the least-squares problem using different approaches, such as second-order algorithms [3, 10, 28, 29],

state expansion [16] and the high gain consensus gain method [23]. Second-order distributed least-squares

solvers [3, 10, 28, 29] generally can produce good convergence performance, however, they rely on re-

stricted network structures and demand higher communication and storage capacities. The state expan-

sion method [16] is based on enlarging the state dimension and then applying the existing methods for

linear equations with exact solutions directly, but a negative feature is that the nodes must have access to

more knowledge than their own linear equations. It was shown in [23] that first-order algorithms for exact

solutions can be adapted to the least-squares case by a high consensus gain, but only in an approximate

sense.

In this paper, we propose a first-order continuous-time flow for the least-squares problems of network

linear equations, in which each agent keeps averaging the state with its neighbors’ and at the same time

descends along the negative gradient of its local cost function. This flow is inspired by the work of [19] on

distributed subgradient optimization. If the network linear equation has one unique least-squares solution,

we prove that all node states asymptotically converge to that solution along our flow, with constant and

connected graphs and a step size tending to zero, but not too fast. We also give analytical results on how

the choice of step size, the attributes of linear equations and network size affect the convergence speed.

For a switching network structure that is at all times connected, we show that the node states always

converge to one of the least-squares solutions with square integrable step size. The same convergence result

is shown to hold for a uniformly jointly connected switching network under a boundedness assumption on

the system states. We also provide a few numerical examples that validate the usefulness of the proposed

algorithms and demonstrate the convergence rate.

A preliminary version of this work [11] was presented at the 56th IEEE Conference on Decision and

Control. Compared to the conference version, we make additional contributions as follows: (i) analytical

studies on the rate of convergence of the proposed algorithm are provided; (ii) convergence results are

stated under a common structure for all network and linear equation scenarios, in addition to the detailed

proofs; (iii) more numerical validations are presented. The remainder of this paper is organized as follows.

In Section 2, a brief introduction to the definition of the problem studied is given. We present the main
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results in Section 3 and provide their detailed proofs in Section 4. We also provide validations and further

discussions using numerical examples in Section 5. In Section 6, the main work of this paper is summarized

and potential future work directions are provided.

2 Problem Definition

In this section, a few mathematical preliminaries are provided, regarding linear equations over networks.

Also we establish a distributed network flow that can asymptotically compute the least-squares solution

to network linear equations and discuss its relation to existing work.

2.1 Linear Equations

Consider the following linear algebraic equation with respect to y ∈ Rm

z = Hy, (1)

where z ∈ RN and H ∈ RN×m are known and satisfy N ≥ m. Denote

H =


h>1

h>2
...

h>N

 , z =


z1

z2
...

zN


with hi ∈ Rm for all i = 1, . . . , N . We can rewrite (1) as

h>i y = zi, i = 1, . . . , N.

Denote the column space of a matrix M by colsp{M}. If z ∈ colsp{H}, then the equation (1) always has

(one or many) exact solutions. If z /∈ colsp{H}, the least-squares solution is defined by the solution of the

following optimization problem:

min
y∈Rm

‖z−Hy‖2. (2)

It is well known that if rank(H) = m, then (2) yields a unique solution y∗ = (H>H)−1H>z, while (2)

has a set of non-unique least-squares solutions if rank(H) < m. Define

f(y) = ‖z−Hy‖2 =

N∑
i=1

fi(y),

where fi(y) = |h>i y − zi|2. Note that y∗ ∈ argmin f(y), i.e., ∇f(y∗) = 0, where ∇f(y) = 2
N∑
i=1

(hih
>
i y −

zihi).
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2.2 Networks

Let G = (V, E) denote a constant, undirected and simple graph with the finite set of nodes V = {1, 2, . . . , N}
and the set of edges E =

{
{i, j} : i, j ∈ V are connected

}
. Let R+,R≥0 denote the sets of all positive real

numbers and nonnegative real numbers, respectively. Define a weight function w : E → R+ over the edge

set with the weight of edge {i, j} being w({i, j}). It is worth noting the weight w for each edge is assumed

to be fixed in this paper for ease of the presentation. Generalizations to time-varying weights can be made

similarly to the analysis of [23]. Based on constant graphs, we next introduce time-varying graphs. Let

Q be the set containing all possible constant and undirected graphs induced by the node set V and let

Q∗ ⊂ Q be a subset of Q. Define a piecewise constant mapping Gσ = (V, Eσ) : R≥0 → Q∗. Throughout

this paper, we assume the set of times corresponding to discontinuities of Gσ(t) has measure zero. Note

that the time-varying graph Gσ(t) = (V, Eσ(t)) represents the network topology at time t. Let Ni(t) be

the set of neighbor nodes that are connected to node i at time t, i.e., Ni(t) =
{
j : {i, j} ∈ Eσ(t)

}
. Define

the adjacency matrix A(t) of the graph Gσ(t) by [A(t)]ij = w({i, j}) if {i, j} ∈ Eσ(t)}, and [A(t)]ij = 0

otherwise, and D(t) = diag(
N∑
j=1

[A(t)]1j , . . . ,
N∑
j=1

[A(t)]Nj). Then L(t) = D(t) − A(t) is the Laplacian of

graph Gσ(t) at time t.

2.3 Distributed Flows

Assume that node i of the network Gσ(t) only knows the information of hi, zi, i.e., node i is associated with

the linear equation h>i y = zi. We associate with each node i a state xi(t) ∈ Rm, which, as the notation

implies, in general varies with time. Then we propose the following continuous-time network flow

ẋi(t) = K
∑

j∈Ni(t)

[A(t)]ij(xj(t)− xi(t))−
α(t)

2
∇fi(xi(t)), (3)

where K ∈ R+ is a positive constant, ∇fi(y) = 2(hih
>
i y − zihi) and the step size α : R≥0 → R+ is a

continuous function which assures the continuity of all xi(t) and their derivatives, with the exception of

the time points when the networks switch. In vector form, we have

ẋ(t) = −M(t)x(t) + α(t)zH , (4)

where

x(t) =
[
x1(t)

> . . . xN (t)>
]>
,

M(t) = K(L(t)⊗ Im) + α(t)H̃,

H̃ = diag
(
h1h

>
1 , . . . ,hNh>N

)
,

zH =
[
z1h
>
1 · · · zNh>N

]>
.

Now we make several assumptions of α(t) that will be used in our main results.

Assumption 1. (i)
∫∞
0 α(t)dt =∞; (ii) lim

t→∞
α(t) = 0; (iii)

∫∞
0 α2(t)dt <∞.
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2.4 Discussion

Now we clarify the relation between the previous work on distributed least-squares and optimization

algorithms, and our algorithm (3) by briefly discussing their structure and applicability. It is clear that

(3) has exactly the same structure as the flow in [18, 19] in the sense that they are both in the form of

“local averaging consensus” + “diminishing local objective”, with the difference that the flow in [18,19] is

discrete-time but (3) is continuous-time. However, we cannot use the algorithm and the analysis directly

because the gradient boundedness of (3) is not directly verifiable. It can be noted that the first-order

flow in [23] is a special case of (3) obtained by letting α(t) be some constant. Due to the existence of the

diminishing step size, (3) is a linear time-varying system, while the flow in [23] is linear time-invariant

and can only produce the solution in approximate sense. Hence the approach to analyzing the flow in [23]

is not applicable for (3). Indeed (3) can be formulated by properly specializing the optimization problem

in [24] and letting each agent’s output scale be constant one. However, because of the specificity of the

least-squares cost function, relaxed convergence conditions become possible as will be shown later. In

addition, we will provide analytic results on the convergence speed for the fixed network case. There are

also second-order least-squares solvers [3,10,28,29], but they often require limited network topologies and

have more complex structures than (3).

3 Main Results

In this section, we investigate the flow (4) over fixed and switching networks, respectively, and establish

the convergence conditions regarding α(t) and the graphs.

Proofs of the results appear in later subsections.

3.1 Convergence over Fixed Networks

First we consider the case where the linear equation (1) has one unique least-squares solution and the

network is a constant graph for all t. In this case, the following theorem holds.

Theorem 1. Let y∗ = (H>H)−1H>z denote the unique least-squares solution of (1) and suppose rank(H) =

m. Let Assumption 1 (i) and (ii) hold. If Gσ(t) = G is constant and connected for all t ≥ 0, then along

any solution of (3) there holds

lim
t→∞

xi(t) = y∗

for all i ∈ V.

Let σm(·) and σ2(·) denote the smallest and the second smallest eigenvalue of a real symmetric matrix,

respectively. For two functions g, h : R≥0 → R+, we say g(t) = O(h(t)) if there exist c > 0 and τ > 0 such

that g(t) ≤ c · h(t) for all t ≥ τ .
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The following theorem characterizes the convergence speed of the algorithm (3) for different choices of

step size known to decay with a t’s inverse power that is no bigger than one.

Theorem 2. Suppose the conditions of Theorem 1 hold. Define y∗ = (H>H)−1H>z.

(i) If α(t) = O(1t ), then along (3) there hold

(a)
∥∥ N∑
i=1

xi(t)/N − y∗
∥∥ = O

(
1

tmin(1,
σm(H>H)

N
)

)
for σm(H>H) 6= N .

(b)
∥∥ N∑
i=1

xi(t)/N − y∗
∥∥ = O

( log t
t

)
for σm(H>H) = N .

(ii) If α(t) = O( 1
tλ

) for λ ∈ (0, 1), then along (3) there holds

∥∥ N∑
i=1

xi(t)/N − y∗
∥∥ = O

(
1

tλ

)
.

Clearly, Theorem 2 provides some guidance on the choice of the step size α(t) to guarantee fast con-

vergence speed as follows:

(i) For linear equations and networks with σm(H>H)
N ≥ 1, α(t) = O(1t ) yields the fastest convergence

speed.

(ii) For linear equations and networks with σm(H>H)
N < 1, α(t) = O( 1

tλ
) with σm(H>H)

N < λ < 1 admits

the fastest convergence speed. In this case, the rate of convergence will increase as λ becomes larger.

Interestingly however, when λ reaches one, the rate of convergence suddenly drops to that of the

case λ = σm(H>H)
N .

These results, especially the discontinuity around the inverse power one of t, would have been difficult

to predict. As will be shown later, numerical results demonstrate that the convergence upper bounds

established in Theorem 3 are also the asymptotic lower bounds.

3.2 Convergence over Switching Networks

Now we consider a more general case where the least-squares solutions of (1) can be unique or non-unique,

and the network Gσ(t) switches among a collection of graphs. Evidently, the Caratheodory solutions of (4)

exist for all initial conditions because the set of times corresponding to discontinuities of Gσ(t) is assumed

to have measure zero.

Theorem 3. Suppose rank(H) ≤ m and denote the set of least-squares solutions of (1) by YLS =

argmin f(y). In particular, |YLS| = 1 if rank(H) = m. Suppose Assumption 1 (i), (ii) and (iii) hold.

If all G ∈ Q∗ are connected, then along any solution of (3) over the switching graph Gσ(t) there exists

ŷ ∈ YLS such that

lim
t→∞

xi(t) = ŷ

for all i ∈ V.
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In the following theorem, we prove that the connectedness condition for graphs in Theorem 3 can be

relaxed. We provide an essential definition.

Definition 1. Consider a graph Gσ(t) = (V, Eσ(t)). The joint graph of Gσ(t) in the time interval [t1, t2)

with t1 < t2 ≤ ∞ is denoted as

G([t1, t2)) = (V,∪t∈[t1,t2)Eσ(t)).

Then Gσ(t) is uniformly jointly connected if there exists a constant T > 0 such that G([t, t+T )) is connected

for all t ≥ 0.

Let τ1, τ2, . . . with 0 < τ1 < τ2 < . . . denote the consecutive discontinuities of Gσ(t). Then we present

the following assumption.

Assumption 2. There exists τd > 0 such that

τi+1 − τi > τd

for all i = 0, 1, 2, . . . where τ0 = 0.

Then we have the following result.

Theorem 4. Let YLS = argmin f(y) be the set of least-squares solutions of (1) and suppose rank(H) ≤ m.

Let Assumption 1 (i), (ii), (iii) and Assumption 2 hold. Suppose there exists M > 0 such that ‖x(t)‖ ≤M
for all t ≥ 0. If Gσ(t) is uniformly jointly connected, then along any solution of (3) over the switching graph

Gσ(t) there exists ŷ ∈ YLS such that

lim
t→∞

xi(t) = ŷ

for all i ∈ V.

We must mention that it is hard to provide the conditions for which the system state x(t) is bounded

in Theorem 4. However, numerical examples can show the boundedness condition is satisfied in many

circumstances.

4 Proofs of Statements

Now we provide the proofs of our main results, in addition to a couple of key lemmas.

4.1 Key Lemmas

We begin with several lemmas that assist with the proofs of Theorem 1, Theorem 3 and Theorem 4.

Let 〈·, ·〉 denote the inner product of two vectors of the same dimension. We say a differentiable function

g : RN → R is θ-strongly convex if

g(y1)− g(y2) ≥ ∇g(y2)
>(y1 − y2) +

θ

2
‖y1 − y2‖2

for all y1,y2 ∈ RN .
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Lemma 1. Consider a matrix H ∈ RN×m with N ≥ m and a vector z ∈ RN . Define f(y) = ‖Hy − z‖2.

If rank(H) = m, then f is 2σm(H>H)-strongly convex.

Proof. Evidently, H>H − σm(H>H)I is a positive semidefinite matrix. Let y1,y2 ∈ Rm. By applying

Taylor series expansion on f around y2. we obtain

f(y1)− f(y2)

= ∇f(y2)
>(y1 − y2) +

1

2
(y1 − y2)

>∇2f(y2)(y1 − y2)

= ∇f(y2)
>(y1 − y2) + (y1 − y2)

>H>H(y1 − y2)

≥ ∇f(y2)
>(y1 − y2) + σm(H>H)‖y1 − y2‖2,

which completes the proof. �

Lemma 2. Let µ, λ > 0. Then ∫ t

0
O
(
eµs

sλ

)
ds = O

(
eµt

tλ

)
.

Proof. Introduce φ ∈ (0, µ) and define τ = λ
µ−φ . Then it can be easily shown for t > τ , there holds∫ t

0+

eµs

sλ
ds =

∫ τ

0+

eµs

sλ
ds +

∫ t

τ

eµs

sλ
ds

≤
∫ τ

0+

eµs

sλ
ds +

∫ t

τ

(
1

φ

(
µ− λ

s

))eµs
sλ

ds

≤
∫ τ

0+

eµs

sλ
ds +

∫ t

τ

d

ds

eµs

φsλ

=
eµt

φtλ
+

∫ τ

0+

eµs

sλ
ds− eµτ

φτλ
,

which completes the proof noting the definition of O(·).

Lemma 3. Consider a continuously differentiable function g : R≥0 → R≥0. If there exist continuous

functions γ : R≥0 → R+ and β : R≥0 → R+ satisfying ġ(t) ≤ −γ(t)g(t) + β(t), then

g(t) ≤ e−
∫ t
0 γ(s)dsg(0) +

∫ t

0
e−

∫ t
s γ(r)drβ(s)ds.

Furthermore, the following statements hold:

(i) If
∫∞
0 γ(t)dt =∞ and lim

t→∞
β(t)
γ(t) = 0, then lim

t→∞
g(t) = 0.

(ii) If
∫∞
0 γ(t)dt =∞ and lim sup

t→∞

β(t)
γ(t) <∞, then {g(t)}t≥0 is bounded.

Proof. The proof of the inequality of g(t) follows from Grönwall’s Inequality [4]. Now we prove the two

statements in the following:

8



(i). Suppose the conditions
∫∞
0 γ(t)dt =∞ and lim

t→∞
β(t)
γ(t) = 0 hold. Evidently, the term u(t) := exp(−

∫ t
0 γ(s)ds)g(0)

goes to zero as t goes to infinity. Then we focus on the other term

k(t) :=

∫ t

0
exp(−

∫ t

s
γ(r)dr)β(s)ds.

Since for a sufficiently small ε > 0, there exists t0 > 0 such that β(t)
γ(t) < ε for all t > t0. Define ξ = max

0≤t≤t0

β(t)
γ(t) .

Then for all t > t0, there holds

k(t) < ξ

∫ t0

0
d(exp(−

∫ t

s
γ(r)dr)) + ε

∫ t

t0

d(exp(−
∫ t

s
γ(r)dr))

= ξ exp(−
∫ t

t0

γ(r)dr)(1− exp(−
∫ t0

0
γ(r)dr)) + ε(1− exp(−

∫ t

0
γ(r)dr))

< ξ exp(−
∫ t

t0

γ(r)dr) + ε.

Since exp(−
∫ t
t0
γ(r)dr) goes to zero as t goes to infinity, one has lim

t→∞
k(t) = 0. Then we have lim

t→∞
g(t) =

0.

(ii). Suppose the conditions
∫∞
0 γ(t)dt =∞ and

lim sup
t→∞

β(t)
γ(t) < ∞ hold. Then there exist B > 0 and t̂ > 0 such that β(t)

γ(t) < B for all t > t̂. Similarly, the

limit of the term u(t) = exp(−
∫ t
0 γ(s)ds)g(0) is zero as t goes to infinity, i.e., given B > 0, there exists

tu > 0 such that u(t) < B for all t > tu. Also we have k(t) < B
∫ t
0 exp(−

∫ t
s γ(r)dr)γ(s)ds < B for t > t̂.

Let t0 := max{t̂, tu}. Hence, g(t) < 2B for t > t0. Since g(t) is continuous, we have g(t) < max{B1, 2B}
for all t ≥ 0 where B1 = max

0≤t≤t0
g(t), i.e., {g(t)}t≥0 is bounded.

Lemma 4. Consider the flow (3) and the underlying communication graph Gσ(t). Suppose there exists

M > 0 such that ‖x(t)‖ ≤M for all t ≥ 0. Suppose Gσ(t) is uniformly jointly connected. Let xi(t) for all

i denote the state held by node i of Gσ(t). Define Φ(t) = max
1≤i,j≤N

‖xi(t)− xj(t)‖ and a continuous function

α : R≥0 → R+. If
∫∞
0 α2(t)dt <∞, then

∫∞
0 α(t)Φ(t)dt <∞.

Proof. By [22], we know that there exists C1 > 0, C2 > 0 such that for all k ≥ 0 and kC1 ≤ t ≤ (k+ 1)C1,

Φ(t) ≤ Φ(kC1) + C2

∫ (k+1)C1

kC1

α(t)dt (5)

Φ((k + 1)C1) ≤ βΦ(kC1) + C2

∫ (k+1)C1

kC1

α(t)dt (6)

with β ∈ (0, 1). Define ωk :=
∫ (k+1)C1

kC1
α(t)dt and α∗ := sup

t≥0
α(t). Then the proof is completed by the

9



following inequalities.∫ ∞
0

α(t)Φ(t)dt =
∞∑
k=0

∫ (k+1)C1

kC1

α(t)Φ(t)dt

a)

≤
∞∑
k=0

∫ (k+1)C1

kC1

α(t)(Φ(kC1) + C2

∫ (k+1)C1

kC1

α(s)ds)dt

=

∞∑
k=0

ωkΦ(kC1) + C2

∞∑
k=0

(

∫ (k+1)C1

kC1

α(t)dt)2

b)

≤
∞∑
k=0

ωkΦ(kC1) + C1C2

∫ ∞
0

α2(t)dt

c)

≤
∞∑
k=1

ωk(β
kΦ(0) + C2

k∑
r=1

βk−rωr−1) + ω0Φ(0)

+ C1C2

∫ ∞
0

α2(t)dt,

where a) is from (5), b) is due to Cauchy–Schwarz inequality, and c) is from (6). This allows us to further

conclude ∫ ∞
0

α(t)Φ(t)dt

≤ α∗C1Φ(0)
∞∑
k=1

βk +
C2

2

∞∑
k=1

k∑
r=1

βk−r(ω2
k + ω2

r−1) + ω0Φ(0) + C1C2

∫ ∞
0

α2(t)dt

≤ α∗βC1Φ(0)

1− β
+

C2

1− β

∞∑
k=1

ω2
k + ω0Φ(0) + C1C2

∫ ∞
0

α2(t)dt

= (
C2

1− β
+ C1C2)

∫ ∞
0

α2(t)dt + (
α∗βC1

1− β
+ ω0)Φ(0),

which completes the proof of the lemma.

4.2 Proof of Theorem 1

The proof starts by establishing x(t) is bounded, which is given as follows. Consider

QK(x, t) := x>M(t)x

= K
∑
{i,j}∈E

[A]ij‖xj − xi‖2 + α(t)
N∑
i=1

|h>i xi|2

with x 6= 0. Clearly QK(x, t) ≥ 0 and the equality holds only if xi = xj for any i, j and h>i xi = 0 for all i.

Because rank(H) = m by hypothesis, there does not exist x 6= 0 such that QK(x, t) = 0, i.e., QK(x, t) > 0

for x 6= 0. Therefore, M(t) is positive-definite for all t. Similarly, P := L⊗ Im+ H̃ is also positive-definite.

Under Assumption 1 (ii), we know that there exists sufficiently large t0 such that α(t) < K for all t > t0.

By Theorem 4.2.2 in [5], we know that QK(x, t) ≥ α(t)x>Px ≥ α(t)σm(P)‖x‖2 for any x and all t > t0.

Let h(t) = ‖x(t)‖2. Then

d

dt
h(t) = −2x(t)>(K(L⊗ Im) + α(t)H̃)x(t) + 2α(t)x(t)>zH

≤ −2α(t)σm(P)‖x(t)‖2 + 2α(t)‖x(t)‖‖zH‖
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for t > t0. Consider

d

dt

√
h(t) =

ḣ(t)

2
√
h(t)

≤ −α(t)σm(P)
√
h(t) + α(t)‖zH‖, t ≥ t0. (7)

By Lemma 3.(ii), identifying g(t) with
√
h(t), we have that

√
h(t) = ‖x(t)‖ is bounded for t > t0. Due to

the continuity of x(t), ‖x(t)‖ is bounded for all t ≥ 0.

For the second step of the proof, we first denote x̄(t) := 1
N

N∑
i=1

xi(t) and x̄�(t) := 1N ⊗ x̄(t). By simple

calculation, it can be shown that ˙̄x�(t) = 1N ⊗ ( 1
N

N∑
i=1

ẋi(t)) = −1N ⊗ (α(t)2N

N∑
i=1
∇fi(xi)). Then by [5]

d

dt
‖x(t)− x̄�(t)‖2

= 2〈x(t)− x̄�(t), ẋ(t)− ˙̄x�(t)〉

= 2〈x(t)− x̄�(t), −K(L⊗ Im)x(t)− α(t)H̃x(t) + α(t)zH + 1N ⊗ (
α(t)

2N

N∑
i=1

∇fi(xi(t)))〉

= 2〈x(t)− x̄�(t),−K(L⊗ Im)(x(t)− x̄�(t))〉+ β(t)

≤ −2σ2(L)K‖x(t)− x̄�(t)‖2 + β(t), (8)

where

β(t) = 2α(t)〈x(t)− x̄�(t), zH − H̃x(t) + 1N ⊗ (
1

2N

N∑
i=1

∇fi(xi(t)))〉.

Under Assumption 1 (ii) and by the claim that ‖x(t)‖ is bounded, we know that lim
t→∞

β(t) = 0. By Lemma

3.(i), lim
t→∞
‖x(t)− x̄�(t)‖2 = 0, i.e., the dynamical system (4) achieves a consensus.

Now we turn to the last step of the proof and analyze the relationship between x̄(t) and the optimal

point y∗. Let

ω(t) =
α(t)

N
〈x̄(t)− y∗,∇f(x̄(t))−

N∑
i=1

∇fi(xi(t))〉.

By Lemma 1, f(y) is 2σm(H>H)-strongly convex, and there holds

d

dt
‖x̄(t)− y∗‖2 = 2〈x̄(t)− y∗, ˙̄x(t)〉

= −α(t)

N
〈x̄(t)− y∗,

N∑
i=1

∇fi(xi(t))〉

= −α(t)

N
〈x̄(t)− y∗,∇f(x̄(t))〉+ ω(t)

≤ −α(t)

N
(f(x̄(t))− f(y∗) + σm(H>H)‖x̄(t)− y∗‖2) + ω(t) (9)

≤ −2σm(H>H)α(t)

N
‖x̄(t)− y∗‖2 + ω(t). (10)

Since lim
t→∞

(x̄(t)−xi(t)) = 0, namely lim
t→∞

(∇f(x̄(t))−
N∑
i=1
∇fi(xi(t))) = 0, we have lim

t→∞
‖x̄(t)−y∗‖2 = 0 by

Lemma 3.(i), i.e., (4) reaches a consensus and finally all nodes hold the value of the least-squares solution

to (1), which completes the proof.
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4.3 Proof of Theorem 2

We continue to use the definitions of β(t), x̄(t), x̄�(t), ω(t) in the proof of Theorem 1.

(i) Let α(t) = O(1t ). Due to the boundedness of ‖x(t)‖ proved by (7)

β(t) = O(α(t)‖x(t)− x̄�(t)‖) (11)

= O
(

1

t

)
. (12)

By applying Lemma 3 to (8) and based on (12), one has

‖x(t)− x̄�(t)‖2 =

∫ t

0
O
(
e2σ2(L)K(s−t)

s

)
ds. (13)

Clearly (13) with Lemma 2 yields

‖x(t)− x̄�(t)‖2 = O
(

1

t

)
. (14)

It can be noticed that (11) shows β(t) is bounded by a function of ‖x(t) − x̄�(t)‖. Hence (14) leads to a

tighter bound of β(t) than (12)

β(t) = O
(

1

t
3
2

)
.

Based on (11), by recursively applying Lemma 2 and Lemma 3 on (8) with constantly updated upper

bounds of β(t) initialized by (12), we can obtain a sequence of bounds on ‖x(t)− x̄�(t)‖2 as following.

‖x(t)− x̄�(t)‖2 = O(tar), r = 1, 2, . . . , (15)

where

ar+1 =
1

2
ar − 1, a1 = −1.

Clearly, ar in (15) goes to −2 as r go to infinity. Then there holds

‖x(t)− x̄�(t)‖2 = O
(

1

t2

)
. (16)

From the Cauchy–Schwarz inequality and (16)

ω(t) =
2α(t)

N
(x̄(t)− y∗)>

N∑
i=1

hih
>
i (x̄(t)− xi(t))

≤ 2α(t)

N
‖x̄(t)− y∗‖

N∑
i=1

‖hi‖2‖x̄(t)− xi(t)‖

≤ ρα(t)‖x̄(t)− y∗‖‖x(t)− x̄�(t)‖ (17)

= O
(
t−2‖x̄(t)− y∗‖

)
, (18)

where

ρ := max{2N−
1
2 ‖hi‖2 : i ∈ V}.

We apply Lemma 3 on (10) using the bound in (18) and obtain

‖x̄(t)− y∗‖2 = O
(
t−

2σm(H>H)
N

)
+O

(
t−

2σm(H>H)
N

)
·
∫ t

0
O
(
s

2σm(H>H)
N

−2 · ‖x̄(s)− y∗‖
)

ds. (19)

12



Depending on whether

s
2σm(H>H)

N
−2 · ‖x̄(s)− y∗‖ = O(s−1),

the integral part in (19) falls into two different function classes. Therefore, we will discuss the bound of

‖x̄(t)− y∗‖2 in two cases.

(a) We assume σm(H>H) 6= N . Define a set U ⊂ [1, 2) with

U :=

{ r∑
i=1

(
1

2

)i−1
: r = 2, 3, . . .

}⋃
{1}.

We will see the proof of (a) can be achieved under two complementary scenarios.

[Scenario 1] Suppose 2σm(H>H)
N ∈ R+ \ (U

⋃
{2}). From (19) with the fact ‖x̄(t)− y∗‖ = O(1)

‖x̄(t)− y∗‖2 = O
(

1

t
2σm(H>H)

N

+
1

t

)
. (20)

Define two sequences {br}r=1,2,... and {b̂r}r=1,2,... with

br+1 =
1

2
br − 1, b1 = −2σm(H>H)

N

b̂r+1 =
1

2
b̂r − 1, b̂1 = −1.

Direct verification shows

br 6= −
2σm(H>H)

N
, ∀r ≥ 2 (21)

b̂r 6= −
2σm(H>H)

N
, ∀r ≥ 1. (22)

It is evident (21) and (22) guarantee that no integral of O(s−1) arises the following iteration process.

Clearly

‖x̄(t)− y∗‖2 a)
= O

(
t−

2σm(H>H)
N

)
+O

(
t−

2σm(H>H)
N

)
·
∫ t

0
O
(
s

2σm(H>H)
N

−2 ·
(
s−

σm(H>H)
N + s−

1
2
))

ds

b)
= O

(
t−

2σm(H>H)
N + t−

σm(H>H)
N

−1 + t−
3
2

)
, (23)

where a) comes from (19) and (20), and b) is obtained by direct calculation. We apply a series of the

recursions as from (20) to (23) and obtain the following bound.

‖x̄(t)− y∗‖2 = O
( ∞∑
r=1

tbr + tb̂∞
)

= O
(

1

tmin(
2σm(H>H)

N
,2)

)
, (24)

where

b̂∞ := lim
r→∞

b̂r.

[Scenario 2] Suppose 2σm(H>H)
N ∈ U . Then there exists r∗ ∈ {1, 2, . . . } such that

b̂r∗ = −2σm(H>H)

N
.
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For ease of presentation, we define b̂0 = 0. Similarly to the process of obtaining (24), we apply r∗ rounds

of iterations based on (19), and arrive at

‖x̄(t)− y∗‖2 = O
( r∗∑
r=1

tbr
)

+O
(
t−

2σm(H>H)
N

)
·
∫ t

0
O
(
s

2σm(H>H)
N

−2 · sb̂r∗−1

)
ds

= O
( r∗∑
r=1

tbr + t−
2σm(H>H)

N log t

)
. (25)

Noticing the fact that the scenario hypothesis 2σm(H>H)
N ∈ [1, 2), we claim there exists

δ ∈
(

0, 2− 2σm(H>H)

N

)
such that

log t = O(tδ). (26)

Then it follows (25) and (26)

‖x̄(t)− y∗‖2 = O
( r∗∑
r=1

tbr + tδ−
2σm(H>H)

N

)
. (27)

Define a sequence {dr}r=1,2,... with

dr+1 =
1

2
dr − 1, d1 = δ − 2σm(H>H)

N
.

Then it can be easily verified

d2 < −
2σm(H>H)

N
< d1, (28)

which implies that there is no element in {dr}r=1,2,... equal to −2σm(H>H)
N . Now we continue the iteration

from (27), during which process (28) guarantees no integral of O(s−1) arises. Infinite iterations indicate

that the following bound holds.

‖x̄(t)− y∗‖2 = O
( ∞∑
r=1

tbr + td∞
)

= O
(

1

t
2σm(H>H)

N

)
(29)

with

d∞ := lim
r→∞

dr.

Evidently, the proof of (a) is completed by (24) and (29).

(b) We assume σm(H>H) = N . Similarly, (19) gives

‖x̄(t)− y∗‖2 = O
(

1

t2
+

1

t

)
. (30)

Starting from (30) and based on (19), we obtain

‖x̄(t)− y∗‖2 = O
(
t−2
)

+O
(
t−2
) ∫ t

0
O
(
s−1 + s−

1
2
)
ds

= O
(
t−2
)

+O
(
t−2 log t

)
+O

(
t−

3
2
)
. (31)
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Again, we repeat the process from (30) to (31) recursively and obtain

‖x̄(t)− y∗‖2 = O
(
t−2 + t−2

∞∑
r=1

(log t)cr + tb̂∞
)

= O
(

(log t)2

t2

)
, (32)

where

cr+1 =
1

2
cr + 1, c1 = 1.

Clearly, (32) completes the proof of (b).

(ii) Let α(t) = O( 1
tλ

). Immediately there holds

β(t) = O
(

1

tλ

)
. (33)

Starting from (33), similar recursive applications of Lemma 2 and Lemma 3 on (8) result in

‖x(t)− x̄�(t)‖2 =

∫ t

0
O
(
e2σ2(L)K(s−t)

sλ

)
ds = O

(
1

tλ

)
‖x(t)− x̄�(t)‖2 =

∫ t

0
O
(
e2σ2(L)K(s−t)

s
3
2
λ

)
ds = O

(
1

t
3
2
λ

)
· · ·

‖x(t)− x̄�(t)‖2 = O
(

1

t2λ

)
. (34)

It follows (34) and the fact ‖x̄(t)− y∗‖ = O(1)

ω(t) = O
(
α(t)‖x(t)− x̄�(t)‖‖x̄(t)− y∗‖

)
= O

(
1

t2λ

)
. (35)

With (35) inserted in (10), Lemma 3 and simple change of variables yield

‖x̄(t)− y∗‖2 =

∫ t

0
O
(
e

2σm(H>H)
N(1−λ) (s1−λ−t1−λ)

s2λ

)
ds

=

∫ t1−λ

0
O
(
e

2σm(H>H)
N(1−λ) (s−t1−λ)

s
λ

1−λ

)
ds. (36)

Clearly, one obtains by applying Lemma 2 on (36)

‖x̄(t)− y∗‖2 = O
(

1

tλ

)
. (37)

Again starting from (37), recursive applications of Lemma 2 and Lemma 3 on (10) gives

‖x̄(t)− y∗‖2 = O
(
e

2σm(H>H)
N(1−λ) (s−t1−λ)

s
3
2λ

1−λ

)
ds = O

(
1

t
3
2
λ

)

‖x̄(t)− y∗‖2 = O
(
e

2σm(H>H)
N(1−λ) (s−t1−λ)

s
7
4λ

1−λ

)
ds = O

(
1

t
7
4
λ

)
· · ·

‖x̄(t)− y∗‖2 = O
(

1

t2λ

)
,

(38)

which completes the proof of (b).
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4.4 Proof of Theorem 3

Denote the averaged state at time t by x̄(t) = 1
N

N∑
i=1

xi(t) and x̄�(t) = 1N ⊗ x̄(t). Denote h(t) = ‖x(t)‖2.

Let Lσ(t) be the Laplacian of the graph Gσ(t) ∈ Q∗. Let Pσ(t) = Lσ(t) ⊗ Im + H̃. By a minor variant of a

step in the proof of Theorem 1, one has

d

dt

√
h(t) =

ḣ(t)

2
√
h(t)

≤ −α(t)σm(Pσ(t))
√
h(t) + α(t)‖zH‖, t ≥ t0.

Since |Q∗| <∞, the quantity min
t≥0

σm(Pσ(t)) = σ∗m is well-defined and positive. Then it follows

d

dt

√
h(t) =

ḣ(t)

2
√
h(t)

≤ −α(t)σ∗m
√
h(t) + α(t)‖zH‖, t ≥ t0.

Thus a conclusion can be drawn that ‖x(t)‖ is bounded. Similarly

d

dt
‖x(t)− x̄�(t)‖2 ≤ −2σ2(Lσ(t))K‖x(t)− x̄�(t)‖2 + β(t),

where β(t) = 2α(t)〈x(t)− x̄�(t), zH − H̃x(t) + 1N ⊗ ( 1
2N

N∑
i=1
∇fi(xi))〉. Then we select σ∗2 = min

t≥0
σ2(Lσ(t))

so that
d

dt
‖x(t)− x̄�(t)‖2 ≤ −2σ∗2K‖x(t)− x̄�(t)‖2 + β(t).

Similarly, by Lemma 3 and the fact that lim
t→∞

β(t) = 0, we can conclude

lim
t→∞
‖x(t)− x̄�(t)‖2 = 0,

i.e., the system (4) achieves a consensus over switching networks.

Next we prove that the consensus value is exactly the least-squares solution of (1). Let y∗ ∈ YLS. Recall

in (9) we have
d

dt
‖x̄(t)− y∗‖2 ≤ −α(t)

N
(f(x̄(t))− f(y∗)) + ω(t), (39)

where

ω(t) =
α(t)

N
〈x̄(t)− y∗,∇f(x̄(t))−

N∑
i=1

∇fi(xi(t))〉

=
α(t)

N
〈x̄(t)− y∗,

N∑
i=1

hih
>
i (xi(t)− x̄(t))〉.

By simple calculation and the fact that ‖x(t)‖ is bounded, it can be obtained that

|ω(t)| ≤ α(t)

N
‖x̄(t)− y∗‖

N∑
i=1

‖hih>i ‖‖xi(t)− x̄(t)‖

≤ α(t)Φ(t)

N
‖x̄(t)− y∗‖

N∑
i=1

‖hih>i ‖

= O(α(t)Φ(t)),
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where Φ(t) = max
1≤i,j≤N

‖xi(t)− xj(t)‖. By Lemma 4∫ ∞
0
|ω(t)|dt <∞,

which implies ∫ ∞
0

ω(t)dt <∞.

Note that the constantly connected graph considered in this theorem is clearly uniformly jointly connected.

Based on (39), we have

1

N

∫ t

0
α(s)(f(x̄(s))− f(y∗))ds ≤ ‖x̄(0)− y∗‖2 − ‖x̄(t)− y∗‖2 +

∫ t

0
ω(s)ds. (40)

Since x(t) is bounded and
∫∞
0 ω(t)dt <∞, the right-hand side of (40) is less than infinity, which implies∫ ∞

0
α(s)(f(x̄(s))− f(y∗))ds <∞.

Since
∫∞
0 α(s)ds = ∞, lim inf

s→∞
(f(x̄(s)) − f(y∗)) = 0. Since the states xi(t) for all i are bounded, we can

find a sequence {sk}k≥0 such that

lim
k→∞

f(x̄(sk)) = f(y∗).

By Bolzano-Weierstrass theorem, we select {skr}r≥0 as a subsequence of {sk}k≥0 such that lim
r→∞

x̄(skr) = ŷ

for some ŷ. It is obvious that f(ŷ) = f(y∗), i.e. ŷ ∈ Y is also an optimal solution. Moreover, by replacing

y∗ with ŷ in (39), we have by the convexity of the function f

d

dt
‖x̄(t)− ŷ‖2 ≤ ω(t) ≤ |ω(t)| . (41)

In order to prove by contradiction that ‖x̄(t)− ŷ‖2 is convergent, we suppose, by the boundedness of x̄(t),

that there exist sequences {tsk}, {trk} satisfying that

l1 := lim
k→∞

‖x̄(tsk)− ŷ‖2

l2 := lim
k→∞

‖x̄(trk)− ŷ‖2,

respectively and l1 6= l2. We also assume, without loss of generality, l1− l2 = ε0 > 0. Then by (41) we have

l1 − l2 = lim
k→∞

∫ tsk

trk

d

dt
‖x̄(t)− ŷ‖2dt ≤ lim

k→∞

∫ tsk

trk

|ω(t)|dt.

Since
∫∞
0 |ω(t)| dt <∞ as proved above, it can be concluded that

lim
k→∞

∫ tsk

trk

|ω(t)| dt = 0,

i.e., there exists k0 > 0 such that
∫ tsk
trk
|ω(t)| dt < ε0 for all k > k0. This implies l1 − l2 < ε0, which is

contradictory to the assumption that l1− l2 = ε0. Hence ‖x̄(t)− ŷ‖2 is convergent. Since it has been shown

that there exists a sequence {sr}r≥0 such that lim
r→∞

x̄(sr) = ŷ, we have lim
t→∞
‖x̄(t) − ŷ‖2 = 0. Due to the

fact that the network achieves a consensus, there holds

lim
t→∞

xi(t) = ŷ

for all i ∈ V.
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4.5 Proof of Theorem 4

By the boundedness of states and the Proposition 4.10 in [22], we know that the network achieves a

consensus. Based on the hypothesis of boundedness of states and the consensus result, we can show this

theorem by the similar arguments in Theorem 3.

5 Numerical Examples

In this section, several numerical examples are provided to validate the results of Theorem 1, 3.

5.1 Fixed Graphs

Example 1. Consider a 4-node path graph Gring, over which we study two linear algebraic equations with

respect to y ∈ R2:

(LE. 1)


1 1

1 2.3

−0.5 0.8

0.8 0.2

y =


1

3

2

−1

 ,

(LE. 2)


2 7

6 5

−11 1

1 0

 y =


1

3

2

−1

 .

Both (LE. 1) and (LE. 2) yield unique least-squares solutions y∗1 = [−1.218 1.869]>, y∗2 = [−0.092 0.361]>,

respectively. The resulting 2σm(H>H)
N values for (LE. 1) and (LE. 2) are(

σm(H>H)

N

)
1

= 0.313,

(
σm(H>H)

N

)
2

= 15.975,

respectively. We also introduce another equation (LE. 3) by multiplying the left-hand side of (LE. 1) with

1.7872 so that (
σm(H>H)

N

)
3

= 1.

With K = 100 and some randomly chosen initial conditions x(0), we run the algorithm (4) with α(t) = 1
t+1

and then plot the trajectories of

e1(t) :=
∥∥ 4∑
i=1

xi(t)/4− y∗1
∥∥

e2(t) :=
∥∥ 4∑
i=1

xi(t)/4− y∗2
∥∥

e3(t) :=
∥∥ 4∑
i=1

xi(t)/4−
y∗1

1.7872

∥∥ · ( log(t+ 1)
)−1
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Figure 1: The trajectories of ej(t) :=
∥∥ 4∑
i=1

xi(t)/4− y∗j
∥∥2, j = 1, 2 and e3(t) :=

∥∥∑4
i=1 xi(t)/4−

y∗1
1.7872

∥∥ ·(
log(t + 1)

)−1
with y∗1 = [−1.218 1.869]> and y∗2 = [−0.092 0.361]> for α(t) = 1

t+1 . The slopes are

κ1 = −0.313, κ2 = −0.997, κ3 = −1.040.

in logarithmic scales in Figure 1. As can be seen, each xi(t) converges to y∗, which is consistent with the

claim of Theorem 1. Further, according to the trajectories in Figure 1, we directly calculate the slopes

κ1 = −0.313, κ2 = −0.997, κ3 = −1.040

for (LE. 1), (LE. 2) and (LE. 3), which implies

e1(t) = O(
1

t0.313
), e2(t) = O(

1

t0.997
), e3(t) = O(

1

t1.040
).

This validates the statement of Theorem 2 when α(t) = O(1t ), where the bounds of e1(t) and e2(t) are as

predicted as Theorem 2 (i)(a), and that of e3(t) is consistent with Theorem 2 (i)(b).

Example 2. Consider the linear equation (LE. 1) with the same x(0) and K as in Example 1. We run

the algorithm (4) on Gring for α(t) = 1
(t+1)0.75

, α(t) = 1
(t+1)0.5

and α(t) = 1
(t+1)0.25

, under which we plot in

Figure 2 the trajectories of

e(t) :=
∥∥ 4∑
i=1

xi(t)/4− y∗2
∥∥.

By direct calculation, we find

e(t) = O(
1

t0.750
), e(t) = O(

1

t0.492
), e(t) = O(

1

t0.249
)

for α(t) = 1
(t+1)0.75

, 1
(t+1)0.5

, 1
(t+1)0.25

, respectively. These results validate the statement in Theorem 2 for

the step size α(t) = O( 1
tλ

), λ ∈ (0, 1).
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time
102 103

10-4

10-3

10-2

10-1
Trajectories of Error

,(t)=(t+1)-0.5

,(t)=(t+1)-0.75

,(t)=(t+1)-0.25

Figure 2: The trajectories of e(t) :=
∥∥ 4∑
i=1

xi(t)/4 − y∗2
∥∥ with y∗2 = [−0.092 0.361]> for α(t) =

1
(t+1)0.75

, α(t) = 1
(t+1)0.5

and α(t) = 1
(t+1)0.25

, respectively. The slopes are −0.750,−0.492,−0.249, re-

spectively.

5.2 Switching Connected Graphs

Example 3. Consider the following linear equation with respect to y ∈ R2:

4 −2

2 −1

3 −1.5

−1.5 0.75

1 −0.5


y =



1

3

2

3

−2


.

We can easily check that the conditions of Theorem 3 are satisfied, in particular, rank(H) = 1 < 2, which

means the linear equation has non-unique least-squares solutions. Let Q∗ = {G1,G2} with G1,G2 as shown

in Figure 3 and Gσ(t) be given as following:

Gσ(t) =

G1, t ∈
[
Tk, T (k + 1)

)
, k = 0, 2, 4, . . .

G2, t ∈
[
Tk, T (k + 1)

)
, k = 1, 3, 5, . . .

with T = 0.1, i.e., the network switches between graph G1 and G2 periodically with period T = 0.1. Set

the initial value x(0) = [3.5 4 5 − 4 − 4 3 − 2 − 3.4 − 5 4.5]>. Let the flow (4) do iteration over the

switching network Gσ(t) with K = 100, α(t) = (t + 1)−1. Then the trajectories of xi[1](t),xi[2](t) with

i = 1, 2, 3, 4, 5 are plotted in blue in Figure 4, from which it can seen that xi(t) for all i converge to

ŷ1 = [−0.1925 0.9737]>. Next we reset the initial value as x(0) = [−2 1.25 − 3 2 1 3 1.3 0.8 − 0.8 3.5]>

and plot the states trajectories in red in Figure 4, and the new limit turns to be ŷ2 = [−0.7491 2.0854]>.

Evidently, ŷ1 and ŷ2 are two different least-squares solutions and this simulation result is consistent with

the claim of Theorem 3. It also implies that, unsurprisingly, the initial values determine the value of the

nonunique least-squares solution that the system state converges to.
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(b) G2

Figure 3: Constant, connected and undirected graph G1, G2 considered in Example 3 and 4.

time
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 Entry x i [1] Trajectories

time
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0

0.5

1

1.5
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3

 Entry x i [2] Trajectories

Figure 4: The trajectories of the first component xi[1](t) and the second component xi[2](t) for i =

1, 2, 3, 4, 5 given K = 100, α(t) = (t + 1)−1 obtained over a switching network with two different sets

of initial values. As calculated, all xi(t) in blue converge to ŷ1 = [−0.1925 0.9737]> and all xi(t) in red

converge to ŷ2 = [−0.7491 2.0854]>, which are two different least-squares solutions.
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5.3 Switching Graphs with Joint Connectivity

Example 4. Consider the following same linear equation as in Example 4. Let Gσ(t) be given as following:

Gσ(t) =

G3, t ∈
[
Tk, T (k + 1)

)
, k = 0, 2, 4, . . .

G4, t ∈
[
Tk, T (k + 1)

)
, k = 1, 3, 5, . . .

with G3, G4 in Figure 5, T = 0.1. We can see that neither G3 nor G4 is connected, but Gσ(t) is uniformly

connected. Given the same K,α(t),x(0) = [3.5 4 5 − 4 − 4 3 − 2 − 3.4 − 5 4.5]> as Example 3. Let the

flow (4) do iteration over Gσ(t). Then we plot the trajectories of xi[1](t),xi[2](t) for all i in Figure 6. It can

be seen that xi(t) converge to y∗ = [−0.1925 0.9737]> for all i when rank(H) = m, which is consistent

with Theorem 4. We can also verify the convergence for the case with rank(H) < m.

1 3 

2 5 

4 
(a) G3

1 3 

2 5 

4 

(b) G4

Figure 5: Constant, connected and undirected graph G3, G4 considered in Example 5.

6 Conclusions

In this paper, a first-order distributed continuous-time least-squares solver over networks was proposed.

When the least-squares solution is unique, we proved the convergence results for fixed and connected graphs

with an assumption of nonintegrable step size. We also carefully analyzed the bound of convergence speed

for two classes of step size choices, which provides guidance on the selection of step size to secure the fastest

convergence speed. By loosening the requirement for uniqueness of the least-squares solution and assuming

square integrability on step size, we obtained convergence results for a constantly connected switching

graph, and for uniformly jointly connected graphs under a boundedness assumption of system states. We

also provided some numerical examples, in order to verify the results and illustrate the convergence speed.

Potential future work includes proving the convergence over networks without instantaneous connectivity,

studying the exact convergence rate, and finding out the convergence limit.
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