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Abstract

Distributed optimization for resource allocation problems is investigated and a sub-optimal continuous-time algorithm is
proposed. Our algorithm has lower order dynamics than others to reduce burdens of computation and communication, and is
applicable to weight-balanced graphs. Moreover, it can deal with both local set constraints and coupled inequality constraints,
and remove the requirement of twice differentiability of the cost function in comparison with the existing sub-optimal algorithm.
However, this algorithm is not easy to be analyzed since it involves singular perturbation type dynamics with projected
non-differentiable right-hand side. We overcome the encountered difficulties and obtain results including the existence of an
equilibrium, the sub-optimality, and the convergence of the algorithm.
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1 Introduction

(Xiao & Boyd 2006, Lakshmanan & De Farias 2008,
Nedić, Olshevsky & Shi 2018, Yuan, Ho & Jiang 2018,
Zhu, Ren, Yu & Wen 2019, Xu, Zhu, Soh & Xie 2019)
(Halabian 2019, Bandi, Trichakis &Vayanos 2018, Yang,
Lu, Wu, Wu, Shi, Meng & Johansson 2017, Cherukuri
& Cortés 2015) (Cherukuri & Cortés 2016, Yi, Hong
& Liu 2016, Yun, Shim & Ahn 2019, Liang, Zeng &
Hong 2018a) (Kia 2017, Deng, Liang & Hong 2018, Jo-
hansson, Keviczky, Johansson & Johansson 2008, Liang,
Zeng & Hong 2018b, Kokotovic, Khalil & O’reilly 1999)

Recently, distributed multi-agent resource allocation
optimization has received much attention from vari-
ous fields such as control and optimization (Xiao &
Boyd 2006, Lakshmanan & De Farias 2008, Nedić
et al. 2018, Yuan et al. 2018, Zhu et al. 2019, Xu
et al. 2019), communication (Halabian 2019), man-
agement (Bandi et al. 2018), and power system (Yang
et al. 2017). Many continuous-time algorithms have
been developed to solve these problems. For a brief re-
view, a Laplacian-gradient dynamics has been presented
in (Cherukuri & Cortés 2015), while initialization-
free algorithms have been introduced in (Cherukuri &
Cortés 2016, Yi et al. 2016, Yun et al. 2019). In partic-
ular, algorithms given in (Cherukuri & Cortés 2016, Yi
et al. 2016) are based on primal-dual gradient flows,

⋆ The material in this paper was not presented at any con-
ference.

Email addresses: sliang@ustb.edu.cn (Shu Liang),
xianlin.zeng@bit.edu.cn (Xianlin Zeng),
chengp@amss.ac.cn (Guanpu Chen), yghong@iss.ac.cn
(Yiguang Hong).

while the algorithm introduced in (Yun et al. 2019) is
based on dual gradient. In addition, a distributed algo-
rithm dealing with coupled inequality constraints has
been proposed in (Liang et al. 2018a) via a modified
Lagrangian function.

Network topology is an essential part in distributed
algorithm design and analysis. Many distributed al-
gorithms for resource allocation problems rely on
undirected graphs, such as (Xiao & Boyd 2006, Lak-
shmanan & De Farias 2008, Yi et al. 2016, Liang
et al. 2018a, Yun et al. 2019). It is well-known that
balanced digraphs are less restrictive and more general
than undirected graphs. A few works such as (Cherukuri
& Cortés 2016, Kia 2017, Deng et al. 2018) have con-
sidered weight-balanced graphs for resource allocation
problems, but their methods need additional computa-
tion for the spectral information of the Laplacians.

Sub-optimal solution is sometimes preferable because it
may simplify algorithm design and reduce the cost of
computation. For example, (Johansson et al. 2008) has
developed a simple distributed algorithm to solve an op-
timal consensus problem and obtained an sub-optimal
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solution. How can the sub-optimal concept further serve
distributed optimization? It is known that distributed
algorithms get involved with networks for information
sharing, where local “uncoordinated” flowsmust be com-
pensated for the desired optimality. It becomes much dif-
ficult for directed graphs, because an unidirectional flow
can only be compensated by others in the network. With
these observations, (Liang et al. 2018b) has presented a
simple distributed algorithm for a special resource allo-
cation problem via singular perturbation, which reduces
computation and communication burdens and obtains a
sub-optimal solution.

In this paper, we propose a projected singular pertur-
bation dynamics for resource allocation problems with
local set constraints and coupled inequality constraints.
Although the idea originates from (Liang et al. 2018b),
the previous analysis is not applicable to our new algo-
rithm. One reason is that singular perturbation analy-
sis provides first few terms in the Taylor expansion of
the trajectory, which requires at least continuous dif-
ferentiability on the right-hand side of the differential
equation (Kokotovic et al. 1999). However, due to the
presence of projection in both fast and slow dynamics,
the differentiability does not hold. In fact, it is even dif-
ficult to ascertain the existence of an equilibrium and
its stability and optimality. To overcome these, we em-
ploy theories from linear complementarity problems and
variational inequalities, and treat the primal and dual
parts as two interacted static systems: the former is a
perturbed variational inequality problem and the latter
is a perturbed complementarity problem. The main con-
tributions of this work are summarized as follows.

1) A distributed singular perturbation type dynamics
is developed to solve resource allocation problems
with local set constraints and coupled inequality con-
straints over weight-balanced graphs, whereas (Liang
et al. 2018b) deals with a special problem with cou-
pled equality constraints only.

2) New analysis methods for the equilibrium, sub-
optimality and convergence are provided, which
deal with a challenging problem involving singular
perturbation dynamics with non-differentiable right-
hand side. In addition, the assumption on the twice
continuous differentiability of the cost function is
relaxed.

3) Our algorithm uses local primal and dual variables
without any auxiliary variable. Therefore, it has
lower order dynamics than those in (Cherukuri &
Cortés 2016, Kia 2017, Deng et al. 2018), and reduces
the computation and communication burden.

2 Preliminaries

In this section, we give the basic notations and intro-
duce preliminary knowledge about convex analysis, vari-
ational inequalities, and graph theory.

R
n is the n-dimensional real vector space and R

n
+ is the

nonnegative orthant. In is the unit matrix in R
n×n. ‖ · ‖

is the Euclidean norm and B is the unit ball in a Eu-
clidean space. ⊗ is the operator of Kroneckor’s product.
col(x1, ..., xn) is the column vector stacked with column
vectors x1, ..., xn. For a vector a ∈ R

n, a ≤ 0 (or a < 0)
means that each component of a is less than or equal to
zero (or smaller than zero). For vectors a, b ∈ R

n, a ⊥ b
means that aT b = 0.

For a closed convex set C, the projectionmap PC : Rn →
C is defined as PC(x) , argminy∈C ‖x − y‖. Two basic
properties with respect to the projection operator hold:

(x − PC(x))
T (PC(x)− y) ≥ 0, ∀ y ∈ C, (1)

‖PC(x)− PC(y)‖ ≤ ‖x− y‖, ∀x, y ∈ R
n. (2)

For x ∈ C, the tangent cone to C at x is TC(x) ,

{limk→∞
xk−x
tk

|xk ∈ C, tk > 0, and xk → x, tk → 0},

and the normal cone to C at x is NC(x) , {v ∈
R

n | vT (y − x) ≤ 0, for all y ∈ C}.

A differentiable function f : C → R is said to
be µ-strongly convex for some constant µ ≥ 0 if
(x − y)T (∇f(x) − ∇f(y)) ≥ µ‖x − y‖2, ∀x, y ∈ C. In
other words, ∇f is µ-strongly monotone.

Given a subset Ω ⊆ R
n and a map F : Ω → R

n, the
problem of variational inequality, denoted by VI(Ω, F ),
is to find a vector x ∈ Ω such that

(y − x)TF (x) ≥ 0, ∀ y ∈ Ω,

and the set of solutions is denoted by SOL(Ω, F ). When
Ω is closed and convex, the solution of VI(Ω, F ) can be
equivalently reformulated via projection or the normal
cone (Facchinei & Pang 2003):

x ∈ SOL(Ω, F ) ⇐⇒ 0 = PΩ(x− F (x)) − x

⇐⇒ 0 ∈ F (x) +NΩ(x)
(3)

In particular, if Ω = R
n
+ and F (x) = q +Mx for some

vector q ∈ R
n and matrix M ∈ R

n×n, then the vari-
ational inequality becomes so-called linear complemen-
tarity problem, denoted by LCP(q,M), with its solution
set denoted by SOL(q,M).

Consider a network topology described by a weighted
graph G = {V , E ,A}, where V = {1, 2, . . .N} is the node
set, E ⊆ V×V is the (oriented) edge set, andA = [aij ] ∈
R

N×N is a nonnegative weight matrix. An edge (j, i) ∈ E
means that node j can send its information to node i.
In this case, node j is said to be an in-neighbor of node
i. The set of all in-neighbors of node i is denoted by Ni.
Also, aij > 0 if j ∈ Ni, while aij = 0 otherwise. A path
is a sequence of vertices connected by edges. G is said to
be strongly connected if there is a path between any pair
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of vertices. G is said to be weight-balanced if for every

i ∈ V ,
∑N

j=1 aij =
∑N

j=1 aji = di. The Laplacian matrix
of the weight-balanced G is L = D − A, where D =
diag{d1, ..., dN} ∈ R

N×N . If G is strongly connected and
weight-balanced, then L + LT is positive semidefinite
and 0 is its simple eigenvalue.

3 Formulation and algorithm

In this section, we formulate the distributed resource al-
location problem and present our distributed algorithm.

3.1 Problem formulation

Consider a multi-agent network with graph G =
{V , E ,A}. For each i ∈ V , the ith agent has a decision
variable xi in a local feasible set Ωi ⊂ R

ni . Also, it
has a cost function fi : Ω → R and a resource map
gi : Ωi → R

p. Define

x , col(x1, x2, ..., xN ), Ω , Ω1 × Ω2 × · · · × ΩN ,

and the total cost function and resource map

f(x) , f1(x1) + f2(x2) + · · ·+ fN(xN ),

g(x) , g1(x1) + g2(x2) + · · ·+ gN(xN ).

Then the resource allocation problem with coupled in-
equality constraints can be formulated as

min
x∈Ω

f(x), s.t. g(x) ≤ 0. (4)

Our goal is to design a distributed algorithm for problem
(4) and find some sub-optimal solution. Of course, the
design of sub-optimal algorithms should be simpler than
those for optimal solutions. We introduce Assumption 1
for the considered distributed optimization problem.

Assumption 1

• (Objective function) For each i ∈ V , fi is µf -strongly
convex over Ωi for some constant µf > 0, and ∇fi is
κf -Lipschitz continuous over Ωi for some κf > 0.

• (Constraint set and function) For each i ∈ V , Ωi is
closed and convex, and gi is convex and κg-Lipschitz
continuous over Ωi for some constant κg > 0. Also,
∇gi is locally Lipschitz continuous over Ωi.

• (Slator’s constraint qualification) There exists a vec-
tor x̃ that belongs to the relative interior of Ω and
satisfies g(x̃) < 0.

• (Network topology) Graph G is strongly connected
and weight-balanced.

The convexity of the cost and constraint functions en-
sures that (4) is a convex optimization problem. The

smoothness enables the use of gradient and the con-
straint qualification ensures first-order necessary con-
ditions. These assumptions are basic and widely used
for constrained convex optimizations (Luenberger & Ye
2016). The strong connectivity andweight-balance of the
network are the same as those in (Cherukuri & Cortés
2016, Kia 2017, Liang et al. 2018b, Deng et al. 2018).

3.2 Distributed algorithm

Our algorithm for problem (4) is given as follows.

Algorithm 1 (for each i ∈ V)

Initialization:

xi(0) ∈ Ωi, λi(0) ∈ R
p
+.

Update flows:







ẋi = PΩi
(xi −∇fi(xi)−∇gi(xi)λi)− xi

ελ̇i = max
{

− ελi, εgi(xi)−
∑

j∈Ni

aij(λi − λj)
}

(5)
where ε > 0 is a small tunable parameter.

Algorithm 1 is distributed since the update flows of the
ith agent need only xi, λi, ∇fi(xi), ∇gi(xi) and the
neighbors’ λj . The compact form of (5) can be written
as

{

ẋ = PΩ(x−∇f(x)− v(x,λ))− x

ελ̇ = P
R

pN

+

(ελ+ εu(x)−Lλ)− ελ
(6)

whereλ , col(λ1, ..., λN ),u(x) , col(g1(x1), ..., gN (xN )),

v(x,λ) , col(∇g1(x1)λ1, ...,∇gN (xN )λN ), L , L⊗ Ip,
and L is the Laplacian matrix.

Remark 1 The sub-optimal algorithm given in (Liang
et al. 2018b) for coupled equality constraints is

{

ẋ = −∇f(x)− v(x,λ)

ελ̇ = εu(x)−Lλ

Our dynamics (6) uses projections to deal with local set
constraints and coupled inequalities constraints. Since
the projections are not differentiable, some technical dif-
ficulties occur in singular perturbation analysis.

Remark 2 Alternative update flows over undirected
graphs, referring to (Yi et al. 2016), can be used as
follows.











ẋ = PΩ(x−∇f(x)− v(x,λ))− x

λ̇ = P
R

pN

+

(λ+ u(x)−Lλ−Lv)− λ

v̇ = Lλ

(7)
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Compared with (7), dynamics (6) does not employ the
auxiliary variable v so that the computation and com-
munication are simplified.

4 Algorithm analysis

In this section, we analyze the existence of an equilib-
rium, the sub-optimality, and the convergence.

4.1 Existence

An equilibrium (x,λ) of Algorithm 1 is a solution to

0 = PΩ(x−∇f(x)− v(x,λ))− x (8a)

0 = P
R

pN

+

(ελ+ εu(x)−Lλ)− ελ (8b)

which involves projections and nonlinear maps. To show
the existence, we first consider the following auxiliary
equations

0 = PX (x−∇f(x)− v(x,λ))− x (9a)

0 = P
R

pN

+

(ελ+ εu(x)−Lλ)− ελ (9b)

where
X , {x ∈ Ω | g(x) ≤ 0}. (10)

By (3), x satisfies (9a) if and only if it is a solution to
VI(X ,∇f(·)+v(·,λ)), regardingλ as an external input.
Also, λ is a solution to (9b) if and only if it is a solution
to the generalized equation

0 ∈ εu(x)−Lλ+N
R

pN

+

(ελ) = εu(x)−Lλ+N
R

pN

+

(λ),

which is also equivalent to LCP(−εu(x),L), regarding
x as an external input. In this way, we can interpret (9)
as two interacted static subsystems: One is VI, whose
input is λ and output is

x ∈ SOL(X ,∇f(·) + v(·,λ)) , G1(λ).

The other one is LCP, whose input is x and output is

λ ∈ SOL(−εu(x),L) , G2(x).

The structure between G1 and G2 is shown in Fig. 1.

xl

1
G

2
G

Fig. 1. Structure between G1 and G2.

Consequently, (x,λ) is a solution to (9) if x ∈ G1(λ)
and λ ∈ G2(x), which leads to fixed-point equations

x ∈ G1(G2(x)) and λ ∈ G2(G1(λ)). (11)

Note thatG1 andG2 depend on data of the optimization
problem, and G2 also depends on the parameter ε.

Lemma 1 Under Assumption 1, G1(λ) is nonempty
and contains only one element for any λ ≥ 0. Moreover,

‖G1(λ
′)−G1(λ)‖ ≤

κg

µf

‖λ′ − λ‖, ∀λ′,λ ≥ 0.

Proof. The map v(·,λ) with λ ≥ 0 is monotone, since

(x′ − x)T (v(x′,λ)− v(x,λ))

=

N
∑

i=1

(x′
i − xi)

T (∇gi(x
′)−∇gi(x))λi ≥ 0.

Thus, ∇f(·) + v(·,λ) is µf -strongly monotone. As a re-
sult, there exists a unique solution to VI(X ,∇f(·) +
v(·,λ)), i.e., G1(λ) is a single-valued map.

Let x′ = G1(λ
′) and x = G1(λ) for any λ′,λ ≥ 0. By

the definition of variational inequality,

(x′ − x)T (∇f(x) + v(x,λ)) ≥ 0,

(x− x′)T (∇f(x′) + v(x′,λ′)) ≥ 0.

Therefore,

(x′ − x)T (∇f(x′) + v(x′,λ′)−∇f(x)− v(x,λ)) ≤ 0.

By the strongly convexity of ∇f(·) + v(·,λ),

µf‖x
′ − x‖2 ≤ (x′ − x)T (v(x′,λ)− v(x′,λ′))

≤ κg‖x
′ − x‖ · ‖λ′ − λ‖.

This completes the proof. �

Lemma 2 Under Assumption 1, the following state-
ments hold:

1) G2(x) is nonempty for any x ∈ X .
2) G2 has a unique single-valued continuous selection

G
♯
2. That is, G

♯
2 is a continuous map and G

♯
2(x) ∈

G2(x) for any x ∈ X .
3) There is a constant κL > 0 such that

‖G♯
2(x

′)−G
♯
2(x)‖ ≤ εκgκL‖x

′ − x‖, ∀x′,x ∈ X .
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Proof. Consider LCP(−u, L), where L is the Laplacian
matrix. A point z ∈ SOL(−u, L) if and only if

z ≥ 0 (12a)

Lz − u ≥ 0 (12b)

zT (Lz − u) = 0 (12c)

LCP(−u, L) is said to be feasible if there exists a point
z ∈ R

N satisfying (12a) and (12b), not necessarily satis-
fying (12c). It follows from (Cottle, Pang & Stone 2009,
Theorem 3.1.2) that SOL(−u, L) is nonempty if and only
if LCP(−u, L) is feasible.

Since L has rank N − 1 and 1TL = 0T , LCP(−u, L) is

feasible if and only if u ∈ U , {u ∈ R
N |1Tu ≤ 0}.

Therefore, S(u) , SOL(−u, L) is nonempty for u ∈ U ,
which implies statement 1).

Let z′, z ∈ S(u). Then

(z′ − z)T (Lz − u) ≥ 0 and (z − z′)T (Lz′ − u) ≥ 0,

which implies

(z − z′)TL(z − z′) =
1

2
(z − z′)T (L+ LT )(z − z′) ≤ 0.

SinceL+LT is positive semidefinite, (L+LT )(z−z′) = 0,
which implies z′ = z+1s for some s ∈ R. Also, it follows
from (12c) that s1Tu = 0. Thus, S(u) is a singleton for

u ∈ U◦ , {u ∈ U |1Tu < 0}, and there is a unique
selection map S♯(u) ∈ S(u) for u ∈ U◦. By (Cottle
et al. 2009, Theorem 7.2.1), there exists a constant κL >
0 depending on L such that for any u′, u ∈ U ,

S(u′) ⊆ S(u) + κL‖u
′ − u‖B.

Therefore, S♯ is κL-Lipschitz continuous over U◦ and
can be extended to U by taking the limit

S♯(ū) = lim
u→ū,u∈U◦

S♯(u), ∀ ū ∈ U.

Thus, statements 2) and 3) hold. �

With Lemmas 1 and 2, we present the following theorem.

Theorem 1 Under Assumption 1, for any ε ∈ (0, ε∗)

with ε∗ ,
µf

κ2
gκL

, there exists an equilibrium (x∗
ε,λ

∗
ε).

Proof. Since ε < ε∗, there holds a small gain condition

κg

µf

· εκgκL < 1.

Then G1(G
♯
2(·)) is a contraction map from X to X and

G
♯
2(G1(·)) is a contraction map from R

pN
+ to R

pN
+ . Thus,

there exists (x†
ε,λ

†
ε) ∈ X × R

pN
+ as a solution to (9).

Next, we construct a solution to (8). Define

f †(x,λ) ,

N
∑

i=1

fi(xi) + λT
i gi(xi).

Then ∇xf
†(x,λ) = ∇f(x) + v(x,λ). By (9), x†

ε is the
optimal solution to

min
x∈Ω

f †(x,λ†
ε), s.t. g(x) ≤ 0.

Since the Slater’s constraint qualification holds, it fol-
lows from Karush-Kuhn-Tucker conditions that there
exists a multiplier λ‡ ∈ R

p with λ‡ , col(λ‡, ..., λ‡) such
that

0 ∈ ∇f(x†
ε) + v(x†

ε,λ
†
ε + λ‡) +NΩ(x

†
ε) (13a)

0 ≤ λ‡ ⊥ −g(x†
ε) ≥ 0 (13b)

Let (x∗
ε,λ

∗
ε) , (x†

ε,λ
†
ε + λ‡). It follows from (13a) that

(x∗
ε,λ

∗
ε) renders (8a). Also, it follows from (9b) and (13b)

that (x∗
ε,λ

∗
ε) renders (8b). In other words, (x∗

ε,λ
∗
ε) is an

equilibrium satisfying (8). This completes the proof. �

Remark 3 We first give a solution to (9) and then a
solution to (8), by repeatedly taking advantage of varia-
tional inequalities. The method is totally different from
that given in (Liang et al. 2018b). In addition, x∗

ε ∈ X

indicates that the solution satisfies the local and coupled
constraints in problem (4).

4.2 Sub-optimality

The sub-optimality of Algorithm 1 is as follows.

Theorem 2 Let ε̃∗ , 1
2ε

∗ =
µf

2κ2
gκL

and K ,

2κgκL‖u(x∗)‖
µf

. Then for any ε ∈ (0, ε̃∗), there holds

‖x∗
ε − x∗‖ ≤ Kε. (14)

where x∗
ε is given in Theorem 1 and x∗ is the optimal

solution to problem (4).

Proof. Since x∗ is the optimal solution to (4), it is also
the solution to the variational inequality VI(X ,∇f(·)).
That is, x∗ ∈ G1(0). Hence,

‖x∗
ε − x∗‖ = ‖G1(λ

∗
ε)−G1(0)‖ ≤

κg

µf

‖λ∗
ε − 0‖.

Since λ∗
ε ∈ SOL(−εu(x∗

ε),L) and 0 ∈ SOL(0,L),

‖λ∗
ε − 0‖ ≤ κL‖εu(x

∗
ε)− 0‖.

By the κg-Lipschitz continuity of u(·),

‖u(x∗
ε)‖ ≤ ‖u(x∗)‖+ κg‖x

∗
ε − x∗‖.
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Therefore,

(

1−
κ2
g

µf

κLε

)

‖x∗
ε − x∗‖ ≤

κg

µf

κLε‖u(x
∗)‖,

which implies (14). This completes the proof. �

Remark 4 The expression of K indicates two aspects.
First, it shows that the error bound is proportional to
ε, since K does not depend on ε. Even the value of K is
unknown, one can evaluate that to what extent the ac-
curacy is improved when ε is reduced. Second, when the
Laplacian matrix L is known and the local constrains
are bounded, κg, κL and the upper bound of ‖u(·)‖ can
be estimated offline. In this case, the constantK is avail-
able and one can determine the ε to meet any accuracy
of practical use by simple calculation.

4.3 Convergence

The update flows (6) can be written as

ż = PΛ(z −G(z))− z, (15)

where z , col(x,λ),Λ , Ω× R
pN
+ and

G(z) ,

[

∇f(x) + v(λ,v)

1
ε
Lλ− u(x)

]

.

The map G is monotone because

(z′ − z)T (G(z′)−G(z))

= (x′ − x)T (∇f(x′)−∇f(x) + v(x′,λ′)− v(x,λ))

+ (λ′ − λ)T (−u(x′) + u(x)) +
1

ε
(λ′ − λ)TL(λ′ − λ)

≥ µf‖x
′ − x‖2 +

1

ε
(λ′ − λ)TL(λ′ − λ), ∀ z′, z ∈ Λ.

In order to obtain the convergence, we employ a Lya-
punov candidate function

V (z) , (z−H(z))TG(z)−
1

2
‖z−H(z)‖2+

1

2
‖z−z∗‖2,

where H(z) , PΛ(z −G(z)), and

z∗ ∈ Λ∗ , {x∗
ε} × {λ | (x∗

ε,λ) satisfies (8)}. (16)

Lemma 3 Under Assumption 1, V (z) is locally Lips-
chitz continuous in Λ and is positive definite with respect
to z∗, i.e.,

V (z) ≥ 0, ∀ z ∈ Λ and V (z) = 0 ⇔ z = z∗.

Proof. By (2), H is locally Lipschitz continuous, which
indicates that V is also locally Lipschitz continuous.
By calculations, (z −H(z))TG(z) − 1

2‖z −H(z)‖2 =

− 1
2‖z−G(z)−H(z)‖2+ 1

2‖G(z)‖2 = maxy∈Λ{−
1
2‖z−

G(z) − y‖2} + 1
2‖G(z)‖2 ≥ 0, where the inequality is

obtained by letting y = z. Therefore,

V (z) ≥
1

2
‖z − z∗‖2, ∀ z ∈ Λ.

This completes the proof. �

Lemma 4 Under Assumption 1, dynamics (15) has a
unique trajectory z(t) ∈ Λ, t ≥ 0. Moreover, the set of
equilibria Λ∗ given in (16) is Lyapunov stable.

Proof. Since the right-hand side of (15) is locally Lip-
schitz continuous, there exists a unique trajectory z(t).
Also, since ż ∈ TΛ(z), z(t) ∈ Λ for all t ≥ 0.

For the Lyapunov stability of (15), it suffices to prove
that V (z(t)) is non-increasing with respect to t. Since
V (z) is locally Lipshcitz continuous and z(t) is continu-
ously differentiable, V (z(t)) is differentiable for almost
all t > 0 with

V̇ (z(t)) = żT (G(z) +H(z)− z∗)

− lim
τ→0+

żT (G(z + τ ż)−G(z))

τ
.

Since G is monotone, żT (G(z+ τ ż)−G(z)) ≥ 0. Also,

żT (G(z) +H(z)− z∗) = −(W1(z) +W2(z) +W3(z)),

where

W1(z) = (z∗ −H(z))T (H(z) +G(z) − z),

W2(z) = (z − z∗)TG(z∗),

W3(z) = (z − z∗)T (G(z) −G(z∗)).

It follows from (1) thatW1(z) ≥ 0.Moreover,W2(z) ≥ 0
because z∗ is a solution to the variational inequality
VI(Λ,G). Furthermore, W3(z) ≥ 0 due to the mono-

tonicity of G. As a result, V̇ (z(t)) ≤ 0 for almost all
t > 0. This completes the proof. �

The convergence analysis is given in the following result.

Theorem 3 Under Assumption 1, for any ε ∈ (0, ε∗),
the trajectory of Algorithm 1 converges to an equilibrium
point, i.e.,

lim
t→∞

z(t) = z̃∗ ∈ Λ∗, (17)

where Λ∗ is given in (16).
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Proof. Since V (z(t)) is continuous and non-increasing,
it follows from the invariance principle that z(t) con-
verges to the largest invariant set Z inv ⊂ Z, where

Z , {z ∈ Λ | (z − z∗)T (G(z) −G(z∗)) = 0,

and (z − z∗)TG(z∗) = 0}.

By the monotonicity of G, z ∈ Z implies x = x∗
ε and

L(λ−λ∗
ε) = 0. On the one hand, for {x∗

ε} being invari-
ant, it is necessary that ẋ = 0 for any (x,λ) ∈ Z inv.
Thus, λ satisfies (8a). On the other hand, it follows from
(z−z∗)TG(z∗) = 0 that (λ−λ∗

ε)
T (Lλ∗

ε−εu(x∗
ε)) = 0.

Therefore,

0 ≤ λ ⊥ Lλ− εu(x∗
ε) ≥ 0,

which implies that λ satisfies (9b). Thus, Z inv ⊂ Λ∗.

Let z̃∗ be a cluster point of z(t) as t → +∞, i.e., z̃∗ is a
positive limit point of z(t). Then z̃∗ ∈ Z inv because the
positive limit set is invariant (Khalil 2002, Lemma 4.1).
Redefine a Lyapunov function as

Ṽ (z) , (z−H(z))TG(z)−
1

2
‖z−H(z)‖2+

1

2
‖z−z̃∗‖2.

Since z̃∗ ∈ Z inv ⊂ Λ∗, it follows from similar arguments
in Lemmas 3 and 4 that Ṽ is non-increasing along the
trajectory z(t), and meanwhile, Ṽ (z(t)) → 0 as t →
+∞. Thus, the conclusion follows. �

Remark 5 The convergence analysis is based on Lya-
punov functions V and Ṽ . Similar functions have also
been considered in (Yi et al. 2016), where a derivative
formula for ∇V is needed with the help of ∇2f . Here,
the convergence analysis does not require the twice dif-
ferentiability of the cost function.

5 Numerical experiments

Consider a virtualized 5G system consisting of N slices
(Halabian 2019). Each slice shares M virtual network
functions (VNFs), which are being distributed over K
data centers (DCs). Each DC provides resources such
as CPU, RAM, bandwidth, and storage. The amount of
these ℓ types of resources are denoted by vectors Rk ∈
R

ℓ, k ∈ {1, 2, ...,K}. Also, each slice i ∈ {1, 2, ..., N}
is associated with a set of demand vectors denoted by

d
k,m
i ∈ R

ℓ for eachDC k and eachVNFm. The optimiza-
tion problem is to determine the amount of resources al-
located to each of the VNFs in each DC by minimizing
the sum of cost functions of slice thicknesses subjected

to resource constraints, i.e.,

Minimize
x

∑N
i=1 fi(xi), fi(xi) =

1
2 (xi − αi)

2

Subject to
∑N

i=1

∑M
m=1 xid

k,m
i ≤ Rk, k = 1, 2, ...,K

xi ≥ 0, i = 1, 2, ..., N

Set ℓ = K = M = 1 and N = 10, 50, 100, 500, 1000 with
directed circles, random digraphs, and complete graphs,
respectively. Generate randomly αi ∈ [0.5, 2], d1,1i ∈
[0, 1], R1 ∈ [0.5N, 2N ] for i = 1, 2, ..., N . Set tolerance
ǫ = 10−5 with the stopping criterion

‖ż(t)‖ ≤ ǫ,

where ż(t) was given in (15). Record the termination
time, denoted by tter, and calculate the relative error

erel =
‖x(tter)− x∗‖

‖x∗‖
× 100%.

The instant communication burden of an agent can
be characterized by the number of times that it sends
and receives information in a unit running time, which
equals the sum of its out-degree and in-degree. We
record the mean and maximum of such degrees among
all agents, denoted by dmean and dmax, respectively. The
total amount of communication per agent can be evalu-
ated by using dmean · tter and dmax · tter for our algorithm
and 2dmean · tter and 2dmax · tter for algorithm (7). Note
that these two algorithms do not necessarily share the
same termination time tter, because their convergence
speed may be different. In the experiments, the Euler’s
method is employed to discretize these algorithms with
fixed stepsize 0.001, and the Laplacian matrices are
normalized by scaling the balanced weights such that
‖L‖ = 1. Numerical results in Table 1 show that our al-
gorithm achieves acceptable accuracy, fast convergence
speed, and significant reduction of computation and
communication burden.

6 Conclusions

A distributed continuous-time algorithm has been pro-
posed for resource allocation optimization with local
set constraints and coupled inequality constraints over
weight-balanced graphs. Existence and sub-optimality
of the equilibrium have been established with conver-
gence analysis. Our algorithm and analysis approach
have demonstrated the effectiveness of the singular
perturbation based sub-optimal design even with non-
differentiable right-hand side.
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