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Abstract. We propose and analyze a real-time model predic-
tive control (MPC) scheme that utilizes stored data to improve
its performance by learning the value function online with sta-
bility guarantees. For linear and nonlinear systems, a learning
method is presented that makes use of basic analytic proper-
ties of the cost function and is proven to learn the MPC control
law and the value function on the limit set of the closed-loop
state trajectory. The main idea is to generate a smart warm start
based on historical data that improves future data points and
thus future warm starts. We show that these warm starts are
asymptotically exact and converge to the solution of the MPC
optimization problem. Thereby, the suboptimality of the ap-
plied control input resulting from the real-time requirements
vanishes over time. Numerical show that existing real-time
MPC schemes can be improved by storing optimizatising the
proposed ng scheme.

1. Introduction

Model predictive control (MPC) is a control strategy that solves
at each sampling instant a finite horizon open-loop optimal con-
trol problem (see [33]). As a consequence, at every sampling
instant an input sequence and its resulting state trajectory are
computed for the whole prediction horizon, thus continuously
generating large amounts of optimization data. However, only
the first portion of the computed input sequence is applied to
the system and typically the remaining part is not stored. This
is wasteful and contradicts our human intuition to memorize
our decisions when we are facing recurring problems or tasks

* This article is an extended version of [35] including all proofs, an application
example, and a detailed description of the used algorithm.
Email addresses: schwenkel@ist.uni-stuttgart.de

(Lukas Schwenkel), gharbi@ist.uni-stuttgart.de (Meriem
Gharbi), trimpe@dsme.rwth-aachen.de (Sebastian Trimpe),
ce@ist.uni-stuttgart.de (Christian Ebenbauer). The authors
thank the International Max Planck Research School for Intelligent Systems
(IMPRS-IS) for supporting Lukas Schwenkel. This work was supported in
part by the Cyber Valley Initiative and the Max Planck Society.

system

real-time MPC controller

memory

temporal warm start

spatial warm start

real-time
optimization

iteration

u(k) x(k)

optimization

data D(k)

Figure 1. Illustration of the proposed online-learning real-time MPC
scheme. The standard real-time MPC controller consists of a (tem-
poral) warm start solution and an optimization iteration. To improve
control performance, past optimization data of the MPC are stored in
memory. From these, a spatial warm start is constructed, which im-
proves with more data. By taking in each iteration the warm start that
results in a lower cost function value, the stability properties of the
original real-time MPC are retained.

in order to successively improve them. Motivated by this, the
key question addressed in this article is how to leverage on
optimization data by introducing memory and online learning
in real-time MPC algorithms in order to improve their perfor-
mance.

In this work, we will store the previously computed input
sequences and utilize them to learn the solution of the MPC op-
timization problem online, see Fig. 1. The proposed approach
specifically targets real-time MPC where, due to a lack of com-
putation time, the MPC optimization problem cannot be solved
exactly and thus, suboptimal solutions are applied to the sys-
tem. Hence, there is a need to learn the optimal solution.

The proposed online learning is based on the idea to store
optimization data and leverage it for subsequent optimizations:
whenever a new input sequence has to be computed close to a
point that was visited before, the optimization iteration is ini-
tialized with the previously computed input sequence. This
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way, we can use the available computation time to refine this
suboptimal input sequence instead of starting the optimization
from scratch. At recurrent points, we expect to approach the op-
timal solution since we improve a suboptimal one over and over
again. By combining these data-based improvements with the
theory of real-time MPC, we will be able to show that online
learning is feasible for recurrent points with inherent stability
guarantees.

Contributions The main contributions of this work are as
follows. We present a real-time MPC scheme based on [19] that
allows for online learning to improve control performance and
that comes with inherent stability guarantees independent of the
chosen learning method. Further, we introduce novel learning
methods tailored to the real-time MPC scheme for both linear
and nonlinear systems. The learning methods exploit analytic
properties of the cost function, namely convexity in the linear
case and Lipschitz continuity in the nonlinear case, in order to
upper bound the value function. This bound is shown to con-
verge to the value function on the ω-limit set of the closed-loop
state trajectory. Thereby, the input applied to the system con-
verges to the optimal feedback policy. The result is an online
method that learns the value function and the optimal MPC law
asymptotically over the ω-limit set. Moreover, we present sev-
eral examples, which illustrate and confirm the results and are
used to discuss practical issues and how to circumvent them.
In particular, we demonstrate how learning and applying the
learned control law can be parallelized and executed on dif-
ferent time scales, whereby learning itself does not have to be
executed in real time.

Related work This work combines real-time MPC with
data-based approaches, both of which being active areas of re-
search. The proposed online learning approach builds on top
of a real-time MPC scheme and especially its stability proper-
ties. In real-time MPC, there are several results on stability,
which all take the suboptimality of the applied input sequence
explicitly into account. The work [36] seeks for a feasible so-
lution without executing any optimization steps, which makes
this method unsuitable as basis for learning the optimal solution
from its data. The works [2], [5], and [28] optimize the input se-
quence until a certain accuracy is achieved. Hence, to improve
their performance by including learning, we would need to ad-
just this accuracy according to the learning progress, which is
rather difficult to do. That is why we assume a method for the
proposed learning approach that optimizes until a certain com-
putation time is reached like those in [14], [19], and [41]. In
particular, the real-time MPC scheme presented in [19] will be
the basis for the online learning method we develop herein. In
[19], the cost function is established as a Lyapunov function
for the coupled system optimizer dynamic, which allows for a
straightforward extension of the scheme to learning while pre-
serving stability.

Learning approaches in MPC are becoming increasingly
popular. Different ways for incorporating data in MPC have
been suggested in literature and can be summed up in two main

categories: (i) system input-output data to learn the model; and
(ii) sampling data of the MPC policy to approximate it with an
explicit control law. Model learning (i) is an important topic of
current research since the accuracy of the model has significant
impact on the control performance. The model can be learned
offline, as for example in [10], [24], [26], [31], and [39], but
also online, [3], [8], [13], [29], or first learned offline and then
refined online [20], [27]. Nevertheless, only few of these works,
namely [3], [10], [13], and [27], establish stability results for
their methods. The learning of an explicit MPC control law (ii)
is done offline in order to substitute the online optimization in
MPC with an online evaluation of the explicit control law. The
majority of works in this direction employ neural networks as
approximate controllers [1], [12], [16], [21], [22], [30], [32]
and [42], while support vector machines are used in [11], and
the learning problem is formulated as quadratically constrained
quadratic program in [15]. Out of these works, only [15] and
[21] can guarantee stability. Since the evaluation of e.g. a neu-
ral network is typically much faster than solving the MPC opti-
mization problem, these methods are suited for real-time appli-
cations. In contrast to our work, these methods learn the control
law offline. This implies that they have a fixed approximation
error and cannot improve online, while our method approaches
optimality by learning online. By their design, offline meth-
ods cannot adapt to changes and need training data beforehand,
while our method can be started without prior data.

There are few other works on learning in MPC that do not
fit in the two categories. One of them is [34], in which past
inputs and the past state trajectory are used for iterative tasks to
learn a terminal set and terminal cost of a finite horizon MPC
controller such that infinite horizon performance is optimized
while stability is ensured. In [23], a neural network is trained
offline to identify active constraints in order to warm start an
active set algorithm in embedded MPC while guaranteeing on-
line stability. Although this work also considers learning warm
starts, it is conceptually different from ours, since it learns of-
fline and does not improve performance by decreasing the cost.

This article proposes a novel way of leveraging data in MPC,
which does not match any of the aforementioned categories and
works. Here, we use internal data of the real-time MPC algo-
rithm, specifically predicted state and input sequences. With
this data, we improve the suboptimal real-time controller over
time by providing better warm start solutions based on past op-
timization solutions. To the best of the authors’ knowledge, this
is the first work on learning in real-time MPC that utilizes this
internal data.

Outline This article continues with introducing preliminary
results, the problem formulation, and the core idea of this work
in Section 2. Sections 3 and 4 then contain the main results
of this article: the online learning method is developed for lin-
ear and nonlinear MPC, respectively, and their properties are
analyzed in theory and illustrated through numerical examples.
Section 5 underlines the relevance of the results by an applica-
tion example. Our conclusions, stated in Section 6, complete
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the article.
Notation Throughout the article, we will use R+, R++ and

N+ to denote the sets of non-negative real, strictly positive real,
and strictly positive natural numbers. The set of positive def-
inite matrices of dimension n ∈ N+ is denoted with Sn

++. For
M ∈ S++, we define ‖x‖M :=(x>Mx)1/2. A continuous function
α : R+→R+ with α(0) = 0 is a K∞-function if it is strictly in-
creasing and α(s)→ ∞ as s→ ∞. The interior of a set A⊂ Rn

is denoted intA and the convex hull is convA. For a function
f : Rn→ R the epigraph is

epi f = {(x,µ) ∈ Rn×R| f (x)≤ µ}. (1)

2. Problem setting: Learning in
real-time MPC

In this section, we set the stage for developing the main results
of this article. We first introduce the real-time MPC frame-
work [19], in which our learning method will be embedded.
We then present the main idea of how to leverage data in this
setting, make the learning problem precise, and provide prelim-
inary stability results.

2.1. Real-time MPC framework

We consider the control of time-invariant discrete-time systems
of the form

x(k+1) = f
(
x(k),u(k)

)
+w(k) (2)

where x(k) ∈Rn denotes the state vector, u(k) ∈Rm the control
input vector, and w(k) ∈ Rn some external signal vector, all at
time instant k ∈ N. We will consider both linear and nonlinear
system dynamics f : Rn×Rm→Rn. In MPC, a typical control
task is regulation of the system state to the origin while mini-
mizing some cost function. This is handled by solving at each
time instant k an open-loop optimal control problem of the form

JN
(
U,x(k)

)
=

N−1

∑
j=0

l(x j,u j)+F(xN)

J∗N
(
x(k)

)
= min

U
JN
(
U,x(k)

)
(3)

s.t. x j+1 = f (x j,u j), j = 0, . . . ,N−1
x0 = x(k)

where U = [u>0 , . . . ,u
>
N−1]

> ∈ RNm denotes the stacked control
inputs over the finite prediction horizon N ∈ N+, and l : Rn×
Rm→R+ and F :Rn→R+ denote the stage and terminal costs,
respectively. Since the external signal w(k) is unknown over the
prediction horizon, we assume w(k) = 0 and use the nominal
system to predict x j. We will call J∗N the value function and JN
the cost function. We assume that state and input constraints
are taken into account by a barrier or penalty term in the stage
and terminal cost.

Usually in MPC, it is assumed that the system dynamics and
the optimization algorithm evolve on different time scales such
that the convergence time of the algorithm can be neglected
and an instantaneous solution to (3) is available. In real-time
iteration schemes, this often unrealistic assumption is dropped
and the optimization algorithm is interpreted as a system with
its own dynamics. These are coupled with (2) and are given by

U(k+1) = Φ
iT(k)

(
U(k),x(k)

)
(4a)

u(k+1) = Π0U(k+1) (4b)

where ΦiT(k) : RNm ×Rn → RNm represents the optimization
algorithm and Π0 = [Im 0 . . . 0] ∈ Rm×Nm is a projection
matrix selecting the input to be actually applied. We divide
the optimization algorithm ΦiT(k) into a warm start operator
Ψtw : RNm×Rn → RNm and an optimization update operator
Ψo : RNm×Rn→ RNm, which is iterated iT(k) ∈ N+ times

Φ
0(U,x) = Ψtw(U,x) (5a)

Φ
i(U,x) = Ψo

(
Φ

i−1(U,x), f (x,Π0U)
)
. (5b)

In this way, an input for the nominal next state f (x,Π0U) is
determined.

The warm start operator is typically generated by a time shift
of the previous input sequence appended with some local con-
trol law [19]. Throughout the article, we will therefore refer to
Ψtw as temporal warm start operator. If the closed loop is sta-
ble for any number of optimization algorithm iterations iT(k),
the real-time scheme is also called anytime MPC, [5], [19]. A
generic result on nominal closed-loop stability of an anytime
iteration scheme is proven in [19] and stated in the following
theorem.

Theorem 1. Consider the real-time MPC scheme introduced in
(2)–(5) with w(k) = 0 and assume that the stage and terminal
costs l and F are positive definite. Further assume the existence
of α,α ∈ K∞ such that

α(‖(U,x)‖)≤ JN(U,x)≤ α(‖(U,x)‖) (6)

and assume that Ψtw and Ψo fulfill

JN
(
Ψtw(U,x), f (x,Π0U)

)
− JN(U,x)≤−l(x,Π0U) (7a)

JN(Ψo(U,x),x)− JN(U,x)≤−γ(U,x) (7b)

for all (U,x) ∈ RNm×Rn, where γ : RNm×Rn→ R+ is a con-
tinuous function with γ(U,x) = 0⇔ JN(U,x) = J∗N(x). Then,
for any sequence {iT(0), iT(1), . . .}, the origin (U,x) = (0,0) is
globally asymptotically stable.

This theorem is stated in [19] for linear systems using a re-
laxed barrier function formalism to ensure the assumptions. For
nonlinear systems, this generic result still applies, however, it
is much more challenging to ensure (6) and (7) in nonlinear
MPC. In [14], a weaker stability result for a slightly different
nonlinear real-time MPC framework is presented, yet without
satisfying the assumptions (6) and (7).
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2.2. Problem formulation and main idea

When the system dynamics and the optimization algorithm op-
erate on similar time scales, there is typically only time for a
few optimization iterations until the system requires the next
input, i.e. iT(k) is small. Hence the input might be far from
optimality resulting in unsatisfying controller performance. To
solve this issue, we will leverage the data of all the previously
computed input sequences, which are usually discarded (except
the last input sequence generating a temporal warm start). We
store all past input sequences, and if the system state arrives
close to a point in the state space that has been visited before,
we use this previously calculated input sequence to generate a
warm start solution. The main challenges of this approach are
to make ‘close to a point’ mathematically precise and to prove
convergence. Hence, we have to choose which stored input
sequence (or combinations of multiple ones) to take as warm
start solution at a given location such that the learning scheme
asymptotically recovers the optimal policy at recurrent points
of the closed loop trajectory.

In more detail, we will denote the warm start generated from
the optimization data D(k) by Ψsw( · ,D(k)) : Rn → RNm and
call it spatial to distinguish it from the temporal one. The stored
data D(k) includes: the input sequence U( j) for each time 1≤
j≤ k, the point in state space at which it was calculated f (x( j−
1),Π0U( j−1)), and the cost function value that was achieved
JN(U( j), f (x( j−1),Π0U( j−1)); that is

D(k) =D(k−1)∪
{(

zk,JN(zk)
)}

, D(0) = /0 (8a)

with zk = (U(k), f (x(k−1),Π0U(k−1))). For the subsequent
analysis, we introduce the notation

Dx := {x ∈ Rn |∃(U,x,J) ∈ D} (8b)
DxJ := {(x,J) ∈ Rn×R+ |∃(U,x,J) ∈ D} (8c)

DU := {U ∈ RNm |∃(U,x,J) ∈ D} (8d)

and we denote an approximation of J∗N(x) based on the collected
data D(k) by Ja

N(x,D(k)).
In a nominal MPC stabilization problem, we cannot expect

that the system state repeatedly arrives at the same points in the
state space except at the origin, where the optimal input is triv-
ial. In a real-world scenario, however, there are disturbances,
periodic operation conditions, set point changes, or reference
signals such that more points can be visited several times. Thus,
learning the optimal control at these points is a meaningful
task. We generically model such situations with the signal w(k),
which influences the shape of the ω-limit set of the sequence of
points for which an input is computed,

Ω =
{

y ∈ Rn∣∣∃ki→ ∞ : f
(
x(ki),Π0U(ki)

)
→ y

}
. (9)

A point in Ω is called limit or recurrent point and is reached
infinitely often arbitrarily closely. Only at such points can we
expect learning the optimal policy to be possible because the
optimization iteration usually converges asymptotically to the

optimum and thus needs an infinite number of iterations in gen-
eral.

With this, we can now make the objective of this work pre-
cise. We aim to design the spatial warm start operator Ψsw such
that it will converge to the optimal policy for all x∈Ω as k→∞,
i.e.

∀x ∈Ω : lim
k→∞

JN
(
Ψsw

(
x,D(k)

)
,x
)
= J∗N(x). (10)

Hence, we want to learn the value function J∗N on Ω and the
corresponding optimal control input.

While learning the optimal control, we do not want to jeopar-
dize stability. Hence, we need to make sure that the warm start
solution that is used to initialize the optimization iteration sat-
isfies (7a). We can achieve stability by exploiting the temporal
warm start (which is shown to be stabilizing) and by only ap-
plying the spatial warm start when it yields a lower cost. That
is, we replace (5a) with the new warm start operator

Φ
0(U,x,D) =

{
Ψtw(U,x) JNt < JNs

Ψsw
(

f (x,Π0U),D
)

else,
(11a)

with JNt = JN
(
Ψtw(U,x), f (x,Π0U)

)
(11b)

JNs = JN
(
Ψsw

(
f (x,Π0U),D

)
, f (x,Π0U)

)
. (11c)

Through this intuitive approach, the resulting online learning
scheme is inherently stable as stated in the following corollary.

Corollary 2. Consider the real-time MPC scheme introduced
in (2)–(5), (8), (11) with w(k) = 0 and assume (6), (7). Then
the origin (U,x) = (0,0) is globally asymptotically stable for
all spatial warm start operators Ψsw.

Remark 3. The stability result considers the nominal system
with w(k) = 0 since stability of the origin can not be achieved
with a non-vanishing w(k). The learning problem, however, is
trivial for Ω = {0}, thus, we require w(ki) 6= 0 for some ki→∞

to render Ω 6= {0}. Nevertheless, nominal stability is meaning-
ful and essential for the learning task.

• As a first example, consider a scenario as typically stud-
ied in iterative learning control, where, after some finite
time period, the system is reset to a new initial state.
Let the set of initial states be X0. Then, if we model
w(ki) = − f (xki ,uki)+ x̄, x̄ ∈ X0, for a sequence of reset
times {ki}→ ∞ and w(k) = 0 for k 6= ki, this would corre-
spond to an iterative learning scenario for multiple initial
states in X0, where the goal is to steer x̄ ∈ X0 close to the
origin. While executing an iteration it is w(k) = 0, hence,
global asymptotic stability of the nominal closed loop sys-
tem is essential to guarantee that the controller does the
right thing (not growing unbounded and approaching the
origin). This iterative learning interpretation is also dis-
cussed in the unicycle example in Section 4 of the paper.

• As a second example, let w(k) be Gaussian noise. Then
w(k) would render the set of recurrent points nonempty
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(presumably the whole state space). Nevertheless, the sta-
bility result still makes sense in terms of expectations.
Since a complex stochastic analysis is beyond the scope
of this work, we do not explicitly consider this case. Still,
we can think of w(k) as a deterministic noise signal or a
realization of a stochastic process. In general, feedback
stabilization is essentially only meaningful in the presence
of disturbances. Often, in nominal MPC, disturbances are
associated to nonzero initial states.

• As a third example, consider a tracking of references or
set points. These are often based on a nominal stabilizing
controller, which is used to stabilize different set points.
When the set point changes, this can be interpreted as a
new initial condition and modeled by the signal w(k) as in
the first example. This scenario is treated in an Application
example in Section 5.

In general, we assume that w(k) is of such nature that the
closed-loop trajectory (x(k),U(k)) stays bounded. This ensures
that Ω is nonempty due to the Bolzano-Weierstrass theorem and
that Ω is approached by f (x(k),Π0U(k)) as k→ ∞.

Overall, the proposed MPC iteration scheme measures at ev-
ery time instant the current system state, generates the warm
starts, chooses the better one, executes the optimization itera-
tion, and stores its data before it finally applies the first portion
of the input sequence to the system. A pseudo-code descrip-
tion of this procedure is given in Algorithm 1. The main focus
of this article is line 4 and 10 of the algorithm. More specifi-
cally, we will design in Section 3 and 4 spatial warm start op-
erators for linear and nonlinear MPC, respectively. Throughout
the article, we assume that a temporal warm start satisfying the
conditions in Theorem 1 is given.

Algorithm 1 Real-time MPC scheme with learning

1: for k = 1,2, . . . do
2: obtain current state: x(k)

generate warm starts:
3: Ut = Ψtw(U(k),x(k)) (temporal)
4: Us = Ψsw( f (x(k),Π0U(k)),D(k)) (spatial)
5: U+ =Ut if JNt < JNs as per (11) else U+ =Us

real-time optimization iteration:
6: for i = 1,2, . . . , iT(k) do optimizer update
7: U+ = Ψo(U+, f (x(k),Π0U(k)))
8: end for
9: U(k+1) =U+

memorize data:
10: D(k+1) =D(k)∪{(zk,JN(zk))} as per (8)
11: apply first input: u(k+1) = Π0U(k+1)
12: end for

3. Leveraging data in real-time linear
MPC

In this section, we assume (2) to be linear

f (x,u) = Ax+Bu, (12)

with A ∈ Rn×n, B ∈ Rn×m, the stage and terminal cost are
quadratic, and the polytopic state and input constraints are in-
corporated in the costs via relaxed logarithmic barrier functions
B̂x : Rn→ R+, B̂u : Rm→ R+ (see [17] or [18] for definition).
Under these assumptions, l and F in (3) become

l(x,u) = ‖x‖2
Q +‖u‖2

R + εB̂x(x)+ εB̂u(u), (13)

F(x) = ‖x‖2
P , (14)

with the design parameters ε ∈ R++, Q ∈ Sn
++ and R ∈ Sm

++,
as well as P ∈ Sn

++ resulting from ε , Q, R and the constraints
(see [18] for details). In [19], a temporal warm start and an
optimization update operator are defined such that the condi-
tions (6) and (7) of Theorem 1 are satisfied. Moreover, it has
been shown in [19] that constraint satisfaction can be guaran-
teed with a finite barrier parameter ε if the relaxation of the log-
arithmic barrier functions and the initialization of the scheme
are chosen suitably. We will refer to this scheme as linear any-
time MPC. For this setting, we are going to present a method to
learn the optimal policy and the value function in the sense of
(10), analyze its convergence properties, and demonstrate the
method in an example.

3.1. A spatial warm start based on convexity

The main idea for the spatial warm start generation is to exploit
convexity of the cost function and use convex combinations of
past data points. More formally, we define the spatial warm
start at x̄ ∈ convDx(k) by(

Ψsw(x̄,D), x̄,Ja
N(x̄,D)

)
= argmin

(U,x,J)∈convD
x=x̄

J. (15)

Hereby, we dropped the time dependency of the data D=D(k)
from (8) for the sake of clarity. Furthermore, x̄ denotes the
point at which (3) is to be solved and Ja

N(·,D(k)) denotes a
convex approximation of the value function J∗N(x) based on the
data D(k). A graphical illustration of (15) is given in Fig. 2.
Notice that (15) is only feasible for x̄ ∈ convDx(k) and thus
the domain of Ja

N(·,D(k)) is convDx. For x̄ /∈ convDx(k), we
cannot compute a spatial warm start in this fashion and have to
take the temporal one.

Geometrically, Ja
N is a piecewise affine function and parti-

tions convDx(k) into n-simplices, on which it is affine. We will
refer to this partition as triangulation of convDx(k) inspired by
topology. For computing the spatial warm start at x, one has to
find the n-simplex that contains x, construct the convex com-
bination of its extreme points that leads to x, and combine the
inputs corresponding to the extreme points in the same way.
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x

J

x̄

43

convDxJ(k)
Ja

N(x,D(k))
J∗N(x)

Figure 2. Illustration of the spatial warm start (15) in the (x,J)-domain
with data points DxJ(k) (◦). The lower boundary (in orange) of their
convex hull is an upper bound Ja

N(x,D(k)) of the value function J∗N(x)
(blue), since J∗N is convex and optimal. The spatial warm start solution
at x̄ is a convex combination of the inputs from points 3 and 4.

In the remainder of this section we will show that this
spatial warm start converges to the optimal policy at recur-
rent points (9) by showing that Ja

N(·,D(k)) upper bounds
JN(Ψsw(x,D(k)),x) if JN is convex (Lemma 4), that JN is con-
vex (Lemma 5), and that Ja

N(·,D(k)) converge to the value func-
tion (Theorem 6).

Lemma 4. Let JN : RNm×Rn → R+ be convex with respect
to (U,x). Further, let z j ∈ RNm×Rn, j ∈ N be any sequence,
and let D( j)⊂RNm×Rn×R+ be the corresponding sequence
of data sets defined in (8a). Moreover, let Ψsw(·,D( j)) :
convDx( j)→ RNm and Ja

N(·,D( j)) : convDx( j)→ R+ be de-
fined in (15) and let k ∈ N+. Then (i) JN(Ψsw(x,D(k)),x) ≤
Ja

N(x,D(k)) and (ii) Ja
N(·,D(k)) is convex.

For a proof, see Appendix A. In order to apply Lemma 4,
convexity of JN is needed, which is established for the linear
anytime MPC by the following lemma.

Lemma 5. The cost function JN : RNm×Rn → R+ of linear
anytime MPC, i.e. (3) with (12), (13), (14) is convex in (U,x).

The proof is given in Appendix A. In view of Lemma 4 and
Lemma 5, we can show the following convergence theorem,
which establishes that we can indeed asymptotically learn the
value function and the MPC law in Ω.

Theorem 6. Consider the system (12) controlled by (3)–(8),
(11), (13)–(15) and Ω from (9). Then for all x ∈ Ω with x ∈
int convDx(k0) for some k0 ∈ N it holds

lim
k→∞

JN
(
Ψsw

(
x,D(k)

)
,x
)
= J∗N(x). (16)

Proof. Step 1) Ja
N(·,D(k)) converges: For k ≥ k0, it holds

convD(k0)⊆ convD(k) and hence Ja
N is defined on convD(k0)

for all k ≥ k0. Further, since convD(k) ⊇ convD(k− 1) and
the minimum over a larger set can only be smaller, we can con-
clude that Ja

N(y,D(k))≤ Ja
N(y,D(k−1)) for all y∈ convDx(k0),

k ≥ k0. In order to apply Lemma 4, JN has to be convex, which
is shown in Lemma 5. Due to (i) in Lemma 4 and the optimality
of J∗N we have

J∗N(y)≤ JN(Ψsw(y,D(k)),y)≤ Ja
N(y,D(k)) (17)

for all y ∈ convDx(k0), k ≥ k0. Hence, Ja
N(·,D(k)) is nonin-

creasing and bounded from below on convDx(k0) and thus con-
verges pointwise limk→∞ Ja

N(·,D(k)) = J∞
N (·) on convDx(k0).

Due to (ii) in Lemma 4, this is a sequence of convex func-
tions JN(·,D(k)), which has a convex limit J∞

N (·). Every con-
vex function is locally Lipschitz continuous on open subsets
(see e.g. [7]), hence J∞

N (·) is locally Lipschitz continuous on
intconvDx(k0).

Step 2) Ja
N(x,D(k)) converges to J∗N(x): Let x ∈ Ω ∩

int convDx(k0) and let C ⊂ intconvDx(k0) with intC 3 x be
compact, then there exists a sequence ki → ∞ such that ξi =
f
(
x(ki),Π0U(ki)

)
→ x, ξi ∈ C. Let Lk be the Lipschitz constant

of Ja
N(·,D(k)) on C and L∞ for J∞

N (·), respectively, which are fi-
nite since C is compact and the functions are locally Lipschitz.
Hence, Lk→ L∞ as k→∞ is a real valued converging sequence
and is therefore upper bounded by some M ∈ R. It follows∣∣Ja

N
(
ξi,D(ki +1)

)
− Ja

N
(
ξi,D(ki)

)∣∣≤ 2M ‖ξi− x‖
+
∣∣Ja

N
(
x,D(ki +1)

)
− Ja

N
(
x,D(ki)

)∣∣→ 0.

Thus the following chain of inequalities

Ja
N
(
ξi,D(ki +1)

)
≤ JN

(
U(ki +1),ξi

)
≤ JN

(
Φ

1(U(ki),x(ki),D(ki)
)
,ξi
)

≤ JN
(
Φ

0(U(ki),x(ki),D(ki)
)
,ξi
)

≤ JN
(
Ψsw

(
ξi,D(ki)

)
,ξi
)
≤ Ja

N
(
ξi,D(ki)

) (18)

is a chain of equalities in the limit, where the first inequality
holds due to (8) and (15) and the other inequalities due to (7b),
(7b), (11) and Lemma 4 (i) in this specific order. Therefore
as i → ∞ the decrease of the optimizer update operator (7b)
γ
(
Φ0
(
U(ki),x(ki),D(ki)

)
,ξi
)
→ 0, which is due to γ(U,x) =

0⇔ JN(U,x) = J∗N(x) only possible if

JN
(
Φ

0(U(ki),x(ki),D(ki)
)
,ξi
)
− J∗N(ξi)→ 0.

This is due to (18) equivalent to Ja
N
(
ξi,D(ki)

)
− J∗N(ξi)→ 0.

Since J∗N is convex, it is also locally Lipschitz continuous on
intconvDx(k0) and we assume that M is a Lipschitz constant of
J∗N on C (if not choose M large enough). Hence, it follows∣∣Ja

N
(
x,D(ki)

)
− J∗N(x)

∣∣≤ ∣∣Ja
N
(
ξi,D(ki)

)
− J∗N(ξi)

∣∣
+
∣∣Ja

N
(
x,D(ki)

)
− Ja

N
(
ξi,D(ki)

)
+ J∗N(ξi)− J∗N(x)

∣∣
≤
∣∣Ja

N
(
ξi,D(ki)

)
− J∗N(ξi)

∣∣+2M ‖x−ξi‖→ 0.

Thus, we showed that Ja
N(x,D(k))→ J∗N(x) which implies due

to (17) the desired result (16).

Remark 7. The assumption x ∈ int convDx(k0) for some k0 ∈
N is rather technical. Still, it is possible that a recurrent point
never lies in the interior of convDx(k) as k→ ∞. A straightfor-
ward solution to this problem is to initialize the data set D(0)
with some points (xi,Ui,JN(Ui,xi)), i = 1, . . . ,K. This solves
the issue for all x ∈ intconv{x1, . . . ,xK} even for arbitrary Ui.
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Figure 3. Simulation results of the double integrator example from Section 3.3. Left: The suboptimality of the costs for the spatial and temporal
warm start JN(Ψs/tw(k), f (x(k),Π0U(k))− J∗N( f (x(k),Π0U(k))) over time when applying iT(k) = 2 gradient descent steps per optimization.
Middle: Closed-loop trajectory (o) compared to the original non-learning method (·) starting from the same initial condition. State constraints
(dashed) and optimal limit cycle (solid) are also depicted. Right: Performance vs. computation time comparison for iT(k) = 1, . . . ,10. Averaged
over 10 runs (Nsim = 3000) with random initial conditions.

Hence, a good choice for the points xi are the extreme points of
the polytopic feasible set. By adding the point (0,0,0) to D(0)
the prior knowledge about the optimal input at the origin can be
included.

3.2. Algorithm and implementation

For online learning, it is crucial to solve (15) in an efficient way,
since a warm start solution must be provided within one sam-
pling period. The convex hull computation gets increasingly
burdensome with more data points and higher state space di-
mensions. Therefore, we rely on an incremental convex hull al-
gorithm and split the computation in two parts: the convex hull
update and the spatial warm start generation. Detailed imple-
mentations of both parts can be found in the Appendix B. The
update can be performed on a different time scale and does not
need to be executed in real time, as is demonstrated in Section
5. Notice that the number of data points that is needed to get a
good approximation of the MPC control law scales with the di-
mension of the ω-limit set Ω, which can be significantly lower
than the dimension of the state space. Moreover, the compu-
tational complexity of the learning algorithm is independent of
the length of the prediction horizon. Finally, we emphasize that
stability is always guaranteed. Hence, storage and processing
restrictions only limit the performance improvement but do not
jeopardize the stability of the controller.

3.3. Example: Double Integrator

We demonstrate the learning scheme presented in this section
for a numerical example. We consider the discrete-time double
integrator system from [19] of the form

x(k+1) =
[1 Ts

0 1

]
x(k)+

[
T 2

s
Ts

]
u(k)+w(k) (19)

with sampling time Ts = 0.1s. Input and state constraints are
inherited from [19] U = {u ∈ R : |u| ≤ 1} and X = {x ∈ R2 :

−2≤ x1 ≤ 3, |x2| ≤ 1}, and likewise the parameters of the cost
function and of the backtracking line search optimization with
gradient descent search direction. The external disturbance is
quasiperiodic w(k) = 0.09 [sin(kTs) cos(kTs)]

>.
For two optimization iterations iT(k) ≡ iT = 2 and a ran-

domly chosen initial condition at x(0) ≈ [0.9 − 0.9]>, we
have simulated the closed-loop behavior of the presented MPC
scheme for Nsim = 3000 time steps. In the left subplot of Fig. 3,
the suboptimality of both warm starts, i.e. the difference of their
costs to the value function, is depicted over time. As was to be
expected, the spatial warm start performs first poorly since too
few data is available, but then improves over time while more
and more data is collected until it significantly outperforms the
temporal warm start. Further, we can see that the learning rate
is limited by the optimization update operator since two gra-
dient descent iterations per time step result in a slow rate of
convergence.

In order to highlight the improvements offered by the pro-
posed learning scheme, we compare it to the original anytime
MPC [19], i.e. to Algorithm 1 without lines 4 and 10. To this
end, the state trajectories of both methods are depicted in the
middle subplot of Fig. 3 in the phase portrait until time k = 700
together with the limit cycle of the optimally controlled system,
where the optimization problem (3) is solved with MATLAB’s
fminunc. As we can see, learning significantly improves the
performance and leads to much better constraint satisfaction.
First, both trajectories are identical since the spatial warm start
is never used, but as more data is collected the trajectories de-
viate and the one from the proposed scheme approaches the op-
timal one. In particular, the trajectories deviate as soon as they
enter the interior of convDx(k), where for the proposed scheme
the convergence result of Theorem 6 holds.

Thus far, we have not considered the fact that generating the
spatial warm start consumes computation time that might be
better invested in doing more optimization iterations with the
temporal warm start. To investigate this, we run the simulation
for different numbers of optimization iterations iT(k) ≡ iT =

7



1, . . . ,10 and for ten different initial conditions. For each iT, we
average the computation times and the costs to obtain a point
in the right subplot of of Fig. 3. We can see that the proposed
learning scheme is way closer to the optimal performance than
the original anytime MPC without learning.

4. Leveraging data in real-time
nonlinear MPC

In the general case of the nonlinear MPC scheme (2)–(8), (11),
we cannot expect that the cost function JN is convex. Therefore,
we propose in this section a different learning method that does
not depend on convexity, but instead exploits Lipschitz conti-
nuity.

4.1. A spatial warm start based on Lipschitz
continuity

The idea for the spatial warm start generation for x̄ ∈ Rn is to
find an input sequence from the data (U,x,J) ∈ D such that x
is close to x̄ and J is small. This directly leads to the following
spatial warm start rule(

Ψsw(x̄,D),x∗(x̄,D),J∗(x̄,D)
)

= argmin
(U,x,J)∈D

J+L(U)‖x− x̄‖ (20a)

Ja
N(x̄,D) = min

(U,x,J)∈D
J+L(U)‖x− x̄‖ (20b)

where L(U) ∈ R++ is a Lipschitz parameter that might depend
on U , and Ja

N(·,D) is an approximation of the value function
J∗N based on the data D. An illustration of the spatial warm
start (20) is given in Fig. 4. If we assume JN(U, ·) to be
Lipschitz continuous with constant L(U), then Ja

N(·,D) upper
bounds the value function and the spatial warm start as shown
in the following Lemma. Similar ideas to approximate an un-
known function based on Lipschitz continuity from sampling
data have been proposed in [4], [9], and [40].

Assumption 8. Assume that JN(U, ·) is Lipschitz continuous
with constant L(U), i.e. for all x,y ∈ Rn,∣∣JN(U,x)− JN(U,y)

∣∣≤ L(U)‖x− y‖ . (21)

Lemma 9. Let Assumption 8 hold, then

JN
(
Ψsw(x,D),x

)
≤ Ja

N(x,D) (22)

and Ja
N(·,D) is also Lipschitz continuous with Lipschitz con-

stant LD = maxU∈DU L(U).

For a proof, see Appendix A. With Lemma 9, we obtain a
convergence result similar to Theorem 6.

x

J

x̄

J∗N(x)
3

Ja
N(x,D(k))

Figure 4. Illustration of the spatial warm start (20) in the (x,J)-domain
with data points (xi,Ji) ∈ DxJ(k) (◦). For each point, the cone Ji +
L(Ui)‖x− xi‖ is indicated as well as the minimum over all i for each x
given by Ja

N(x,D(k)), which is an upper bound for the value function.
The spatial warm start solution at x̄ is the input from point 3.

Theorem 10. Consider the nonlinear MPC scheme presented
in (2)–(9), (11) with the spatial warm start operator (20), fur-
ther let Assumption 8 hold, and let ∀k ≥ 1 : L(U(k)) ≤M ∈ R
be upper bounded. Then for all x ∈Ω

lim
k→∞

JN
(
Ψsw

(
x,D(k)

)
,x
)
= J∗N(x). (23)

Proof. Step 1) Ja
N(x,D(k)) converges: In view of Lemma 9,

we have J∗N(x) ≤ JN(Ψsw(x,D(k)),x) ≤ Ja
N(x,D(k)). Thus by

showing Ja
N(x,D(k))→ J∗N(x) for x ∈ Ω we will prove the the-

orem. We also see from this inequality that Ja
N(x,D(k)) is

bounded from below by J∗N(x). Further Ja
N(x,D(k)) is decreas-

ing since the minimum over a larger set D(k + 1) ⊇ D(k) is
smaller or equal and thus Ja

N(x,D(k)) must converge to some
value.
Step 2) Ja

N(x,D(k)) converges to J∗N(x): This step is analogous
to step 2) in the proof of Theorem 6 and thus moved to the
Appendix A.

Remark 11. Even tough Assumption 8 might be restrictive,
if we assume that x(k) does not grow unbounded, but stays
in some compact region Cx ⊂ Rn, then the Lipschitz constants
L(U(k)) do not need to apply globally, but only on Cx in order
to obtain the same result. If further U(k) stays in some com-
pact set CU ⊆ RNm, then the assumption L(U(k)) ≤ M is also
satisfied with M = maxU∈CU L(U)< ∞ if JN is continuous in U .

Remark 12. It can be quite challenging to satisfy (6) and (7)
for general nonlinear MPC algorithms. As often done in prac-
tice, one can still implement the learning scheme with spatial
warm start (20). The controller performance will improve as
long as the optimization iteration does reduce the costs, even
if (6) and (7) do not hold. However, a prior stability guarantee
depends on the nonlinear iteration scheme.

Remark 13. If in a specific setup the cost function JN is nev-
ertheless known to be convex, then the learning scheme of Sec-
tion 3 can be used and probably leads to a better upper bound
Ja

N ; for example, see Fig. 4 where the convex hull over the
data points would result in a lower upper bound Ja

N(·,D) inside
convDx. On the other hand, if one faces a linear MPC problem
with a nonconvex cost function JN , due to nonconvex stage or
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terminal costs, then the learning scheme from this section can
be applied.

4.2. Example: Unicycle

In this section, we implement the nonlinear real-time MPC
learning scheme for the unicycle model

ẋ = fc(x,u) =
[
u1 cos(x3) u1 sin(x3) u2

]> (24)

with state and input vectors x = [x1 x2 x3], u = [u1 u2] respec-
tively, as well as the sampling time Ts = 0.1s. The control
task is to drive the unicycle to (x1,x2) = (0,0) facing into pos-
itive x1 direction, i.e. x3 = 2zπ for some z ∈ Z while keeping
‖u‖

∞
< 1. Therefore, the stage cost in (3) is chosen as l(x,u) =

0.1sin
( x3

2

)2
+ 4
√

1+ x2
1 + x2

2 − 1 + u8
1 + u8

2 to ensure positive
definiteness with respect to u = 0, (x1,x2,x3) = (0,0,2zπ), pre-
vent x2

1 + x2
2 from getting too steep, while ensuring differentia-

bility at the origin, and let u shoot up as ‖u‖
∞
> 1. The terminal

cost is set to F(x) = 100 l(x,0). For this example, the learning
scheme from Section 3 cannot be applied since the resulting
cost function JN is not convex. However, the costs turn out to
be Lipschitz continuous in x with Lipschitz constant L(U) com-
puted in Appendix C.

We choose Ψtw(U,x) = [U>1 , . . . ,U>N−1,0
>]> as the temporal

warm start and the same optimization operator (5b) as for the
linear example in Section 3.3, which consists of the gradient
descent search direction with backtracking line search. Further,
we use a constant number of optimization iterations iT(k) = 2.
We consider iterative learning in a repetitive and fast process,
which is a common task in iterative learning control (see [38]).
The system is repeatedly started from the same initial condi-
tion x0 = [1,1,1+π/2]>, where each run takes 120 time steps.
Hence, throughout a run, w(k) is zero and after every 120 time
steps it sets x(k) back to x0.

Although Ψtw and Ψo might not satisfy (7), the closed loop
performance is still satisfying as we can see in the simulation

results depicted in Fig. 5. In the plot, we can see that the op-
timal behavior is learned within a few runs. After five runs the
unicycle has learned to start driving backwards, and after 20
runs it has learned to approach the destination driving forwards
and is almost indistinguishable from the optimal trajectory.

5. Application: Servomechanism

In the two previous examples, we have not considered the actual
time available for the computation. In fact, the learning update
may not always be computable within one sampling period Ts,
especially when considering systems with higher dimensions
and fast dynamics. To circumvent this issue, we will outsource
learning onto a server that communicates with the controller. In
particular we assume, that the convex hull update is executed in
parallel to the controller and whenever it is completed, one of
the latest data points since the last one added is added next.
Further, iT(k) is not predefined but the optimization iteration
is stopped as soon as the computation time is exhausted. This
does not affect our stability and convergence results as long as
at least one optimization iteration is performed since Theorem
1 and Theorem 6 apply for any sequence iT(k) ∈ N+.

In this section, we will implement the learning scheme for a
reference tracking task on a simulation model of a servomecha-
nism consisting of a DC-motor, a gear-box, an elastic shaft and
a load. This system has already served as an example in [6]
from where we have inherited the linear model

ẋ =


0 1 0 0
−kθ

JL

−βL
JL

kθ

ρJL
0

0 0 0 1
kθ

ρJM
0 −kθ

ρ2JM

−βMR−K2
T

JMR

x+


0
0
0

KT
RJM

u (25)

and the parameters, which can be found in [6]. The state vec-
tor x = [θL θ̇L θM θ̇M]> consists of the load angle θL and the
motor angle θM as well as their time derivatives and the in-
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Figure 6. Simulation results of the servomechanism in Section 5. Left: The effect of learning is clearly visible in the improved reference tracking
behavior over increasing number of periods. Middle: The mean tracking error per period of the linear anytime MPC with and without the proposed
learning scheme as well as the optimal mean error. Right: First ten seconds of the input signal for different periods, as well as the optimal input
and the input constraint.

put u corresponds to the DC voltage. The reference track-
ing task of this system is also included in the collection of
benchmark MPC problems given in [25]. The model is dis-
cretized using zero-order hold on the input and the sampling
time Ts = 0.1s. Further the system has to satisfy the state and
input constraints |[kθ 0 − kθ/ρ 0]x| ≤ Tmax, |u| ≤ Vmax, where
Tmax,Vmax can be found in [6]. To make the problem more dif-
ficult and to obtain a polytopic feasible set, we added the con-
straints |x1| ≤ 2, |x2| ≤ 2, and |x2 + x4| ≤ 40 to the original
problem.

The goal is that the angle of the load θL follows the periodic
step reference signal r(k) with period length 200. To achieve
this we see that xs(rs) = [1 0 ρ 0]>rs, us = 0 is a steady
state of (25) that produces exactly the constant reference rs for
arbitrary rs ∈ R. Therefore we will define the cost function
with respect to x− xs(r(k)) and u− us = u except for the part
that incorporates the constraints. That is, (13) and (14) become

l(x,r,u) = ‖x− xs(r)‖2
Q +‖u‖2

R + εB̂(x,u), (26a)

F(x,r) = ‖x− xs(r)‖2
P , (26b)

with Q = diag([10 0.1 10 0.1]), R = 0.01, and ε = 10−3. Fur-
ther, the relaxed logarithmic barrier function B̂ and P are chosen
according to [18]. For the optimization update operator, we use
the gradient descent backtracking line search as described in
[19] with parameters ρ = 0.5, c1 = 10−3 and c2 = 0.999. The
data set D(0) will be initialized with the extreme points of the
feasible set as described in Remark 7.

The simulation results of the closed loop over Nsim = 30000
time steps (150 periods of the reference signal) are shown in
Fig. 6. In the left subplot, we can see that the reference tracking
performance improves from period to period. This is also vis-
ible in the middle subplot, where the mean reference tracking
error per period of the learning scheme decreases and converges
to the one of the optimally controlled system. The original any-
time MPC scheme without a spatial warm start and thus without

learning does not improve over time and the mean reference
tracking error stays constant. The scheme with learning is in
the first period worse than without learning, because the time
to compute the spatial warm start cannot be used for further op-
timization iterations. In average there is a difference of 1.8 iter-
ations in between the original anytime MPC (≈ 39.4 iterations)
and the scheme with learning (≈ 37.6). However, already in the
second period the scheme with learning achieves better track-
ing performance and improves much more over time. After the
120th period the controller has learned to exploit the full range
of feasible control inputs as can be seen in the right subplot of
Fig. 6.

There is a computational aspect that we have not discussed
yet. The required memory capacity and the computation time
for updating the convex hull and for the spatial warm start
generation increase with the size of D(k) such that the num-
ber of points in the convex hull that can be handled is lim-
ited. Hence, to exploit the available capacities we add only data
points (U,x,J) to D(k) that lead to a significant improvement
from Ja

N(x,D(k)) to J = Ja
N(x,D(k+ 1)), here > 10−2. In this

example, out of 30000 data points 21164 were skipped because
the improvement was too small and 4630 because it was not
possible to update the convex hull within one sampling time,
leading to a total of 4206 data points added to the convex hull.

In summary, the example clearly shows the benefit of the pro-
posed memory-based MPC scheme in improving performance,
while maintaining guarantees on stability at all times and being
suitable for online implementation.

6. Conclusion and outlook

We presented and analyzed an online learning scheme for the
value function and optimal policy in a real-time MPC frame-
work for both linear and nonlinear systems. Even if only one
optimization iteration is performed between two consecutive
sampling instants, the MPC still approaches optimality in the

10



long run through the learning scheme. Furthermore, stability of
the real-time MPC scheme is retained independent of the type
of learning approach. These findings were illustrated in dif-
ferent linear and nonlinear numerical examples. Moreover, we
discussed how learning and applying the learned input can be
decoupled and parallelized.

An interesting topic for future study is to further improve the
presented learning methods by more efficient implementations
of the data structure and the algorithms to generate the spatial
warm start. In particular, while we have not provided a concrete
algorithm for the nonlinear Lipschitz based learning scheme,
the ideas of [4] might be helpful for arriving at an efficient im-
plementation. The optimization iteration also leaves room for
improvement by exploiting underlying properties or structure.
The proposed method can be extended in several ways. For
example the online learning scheme could probably be modi-
fied to handle time-varying systems or costs by including some
mechanisms to forget expired data points. Since our stability
result does not depend on the learning method, this opens the
possibility to apply classical machine learning function approx-
imators for online learning. A comparison to a function approx-
imation based on offline data to generate a static spatial warm
start would also be interesting to investigate.
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(Ui,xi,Ji) ∈ D(k), we have

(
Ψsw(x,D(k)),x,Ja

N(x,D(k))
)
=

K

∑
i=1

λi(Ui,xi,Ji)

and further

JN
(
Ψsw

(
x,D(k)

)
,x
)
= JN

(
K

∑
i=1

λi(Ui,xi)

)

≤
K

∑
i=1

λiJN(Ui,xi)

=
K

∑
i=1

λiJi = Ja
N
(
x,D(k)

)
.

(ii) We slightly reformulate (15)

Ja
N
(
x,D(k)

)
= min

(z,J)∈convDxJ(k)
z=x

J (27)

and show that the epigraph of Ja
N(·,D(k)) : convDx(k)→R+ is

convex:

epiJa
N
(
·,D(k)

)
=

(x, J̄)

∣∣∣∣∣∣J̄ ≥ min
(z,J)∈convDxJ(k)

z=x

J


= {(x, J̄) |∃J ≤ J̄ : (x,J) ∈ convDxJ(k)}
= {(x,J+α) |α ≥ 0∧ (x,J) ∈ convDxJ(k)}
= convDxJ(k)⊕

(
{0}× [0,∞)

)
where ⊕ denotes the Minkowski sum. Since both convDxJ(k)
and {0}× [0,∞) are convex, the epigraph epiJa

N(·,D(k)) is also.

Proof of Lemma 5. It is shown in [19] that the cost function JN
can be written under these assumptions as

JN(U,x) =
1
2

U>HU + x>FU +
1
2

x>Y x+ εB̂xu(U,x)

where H,F and Y can be computed from Q, R, P, A and B
and account for the terms ‖x‖2

Q, ‖u‖2
R and ‖x‖2

P in l and F .
Furthermore, the relaxed logarithmic barrier function B̂xu(U,x)
is shown in [19] to be a weighted sum over convex func-
tions whose argument depends affinely on (U,x). Therefore
B̂xu(U,x) is convex in (U,x). The quadratic part of JN is also
convex in (U,x) since it is quadratic and positive definite as
proven in [19].

Proof of Lemma 9. In view of (21) we have∣∣JN(Ψsw(x,D),x)− JN
(
Ψsw(x,D),x∗(x,D)

)∣∣
≤ L(Ψsw(x,D))‖x∗(x,D)− x‖

and further

JN
(
Ψsw(x,D),x

)
≤ JN

(
Ψsw(x,D),x∗(x,D)

)
+L
(
Ψsw(x,D)

)
‖x∗(x,D)− x‖

= Ja
N(x,D).

To prove the second statement, we use (20a) with x̄ = y ∈ Rn

and (20b) with x̄ = x ∈ Rn to see

Ja
N(x,D)≤ J∗(y,D)+L(Ψsw(y,D))‖x− x∗(y,D)‖

which implies

Ja
N(x,D)− Ja

N(y,D)
≤ L
(
Ψsw(y,D)

)(
‖x− x∗(y,D)‖−‖y− x∗(y,D)‖

)
≤ LD ‖x− y‖ .

Since x and y are interchangeable, it follows∣∣Ja
N(x,D)− Ja

N(y,D)
∣∣≤ LD ‖x− y‖ . �

Step 2) of the proof of Theorem 10. Step 2) Ja
N(x,D(k)) con-

verges to J∗N(x): For x ∈ Ω, there exists a sequence ki → ∞

such that ξi = f (x(ki),Π0U(ki))→ x. It follows∣∣Ja
N
(
ξi,D(ki +1)

)
− Ja

N
(
ξi,D(ki)

)∣∣≤ 2M ‖ξi− x‖
+
∣∣Ja

N
(
x,D(ki +1)

)
− Ja

N
(
x,D(ki)

)∣∣→ 0.

Thus the following chain of inequalities

Ja
N
(
ξi,D(ki +1)

)
≤ JN

(
U(ki +1),ξi

)
≤ JN

(
Φ

1(U(ki),x(ki),D(ki)
)
,ξi
)

≤ JN
(
Φ

0(U(ki),x(ki),D(ki)
)
,ξi
)

≤ JN
(
Ψsw

(
ξi,D(ki)

)
,ξi
)

≤ Ja
N
(
ξi,D(ki)

)
,

(28)

is a chain of equalities in the limit, where the first inequality
holds due to (8) and (20) and the other inequalities due to (7b),
(7b), (11) and Lemma 9 in this specific order. Therefore as
i→ ∞ the decrease of the optimizer update operator (7b)

γ
(
Φ

0(U(ki),x(ki),D(ki)
)
,ξi
)
→ 0,

which is only possible if

JN
(
Φ

0(U(ki),x(ki),D(ki)
)
,ξi
)
− J∗N(ξi)→ 0.

This is due to (28) equivalent to

Ja
N
(
ξi,D(ki)

)
− J∗N(ξi)→ 0.

J∗N is Lipschitz continuous and without loss of generality we
can assume that M is the Lipschitz constant of J∗N (if not choose
M large enough). Hence it follows∣∣Ja

N
(
x,D(ki)

)
− J∗N(x)

∣∣≤ ∣∣Ja
N
(
ξi,D(ki)

)
− J∗N(ξi)

∣∣
+
∣∣Ja

N
(
x,D(ki)

)
− Ja

N
(
ξi,D(ki)

)
+ J∗N(ξi)− J∗N(x)

∣∣
≤
∣∣Ja

N
(
ξi,D(ki)

)
− J∗N(ξ )

∣∣+2M ‖x−ξi‖→ 0

which is with (17) what we wanted.
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Table 1. Properties of the convex hull object CH

name description

Dx list of previous data points in Rn

DU list of previous input sequences in RNm

DJ list of previous cost function values in R+

CHxJ list that contains all facets of the lower half of
convDxJ as lists of the indices of their extreme
points in DxJ

CHx list that contains all facets of convDx as lists of the
indices of their extreme points in Dx

cx center point of convDx
cxJ center point of convDxJ
ox list of deleted facets in CHx that can be overwritten
oxJ list of deleted facets in CHxJ that can be overwritten
GxJ list that contains for each point inDxJ a list of facets

in CHxJ that are attached to this point
Gx list that contains for each point in Dx a list of facets

in CHx that are attached to this point

B. Convex hull algorithm

The purpose of the convex hull algorithm presented in this sec-
tion is to solve (15). As discussed in Section 3, Ja

N(·,D(k))
gives rise to a triangulation of convDx(k) and the spatial warm
start at x can be computed by seeking for the n-simplex in this
triangulation that contains x. Therefore in a first step, this trian-
gulation of convDx(k) must be computed by a convex hull al-
gorithm that determines the facets of the lower boundary of the
convex hull convDxJ(k). The lower boundary of convDxJ(k) is
the graph of Ja

N(·,D(k)), see Fig. 2. The extreme points of each
of these facets are, after projection onto Rn, the extreme points
of an n-simplex of the triangulation of convDx(k). As second
step, the spatial warm start can be computed from this convex
hull by searching the n-simplex that contains x and combine
the inputs corresponding to its extreme points to obtain a warm
start solution. Hence, the procedure naturally decomposes into
two steps:

i) Generate spatial warm start from the convex hull.

ii) Update convex hull with a new data point.

While i) corresponds to line 4 of Algorithm 1, ii) corresponds
to line 14 where collecting data is meant as fitting the new point
into the data structure. Notice that this decomposition divides
the algorithm into learning ii) and applying the learned spatial
warm start i) – a property that will be exploited in Section 5 for
parallelization.

It is efficient to use an incremental convex hull algorithm that
updates the existing convex hull object when a new data point
arrives instead of starting the calculation from scratch. Further,
the fact that for a point that is added to the convex hull, a spa-
tial warm start was already generated and it has therefore been

located in the triangulation can be leveraged for efficiency. The
problem of searching for the n-simplex in the triangulation that
contains x is similar to the location problem in explicit MPC
and hence these algorithms (see e.g. [37]) can be used. The im-
plementation we used, however, is based on a directed search by
tracking neighboring n-simplices starting from an initial guess
down to x.

We present a way to implement the two main routines spa-
tial warm start generation generateSW and convex hull update
updateCH. First, we need to define an object that represents the
collected data and all we need to know about the convex hull,
we call this the convex hull object and denote it with CH. The
properties of the convex hull object are listed in Table 1. Refer-
ences to a property of the convex hull object are denoted with
a dot, e.g. CH.Dx. In addition to these listed properties we
will use CH.D and CH.DxJ to denote the combined lists of the
data points, so the kth element of CH.D is for example a triple
containing the kth elements of CH.DU, CH.Dx and CH.DJ.

The way the data is generated allows for efficient tailored
implementations of the two routines, if the neighbors of each
facet are known.

i) The facet that contains x can be found by starting from
some initial facet and tracking neighboring facets towards
x, for example by following a+s(x−a) as s increases from
0 to 1, where a is some point in the facet. A good initial
guess can be given by the facet in which the last point was
located, if the system state does not change too fast from
one time instant to the next. If this point was added to
the convex hull, then this facet does not exist anymore. In
this case any facet attached to this newly added point can
be taken as initial guess. Another more advanced initial
guess can be provided by saving for every point in the con-
vex hull its subsequent point. If the subsequent point was
not added, then an extreme point of the facet where the
subsequent point was located is stored. This information
provides for each point in the convex hull a good guess
of its subsequent point and this can be used as basis for
the initial guess. Thereby, the system dynamic gets also
included implicitly in the prediction from the initial guess.

ii) A data point that needs to be added to the convex hull is al-
ready located in the triangulation of convDx(k) by the pre-
vious warm start generation. Hence, by starting from this
facet and checking the neighboring facets successively, all
facets that need to be updated can be found.

The information about neighboring facets are stored in the
graph CH.GxJ, which needs to be updated whenever the con-
vex hull is.

B.1. Generating the spatial warm start
solution from the convex hull object

Let x be the point where we want to generate the warm start
solution and CH the convex hull object. The main part in
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the warm start generation is the search for the facet that con-
tains x. As discussed above, it is easy to provide a good guess
for a point a ∈ CH.Dx that is close to x. Assume the index
i of a in CH.Dx is given, then the routine takes the inputs
CH, x and i. As outputs it makes sense to not only return
the spatial warm start Ψsw = Ψsw(x,CH.D) but also the in-
dex F of the facet of CH.CHxJ that contains x and the index
i of the next initial guess. If x is not contained in any facet,
i.e. if x /∈ convCH.Dx, then let F be negative, in fact let it be
F = −Fx where Fx is the index of a facet of CH.CHx that ex-
cludes x by means of x lies outside the supporting halfspace to
convDx at this facet Fx. Summing, the routine can be invoked
by (Ψsw,F, i) = generateSW(CH,x, i). The basic idea in find-
ing the facet that contains x is to start the search at a and track
the facets along the line a+ s(x−a), s ∈ [0,1] until s = 1, then
we have reached the facet that contains x. If we sometime step
out of convCH.Dx, then x /∈ convCH.Dx and we cannot pro-
vide a spatial warm start as described in (15) at x, but we can
at the point where we stepped out of convCH.Dx and use this
as spatial warm start solution for x. The procedure can be de-
scribed by the following steps, where the numbers indicate to
which lines of pseudo-code in Algorithm 2 the step corresponds
to

a) (1:−6:) Get the initial point a and a list f of indices of the
facets in CH.CHxJ that are attached to it.

b) (7:−16:) Find the facet F ∈ f in which the vector v = x−a
points starting from a.

c) (17:−27:) If no such facet exists, then v must point out
of convCH.Dx, a must lie on the boundary and hence
x /∈ convCH.Dx. So there must exist at least one facet
of CH.CHx attached to a that excludes x. Find the index
of this facet, return its negative as F and return the input
used at a as spatial warm start. Also return the index of
the extreme point of this facet that is closest to x increased
by one as next initial guess i.

d) (28:−34:) Else track the facets along a+ sv until s ≥ 1 or
no further facet exists along the line because we stepped
out of convCH.Dx.

e) (35:−41:) If we stepped out before s = 1, then find the
index of facet of CH.CHx where we stepped out and return
its negative as F , further return the index of the extreme
point of this that is closest to x increased by one as next
initial guess i and the convex combination of the inputs of
this facet as spatial warm start Ψsw.

f) (42:−46:) Else we have found index F of the facet of
CH.CHxJ that contains x and return it. Also return the
convex combination of the inputs at this facet as spatial
warm start and the index of the extreme point of this that
is closest to x increased by one as next initial guess i.

Algorithm 2 Spatial warm start generation
(Ψsw,F, i) = generateSW(CH,x, i)
Input: convex hull object CH, evaluation point x and initial
guess i
Output: spatial warm start Ψsw at x, index F of facet CH.CHxJ
that contains x and next initial guess i. If x /∈ convCH.Dx, then
F is negative and |F | is the index of a facet in CH.CHx that
excludes x.

1: f = CH.GxJ(i)
2: while f < 0 do
3: i =− f
4: f = CH.GxJ(i)
5: end while
6: a = CH.Dx(i)
7: v = x−a
8: s = 0
9: for F ∈ f do

10: if pointsInFacet(CH,x,F, i) then
11: E = CH.CHxJ(F) without i
12: d = normal(CH.Dx(E),a)
13: s = d>(CH.Dx(E(1))−a)/(d>v)
14: break for
15: end if
16: end for
17: if s = 0 then
18: for F ∈ CH.Gx(i)
19: d = normal(CH.Dx(CH.CHx(F)),CH.cx)
20: if d>(x−CH.Dx(CH.CHx(F)(1)))> 0 then
21: break for
22: end if
23: end for
24: f = CH.CHx(F)
25: i = argmin j∈ f ‖x−CH.Dx( j)‖
26: return (Ψsw,F, i) = (CH.DU(i),−F, i+1)
27: end if
28: while true
29: if s≥ 1 then break while
30: f = getFacets(CH,E,xJ)
31: F = f without F
32: if F is empty then break while
33: (s,E) = findIntersection(CH,a,v,s,F,E)
34: end while
35: if s < 1 then
36: F = getFacets(CH,E,x)
37: i = argmin j∈E ‖x−CH.Dx( j)‖
38: c = findConvComb(CH,E,a+ sv)
39: Ψsw = ∑

n
j=1 CH.DU(E( j))c( j)

40: return (Ψsw,F, i) = (Ψsw,−F, i+1)
41: end if
42: f = CH.CHxJ(F)
43: i = argmin j∈ f ‖x−CH.Dx( j)‖
44: c = findConvComb(CH, f ,x)
45: Ψsw = ∑

n+1
j=1 CH.DU( f ( j))c( j)

46: return (Ψsw,F, i) = (Ψsw,F, i+1)
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A detailed description of the steps in pseudo-code can be found
in Algorithm 2, still there are needed some minor supporting
routines that we will discuss now to complete the whole proce-
dure of generating the warm start.

• b = pointsInFacet(CH,x,F, i) checks if the vector v =
x− CH.Dx(i) starting from i points inside the facet of
CH.CHxJ with index F , where i has to be an extreme point
of F . The length of v does not matter only the direction,
i.e. x= CH.Dx(i)+v need not lie inside F for b being true,
it is enough if there exists ε > 0 such that CH.Dx(i)+ εv
lies inside the facet. Pseudo-code is given in Algorithm 3.

• d = normal(A,x) is the most used subroutine and it calcu-
lates for a given set A of p points in Rp a vector d ∈Rp that
is normal to the hyperplane going through all points in A.
This hyperplane cuts Rp into two halfspaces and d points
into the halfspace that does not contain the given point
x ∈ Rp, where x must not lie on the this plane. A pseudo-
code description of this subroutine is given in Algorithm 4
and uses the well-known QR-decomposition that decom-
poses an invertible matrix M ∈Rp×p = QR into an orthog-
onal matrix Q = Q−> and an upper triangular matrix R
where all diagonal entries of R are positive.

• f = getFacets(CH,E,flag) gives out all facets of
CH.CHflag that share the extreme points specified in E.
f can also be only a single facet or even empty, depending
on how many facets exists that share the edge E. Pseudo-
code is given in Algorithm 5.

• f = findIntersection(CH,a,v,s,F,E) takes an edge E
of F such that a+ sv lies on E and it gives out (s,E) such
that a+ sv lies on the edge E of F but with output s >
input s. In words it takes the edge and point where the line
a+ sv enters F and computes the edge and point where it
leaves F . Pseudo-code is given in Algorithm 6.

• f = fincConvComb(CH, f ,x) calculates the weights c
such that ∑

| f |
j=1 c( j)CH.Dx( f ( j)) = x and ∑

| f |
j=1 c( j) = 1.

Therefore it must be verified that it is possible to convex
combine the points in f to x. Pseudo-code is given in Al-
gorithm 7.

B.2. Updating the convex hull

Second we consider updating the convex hull, therefore let CH
be the convex hull object and (U,x) the input sequence and
point in state space we want to add. In addition we already
know the index F of the facet of CH.CHxJ that contains x from
the previous spatial warm start generation at exactly this point
x. This makes up the inputs of the routine and the output is
of course the updated convex hull object CH, hence it can be
invoked by CH = updateCH(CH,x,U,F). The basic idea of
updating CH is that we start at the facet F , which must be for

Algorithm 3 Check if vector points in facet
b = pointsInFacet(CH,x,F, i)
Input: convex hull object CH, vector x, facet F and index i of
starting point
Output: boolean b, true if v = x−CH.Dx(i) points in F start-
ing from i.

1: E = CH.CHxJ(F)
2: for j = 1,2, . . . ,n+1
3: if E( j) 6= i then
4: Ē = E without E( j)
5: d = normal(CH.Dx(Ē),CH.Dx(E( j)))
6: if d>(x−CH.Dx(i))> 0 then
7: return b = false
8: end if
9: end if

10: end for
11: return b = true

Algorithm 4 Calculate normal vector
d = normal(A,x)
Input: list A of n points in Rn, point x ∈ Rn

Output: vector d that is normal to the plane spanned by A
pointing into the halfspace that does not contain x

1: for j = 1, . . . ,n−1
2: A( j) = A( j)−A(n)
3: end for
4: A(n) = x−A(n)
5: QR-decomposition QR = [A(1),A(2), . . . ,A(n)]
6: return d =− last column of Q

Algorithm 5 Get facets attached to set of extreme points
f = getFacets(CH,E,flag)
Input: convex hull object CH, list E of extreme points and flag
that can either be x or xJ indicating the convex hull
Output: list f of facets of CH.CHflag that contain all extreme
points given in E

1: f = CH.Gflag(E(1))
2: for p ∈ E without E(1) do
3: f = common elements of f and CH.Gflag(p)
4: end for
5: return f
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Algorithm 6 Find intersection of line and facet boundary
(s,E) = findIntersection(CH,a,v,s,F,E)
Input: convex hull object CH, start point a, direction vector v,
current s, facet F , edge E of F with a+ sv lying on this edge
Output: s and E such that a+ sv lies on ende E of facet F and
output s > input s,

1: p = CH.CHxJ(F) without E
2: for j = 1,2, . . . ,n
3: Ē( j) = E without E( j) but with p
4: d = normal(CH.Dx(Ē),CH.Dx(E( j)))
5: s̄( j) = d>(CH.Dx(p)−a)/(d>v)
6: if s̄( j)≤ s then s̄( j) = ∞

7: end for
8: j̄ = argmin j s̄( j)
9: return (s,E) = (s̄( j̄), Ē( j̄))

Algorithm 7 Find convex combination
c = findConvComb(CH,E,x)
Input: convex hull object CH, index array E of points in
CH.Dx, point x
Output: vector c such that the points in E summed up with the
weights in c equal x and sum over elements in c is 1

1: A = [CH.Dx(E)> 1>]>

2: b = [x> 1]>

3: Solve Ac = b for c
4: return c

sure updated since there is always an improvement in the opti-
mization update operator as long as we have not reached exact
optimality and even in that unlikely case the point we want to
add lies directly on the facet and it makes no difference to add
it and split the facet. Thus we always update the facet F and
the we start searching from F for neighboring facets that need
to be updated and if we found one, then we also search in its
neighbors for facets to update. Since the convex hull was con-
vex before and has to be convex afterwards the set of facets to
update must be connected and thus we will find all facets to
update by that procedure. A special case is if x /∈ convCH.Dx,
i.e. F < 0, then we need to find all facets of CH.CHx that ex-
clude x and check that facets of CHxJ attached to them if they
must be updated. In this case we must also update CH.CHx
which we do by the same procedure, starting from −F search
for neighboring facets that must to be updated. In fact all facets
of CH.CHx that must be updated are facets that exclude x and
the other way round, so we search them, update them and ini-
tialize with the facets of CH.CHxJ attached to them the search
for updates in CH.CHxJ. In more detail the procedure can be
described by the following steps, where the numbers indicate to
which lines of pseudo-code in Algorithm 8 the step corresponds
to

a) (1:−5:) Append data point to data set CH.D.

Algorithm 8 Update convex hull object
CH= updateCH(CH,x,U,F)
Input: convex hull object CH, new point x, input sequence
U , index F of facet in CH.CHxJ that contains x, negative if
x /∈ convCH.Dx, then |F | is facet of CH.CHx that excludes x.
Output: updated convex hull object CH that contains the new
point

1: Append x to CH.Dx
2: Append U to CH.DU
3: Append JN(U,x) to CH.DJ
4: z = [x> JN(U,x)]>

5: k = number of elements in Dx
6: if F < 0 then
7: EtoTestx = list of all edges of facet CH.CHx(−F)
8: EtoTestxJ = list with one element CH.CHx(−F)
9: CH= removeFacet(CH,−F,x)

10: while EtoTestx is not empty do
11: F = getFacets(CH,EtoTestx(1),x)
12: E = EtoTestx(1)
13: if F is not empty then
14: d = normal(CH.Dx(CH.CHx(F)),CH.cx)
15: if d>(x−CH.Dx(E(1)))> 0 then
16: append CH.CHx(F) to EtoTestxJ
17: CH= removeFacet(CH,F,x)
18: append edges of F except E to EtoTestx
19: else
20: CH= addFacet(CH, [E, k],x)
21: end if
22: end if
23: remove E from EtoTestx
24: end while
25: else
26: EtoTestxJ = list of all edges of facet CH.CHxJ(F)
27: CH= removeFacet(CH,F,xJ)
28: end if
29: while EtoTestxJ is not empty do
30: E = EtoTestxJ(1)
31: F = getFacets(CH,E,xJ)
32: if F is not empty then
33: d = normal(CH.DxJ(CH.CHxJ(F)),CH.cxJ)
34: if d>(z−CH.DxJ(E(1)))> 0 then
35: CH= removeFacet(CH,F,xJ)
36: append edges of F except E to EtoTestxJ
37: else
38: CH= addFacet(CH, [E, k],x)
39: end if
40: end if
41: remove E from EtoTestxJ
42: end while
43: CH.cx = CH.cx(k−1)/k+ x/k
44: CH.cxJ = CH.cxJ(k−1)/k+ z/k
45: return CH
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b) (6:−24:) If F < 0 then x /∈ convCH.Dx and we need to
update CH.CHx first. We know that −F is one facet that
needs to be updated so we remove it and check all neigh-
boring facets if they must also be updated. If so, then we
remove them and also add their edges to the list of edges
whose neighboring facets need to be checked. If not then
we take the edge between the facet that had been removed
and the one that stays and add it together with the new
point k as new facet to CH.CHx. Whenever we remove a
facet we also add it to the list of edges we need to check
for updating CH.CHxJ.

c) (25:−28) If F > 0 then we remove this facet from CH.CHxJ
and initialize the list of edges we need to check with all
edges of this facet.

d) (29:−42) Check edges as long as there are some whether
their adjacent facets need to be updated or not, if so re-
move them and add their edges to the list, if not add the
edge with the new point as new facet to CH.CHxJ.

e) (43:−45:) Update the center points of the convex hulls and
return the updated convex hull object.

Whenever we talked about adding a facet to or removing it
from CH.CHx/xJ we of course also have to update the graph
CH.Gx/xJ. A detailed explanation on the subroutines adding
and removing shall be given now.

• CH = removeFacet(CH,F,k,flag) removes the facet F
from the CH.CHflag and also removes its appearance in
CH.Gflag. When removing F we still need to keep the slot
F in CH.CHflag because if we would delete it, all facets
coming after F in the list CH.CHflag would get their in-
dex decremented and we would need to change the whole
CH.Gflag. Hence it is easier to add F to a list CH.oflag
of open slots that can be overwritten, thereby keeping all
other indices as they are. If it happens for flag = xJ that
thereby an extreme point p of F is afterwards not attached
to any facet at all, i.e. with adding the new data point
p ’moves’ from the boundary of the convex hull to its
interior, then we store for p the information that it has
fallen out of the boundary when updating k by setting
CH.GxJ(p) =−k. This is necessary for the initial guess for
the warm start generation where it could happen that for
some point the initial guess is p, but if p is not attached to
any facet then we cannot start a search from there. There-
fore we store that p has been overwritten by k and then we
can start the search from a facet attached to k instead.

• CH = addFacet(CH, f ,flag) adds the facet with extreme
points listed in f to CH.CHflag and updates the graph
CH.CHflag. If there is an open slot CH.oflag in CH.CHflag
then we can overwrite it, otherwise we append the new
facet to the list CH.CHflag.

Another point we have not discussed here is the initialization
of the convex hull. The algorithms presented here only work if
there already exists a convex hull object where there are enough
points to build the convex hulls and they have to be correct ob-
viously. A straight forward approach is to wait until the n+ 1
data points are available and initialize the convex hull CH.CHxJ
with the first and only facet [1 . . . n+1] as well as the convex
hull CH.CHx with all n+ 1 possible combinations of n points
out of these n+1 points.

Algorithm 9 Remove facet from convex hull object
CH= removeFacet(CH,F,k,flag)
Input: convex hull object CH, facet F of CH.CHflag, current
index k and flag that is either x or xJ indicating the convex hull
Output: updated convex hull object CH without F

1: for p ∈ CH.CHflag(F) do
2: remove F from CH.Gflag(p)
3: if CH.Gflag(p) is empty and flag = xJ then
4: CH.Gflag(p) =−k
5: end if
6: end for
7: add F to CH.oflag
8: return CH

Algorithm 10 Add facet to convex hull object
CH= addFacet(CH, f ,flag)
Input: convex hull object CH, list f of extreme points of facet
that is added to CH.CHflag, current index k and flag that is either
x or xJ indicating the convex hull
Output: updated convex hull object CH with facet f

1: if CH.oflag is not empty then
2: F = CH.oflag(1)
3: change CH.CHflag(F) to f
4: else
5: F = length of CH.CHflag +1
6: end if
7: for p ∈ f do
8: append F to CH.G(p)
9: end for

10: remove F from CH.oflag
11: return CH

C. Computation of the Lipschitz
constant from Section 4.2

The Lipschitz constant L(U) of the cost function JN(U, ·) can
be computed as

L(U) =
N

∑
i=0

(
Ll +δNi(LF −Ll)

) i−1

∏
j=0

L f (Π jU) (29)
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where δNi denotes the Kronecker-delta that is 1 if i = N and
0 else, where Ll , LF and L f are the Lipschitz constants of the
stage cost l, the terminal cost F and the system dynamic f ,
respectively and where Π j = [. . . 0, Im, 0, . . . ] ∈ Rm×Nm is a
projection matrix, that projects U onto its m j+1st till m j+mth
component. The Lipschitz constants can be upper estimated as

Ll =

√
13
50

, LF = 100Ll (30a)

L f (u) =

√
1+Ts|u1|

√
1+T 2

s u2
1/4+T 2

s u2
1/2. (30b)

by the following calculations(
∂ l

∂x3
(x,u)

)2

=
(

0.1sin
(x3

2

)
cos
(x3

2

))2
≤ 0.12

(
∂ l

∂x1,2
(x,u)

)2

=

(
2x1,2

4
(
1+ x2

1 + x2
2

)3/4

)2

=
1
4

√
x4

1,2

(1+ x2
1 + x2

2)
3

≤ 1
4

√√√√ x4
1,2

(1+ x2
1,2)

3

=
1
4

√√√√ x4
1,2

1+3x2
1,2 +3x4

1,2 + x6
1,2
≤ 1

8∥∥∥∥ ∂ l
∂x

(x,u)
∥∥∥∥≤

√
0.12 +

1
4
=

√
13
50

and

∂ f
∂x

(x,u) =

1 0 −Tsu1 sin(x3)
0 1 Tsu1 cos(x3)
0 0 1


⇒ ∂ f

∂x
(x,u)>

∂ f
∂x

(x,u) = 1 0 −Tsu1 sin(x3)
0 1 Tsu1 cos(x3)

−Tsu1 sin(x3) Tsu1 cos(x3) T 2
s u2

1 +1


which has the eigenvalues 1 and 1 ± Tsu1

√
1+T 2

s u2
1/4 +

T 2
s u2

1/2. Thus the maximum absolute eigenvalue is∥∥∥∥∂ f
∂x

(x,u)
∥∥∥∥2

= 1+Ts|u1|
√

1+T 2
s u2

1/4+T 2
s u2

1/2.
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