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Abstract

This paper develops boundary feedback control laws in order to damp out traffic oscillations in the congested regime of the linearized
two-class Aw-Rascle (AR) traffic model. The macroscopic second-order two-class AR traffic model consists of four hyperbolic partial
differential equations (PDEs) describing the dynamics of densities and velocities on freeway. The concept of area occupancy is used
to express the traffic pressure and equilibrium speed relationship yielding a coupling between the two classes of vehicles. Each vehicle
class is characterized by its own vehicle size and driver’s behavior. The considered equilibrium profiles of the model represent evenly
distributed traffic with constant densities and velocities of both classes along the investigated track section. After linearizing the model
equations around those equilibrium profiles, it is observed that in the congested traffic one of the four characteristic speeds is negative,
whereas the remaining three are positive. Backstepping control design is employed to stabilize the 4× 4 heterodirectional hyperbolic
PDEs. The control input actuates the traffic flow at outlet of the investigated track section and is realized by a ramp metering. A full-state
feedback is designed to achieve finite time convergence of the density and velocity perturbations to the equilibrium at zero. This result is
then combined with an anti-collocated observer design in order to construct an output feedback control law that damps out stop-and-go
waves in finite time by measuring the velocities and densities of both vehicle classes at the inlet of the investigated track section. The
performance of the developed controllers is verified by simulation.

Key words: Multi-class traffic model, PDE control, Backstepping, Output feedback controller.

1 Introduction

Nowadays, more and more people own a car leading to
crowded highways and congested traffic during rush hours in
many countries of the world. Stop-and-go traffic is common
to appear in congested traffic. This phenonemon is charac-
terized by traffic density and velocity perturbations, caus-
ing higher fuel consumption and a higher risk of accidents.
Traffic management systems like ramp metering or variable
speed limits exist in order to regulate traffic. Moreover, they
can be used to damp out those traffic oscillations and dis-
tribute traffic evenly on the highway. Many recent efforts
are focused on boundary control of stop-and-go traffic in-
cluding [40], [43], [38] and [39]. However, the results pre-
sented in this paper assume heterogeneous vehicle sizes and
drivers’ behavior. Thus, the overall challenge addressed in
this work is the design of a ramp metering traffic manage-
ment system to reduce traffic oscillations in the congested
regime while distinguishing two different vehicle classes.
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In general, traffic models are categorized in micro-, meso-
and macroscopic models. Macroscopic models describe the
traffic as a continuum and are thus more suitable to investi-
gate traffic jams and disturbances in traffic flow. Typically,
their model equations are PDEs. The first representative
of this model category is the Lighthill-Whitham-Richards
(LWR) model, [22] and [29], that is given by a single
PDE conserving the traffic flow. Although capturing a good
amount of realistic traffic phenomena, the LWR model fails
to model important phenomena like platoon dispersion [37]
or stop-and-go waves and is faulty under light traffic con-
ditions. Thus, a second order extension is provided inde-
pendently by [28] and [36]. This second order extension
is denoted as the PW model and introduces a second PDE
modeling the velocity dynamics of the vehicles in addition
to the conversation law. However, the critique in [9] points
out that the PW model fails to portray that personalities of
vehicles remain unchanged and drivers react more likely
to events in front of them. To overcome these issues, [4]
and [41] presented the Aw-Rascle-Zhang (ARZ) model
which is also a second-order model describing the interac-
tion between the vehicles by a traffic pressure function.

Macroscopic multi-class models were proposed after the
publication of the ARZ model, including the first order mod-
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els [6], [8], [16], [23], [26], [27], [33], [37] and [42]. The
extended LWR model, introduced by [37], is the first macro-
scopic multi-class extension. Instead of adjusting their ve-
locity only depending on the density of their own class, ve-
hicles are affected by the densities of all other classes. Thus,
the assumed speed-density relationship is formulated with
respect to the sum of all densities, the total density. Fur-
thermore, the n-populations model [6] extends this idea of
coupling regarding the average length of the vehicle classes
by denoting the speed-density relationship in dependence of
the mean free space between the vehicles. In [16] and [26],
a phenomenon called creeping is introduced. This behavior
occurs in reality and corresponds to the scenario where one
vehicle class, for instance trucks, are jammed and stopped
due to congestion and a second vehicle class, for instance
motorcycles, still moves in the gap between the trucks.

In addition to first-order macroscopic multi-class models,
second-order multi-class models are introduced in [7], [18],
[21], [25], [31] and [32]. While first-order models assume
that the velocities of all vehicles equal to their equilibrium
velocities at every time, second-order models provide PDEs
describing the velocity dynamics for each class. The de-
noted second-order models differ in the terms that occur in
the velocity dynamics and in the principles which are used
to deduce them. For instance, [32] presents an originally
microscopic model that is transformed to the macroscopic
one, whereas the model in [25] is based on the macroscopic
second-order model of [4]. The main focus of this paper
is the macroscopic multi-class model [25]. Considering this
extension for the case of two different classes yields four
coupled nonlinear hyperbolic PDEs which are denoted as
the two-class AR traffic model in the following. In order
to consider vehicle sizes, the vehicles are assumed to ad-
just their speed according to a measure called area occu-
pancy, [1] and [24], which needs to be distinguished from
occupancy [2].

Typically, traffic management systems act on the boundary
of the investigated track section yielding a boundary control
problem. In the literature, different techniques are proposed
that achieve convergence of the states of hyperbolic coupled
PDEs to a constant equilibrium with boundary control. The
main focus of this paper is on the backstepping stabilization
technique. While [10], [11], [14], [19], [34], [35] provide
results in case of 2×2 or 3×3 coupled hyperbolic systems,
there also exists literature if an arbitrary amount of linear
coupled PDEs is considered [3], [12], [15], [20], [30]. In
fact, the presented output feedback control of this work cor-
responds to the special case of the theoretical result in [20]
for m = 3 and n = 1. The elimination of traffic oscillations
by applying the backstepping technique is achieved for the
ARZ model in [38] and in [40]. Moreover, [40] also presents
adaptive control results.

Main contribution of this paper: this work presents the first
result on boundary control design for traffic congestion con-
sisting of two different vehicle classes. On one hand, this
work contributes to traffic modeling in the sense of deducing

a macroscopic multi-class traffic model in its characteristic
form and investigating the obtained characteristic speeds. On
the other hand, a connection between the theoretical control
design method backstepping and an up-to-date extension of
the AR traffic model for two classes is created by designing a
full-state feedback controller and output feedback controller
as ramp metering signal. Moreover, the results are a first
step for control problem of more than two vehicle classes
or the combination of multiple classes with multiple lanes.

The rest of this paper is structured as follows: Section 2 intro-
duces the two-class AR traffic model, the parameters charac-
terizing the two classes and where they occur as well as the
assumed boundary conditions. Section 3 includes the prepa-
ration of the linearized model for the control design and the
formulation of the control design model. Furthermore, the
full-state feedback controller result is presented in section
4 and the following section 5 presents the anti-collocated
observer design. Section 6 provides the combination of the
results to derive an the output feedback controller and sec-
tion 7 verifies the performance of the presented controllers
with simulation results. Some future work is discussed in
section 8.

2 Problem statement

The two-class AR traffic model is presented and impor-
tant model parameters are explained. Afterwards, the model
equations are linearized around a constant equilibrium, fol-
lowed by a discussion of the free-flow or congested regimes.

2.1 Two-class AR traffic model

The Extended AR model for heterogeneous traffic presented
in [25] is investigated in case of two classes. This two-class
AR traffic model is given by

∂tρ1 =−∂x(ρ1v1), (1)
∂t(v1 + p1(AO)) =− v1∂x(v1 + p1(AO))

+
Ve,1(AO)− v1

τ1
, (2)

∂tρ2 =−∂x(ρ2v2), (3)
∂t(v2 + p2(AO)) =− v2∂x(v2 + p2(AO))

+
Ve,2(AO)− v2

τ2
, (4)

where each vehicle class is described by traffic density
ρi(x, t) and velocity vi(x, t) with (x, t) ∈ [0,L]× [0,∞). The
parameter L is the length of the investigated track section.
The traffic density ρi(x, t) is defined as vehicles per unit
length. The higher the traffic density, the more crowded
is the traffic of class i vehicles at a specific spatial point.
In addition, the velocity vi(x, t) describes the velocity of
class i vehicles at a specified spatial point along the investi-
gated track section. The traffic density ρ1(x, t) and velocity
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v1(x, t) correspond to the first vehicle class and the traf-
fic density ρ2(x, t) and velocity v2(x, t) correspond to the
second vehicle class. The non-zero terms on the right hand
side represent the adaption of the vehicles to their desired
velocities, where τi is the adaptation time.

The variable AO(ρ1,ρ2) describes the area occupancy and is
based on the definition of the occupancy introduced in [2].
In [25], the expression for the area occupancy is simplified
to

AO(ρ1,ρ2) =
a1Lρ1 +a2Lρ2

WL
, (5)

where ai is the occupied surface per vehicle class i and W
the width of the investigated track. Assuming that the traffic
densities are ρ1(x, t) and ρ2(x, t) along the entire considered
highway section, the area occupancy AO(ρ1,ρ2) is the per-
centage of occupied road space by any class. It holds that
0≤ AO≤ 1. The area occupancy depends on both densities
since the occupied road surface is influenced by the vehicles
of both classes.
The traffic pressure function pi(AO) is formulated as

pi(AO) =Vi

(
AO(ρ1,ρ2)

AOi

)γi

, (6)

where Vi corresponds to the free-flow velocity, γi > 1 to the
traffic pressure exponent and 0 < AOi ≤ 1 to the maximum
area occupancy. The traffic pressure pi(AO) is the experi-
enced traffic pressure by class i vehicles and depends on the
area occupancy. The higher the area occupancy, the higher
the experienced traffic pressure. For instance, if a vehicle
suddenly decelerates, then the following vehicle experiences
a high traffic pressure forcing another deceleration. Thereby,
the free-flow velocity Vi represents the desired velocity of
a driver, if no other vehicles of any class are present. The
pressure exponent γi is a parameter that models the experi-
ence of the traffic pressure. Higher traffic pressure exponents
lead to less experienced pressure. However, the maximum
experienced pressure remains the same and is given by the
free-flow velocity. The maximum area occupancy AOi de-
scribes the percentage of occupied road surface for which
the corresponding vehicle class is jammed. To obtain phys-
ically meaningful results, 0 < AO ≤ 1 holds. For instance,
AO2 = 0.8 means that if 80% of the highway are covered by
vehicles of any class, then the class 2 vehicles are jammed
and therefore their desired velocity is zero. Finally, the equi-
librium speed-AO relationship is

Ve,i(AO) =Vi

(
1−
(

AO(ρ1,ρ2)

AOi

)γi
)
, (7)

according to the model of Greenshield [17], and represents
the desired velocity of the class i vehicles. It depends on the
area occupancy since a very crowded road implies a lower
desired speed in contrast to a nearly empty road. If the area
occupancy is at the maximum AOi, then the corresponding
equilibrium speed-AO relationship value is Ve,i(AOi) = 0. In
order to show the qualitative behavior of the traffic pressure

function (6) and the equilibrium speed-AO relationship (7),
both functions are plotted in Figure 1 using an example
parameter set. It is illustrated, that a more crowded highway,
corresponding to a higher area occupancy, implies a higher
experienced traffic pressure and a lower equilibrium speed.

2.2 Linearized two-class AR traffic model

The two-class AR traffic model (1) to (4) is linearized around
a constant equilibrium state (ρ∗1 ,v

∗
1,ρ
∗
2 ,v
∗
2)

T . Inserting this
constant state in (1) to (4) yields the conditions

v∗1(ρ
∗
1 ,ρ

∗
2 ) =Ve,1(AO(ρ∗1 ,ρ

∗
2 )), (8)

v∗2(ρ
∗
1 ,ρ

∗
2 ) =Ve,2(AO(ρ∗1 ,ρ

∗
2 )). (9)

Thus, the equilibrium velocities are determined by the equi-
librium densities ρ∗1 and ρ∗2 . The perturbations of the dis-
tributed variables ρi(x, t) and vi(x, t) are defined as

ρ̃i(x, t) = ρi(x, t)−ρ
∗
i , (10)

ṽi(x, t) = vi(x, t)− v∗i , (11)

for each class i and the linearized model equations are given
by

Jt


ρ̃1t

ṽ1t

ρ̃2t

ṽ2t

+ Jx


ρ̃1x

ṽ1x

ρ̃2x

ṽ2x

+ J


ρ̃1

ṽ1

ρ̃2

ṽ2

=


0

0

0

0

 , (12)

where the introduced Jacobian matrices are

Jt =


1 0 0 0

β11 1 β12 0

0 0 1 0

β21 0 β22 1

 , (13)

Jx =


v∗1 ρ∗1 0 0

v∗1β11 v∗1 v∗1β12 0

0 0 v∗2 ρ∗2

v∗2β21 0 v∗2β22 v∗2

 , (14)

J =


0 0 0 0

1
τ1

β11
1
τ1

1
τ1

β12 0

0 0 0 0
1
τ2

β21 0 1
τ2

β22
1
τ2

 , (15)

and the abbreviations

βi j(ρ
∗
1 ,ρ

∗
2 ) =

∂ pi(AO(ρ1,ρ2))

∂ρ j

∣∣∣∣
ρ1=ρ∗1 ,ρ2=ρ∗2

(16)
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Fig. 1. Traffic pressure functions p1(AO) and p2(AO) (left) and equilibrium speed-AO relationships Ve,1(AO) and Ve,2(AO) (right) for the
example parameter set γ1 = 2.5, V1 = 80 km

h , AO = 0.9 for class 1 and γ2 = 2, V2 = 60 km
h , AO2 = 0.85 for class 2.

are introduced with i, j = 1,2. The abbreviations βi j(ρ
∗
1 ,ρ

∗
2 )

represent the derivative of the class i traffic pressure func-
tion with respect to class j traffic density. The boundary
conditions are assumed to be

ρ1(0, t) = ρ
∗
1 , (17)

ρ2(0, t) = ρ
∗
2 , (18)

q1(0, t)+q2(0, t) = q∗1 +q∗2, (19)
q1(L, t)+q2(L, t) = q∗1 +q∗2, (20)

where (19) and (20) assume that the same total traffic flow
enters and leaves the track section which is given by the sum
of the class 1 and class 2 equilibrium flows q∗1 and q∗2. The
traffic flow of class i is defined as

qi(x, t) = ρi(x, t)vi(x, t). (21)

Boundary conditions (17) and (18) indicate that the traffic
densities of the incoming traffic flow are equivalent to the
equilibrium densities. Thus, not only the entering traffic flow
is constant, in fact the densities of both classes in this traffic
flow are assumed to be constant. The linearization of the
introduced boundary conditions (17) to (20) is

0 = ρ̃1(0, t), (22)
0 = ρ̃2(0, t), (23)
0 = v∗1ρ̃1(0, t)+ρ

∗
1 ṽ1(0, t)+ v∗2ρ̃2(0, t)+ρ

∗
2 ṽ2(0, t), (24)

0 = v∗1ρ̃1(L, t)+ρ
∗
1 ṽ1(L, t)+ v∗2ρ̃2(L, t)+ρ

∗
2 ṽ2(L, t). (25)

2.3 Free/congested regime analysis

In general, two different regimes of traffic are distinguished:
the free-flow regime and the congested regime. The free-
flow regime is characterized by the fact that the total in-
formation of the system travels downstream along with the

vehicles. In that case, the model equations correspond to
four homodirectional hyperbolic PDEs. On the other hand,
a partial upstream propagation of information characterizes
the traffic flow in the congested regime. The corresponding
heterodirectional behavior causes the development of stop-
and-go traffic which implies increased fuel consumption and
risk of accidents. Therefore, it is reasonable to investigate
which choices of equilibrium densities and parameters lead
to heterodirectional information propagation. Therefore, the
characteristic speeds are computed and their signs are con-
sidered in the following. First, the linearized model equa-
tions (12) need to be decoupled in time leading to

ρ̃1t

ṽ1t

ρ̃2t

ṽ2t

+ J̃x


ρ̃1x

ṽ1x

ρ̃2x

ṽ2x

= J̃


ρ̃1

ṽ1

ρ̃2

ṽ2

 (26)

with the new Jacobian matrices

J̃x = (27)
v∗1 ρ∗1 0 0

0 v∗1−β11ρ∗1 β12(v∗1− v∗2) −β12ρ∗2

0 0 v∗2 ρ∗2

β21(v∗2− v∗1) −β21ρ∗1 0 v∗2−β22ρ∗2


and

J̃ =


0 0 0 0

− 1
τ1

β11 − 1
τ1
− 1

τ1
β12 0

0 0 0 0

− 1
τ2

β21 0 − 1
τ2

β22 − 1
τ2

 . (28)
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Then, the characteristic speeds are given by the eigenvalues
of J̃x which are

λ1 =v∗1(ρ
∗
1 ,ρ

∗
2 ), (29)

λ2 =v∗2(ρ
∗
1 ,ρ

∗
2 ), (30)

λ3 =
v∗1(ρ

∗
1 ,ρ

∗
2 )+ v∗2(ρ

∗
1 ,ρ

∗
2 )−α1(ρ

∗
1 ,ρ

∗
2 )−α2(ρ

∗
1 ,ρ

∗
2 )

2

+
∆(ρ∗1 ,ρ

∗
2 )

2
, (31)

λ4 =
v∗1(ρ

∗
1 ,ρ

∗
2 )+ v∗2(ρ

∗
1 ,ρ

∗
2 )−α1(ρ

∗
1 ,ρ

∗
2 )−α2(ρ

∗
1 ,ρ

∗
2 )

2

− ∆(ρ∗1 ,ρ
∗
2 )

2
, (32)

where

∆(ρ∗1 ,ρ
∗
2 ) =

√(
α2ρ∗2 −α1ρ∗1 + v∗1− v∗2

)2
+4α1α2ρ∗1 ρ∗2

(33)
and

αi(ρ
∗
1 ,ρ

∗
2 ) = βii(ρ

∗
1 ,ρ

∗
2 ) =

∂ pi(AO(ρ1,ρ2))

∂ρi

∣∣∣∣
ρ1=ρ∗1 ,ρ2=ρ∗2

.

(34)
For model validity, the equilibrium velocities of both vehicle
classes are chosen to be positive, i.e. v∗1 > 0 and v∗2 > 0 and all
vehicles travel downstream. Thus, the first two characteristic
speeds (29) and (30) are positive. In addition, it is shown
in [44] that

λ4 ≤min{λ1,λ2} ≤ λ3 ≤max{λ1,λ2} (35)

holds. Because λ1 > 0 and λ2 > 0, (35) implies that λ3 is
positive as well. Hence, the only characteristic speed that
may have a negative sign is λ4. Therefore, traffic is defined
to be in the free regime if the equilibrium densities and
parameters satisfy

λ1,λ2,λ3,λ4 > 0 (36)

and in the congested regime if they meet

λ1,λ2,λ3 > 0, λ4 < 0. (37)

Since a controller dealing with congested traffic is designed
later on, it is assumed that the equilibrium densities and pa-
rameters are chosen such that (37) holds throughout the rest
of this paper. In fact, this result allows to formulate a traffic
froude number as it is presented in [5] for the ARZ model.
Besides, in [44], a physical interpretation of the character-
istic speeds (29) to (32) is given. While λ1 and λ2 corre-
spond to the flow of class 1 vehicles and class 2 vehicles, λ3
is related to the fact that the faster vehicle class overtakes
the slower one. For that reason, it is reasonable to obtain
λ1 = λ2 = λ3, if v∗1 = v∗2 is assumed.

According to the definitions in (36) and (37), the bound-
ary between the two regimes is defined as λ4 = 0. In case

of the two-class AR traffic model, this boundary is a line
which can be drawn in the ρ∗1 -ρ∗2 -plane. Compared to the
single class consideration, the boundary is equivalent to a
single density which is the critical density. The numerically
computed boundary between the two regimes is plotted as
a contour plot for an example parameter set in Figure 2.
The figure also indicates that small values for both equi-
librium densities ρ∗1 and ρ∗2 correspond to a positive value
of λ4 and therefore homodirectional behavior. On the other
hand, large values of densities lead to a negative value of λ4
indicating heterodirectional behavior. Hence, smaller equi-
librium densities correspond to free-flow regime and large
equilibrium densities correspond to congested regime.

3 Boundary control design model

In a next step, the control objective and input is explained
and afterwards the introduced linearized two-class AR traf-
fic model, (12), (22) to (25), is prepared for the control de-
sign. The preparation is done using two transformations, the
transformation to Riemann coordinates and a second trans-
formation to further simplify the equations expressed in Rie-
mann coordinates resulting in the control design model.

3.1 Control input and objective

The overall goal is to damp out stop-and-go traffic in the
congested regime and achieve convergence to the equilib-
rium states in a finite time. The term of stop-and-go traf-
fic refers to oscillations of the density and velocity pertur-
bations around their constant equilibrium values along the
highway. Moreover, a ramp metering is considered to be in-
stalled at the outlet of the investigated track section regu-
lating the traffic outflow. In this work, the ramp metering is
used to damp out the introduced stop-and-go waves. Thus,
the boundary condition (25) becomes

U(t) = v∗1ρ̃1(L, t)+ρ
∗
1 ṽ1(L, t)+ v∗2ρ̃2(L, t)+ρ

∗
2 ṽ2(L, t).

(38)
Compared to the application of multi-phase flow in oil
pipelines, [13], a ramp metering works as a valve at the end
of the pipe to control the outgoing flow.

3.2 Transformation to Riemann coordinates

The system is transformed to Riemann coordinates to ac-
complish a decoupling of the spatial derivatives. The Rie-
mann variables (w̄1, w̄2, w̄3, w̄4)

T are defined as new coordi-
nates. The linear state transformation is given by

w̄1

w̄2

w̄3

w̄4

=V−1


ρ̃1

ṽ1

ρ̃2

ṽ2

 (39)
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Fig. 2. Contour plot of λ4 for the parameter set γ1 = 2.5, V1 = 80 km
h , AO = 0.9 for class 1 and γ2 = 2, V2 = 60 km

h , AO2 = 0.85 for class
2. The contour line λ4 = 0 describes the boundary between the free-flow and congested regime.

where the constant invertible transformation matrix V satis-
fies 

λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4

=V−1J̃xV (40)

and therefore diagonalizes the Jacobian J̃x. The entries of V
are denoted as

V =
{

vi j
}

1≤i≤4,1≤ j≤4 . (41)

The matrix V is straightforward to obtain but omitted in this
paper due to its complexity and length. Inserting the trans-
formation in (12) yields the model equations in Riemann
coordinates

w̄1t

w̄2t

w̄3t

w̄4t

+


λ1 0 0 0

0 λ2 0 0

0 0 λ3 0

0 0 0 λ4




w̄1x

w̄2x

w̄3x

w̄4x

= Ĵ


w̄1

w̄2

w̄3

w̄4

 , (42)

where
Ĵ =V−1J̃V (43)

and the entries of the Jacobian Ĵ are denoted by

Ĵ = {Ĵi j}1≤i≤4,1≤ j≤4. (44)

Since the coefficient matrix of the spatial derivatives is now
diagonal, a decoupling in spatial derivatives is achieved. The
characteristic speeds (29) to (32) form the diagonal because
they are the eigenvalues of J̃x. In addition, the same transfor-
mation is applied to the boundary conditions (22), (23), (24)

and (38) yielding
w̄1(0, t)

w̄2(0, t)

w̄3(0, t)

= Q̂0w̄4(0, t), (45)

w̄4(L, t) = R̂1


w̄1(L, t)

w̄2(L, t)

w̄3(L, t)

+Û(t). (46)

The matrices are given by

Q̂0 =−


v11 v12 v13

v31 v32 v33

κ1 κ2 κ3


−1

v14

v34

κ4

 , (47)

R̂1 =−
1
κ4

[
κ1 κ2 κ3

]
(48)

and are obtained by formulating the linearized boundary
conditions in matrix form, inserting the transformation law
to Riemann coordinates and decoupling afterwards. Besides,
in (47) and (48), the abbreviations

κi = v∗1v1i +ρ
∗
1 v2i + v∗2v3i +ρ

∗
2 v4i, i = 1,2,3,4, (49)

are inserted. Furthermore, the input transformation, used
in (46), is

Û(t) =
1
κ4

U(t). (50)

Overall, the model equations in Riemann coordinates are
given by (42), (45) and (46). Because the inverse linear state

6



transformation exists, the system expressed in Riemann co-
ordinates shares the same stability properties with the orig-
inal system. In a next step, a second transformation is per-
formed in order to complete the preparation for the control
design and obtain the control design model. The resulting
coordinates are (w1,w2,w3,w4)

T . The second transforma-
tion achieves zero elements on the diagonal of Ĵ in (42) and
sorts the positive characteristic speeds (29) to (31) in as-
cending order on the diagonal of the coefficient matrix of
the spatial derivatives. However, an ascending order is only
defined uniquely, if it is known whether λ1 > λ2 or λ1 < λ2
holds, according to (35). In the following, it is assumed
that class 1 vehicles represent small and fast average vehi-
cles whereas class 2 describes big trucks which are large
and slow. Thus, for the equilibrium velocities v∗1 > v∗2 holds
and therefore the ascending order of positive characteristic
speeds is λ2 < λ3 < λ1. Hence, the transformation law

w1 = e
− Ĵ22

v∗2
x
w̄2, (51)

w2 = e
− Ĵ33

λ3
x
w̄3, (52)

w3 = e
− Ĵ11

v∗1
x
w̄1, (53)

w4 = e
− Ĵ44

λ4
x
w̄4 (54)

is applied to (42) yielding the transformed PDEs


w1t

w2t

w3t

+Λ
+


w1x

w2x

w3x

= Σ
++(x)


w1

w2

w3

+Σ
+−(x)w4, (55)

w4t −Λ
−w4x = Σ

−+(x)


w1

w2

w3

 . (56)

with

Λ
+ =


v∗2 0 0

0 λ3 0

0 0 v∗1

 , (57)

Λ
− =−λ4, (58)

Σ
++(x) =


0 J̄12(x) J̄13(x)

J̄21(x) 0 J̄23(x)

J̄31(x) J̄32(x) 0

 , (59)

Σ
+−(x) =

[
J̄14(x) J̄24(x) J̄34(x)

]T
, (60)

Σ
−+(x) =

[
J̄41(x) J̄42(x) J̄43(x)

]
. (61)

The abbreviations for the coefficients of the source term,
J̄i j(x), i, j = 1,2,3,4, are:

J̄12(x) = Ĵ23e

(
Ĵ33
λ3
− Ĵ22

v∗2

)
x
, J̄13(x) = Ĵ21e

(
Ĵ11
v∗1
− Ĵ22

v∗2

)
x
,

J̄14(x) = Ĵ24e

(
Ĵ44
λ4
− Ĵ22

v∗2

)
x
, J̄21(x) = Ĵ32e

(
Ĵ22
v∗2
− Ĵ33

λ3

)
x
,

J̄23(x) = Ĵ31e

(
Ĵ11
v∗1
− Ĵ33

λ3

)
x
, J̄24(x) = Ĵ34e

(
Ĵ44
λ4
− Ĵ33

λ3

)
x
,

J̄31(x) = Ĵ12e

(
Ĵ22
v∗2
− Ĵ11

v∗1

)
x
, J̄32(x) = Ĵ13e

(
Ĵ33
λ3
− Ĵ11

v∗1

)
x
,

J̄34(x) = Ĵ14e

(
Ĵ44
λ4
− Ĵ11

v∗1

)
x
, J̄41(x) = Ĵ42e

(
Ĵ22
v∗2
− Ĵ44

λ4

)
x
,

J̄42(x) = Ĵ43e

(
Ĵ33
λ3
− Ĵ44

λ4

)
x
, J̄43(x) = Ĵ41e

(
Ĵ11
v∗1
− Ĵ44

λ4

)
x
.

The diagonal elements of Λ+ are sorted in an ascending
order and the relations λ1 = v∗1, (29), and λ2 = v∗2, (30),
are inserted. In addition, Σ++(x), Σ+−(x) and Σ−+(x) are
depending on the spatial coordinate. Their entries J̄i j(x) are
bounded and either positive or negative on the whole domain,
depending on the sign of the corresponding Ĵi j. Applying the
transformation (51) to (54) on the boundary conditions (45)
and (46) yields

w1(0, t)

w2(0, t)

w3(0, t)

= Q̄0w4(0, t), (62)

w4(L, t) = R̄1


w1(L, t)

w2(L, t)

w3(L, t)

+Ū(t) (63)

with

Q̄0 =


0 0 1

1 0 0

0 1 0


−1

Q̂0,

R̄1 = R̂1


0 0 e

(
Ĵ11
v∗1
− Ĵ44

λ4

)
L

e

(
Ĵ22
v∗2
− Ĵ44

λ4

)
L

0 0

0 e

(
Ĵ33
λ3
− Ĵ44

λ4

)
L

0

 . (64)

In addition, the input given in (63) is defined as

Ū(t) = e
− Ĵ44

λ4
L
Û(t). (65)

All in all, the control design model is given by (55), (56), (62)
and (63). In Figure 3, the qualitative behavior of the control

7



Fig. 3. Schematic diagram of the control design model. The green
arrow indicates the location where the control input acts on the
system. The blue arrows represent the couplings between all four
states.

design model is illustrated. According to the sign of the
characteristic speeds, the propagation direction for each state
wi(x, t) is drawn in Figure 3. It shows that the control input
Ū(t) acts at the outlet of system, first propagating upstream
and, after it is carried through the boundary condition at the
inlet of the investigated track section, affecting downstream
traffic.

The summary of the two transformations is
w1

w2

w3

w4

= T−1(x)


ρ̃1

ṽ1

ρ̃2

ṽ2

⇔


ρ̃1

ṽ1

ρ̃2

ṽ2

= T (x)


w1

w2

w3

w4

 , (66)

where

T−1(x) =



0 e
− Ĵ22

v∗2
x

0 0

0 0 e
− Ĵ33

λ3
x

0

e
− Ĵ11

v∗1
x

0 0 0

0 0 0 e
− Ĵ44

λ4
x


V−1, (67)

T (x) =V



0 0 e
Ĵ11
v∗1

x
0

e
Ĵ22
v∗2

x
0 0 0

0 e
Ĵ33
λ3

x
0 0

0 0 0 e
Ĵ44
λ4

x


. (68)

The overall transformation law depends on the spatial coor-

dinate. In addition, both input transformations combined are

Ū(t) = e
− Ĵ44

λ4
L 1

κ4
U(t) (69)

and the inversion is given by

U(t) = κ4e
Ĵ44
λ4

L
Ū(t). (70)

Since all transformations are invertible, the stability proper-
ties of the linearized model in density and velocity pertur-
bations and the UORM control design model are the same.

4 Full-state feedback control design

In the following, a full-state feedback control design for
the system of four coupled hyperbolic PDEs given by (55)
and (56) with boundary conditions (62) and (63) is carried
out in order to achieve finite time convergence to zero for
initial conditions wi(x,0) ∈ L ∞[0,L]. The full-state feed-
back controller is designed by applying the backstepping
control design in [20]. The general idea is to transform the
coupled hyperbolic PDEs to a cascade target system. The
control law is chosen such that the instabilities in the sys-
tem are eliminated through the boundary conditions of the
target system. The states of the target system are denoted
as (α1,α2,α3,β )

T . The kernels of the backstepping trans-
formation are denoted by K(x,ξ ) and L11(x,ξ ). Then, the
backstepping transformation is defined as

α1(x, t) = w1(x, t), (71)
α2(x, t) = w2(x, t), (72)
α3(x, t) = w3(x, t), (73)
β (x, t) = w4(x, t)

−
∫ x

0

K(x,ξ )


w1(ξ , t)

w2(ξ , t)

w3(ξ , t)

+L11(x,ξ )w4(ξ , t)

dξ ,

(74)

where

K(x,ξ ) =
[

k11(x,ξ ) k12(x,ξ ) k13(x,ξ )
]

(75)

and L11(x,ξ ) are defined on a triangular domain

T = {0≤ ξ ≤ x≤ 1}. (76)

The introduced kernels K(x,ξ ) and L11(x,ξ ) are unknown
and will be determined later on. Furthermore, the choice of
the target system is

α1t

α2t

α3t

=−Λ
+


α1x

α2x

α3x

+Σ
++(x)


α1

α2

α3
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+Σ
+−(x)β +

∫ x

0
C+(x,ξ )


α1(ξ , t)

α2(ξ , t)

α3(ξ , t)

dξ

+
∫ x

0
C−(x,ξ )β (ξ , t)dξ , (77)

βt =Λ
−

βx. (78)

The coefficients C+(x,ξ ) ∈ R3×3 and C−(x,ξ ) ∈ R3×1 are
defined on the same triangular domain T and are deter-
mined later on. Besides, the boundary conditions of the tar-
get system are


α1(0, t)

α2(0, t)

α3(0, t)

= Q̄0β (0, t), (79)

β (L, t) = 0. (80)

The target system (77) to (80) converges to its equilibrium
at zero

αe,i(x)≡ βe(x)≡ 0, i = 1,2,3, t ≥ 0, x ∈ [0,L] (81)

in the finite time

tF =
L
v∗2

+
L
−λ4

. (82)

The proof is given in Lemma 3.1 in [20]. It remains to com-
pute the kernels K(x,ξ ) and L11(x,ξ ), coefficients C+(x,ξ )
and C−(x,ξ ) and the control input Ū(t) such that the trans-
formation is completed and to show the existence of the ker-
nels. Deriving (74) with respect to space and time, inserting
the resulting derivatives and (62) in (78) yields the kernel
equations that determine K(x,ξ ) and L11(x,ξ ) after partial
integration. The kernel equations are given by four coupled
first order hyperbolic PDEs as well as four boundary condi-
tions

−Λ
−Kx(x,ξ )+Kξ (x,ξ )Λ

+ =−K(x,ξ )Σ++(ξ )

−L11(x,ξ )Σ−+(ξ ),
(83)

−Λ
−L11x(x,ξ )−L11ξ (x,ξ )Λ

− =−K(x,ξ )Σ+−(ξ ), (84)

K(x,0)Λ+Q̄0−L11(x,0)Λ− = 0, (85)
K(x,x)Λ++Λ

−K(x,x) =−Σ
−+(x). (86)

Inserting expressions for Λ−, K(x,ξ ), Λ+, Σ++(ξ ), Σ−+(ξ ),
Σ+−(ξ ) and denoting the entries of Q̄0 =

{
Q̄0i1

}
1≤i≤3, the

kernel equations in matrix form become

λ4


k11x

k12x

k13x

L11x

+


v∗2 0 0 0

0 λ3 0 0

0 0 v∗1 0

0 0 0 λ4




k11ξ

k12ξ

k13ξ

L11ξ

=


0 −J̄21(ξ ) −J̄31(ξ ) −J̄41(ξ )

−J̄12(ξ ) 0 −J̄32(ξ ) −J̄42(ξ )

−J̄13(ξ ) −J̄23(ξ ) 0 −J̄43(ξ )

−J̄14(ξ ) −J̄24(ξ ) −J̄34(ξ ) 0




k11

k12

k13

L11



(87)

with boundary condition at ξ = 0,

[
Q̄011v∗2 Q̄021λ3 Q̄031v∗1 λ4

]


k11(x,0)

k12(x,0)

k13(x,0)

L11(x,0)

= 0, (88)

and boundary conditions at ξ = x,

k11(x,x) =
J̄41(x)
λ4− v∗2

, (89)

k12(x,x) =
J̄42(x)

λ4−λ3
, (90)

k13(x,x) =
J̄43(x)
λ4− v∗1

. (91)

As shown in Theorem 3.3 of [20], the kernel equations (83)
to (86) are a well-posed system of equations and thus there
exist unique solutions K(x,ξ ) and L11(x,ξ ) in L∞(T ).
Moreover, solving the equations (84) and (85) with the
method of characteristics yields

L11(x,ξ ) =−
1
λ4

K(x−ξ ,0)Λ+Q̄0

+
∫ − ξ

λ4

0
K(λ4ν + x,λ4ν +ξ )Σ+−(λ4ν +ξ )dν . (92)

Inserting this result in the remaining PDEs (83) reduces the
kernel equations to three coupled first order hyperbolic PDEs
with three boundary conditions

0 =λ4Kx(x,ξ )+Λ
+Kξ (x,ξ )+K(x,ξ )Σ++(ξ )

− 1
λ4

K(x−ξ ,0)Λ+Q̄0Σ
−+(ξ )

+
∫ − ξ

λ4

0
K(λ4ν + x,λ4ν +ξ )Σ+−(λ4ν +ξ )dνΣ

−+(ξ )

(93)
0 =K(x,x)Λ++Λ

−K(x,x)+Σ
−+(x) (94)

9



Furthermore, deriving (71) to (73) with respect to space and
time and inserting the obtained derivatives, (74) and (55)
in (77) yields

C−(x,ξ ) = Σ
+−(x)L(x,ξ )+

∫ x

ξ

C−(x,s)L(s,ξ )ds, (95)

C+(x,ξ ) = Σ
+−(x)K(x,ξ )+

∫ x

ξ

C−(x,s)K(s,ξ )ds. (96)

Finally, inserting (63) and (80) in (74) evaluated at x = L
delivers

Ū(t) =−R̄1


w1(L, t)

w2(L, t)

w3(L, t)



+
∫ L

0

K(L,ξ )


w1(ξ , t)

w2(ξ , t)

w3(ξ , t)

+L11(L,ξ )w4(ξ , t)

dξ

(97)

and therefore determines the control input. Before the results
of the controller design are summarized in a theorem, the
control law is formulated in dependence of the original phys-
ical variables, i.e. the densities and velocities of both classes.
For that reason, the transformation matrix T−1(x), (67), is
separated in two parts

T−1(x) =

[
T−1

u (x)

T−1
l (x)

]
, (98)

where T−1
u (x)∈R3×4 and T−1

l (x)∈R1×4. Hence, the states
of the UORM control design model can be formulated as


w1(ξ , t)

w2(ξ , t)

w3(ξ , t)

= T−1
u (ξ )


ρ̃1(ξ , t)

ṽ1(ξ , t)

ρ̃2(ξ , t)

ṽ2(ξ , t)

 , (99)

w4(L, t) = T−1
l (ξ )


ρ̃1(ξ , t)

ṽ1(ξ , t)

ρ̃2(ξ , t)

ṽ2(ξ , t)

 (100)

and the control law after applying the inverse input trans-
formation (70) becomes

U(t) =−κ4e
Ĵ44
λ4

L
R̄1T−1

u (L)


ρ1(L, t)−ρ∗1

v1(L, t)− v∗1
ρ2(L, t)−ρ∗2

v2(L, t)− v∗2



−κ4e
Ĵ44
λ4

L
∫ L

0
K(L,ξ )T−1

u (ξ )


ρ1(ξ , t)−ρ∗1

v1(ξ , t)− v∗1
ρ2(ξ , t)−ρ∗2

v2(ξ , t)− v∗2

dξ

−κ4e
Ĵ44
λ4

L
∫ L

0
L11(L,ξ )T−1

l (ξ )


ρ1(ξ , t)−ρ∗1

v1(ξ , t)− v∗1
ρ2(ξ , t)−ρ∗2

v2(ξ , t)− v∗2

dξ (101)

using the definitions of the perturbations (10) and (11). The
result is now summarized in the following theorem.

Theorem 1 Traffic density and velocity perturbations
(ρ̃1, ρ̃2, ṽ1, ṽ2)

T governed by the linearized two-class AR
traffic model (12), with the boundary conditions (22) to (24)
and (38) as well as initial profiles

ρ̃1(x,0), ṽ1(x,0), ρ̃2(x,0), ṽ2(x,0) ∈L ∞ ([0,L]) , (102)

converge to the equilibrium at zero

ρ̃e,1(x)≡ ṽe,1(x)≡ ρ̃e,2(x)≡ ṽe,2(x)≡ 0 (103)

in finite time tF given by (82), if the control law (101) is
applied. Thereby, the kernels K(x,ξ ) and L11(x,ξ ) are ob-
tained by solving the kernel equations (93) and (94) on the
triangular domain (76) and using (92) afterwards.

The full-state feedback law in (101) requires measurements
of the densities and velocities of both classes at every spatial
point. In practice, it is possible to measure the densities and
velocities at every spatial point by installing traffic cameras,
collecting GPS data or helicopter data recordings.

5 Anti-collocated boundary observer design

The installation of traffic cameras or the gain of GPS data
in order to supply the full-state feedback control (101) with
the required in-domain measurements is expensive. There-
fore, a boundary observer design for full-state observation
is proposed. In this work, an anti-collocated boundary ob-
server is designed, i.e. the densities and velocities of both
classes are measured at the opposite of the boundary where
the control input acts. Therefore, it is assumed that only the
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traffic density and velocity of both classes at the inlet of the
track section

y1(t) = ρ1(0, t), (104)
y2(t) = v1(0, t), (105)
y3(t) = ρ2(0, t), (106)
y4(t) = v2(0, t) (107)

are measured. In terms of the control design model coordi-
nates, inserting the measurements in (66) yields that

ȳ(t) = w4(0, t) (108)

is known.

The observer states (ŵ1, ŵ2, ŵ3, ŵ4)
T are estimates of the

control design model states (w1,w2,w3,w4)
T . Thus, the ob-

server equations become
ŵ1t

ŵ2t

ŵ3t

=−Λ
+


ŵ1x

ŵ2x

ŵ3x

+Σ
++(x)


ŵ1

ŵ2

ŵ3

+Σ
+−(x)ŵ4

−P+(x)(ŵ4(0, t)−w4(0, t)) (109)

ŵ4t =Λ
−ŵ4x +Σ

−+(x)


ŵ1

ŵ2

ŵ3


−P−11(x)(ŵ4(0, t)−w4(0, t)) (110)

where the gains of the output injections P+(x) and P−11(x)
need to be designed. The boundary conditions of the ob-
server are 

ŵ1(0, t)

ŵ2(0, t)

ŵ3(0, t)

= Q̄0w4(0, t), (111)

ŵ4(L, t) = R̄1


ŵ1(L, t)

ŵ2(L, t)

ŵ3(L, t)

+Ū(t). (112)

As a next step, the system describing the dynamic behav-
ior of the error between the states and their estimations is
formulated. The estimation errors are defined as

w̃i(x, t) = ŵi(x, t)−wi(x, t), i = 1,2,3,4. (113)

Subtracting the model equations of the control design
model (55), (56), (62) and (63) from the observer equa-
tions (109), (110), (111) and (112) yields the following

error system


w̃1t

w̃2t

w̃3t

=−Λ
+


w̃1x

w̃2x

w̃3x

+Σ
++(x)


w̃1

w̃2

w̃3


+Σ

+−(x)w̃4−P+(x)w̃4(0, t), (114)

w̃4t =Λ
−w̃4x +Σ

−+(x)


w̃1

w̃2

w̃3


−P−11(x)w̃4(0, t) (115)

with the boundary conditions


w̃1(0, t)

w̃2(0, t)

w̃3(0, t)

= 0, (116)

w̃4(L, t) = R̄1


w̃1(L, t)

w̃2(L, t)

w̃3(L, t)

 . (117)

Using the backstepping method, the output injection gains
can be designed such that the error system converges to the
equilibrium at zero in a finite time. Similar to the control
design, a target system and a backstepping transformation
are defined in the observer design as well. The output injec-
tions gains P+(x) and P−11(x) are chosen such that the target
converges to its equilibrium at zero in finite time. The state
vector of the target system is denoted as (α̃1, α̃2, α̃3, β̃ )

T and
the kernels introduced in the backstepping transformation
are M(x,ξ ) and N11(x,ξ ). Thus, the backstepping transfor-
mation is given by


w̃1(x, t)

w̃2(x, t)

w̃3(x, t)

=


α̃1(x, t)

α̃2(x, t)

α̃3(x, t)

+∫ x

0
M(x,ξ )β̃ (ξ , t)dξ , (118)

w̃4(x, t) = β̃ (x, t)+
∫ x

0
N11(x,ξ )β̃ (ξ , t)dξ (119)

where

M(x,ξ ) =
[

m11(x,ξ ) m21(x,ξ ) m31(x,ξ )
]T

. (120)

The kernels M(x,ξ ) and N11(x,ξ ) are defined in the trian-
gular domain (76). In addition, the target system is defined
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as 
α̃1t

α̃2t

α̃3t

=−Λ
+


α̃1x

α̃2x

α̃3x

+Σ
++(x)


α̃1

α̃2

α̃3



+
∫ x

0
D+(x,ξ )


α̃1(ξ , t)

α̃2(ξ , t)

α̃3(ξ , t)

dξ , (121)

β̃t =Λ
−

β̃x +Σ
−+(x)


α̃1

α̃2

α̃3



+
∫ x

0
D−(x,ξ )


α̃1(ξ , t)

α̃2(ξ , t)

α̃3(ξ , t)

dξ (122)

with the boundary conditions
α̃1(0, t)

α̃2(0, t)

α̃3(0, t)

= 0, (123)

β̃ (L, t) = R̄1


α̃1(L, t)

α̃2(L, t)

α̃3(L, t)

 . (124)

It can be shown that the target system converges in finite
time tF , given by (82). Besides, the coefficients D+(x,ξ ) ∈
R3×3 and D−(x,ξ )∈R1×3 still need to be determined in the
following.

The equations for the output injection gains P+(x) and
P−(x), the kernels of the backstepping transformation
M(x,ξ ) and N11(x,ξ ) and the coefficients in the target sys-
tem D+(x,ξ ) and D−(x,ξ ) need to be deduced in a next
step. The kernel equations for M(x,ξ ) and N11(x,ξ ) are

Mξ (x,ξ )Λ
−−Λ

+Mx(x,ξ ) =−Σ
++(x)M(x,ξ )

−Σ
+−(x)N11(x,ξ ), (125)

N11ξ (x,ξ )Λ
−+Λ

−N11x(x,ξ ) =−Σ
−+(x)M(x,ξ ), (126)

M(ξ ,ξ )Λ−+Λ
+M(ξ ,ξ ) =Σ

+−(ξ ), (127)
N11(L,ξ )− R̄1M(L,ξ ) =0, (128)

where (125), (126) and (127) are obtained by inserting the
transformation (118) and (119) as well as derivatives with
respect to time and space of (118) and (119) in the PDEs of
the error system (114) and (115), followed by partial inte-
gration and noticing that β̃ (0, t) = w̃(0, t). In addition, (128)
is deduced by evaluating (119) at x = L, plugging in the

boundary conditions at the outlet of error system and tar-
get system, (117) and (124), and inserting (118) evaluated
at x = L afterwards. Plugging in the expressions for Λ+,
M(x,ξ ), Λ−, Σ++(x), Σ+−(x) and Σ−+(x), yields the kernel
equations in matrix form:

λ4


m11ξ (x,ξ )

m21ξ (x,ξ )

m31ξ (x,ξ )

N11ξ (x,ξ )

+


v∗2 0 0 0

0 λ3 0 0

0 0 v∗1 0

0 0 0 λ4




m11x(x,ξ )

m21x(x,ξ )

m31x(x,ξ )

N11x(x,ξ )



=


0 J̄12(x) J̄13(x) J̄14(x)

J̄21(x) 0 J̄23(x) J̄24(x)

J̄31(x) J̄32(x) 0 J̄34(x)

J̄41(x) J̄42(x) J̄43(x) 0




m11(x,ξ )

m21(x,ξ )

m31(x,ξ )

N11(x,ξ )

 (129)

with boundary conditions at x = ξ and x = L:

m11(ξ ,ξ ) =
J̄14(ξ )

v∗2−λ4
, (130)

m21(ξ ,ξ ) =
J̄24(ξ )

λ3−λ4
, (131)

m31(ξ ,ξ ) =
J̄34(ξ )

v∗1−λ4
, (132)

N11(L,ξ ) = R̄1


m11(L,ξ )

m21(L,ξ )

m31(L,ξ )

 . (133)

It can be shown that the well-posedness of the kernel
equations (125) to (128) is equivalent to the kernel equa-
tions (83) to (86). In fact, a transformation is introduced
which achieves the exact same structure as the kernel equa-
tions which are developed during the full-state feedback
design. Similar to the full-state feedback design, solving the
PDE (126) and boundary condition (128) with the method
of characteristics delivers the expression

N11(x,ξ ) =R̄1M(L,L− (x−ξ ))

+
∫ x−L

λ4

0
Σ
−+(−λ4ν + x)M(−λ4ν + x,−λ4ν +ξ )dν ,

(134)

in dependence of M(x,ξ ). Inserting this result in (125) re-
duces the kernel equations to three PDEs and three boundary
conditions

0 =−Λ
−Mξ (x,ξ )+Λ

+Mx(x,ξ )−Σ
++(x)M(x,ξ )

−Σ
+−(x)R̄1M(L,L− (x−ξ ))

−Σ
+−(x)

∫ x−L
λ4

0
Σ
−+(x−λ4ν)M(x−λ4ν ,ξ −λ4ν)dν ,

(135)
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0 =M(ξ ,ξ )Λ−+Λ
+M(ξ ,ξ )−Σ

+−(ξ ) (136)

Besides, the computation that yields the kernel equa-
tions (125) to (127) for M(x,ξ ) and N11(x,ξ ) implies

D+(x,ξ ) =−M(x,ξ )Σ−+(ξ )+
∫ x

ξ

M(x,s)D−(s,ξ )ds,

(137)
D−(x,ξ ) =−N11(x,ξ )Σ−+(ξ )

+
∫ x

ξ

N11(x,s)D−(s,ξ )ds, (138)

and

P+(x) =−λ4M(x,0), (139)
P−11(x) =−λ4N11(x,0). (140)

Since the kernels M(x,ξ ) and N11(x,ξ ) are well-posed, (137)
to (140) imply that the output injection gains as well as the
target system coefficients are well-posed, too. Thus, the ob-
server design is completed and is summarized in a theorem.

Theorem 2 The error states (w̃1, w̃2, w̃3, w̃4)
T between the

observer (109) to (112) and control design model (55) to (63)
are described by (114) to (117). If the output injections gains
P+(x) and P−11(x) are chosen as (139) and (140), where the
kernel M(x,ξ ) is obtained by the well-posed equations (135)
and (136) and N11(x,ξ ) by (134), and the initial error pro-
files are assumed to be

w̃i(x,0) ∈L ∞ ([0,L]) , i = 1,2,3,4, (141)

then the errors converge to the equilibrium at zero

w̃e,i(x)≡ 0, i = 1,2,3,4 (142)

in the finite time tF given by (82).

The estimates of the observer (ŵ1, ŵ2, ŵ3, ŵ4)
T can be trans-

formed to the estimates of the density and velocity pertur-
bations ( ˆ̃ρ1, ˆ̃v1, ˆ̃ρ2, ˆ̃v2)

T of both vehicle classes according to
ˆ̃ρ1

ˆ̃v1

ˆ̃ρ2

ˆ̃v2

= T (x)


ŵ1

ŵ2

ŵ3

ŵ4

 . (143)

Furthermore, the estimates of the original state variables are
obtained by

ρ̂i(x, t) = ˆ̃ρi(x, t)+ρ
∗
i , (144)

v̂i(x, t) = ˆ̃vi(x, t)+ v∗i (145)

with respect to the estimates of the densities and velocities
(ρ̂1, v̂1, ρ̂2, v̂2).

6 Output feedback control design

So far, a full-state feedback, that requires measurements of
all states at every spatial point and damps out stop-and-go
traffic, and an observer, that generates estimates of all states
at every spatial point based on a measurement at the inlet
of the track section, has been designed. In a final step, both
results are combined resulting in an output feedback control
that damps out stop-and-go traffic based on a single mea-
surement at the inlet of the track section. Therefore, the con-
trol law (101) is reformulated in terms of the generated esti-
mates. This is done by replacing the densities and velocities
by their estimates yielding the output feedback controller

U(t) =−κ4e
Ĵ44
λ4

L
R̄1T−1

u (L)


ρ̂1(L, t)−ρ∗1

v̂1(L, t)− v∗1
ρ̂2(L, t)−ρ∗2

v̂2(L, t)− v∗2



−κ4e
Ĵ44
λ4

L
∫ L

0
K(L,ξ )T−1

u (ξ )


ρ̂1(ξ , t)−ρ∗1

v̂1(ξ , t)− v∗1
ρ̂2(ξ , t)−ρ∗2

v̂2(ξ , t)− v∗2

dξ

−κ4e
Ĵ44
λ4

L
∫ L

0
L11(L,ξ )T−1

l (ξ )


ρ̂1(ξ , t)−ρ∗1

v̂1(ξ , t)− v∗1
ρ̂2(ξ , t)−ρ∗2

v̂2(ξ , t)− v∗2

dξ (146)

where the estimates (ρ̂1, v̂1, ρ̂2, v̂2) are obtained by trans-
forming the state vector of the anti-collocated observer (109)
to (112) according to (143), (144) and (145), the transfor-
mation matrices T−1

u (·) and T−1
l (·) are given by (98), the

kernel K(x,ξ ) is the solutions of (93) and (94) and L11(x,ξ )
is given by (92). Finally, the abbreviation κ4 is introduced
in (49). This combination of the results obtained by the first
two theorems is summarized in a final third theorem.

Theorem 3 The linearized two-class AR model is given
by (12) with the assumptions (22) to (24) and (38) as bound-
ary conditions. If the control law (146) is applied in (38),
where the estimates are generated by the anti-collocated ob-
server (109) to (112) with the transformed control law (69)
as input and transformation (143), (144) and (145) after-
wards, and the initial profiles satisfy

ρ̃1(x,0), ṽ1(x,0), ρ̃2(x,0), ṽ2(x,0) ∈L ∞ ([0,L]) , (147)

then the perturbations converge to the equilibrium at zero

ρ̃e,1(x)≡ ṽe,1(x)≡ ρ̃e,2(x)≡ ṽe,2(x)≡ 0 (148)

in the finite time 2tF , where tF is given by (82). The ker-
nels K(x,ξ ) and L11(x,ξ ) are obtained by solving the well-
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posed kernel equations (93), (94) and using (92) and the ob-
server gains are given by (139) and (140), where the kernels
M(x,ξ ) represents the solution of the well-posed system of
equations (135) and (136) and N11(x,ξ ) is given by (134).

As a final comment, the finite convergence time is twice as
large as the time proposed in the previous theorems, because
it requires tF to obtain correct state estimates and afterwards
the control needs another tF to achieve convergence of the
state variable to equilibrium state.

7 Numerical simulation

In the end, the performance of the full-state feedback and
output feedback control is investigated by simulation. The
linearized model equations (12) are approximated by using
an Upwind scheme. In order to achieve numerical stability,
the grid sizes for the spatial coordinate and time are chosen
such that the Courant-Friedrichs-Lewy condition,∣∣∣∣λi∆t

∆x

∣∣∣∣≤ 1, i = 1,2,3,4, (149)

is satisfied for all four characteristic speeds. The assumed
parameter values are stated in Table 1. In addition, the type
of vehicles that are represented by the vehicle classes are de-
noted in Table 2. Typically, it holds that the larger the vehi-
cle size the larger the relaxation time which is why τ1 < τ2.
Since vehicle class 1 corresponds to smaller and faster aver-
age vehicles, the free-flow velocity V1 is higher than V2 and
the highway needs to be occupied in a greater extent such
that the average vehicles become jammed, i.e. AO1 > ¯AO2.
Furthermore, it is assumed that faster and smaller vehicles
experience less traffic pressure for low AO values and there-
fore γ1 > γ2. Finally, the equilibrium densities are chosen
such that the investigated traffic is in the congested regime.
The equilibrium velocities are determined by the choice
of the equilibrium densities and result in v∗1 ≈ 38 km

h and
v∗2 ≈ 20 km

h . Although v∗1 and v∗2 seem to be low, the equi-
librium velocities are realistic in case of congested traffic
which is evenly distributed. The initial profiles represent
stop-and-go traffic with oscillations in density and velocity
of sinusoidal shape. The mean value of the oscillations are
the equilibrium values. At spatial points where the densities
of both classes are increased, their velocities are decreased
and thus the profiles

ρi(x,0) = ρ
∗
i +

ρ∗i
4

sin
(

4π

L
x
)
, i = 1,2, (150)

vi(x,0) = v∗i −
v∗i
4

sin
(

4π

L
x
)
, i = 1,2 (151)

are assumed as initial profiles.
The simulation results of the open loop simulation are il-
lustrated in Figure 4 for vehicle class 1 and in Figure 5
for vehicle class 2. In each figure, the left plot shows the

Table 1
Simulation parameters.

Name Symbol Value Unit

Relaxation time τ1 30 s

τ2 60 s

Pressure exponent γ1 2.5 1

γ2 2 1

Free-flow velocity V1 80 km
h

V2 60 km
h

Maximum AO AO1 0.9 1

AO2 0.85 1

Occupied surface per vehicle a1 10 m2

a2 40 m2

Equilibrium density ρ∗1 150 veh
km

ρ∗2 75 veh
km

Track width W 6.5 m

Track length L 1000 m

Amount of grid points N 40 1

Table 2
Traffic classes with length and width of each vehicle.

Name Class number Length Width

Average vehicle 1 5m 2m

Big trucks 2 10m 4m

density of the corresponding vehicle class, whereas the plot
on the right hand side illustrates the velocity. The values
of the states at the outlet of the track section are marked
with a red line, whereas the blue line emphasizes the initial
profiles (150). The four plots indicate that the stop-and-go
oscillations do not vanish without the influence of control.
Next, the Figures 6 and 7 illustrate the simulation results for
the same initial condition but with activated full-state feed-
back control. The green line marks the finite convergence
time tF ≈ 237s. Thus, it is easy to see that the convergence
to the constant equilibrium profile in tF is achieved. Finally,
Figure 8 and Figure 9 show the simulation results for the
initial profiles using the designed output feedback control.
Since the observer requires tF to estimate the states without
error and afterwards the controller needs tF to achieve finite
time convergence, the total finite convergence time is now
2tF ≈ 474s and therefore green line is adjusted accordingly.

8 Concluding remarks

This work leads to further problems that may be explored
in the future. First, it is typically preferred that the measure-
ment for the observer is at the same spot where the control
input acts on the system. Therefore, the design of the collo-
cated observer is a result of great interest. In addition, the
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Fig. 4. Traffic density and velocity of class 1 without control.

Fig. 5. Traffic density and velocity of class 2 without control.

Fig. 6. Traffic density and velocity of class 1 with full-state feedback control. The green line indicates tF .
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Fig. 7. Traffic density and velocity of class 2 with full-state feedback control. The green line indicates tF .

Fig. 8. Traffic density and velocity of class 1 with output feedback control. The green line indicates 2tF .

Fig. 9. Traffic density and velocity of class 2 with output feedback control. The green line indiciates 2tF .
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extended AR traffic model presented in [25] is formulated
for n classes and there are results for n+m heterodirectional
behaving linear PDEs in the literature which enables the ex-
tension to more than two classes and hence even more real-
istic considerations. Especially the definition of the conges-
tion boundary in case of three or more classes would be an
interesting result. Finally, a combination of the results pre-
sented in this work with the results regarding two lanes [39]
is of interest for further research.
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