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Abstract

We extend results of the recursive-least-squares-with-forgetting-factor identifier for single-input-single-output systems to the
multiple-output case by deriving the corresponding minimized objective function and by showing exponential convergence of
the estimation error.
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1 Introduction

This work revolves around the popular recursive-least-
squares-with-forgetting-factor (RLSFF) estimation al-
gorithm for multiple-output (MO) systems. The idea
of a recursive formulation goes back to [4], where it
is shown that the estimate converges to a value which
minimizes the sum of output errors, whereby the out-
puts’ weights reduce exponentially with respect to their
time of measurement; hence, the name forgetting fac-
tor. These results are established for single-input-single-
output (SISO) systems and extended to MO systems in
[8]. Since, the RLSFF algorithm has been proposed in
many different variations, particulalry for the SISO case
(see e.g. [3], [13], [14]). Also, exponential convergence of
the estimation error under the influence of the RLSFF
identifier from [4] is shown in [9]. The latter work con-
tains a deterministic analysis considering SISO systems
without noise.

Despite the popularity of the RLSFF algorithm, to
our best knowledge, a concise convergence result of the
RLSFF for the MO case has not been published. Given
the literature on adaptive control algorithms using a
recursive-least-squares identifier in one way or the other,
whose analysis is restricted to SISO systems (see e.g.
[1], [2], [12], [15]), especially within the framework of
model predictive control (see e.g. [5], [6], [7], [10]); and
the recent article [8] dealing with MO systems, we are
convinced that SISO-equivalent results for the MO case
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are of interest and facilitate further research in adap-
tive control; especially in the area of adaptive model
predictive control, which has attracted relatively little
attention [11].

Our note therefore closes the gap between the scalar
and the MO case by extending the results from [8] and
[9]. Under the usual assumption of persistence of exci-
tation, we show that the RLSFF algorithm for MO sys-
tems minimizes a criterion for which the multiple out-
puts are weighted not only by their time of measure-
ment (through the forgetting factor), but also among
each other (via a user-defined weighting matrix). Fur-
thermore, we demonstrate that the estimation error con-
vergences exponentially to the origin.

2 Main results

Consider the system

yk+1 = ψT
k θ, (1)

where yk ∈ R
n is the measurable output, ψk ∈ R

m×n the
regressor matrix, respectively at time k, and θ ∈ R

m the
constant parameter vector. Suppose that the parameter
vector is uncertain and, thus, to be estimated. Toward
this end, consider the following RLSFF algorithm.

θ̂k+1 = θ̂k + Pk−1ψkD
−1
k

(

yk+1 − ψT
k θ̂k

)

, (2)
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where Dk = λT + ψT
k Pk−1ψk with T = T T > 0 ∈ R

n×n

and constant forgetting factor λ ∈ (0, 1), and

Pk+1 = λ−1
(

I − Pkψk+1D
−1
k+1ψ

T
k+1

)

Pk, (3)

or equivalently,

P−1
k−1 = λP−1

k−2 + ψk−1T
−1ψT

k−1. (4)

where P−1 ∈ R
m×m is symmetric positive definite. De-

fine persistence of excitation as follows.

Definition 1 The matrix sequence {ψk} is said to be
persistently exciting (PE) if for some constant S and all
j there exist positive constants α and β such that

0 < αI ≤

j+S
∑

i=j

ψiψ
T
i ≤ βI <∞.

The following lemma is akin to the result in [8].

Lemma 2 Suppose {ψk} is PE. Then, for k ≥ S, the
algorithm in (2) and (3) converges to the value θ which
minimizes

k∑

i=1

λk−i|yi − ψT
i−1θ|

2
T−1 .

.

PROOF. The proof is analogous to that of [8, Theorem
2] and hence omitted for brevity. �

We have thus presented the objective which is minimized
by the RLSFF algorithm in (2) and (3). In contrast to
the existing literature, we explicitly incorporate a weight
for each respective output via the matrix T . We now
wish to obtain an exponentially stable estimation error

θ̃k = θ − θ̂k.

The corresponding theorem as an extension of [9] follows.

Theorem 3 Suppose {ψk} is PE. Then, for any initial

condition θ̃0, the estimation error θ̃k converges exponen-
tially to θ, i.e. for any θ̃0 there exist γ > 0 such that for
all k ≥ S

|θ̃k|
2 ≤ γλk|θ̃0|

2.

PROOF. The proof is divided into two parts. Part I
establishes a lower bound on P−1

k . This is then used in
part II to show exponential stability of the estimation
error.

Part I : Recollect that if B is symmetric, then for any
matrix A,

ABAT ≥ λmin(B)AAT .

This follows by definition of a positive definite matrix;

xT (ABAT − λmin(B)AAT )x

= xTABATx− λmin(B)xTAATx

= (ATx)B(AT x)− λmin(B)xTAATx

≥ λmin(B)(AT x)ATx− λmin(B)xTAATx

= 0,

where we use the fact that λmin(B)|x|2 ≤ |x|2B . It follows
that if {ψk} is PE, then

P−1
j−1 + · · ·+ P−1

j+S−1

(4)

≥

j+S
∑

k=j

ψk−1T
−1ψT

k−1

≥ λmin(T
−1)αI.

for all k ≥ S. Following [9, Lemma 1] leads to the lower
bound

P−1
k−1 ≥

λmin(T
−1)α(λ−1 − 1)

λ−(S+1) − 1
> 0 (5)

for all k ≥ S.

Part II : By (2), one can write recursively the estimation
error as

θ̃k+1 =
(
I − Pk−1ψkD

−1
k ψT

k

)
θ̃k. (6)

Consider the Lyapunov function candidate

Wk = θ̃Tk P
−1
k−1θ̃k. (7)

Then, using the recursions in (4) and (6) yields

Wk+1 −Wk = θ̃Tk+1P
−1
k θ̃k+1 − θ̃Tk P

−1
k−1θ̃k

= θ̃Tk
[
(λ − 1)P−1

k−1 − λψkD
−1
k ψT

k + C
]
θ̃k,

(8)

where

C = ψk

[
T−1 −D−1

k ψT
k Pk−1ψkT

−1 − λD−1
k

− T−1ψT
k Pk−1ψkD

−1
k + λD−1

k ψT
k Pk−1ψkD

−1
k

+D−1
k ψT

k Pk−1ψkT
−1ψT

k Pk−1ψkD
−1
k

]
ψT
k .

2



We demonstrate now that C is equal to the zero matrix.
To this end, multiply the inner term of C by T 1/2 from
both sides respectively and obtain

I − T 1/2D−1
k ψT

k Pk−1ψkT
−1/2 − λT 1/2D−1

k T 1/2

− T−1/2ψT
k Pk−1ψkD

−1
k T 1/2

+ λT 1/2D−1
k ψT

k Pk−1ψkD
−1
k T 1/2

+ T 1/2D−1
k ψT

k Pk−1ψkT
−1ψT

k Pk−1ψkD
−1
k T 1/2. (9)

By defining

ψ̄ = ψkT
−1/2

D̄ = T−1/2DkT
−1/2 = λI + ψ̄TPk−1ψ̄ (10)

one has that

T 1/2D−1
k = (DkT

−1/2)−1 = (λT 1/2 + ψT
k Pk−1ψkT

−1/2)−1

=
(

T 1/2(λ+ T−1/2ψT
k Pk−1ψkT

−1/2)
)
−1

=
(

T 1/2(λ+ ψ̄TPk−1ψ̄)
)
−1

= D̄−1T−1/2,

so that for (9) it follows:

I − D̄−1ψ̄TPk−1ψ̄ − λD̄−1

− ψ̄TPk−1ψ̄D̄
−1 + λD̄−1ψ̄TPk−1ψ̄D̄

−1

+ D̄−1ψ̄TPk−1ψ̄ψ̄
TPk−1ψ̄D̄

−1.

Observe that this can be reformulated as

I − D̄−1

(10)
= D̄

︷ ︸︸ ︷
(
ψ̄TPk−1ψ̄ + λI

)

+ D̄−1
(
−D̄ψ̄TPk−1ψ̄ + λψ̄TPk−1ψ̄

+ψ̄TPk−1ψ̄ψ̄
TPk−1ψ̄

)
D̄−1,

which is clearly zero and, thus, so is C.

Therefore, the difference related to the Lyapunov func-
tion candidate in (8)

Wk+1 −Wk = θ̃Tk
[
(λ− 1)P−1

k−1 − λψkD
−1
k ψT

k

]
θ̃k

≤ (λ− 1)θ̃Tk P
−1
k−1θ̃k

= (λ− 1)Wk,

so that

Wk+1 ≤ λWk ≤ λk+1W0 = λk+1θ̃T0 P
−1
−1 θ̃0.

Finally, combining this inequality with the definition of

Wk in (7) and the lower bound of P−1
k−1 in (5) leads to

|θ̃k|
2 ≤

λ−(S+1) − 1

λmin(T−1)α(λ−1 − 1)
λmax

(
P−1
−1

)

︸ ︷︷ ︸
=:γ

λk|θ̃k|
2

for all k ≥ S. �

Remark 4 Note that exponential stability of the esti-
mation error implies a bounded error in the presence of
bounded additive noise. Thus, for additive bounded noise
on system (1), the estimation error converges to a ball
centered on the true parameter vector with a radius pro-
portional to the bound on the disturbance.

3 Conclusion

We have shown that the RLSFF estimation algorithm
for MO systems shares the properties of those for single
output systems, i.e. it minimizes a similar cost function,
where outputs are weighted among one another by a
given matrix, and it induces exponential convergence of
the estimate to the true parameter vector.
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