
ar
X

iv
:2

00
7.

05
20

0v
1 

 [
m

at
h.

O
C

] 
 1

0 
Ju

l 2
02

0

Onquotients ofBoolean controlnetworks

Rui Li a, Qi Zhang b, Tianguang Chu c

aSchool of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

bSchool of Information Technology & Management, University of International Business & Economics, Beijing 100029, China

cState Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871, China

Abstract

In this paper, we focus on the study of quotients of Boolean control networks (BCNs) with the motivation that they might serve
as smaller models that still carry enough information about the original network. Given a BCN and an equivalence relation on
the state set, we consider a labeled transition system that is generated by the BCN. The resulting quotient transition system
then naturally captures the quotient dynamics of the BCN concerned. We therefore develop a method for constructing a
Boolean system that behaves equivalently to the resulting quotient transition system. The use of the obtained quotient system
for control design is discussed and we show that for BCNs, controller synthesis can be done by first designing a controller for a
quotient and subsequently lifting it to the original model. We finally demonstrate the applicability of the proposed techniques
on a biological example.
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1 Introduction

Boolean networks (BNs) and Boolean control networks
(BCNs), wherein each component is characterized with
a binary variable, have been widely employed in mod-
eling biological regulatory networks. After assembling
the components of a system as well as their regulatory
interactions, BN/BCN models can nicely describe the
qualitative temporal behavior of the system [1]. They
can also illuminate how perturbations may disrupt nor-
mal behavior and yield testable predictions which are
particularly valuable in less well understood biological
systems [2]. As a nice framework for modeling dynam-
ical processes on networks, especially in biological con-
text, BN/BCN models have led to fruitful insights for
unicellular organisms [3], plants [4], animals [5], and
humans [6], especially human signaling networks impli-
cated in diseases [7]. A BN/BCN is typically placed
in the form of a nonlinear (control) system; while in-
terestingly, based on an algebraic state representation
approach, the Boolean dynamics can be mapped ex-
actly into a standard discrete-time linear dynamics [8].
This formal simplicity makes it relatively easy to for-
mulate and solve classical control-theoretic problems for
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BNs/BCNs, and thereby lays a suitable foundation for
a series of subsequent studies. Examples include recent
investigations of dynamical properties [9], network syn-
chronization [10], controllability [11, 12] and stabilizabil-
ity [13–16], observability [17–20] and reconstructibility
[21], disturbance or input-output decoupling [22–24], op-
timal control [25, 26], and more [27–31]. The size of the
linear system that describes a BN with n state variables
is 2n. Thus, any algorithm based on this algebraic set-up
has an exponential time complexity in the worst case.
On the other hand, it has shown that for several control
problems, the complexity curse can be alleviated or even
removed if the structure of BNs is appropriately con-
strained [32, 33]. These positive developments notwith-
standing, it still seems computationally challenging to
solve control-related problems in general BNs/BCNs,
since many such problems have shown to be NP-hard
[34–37]. The hardness results justify the use of exponen-
tial time algorithms and exponential size systems sug-
gested by the algebraic state-space representation.

In this paper, we focus on studying quotients of BCNs
since they can be seen as lower dimensional models that
may still contain enough information about the original
model (whose algebraic representation is of exponential
size). We consider quotient systems for BCNs in the ex-
act sense that the notion is used in the control commu-
nity [38–40]. Precisely, given a BCN and an equivalence
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relation on its state set, we consider a (labeled) tran-
sition system generated by the BCN and partition the
state set based on the relation. The resulting quotient
system then naturally captures the quotient dynamics
of this BCN, so we propose to develop a Boolean system
that generates the transitions of the quotient transition
system (Theorem 1). Of course, it is not surprising that
additional constraints need to be placed on the equiva-
lence relation to ensure that the quotient dynamics can
indeed be generated from someBoolean system. A subse-
quent question is then, how to obtain an equivalence re-
lation which allows the construction of a quotient BCN.
We fully answer this question by giving a procedure that
converges in a finite number of iterations to a satisfac-
tory equivalence relation (Theorem 2). As applications
of the study, we show how the resulting quotient can
be used for controller synthesis. The results tell us that
synthesizing controllers for a BCN can be easily done
by first controlling the quotient system and then lifting
the control law back to the original Boolean model (see
Propositions 2 and 3).

Notation. The symbol δik denotes the ith canonical basis
vector of length k, ∆k denotes the set consisting of the
canonical vectors δ1k, . . . , δ

k
k , and Lk×r denotes the set of

all k×r matrices whose columns are canonical vectors of
length k. Elements of Lk×r are called logical matrices (of
size k×r). A (0, 1)-matrix is a matrix that consists solely
of the 0 and 1 entries. The (i, j)-entry of a matrix A is
invariably denoted by (A)ij . If A and B are k× r (0, 1)-
matrices, the meet of A and B, denoted by A∧B, is the
(0, 1)-matrix with the (i, j)-entry equal to (A)ij ∧ (B)ij .
For a k× l (0, 1)-matrix C and an l× r (0, 1)-matrix D,
the Boolean product of C and D, denoted by C ⊙D, is

the k×rmatrix with the (i, j)-entry
∨l

s=1[(C)is∧(D)sj ].
Given two relations R1 and R2, R2 ◦ R1 denotes the
composition of R1 and R2, i.e., the relation defined by
(a, c) ∈ R2 ◦R1 if and only if there exists b with (a, b) ∈
R1 and (b, c) ∈ R2.

2 Preliminaries

2.1 Algebraic representation of Boolean control net-
works

A BCN is a discrete-time dynamical system with binary
state variables and binary control variables, i.e.,

x1(t+ 1) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

... (1)

xn(t+ 1) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t)),

with xi, uj ∈ {1, 0} and fi : {1, 0}
n+m → {1, 0}. The

dynamics (1) can be recast into a form similar to that
of a discrete-time linear system, using the semitensor
product of matrices [8]. To be more precise, we recall

that the (left) semitensor product of two matrices A and
B of sizes n1×m1 and n2×m2, respectively, denoted by
A⋉B, is defined byA⋉B = (A⊗Il/m1

)(B⊗Il/n2
), where

⊗ is the Kronecker product of matrices, and Il/m1
and

Il/n2
are the identity matrices of orders l/m1 and l/n2,

respectively, with l being the least common multiple of
m1 and n2. If we identify the Boolean values 1 and 0
with the canonical vectors δ12 and δ22 , respectively (so xi

and uj in (1) are vectors in ∆2), and if we let x(t) =
x1(t)⋉· · ·⋉xn(t) and u(t) = u1(t)⋉· · ·⋉um(t), then the
Boolean dynamics (1) can be represented by an equation
of the form

x(t + 1) = F ⋉ u(t)⋉ x(t), (2)

where F ∈ L2n×2n+m

. (The expression on the right-hand
side of (2) is unambiguous, since the semitensor product
is associative.) For more information on converting a
BCN in the form of (1) to its algebraic representation
(2), as well as more information regarding the properties
of the semitensor product, the reader is referred to, e.g.,
[8] and [41].

2.2 Transition systems

Our discussion of quotients of BCNs will be based on
the notion of quotient transition systems. We first recall
the concept of a (labeled) transition system.

Definition 1 (See, e.g., [42]). A (labeled) transition sys-
tem is a tuple T = (Q,L,→) that consists of a set of
states Q, a set of labels L, and a transition relation
→⊆ Q× L×Q.

For any q, q′ ∈ Q and any l ∈ L, a transition (q, l, q′) ∈→
means that it is possible to move from state q to state q′

under the action labeled by l. Following standard prac-

tice, we denote q
l
→ q′ if (q, l, q′) ∈→.

Recall that an equivalence relationR on Q is a reflexive,
symmetric, and transitive binary relation on Q. Given a
transition system T , if R is an equivalence relation on
the state set of T , then it naturally induces a quotient
transition system, as follows.

Definition 2 (See, e.g., [40]). Let T = (Q,L,→) be a
transition system and let R be an equivalence relation
on Q. The quotient transition system T /R is defined
by T /R = (Q/R, L,→R), where Q/R is the quotient
set (i.e., the set of all equivalence classes [q] = {p ∈
Q : (q, p) ∈ R} for q ∈ Q), and for all [q], [q′] ∈ Q/R,

[q]
l
→R [q′] if and only if there exist p ∈ [q] and p′ ∈ [q′]

such that p
l
→ p′.

That is, a state [q] in T /R can make a transition to
another state [q′] under an action l, if some p ∈ [q] can
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make a transition to some p′ ∈ [q′] when taking the
action l. In what follows, we will use a similar framework
to study quotients of a BCN.

3 Quotients of Boolean control networks

3.1 Constructing quotient Boolean systems

Let us consider a BCN described by the algebraic repre-
sentation

Σ: x(t+1) = F ⋉u(t)⋉x(t), x ∈ ∆N , u ∈ ∆M ,

F ∈ LN×NM . (3)

(Note that, in the above, N and M are in fact certain
powers of 2, but we do not need this fact for our argu-
ment.) In order to investigate quotients of (3), we first
turn our attention to the equivalence relations on its
state set ∆N . An immediate observation is that every
such equivalence relationR can be viewed as induced by
a logical matrix C with N columns, by saying

(x, x′) ∈ R ⇐⇒ Cx = Cx′. (4)

Furthermore, the logical matrix C can be chosen of full
row rank (hence in particular having no zero rows). We
remark that such a full row rank matrix can be directly
derived from the matrix representation of R. In fact, let
AR be the N ×N matrix whose entries are given by

(AR)ij =

{
1 if (δiN , δjN ) ∈ R,

0 otherwise.

IfC is a matrix which has the same set of rows asAR but
with no rows repeated, then it must be a logical matrix
with full row rank and fulfill condition (4) [43, Lemma
4.6].

Example 1. To illustrate this fact, as well as the main
idea behind obtaining an algebraic representation, we
consider a BCN as in (1), with n = 3 and m = 1. The
corresponding Boolean functions are given by the truth
table shown in Table 1. Since n = 3 and m = 1, the size
of the matrix F in the algebraic representation is 8×16.
To find this matrix, we see from Table 1 that if u(t) =
x1(t) = x2(t) = x3(t) = 1, we have x1(t + 1) = x2(t +
1) = 1, and x3(t + 1) = 0. In the algebraic framework,
this corresponds to u(t) = x1(t) = x2(t) = x3(t) = δ12 ,
x1(t+ 1) = x2(t+ 1) = δ12 , and x3(t+ 1) = δ22 , so

x(t+ 1) = δ12 ⋉ δ12 ⋉ δ22 = δ28 ,

u(t)⋉ x(t) = δ12 ⋉ δ12 ⋉ δ12 ⋉ δ12 = δ116.

Substituting these to the left- and right-hand sides of (2)
yields

δ28 = F ⋉ δ116 = Fδ116. (5)

Table 1
Truth table for Example 1.

ux1 x2 x3 f1 f2 f3 ux1 x2 x3 f1 f2 f3

1 1 1 1 1 1 0 0 1 1 1 1 1 1

1 1 1 0 1 1 1 0 1 1 0 1 1 1

1 1 0 1 1 1 1 0 1 0 1 1 1 1

1 1 0 0 0 1 1 0 1 0 0 0 0 0

1 0 1 1 0 1 0 0 0 1 1 0 1 0

1 0 1 0 0 0 1 0 0 1 0 0 0 1

1 0 0 1 0 0 0 0 0 0 1 0 0 0

1 0 0 0 0 1 1 0 0 0 0 0 0 1

The second equality follows since the semitensor product
is nothing but the standard product if the multiplied
matrices (or vectors) have compatible sizes [8]. From
(5), and considering that right-multiplying a matrix by
a canonical vector yields the corresponding column of
the matrix, we know that the first column of F is δ28 .
Repeating a similar argument for each combination in
the truth table, we can determine all the columns of F ,
i.e., we determine the second column of F by considering
the case when u(t) = x1(t) = x2(t) = 1 and x3(t) =
0, the third column by considering u(t) = x1(t) = 1,
x2(t) = 0, and x3(t) = 1, and so on. The matrix we get is

F =
[
δ28 δ18 δ18 δ58 δ68 δ78 δ88 δ58 δ18 δ18 δ18 δ88 δ68 δ78 δ88 δ78

]
.

(6)

Consequently, the algebraic representation of this BCN
is given by

x(t+1) = F ⋉u(t)⋉x(t), x(t) ∈ ∆8, u(t) ∈ ∆2, (7)

with F found above. Note that system (7) evolves on
the set ∆8 = {δ18, . . . , δ

8
8}, and each canonical vector

δi8 corresponds to a possible configuration of the BCN
(e.g., δ18 corresponds to [1, 1, 1] since δ12 ⋉ δ12 ⋉ δ12 = δ18 ,
δ28 corresponds to [1, 1, 0] since δ12 ⋉ δ12 ⋉ δ22 = δ28 , etc.).
The trajectories of (7) are shown in Fig. 1. Now let R
be the equivalence relation produced by the partition
{{δ18}, {δ

2
8 , δ

3
8}, {δ

4
8}, {δ

5
8 , δ

6
8 , δ

7
8 , δ

8
8}}; that is, the pair

(a, b) ∈ R if and only if a and b are in the same subset of

�
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�
��

�
��

	

�

�
�

�
��

�
��

�
��

Fig. 1. Trajectories of system (7), which represents the BCN
in Example 1. A solid line denotes the transition correspond-
ing to u(t) = δ12 and a dashed line denotes the transition
corresponding to u(t) = δ22 .

3



the partition. By definition, the matrix that represents
R has a 1 as its (i, j)-entry when δi8 is related to δj8, and

a 0 in this position if δi8 is not related to δj8. Accordingly,
we get the following matrix for R:

AR =




1 0 0 0

0 J2 0 0

0 0 1 0

0 0 0 J4



,

where Jk denotes the all-one matrix of size k × k. Col-
lapsing the identical rows of AR yields

C =
[
δ14 δ24 δ24 δ34 δ44 δ44 δ44 δ44

]
. (8)

It is clear that C is a full row rank logical matrix and
that (4) holds.

Remark 1. Note that ifR is an equivalence relation on

∆N induced by a matrix C ∈ LÑ×N of full row rank,

then the quotient set ∆N/R is of cardinality Ñ , and the
correspondence [x] 7→ Cx gives a bijection between the
sets ∆N/R and ∆

Ñ
.

We now consider quotients of (3). We note that the
BCN (3) naturally generates a transition system T (Σ) =
(∆N ,∆M ,→), where

x
u
→ x′ ⇐⇒ x′ = F ⋉ u⋉ x. (9)

(In other words, a transition x
u
→ x′ occurs in T (Σ)

if u steers Σ from x to x′.) Let R be an equivalence
relation induced by a full row rank logical matrix C

of size Ñ × N . Then the quotient transition system
T (Σ)/R = (∆N/R,∆M ,→R) can be thought of as hav-
ing the state set ∆

Ñ
; and the transition relation is then

given by

z
u
→R z′ ⇐⇒ there exists a transition x

u
→ x′ of T (Σ)

with z = Cx and z′ = Cx′ (10)

(cf. Definition 2 and Remark 1). For the analysis to re-
main in the Boolean context, we expect that the tran-
sitions of T (Σ)/R are also generated by a Boolean sys-
tem. (Here, and below, we use the term “Boolean sys-
tem” to refer to a system of the form (3) where N and
M are not restricted to be powers of 2.) It is readily seen
that this is the case if and only if for any z ∈ ∆

Ñ
and

any u ∈ ∆M , there is a unique transition z
u
→R z′ of

T (Σ)/R. 1 By (4), (9) and (10), the latter is equivalent

1 Note that this is equivalent to only requiring T (Σ)/R to
be deterministic (i.e., there do not exist transitions of the

to the requirement that

(a, b) ∈ R ⇐⇒ (F ⋉ u⋉ a, F ⋉ u⋉ b) ∈ R

for all u ∈ ∆M . (11)

We therefore restrict our attention to those R satisfying
(11).

Remark 2. The meaning of condition (11) is clear: if
we think of R as a partition of ∆N , then the successor
set of each block in this partition is included in a single
block of the partition.

The following theorem gives a method for explicitly con-
structing a Boolean system that generates the transi-
tions of T (Σ)/R.

Theorem 1. Consider a BCN Σ as in (3). Suppose that
R is an equivalence relation on ∆N induced by a matrix

C ∈ LÑ×N of full row rank, and that property (11) holds.
For each 1 ≤ k ≤ M , let Fk be the matrix in LN×N

defined by Fk = F ⋉ δkM , and let F̃k = C ⊙ Fk ⊙ C⊤.
Then:

(a) F̃k ∈ LÑ×Ñ for 1 ≤ k ≤ M .
(b) Let

ΣR : xR(t+1) = F̃⋉u(t)⋉xR(t), xR ∈ ∆
Ñ
, u ∈ ∆M

be the system where F̃ =
[
F̃1 F̃2 · · · F̃M

]
. If an in-

put u ∈ ∆M steers Σ from a state a ∈ ∆N to a state
a′ ∈ ∆N , then it also steers ΣR from Ca to Ca′.
Conversely, if u steers ΣR from a state q ∈ ∆

Ñ
to a

state q′ ∈ ∆
Ñ
, then there is a one-step transition of

Σ from some a ∈ ∆N to some a′ ∈ ∆N with Ca = q
and Ca′ = q′, under this input u.

Proof. (a) It is clear that each F̃k is a (0, 1)-matrix of

size Ñ × Ñ . So we need only show that, for 1 ≤ k ≤ M ,

every column of F̃k contains exactly one 1. Let 1 ≤ k ≤

M and 1 ≤ j ≤ Ñ be fixed. Since C (being logical)
has no zero rows, there exists 1 ≤ s ≤ N such that
(C)js = 1. Choose 1 ≤ r ≤ N so that δrN = F ⋉ δkM ⋉

δsN . Then (Fk)rs = 1. For this r, let 1 ≤ i ≤ Ñ be
such that (C)ir = 1. Then, by the definition of Boolean

matrix multiplication, the (i, j)-entry of F̃k is equal to∨N
p=1

∨N
l=1[(C)ip ∧ (Fk)pl ∧ (C)jl], and hence equal to 1

(since (C)ir = (Fk)rs = (C)js = 1). This means that

each column of F̃k has at least one 1. Now suppose that

there is another i′ with 1 ≤ i′ ≤ Ñ such that (F̃k)i′j =

form z
u
→R z′ and z

u
→R z′′ with z′ 6= z′′), since for any

z ∈ ∆
Ñ

and u ∈ ∆M there always exists at least one z′ ∈ ∆
Ñ

such that z
u
→R z′.

4
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Fig. 2. Trajectories of the Boolean system ΣR defined in Ex-
ample 2. A solid (resp. dashed) line represents the transition
resulting from u(t) = δ12 (resp. u(t) = δ22).

1. Then we must have (C)i′r′ = 1, (Fk)r′s′ = 1, and
(C)js′ = 1 for some 1 ≤ r′, s′ ≤ N . These imply that

Cδr
′

N = δi
′

Ñ
, Cδs

′

N = δj
Ñ
, and δr

′

N = F ⋉ δkM ⋉ δs
′

N . Since

(C)js = 1, we have CδsN = δj
Ñ

and, thus, (δsN , δs
′

N ) ∈ R.

By (11), it follows that (F ⋉δkM ⋉δsN , F ⋉δkM ⋉δs
′

N) ∈ R,

that is, (δrN , δr
′

N ) ∈ R. Hence, δi
Ñ

= CδrN = Cδr
′

N = δi
′

Ñ
,

which shows that i = i′. Thus, there is a unique 1 in
each column of Fk.

(b) We first note that the system ΣR is well defined

since, by (a), F̃ is a logical matrix of size Ñ × ÑM .
Let 1 ≤ r, s ≤ N , let 1 ≤ k ≤ M , and assume that
the input u = δkM steers Σ from δsN to δrN . We have

(Fk)rs = 1. Suppose that CδsN = δj
Ñ

and CδrN = δi
Ñ
.

Then (C)js = (C)ir = 1 and, hence, (F̃k)ij = 1 by the
definition of the Boolean product. This combined with

(a) implies that δi
Ñ

= F̃ ⋉ δkM ⋉ δj
Ñ
; in other words, the

input u = δkM steers ΣR from δj
Ñ

to δi
Ñ
.

Conversely, let 1 ≤ i, j ≤ Ñ and suppose that the input

u = δkM takes ΣR from δj
Ñ

to δi
Ñ
. Then (F̃k)ij = 1,

and hence there must be some 1 ≤ r, s ≤ N such that
(C)ir = 1, (Fk)rs = 1, and (C)js = 1. Thus, CδsN = δj

Ñ
,

CδrN = δi
Ñ
, and Σ can be driven from δsN to δrN with the

input u = δkM .

Since, by the above theorem, ΣR generates the transi-
tions of T (Σ)/R (cf. (10)), it can be interpreted as a
quotient of the BCN Σ.

Example 2. Consider the BCN in Example 1. The ma-
trix F in the algebraic representation is given by (6).
Let C be as in (8) and let R be the equivalence relation
defined in Example 1, induced by C. It is easy to check
that R satisfies (11). Set F1 = F ⋉ δ12 and F2 = F ⋉ δ22 .
A calculation yields

F̃1 = C ⊙ F1 ⊙ C⊤ =
[
δ24 δ14 δ44 δ44

]
,

F̃2 = C ⊙ F2 ⊙ C⊤ =
[
δ14 δ14 δ44 δ44

]
.

Fig. 2 shows the trajectories of ΣR with Ñ = 4, M = 2,

and F̃ ∈ L4×8 given by F̃ =
[
F̃1 F̃2

]
. We see from the

figure that ΣR is indeed a quotient of the original BCN,
which does not distinguish between states related by R.

Using Theorem 1 one can obtain a quotient Boolean
system, once an equivalence relation satisfying property
(11) is found. In the next subsection, we will address the
issue of computing equivalence relations which allow the
construction of quotient Boolean systems.

3.2 Computing equivalence relations

Precisely, in this subsection we are concerned with the
following problem: given an equivalence relation S on
∆N , determine the maximal (with respect to set inclu-
sion) equivalence relation R on ∆N such that R ⊆ S
and (11) holds. Here the relation S may be interpreted
as a preliminary classification of the states of a BCN;
see Section 4 below for specific instances. We are inter-
ested in finding the maximal equivalence relation since
in many cases we want the size of the quotient system
to be as small as possible.

First, we remark that such a maximal equivalence rela-
tion always exists and it is unique, as shown in the fol-
lowing proposition.

Proposition 1. Let S be an equivalence relation on∆N .
Then the set of all relations R ⊆ ∆N × ∆N that are
contained in S and satisfy property (11) has a unique
maximal element (with respect to set inclusion), and the
maximal element is an equivalence relation on ∆N .

Proof. Note that the identity relationRid = {(a, a) : a ∈
∆N} satisfies (11) and Rid ⊆ S (since S is reflexive).
Also note that if two relations R1 ⊆ S and R2 ⊆ S
both satisfy property (11), then the same is true for their
unionR1∪R2. The first statement follows immediately.

The maximal element R̃ is reflexive since it con-
tains the identity relation Rid. To show the symmetry

and transitivity of R̃, consider the inverse relation

R̃−1 = {(b, a) : (a, b) ∈ R̃} and the composition R̃◦R̃ =

{(a, c) : there exists b ∈ ∆N such that (a, b) ∈ R̃ and (b,

c) ∈ R̃}. It is easy to see that both R̃−1 and R̃ ◦ R̃ sat-

isfy (11), and are contained in S since R̃ ⊆ S and S is

symmetric and transitive. Hence, R̃ contains R̃−1 and

R̃ ◦ R̃, implying that R̃ is symmetric and transitive.
The second statement is proved.

The following theorem suggests a way of computing such
an equivalence relation.

Theorem 2. Let F ∈ LN×NM , and let S be an equiva-
lence relation on ∆N . For each u ∈ ∆M define a relation
Su on ∆N by: (a, a′) ∈ Su if and only if a′ = F ⋉ u⋉ a.
Define a sequence of relations Rk by

R1 = S and Rk+1 =

( ⋂

u∈∆M

(S−1
u ◦ Rk ◦ Su)

)
∩Rk.
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Then:

(a) The sequence of relations R1,R2, . . . ,Rk, . . . satis-
fies R1 ⊇ R2 ⊇ · · · ⊇ Rk ⊇ · · · .

(b) There is an integer k∗ such that Rk∗+1 = Rk∗ .
(c) Rk∗ is the maximal equivalence relation on ∆N such

that Rk∗ ⊆ S and property (11) holds.

Proof. Part (a) is quite trivial. Part (b) follows from (a)
and the finiteness of each Rk.

We turn to the proof of (c). By Proposition 1, it suffices
to show that Rk∗ ⊆ ∆N ×∆N is the maximal relation
satisfying Rk∗ ⊆ S and condition (11). The relation
Rk∗ is clearly a subset of S. To show that (11) holds
true, suppose that (a, b) ∈ Rk∗ and u ∈ ∆M . Since
Rk∗ = Rk∗+1 ⊆ S−1

u ◦ Rk∗ ◦ Su, there exist a
′, b′ ∈ ∆N

such that (a, a′) ∈ Su, (b
′, b) ∈ S−1

u , and (a′, b′) ∈ Rk∗ .
It follows from the definition of Su that a′ = F ⋉ u ⋉ a
and b′ = F ⋉u⋉ b. Hence, (F ⋉u⋉a, F ⋉u⋉ b) ∈ Rk∗ .

To prove the maximality of Rk∗ , let R ⊆ ∆N ×∆N be
another relation which is contained in S and satisfies
(11). We claim that R ⊆ Rk for all k. The case k = k∗

completes the proof. We shall use induction on k. The
case k = 1 is trivial, so we take k > 1 and assume that
R ⊆ Rk−1. Let (a, b) ∈ R. Then for any u ∈ ∆M ,
we have (F ⋉ u ⋉ a, F ⋉ u ⋉ b) ∈ R ⊆ Rk−1. By the
definition of Su, it follows that (a, F ⋉ u ⋉ a) ∈ Su and
(F ⋉ u ⋉ b, b) ∈ S−1

u . Hence, (a, b) ∈ S−1
u ◦ Rk−1 ◦ Su,

and consequently (a, b) ∈ Rk since u was arbitrary. This
shows that R ⊆ Rk, and our claim follows.

For applications, it is convenient to reformulate Theo-
rem 2 in terms of (0, 1)-matrices. Recall that a relation
R on ∆N can be represented by anN×N matrix, whose
(i, j)-entry is 1 if (δiN , δjN ) ∈ R and 0 otherwise. So if AR

is the matrix representing R, then the inverse relation
R−1 has A⊤

R
as the matrix representation. Moreover, if

R′ is another relation on ∆N represented by AR′ , then
the matrices representingR∩R′ andR′◦R areAR∧AR′

and AR ⊙AR′ (see, e.g., [44, Section 9.3]). Note that if
Su is the relation defined in Theorem 2 and if u = δkM ,
then

(δiN , δjN ) ∈ Su ⇐⇒ Fkδ
i
N = δjN ⇐⇒ (Fk)ji = 1,

where Fk = F ⋉ δkM , and thus F⊤
k is the matrix repre-

senting Su. From these facts and Theorem 2, the follow-
ing corollary follows immediately.

Corollary 1. Suppose that S is an equivalence relation
on ∆N represented by a matrix AS , and suppose that
F ∈ LN×NM . For each 1 ≤ i ≤ M , let Fi be the matrix

Fi = F ⋉ δiM . Define a sequence of (0, 1)-matrices by

A1 = AS and Ak+1 = Ak ∧ (F⊤
1 ⊙Ak ⊙ F1) ∧ · · ·

∧ (F⊤
M ⊙Ak ⊙ FM ).

Then there is an integer k∗ such that Ak∗+1 = Ak∗ , and
Ak∗ is the matrix representing the maximal equivalence
relation on ∆N that is contained in S and satisfies prop-
erty (11).

Example 3. Consider again the BCN in Example 1.
If we let S be the equivalence relation induced by the
partition {{δ18}, {δ

2
8, δ

3
8 , δ

4
8}, {δ

5
8 , δ

6
8 , δ

7
8 , δ

8
8}}, then

A1 =




1 0 0

0 J3 0

0 0 J4


 ,

and a short computation yields

A2 = A3 =




1 0 0 0

0 J2 0 0

0 0 1 0

0 0 0 J4



,

which is exactly the matrix representing the relation
given in Example 1. So the relation R presented in Ex-
ample 1 is the maximal equivalence relation contained
in S and satisfying property (11).

4 Control design via quotients

This section discusses the application of quotient sys-
tems for control design. We consider two typical control
problems in BCNs and show how these problems can be
solved through the use of a quotient Boolean system.

4.1 Stabilization

Consider a BCN Σ as given in (3). Let M ⊆ ∆N be a
target set of states. We say that Σ is stabilizable to M
if for every x(0) ∈ ∆N there exists a control sequence
{u(0), u(1), u(2), . . .}, with u(i) ∈ ∆M , and a positive
integer τ such that x(t) ∈ M for all t ≥ τ (see, e.g.,
[8]). The following result shows that, by defining the
equivalence relation appropriately, we can easily obtain
a stabilizing controller for Σ on the basis of a stabilizer
for its quotient system.

Proposition 2. Consider a BCN Σ as given in (3). Let
M ⊆ ∆N and let S be the equivalence relation on ∆N

determined by the partition {M,∆N−M}. Suppose that
R is an equivalence relation on ∆N induced by a matrix
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C ∈ LÑ×N of full row rank, R ⊆ S, and condition (11)
holds. Suppose ΣR is defined as in Theorem 1. If ΣR

can be stabilized to the set MR = {Cx : x ∈ M} via a
feedback law (xR, t) 7→ u(xR, t), then Σ can be stabilized
to M using the feedback law (x, t) 7→ u(Cx, t).

Proof. We first show that if the initial states of Σ and ΣR

satisfy Cx(0) = xR(0), then the feedback laws (x, t) 7→
u(Cx, t) and (xR, t) 7→ u(xR, t) generate the same in-
put sequence, and the trajectories satisfy Cx(t) = xR(t)
for all t = 0, 1, 2, . . .. It is clearly true that the two feed-
back laws generate the same input, say u0, at t = 0.
By the second part of Theorem 1(b), there is a one-step
transition of Σ from some a ∈ ∆N to some a′ ∈ ∆N

with Ca = xR(0) and Ca′ = xR(1), under this in-
put u0. Since Cx(0) = Ca, it follows from (4) that
(x(0), a) ∈ R, and then by (11) we have (x(1), a′) ∈ R.
Thus Cx(1) = Ca′ = xR(1) again by (4). The fact we
want now follows by induction.

Nowwe can prove the proposition. Assume that the feed-
back laws (x, t) 7→ u(Cx, t) and (xR, t) 7→ u(xR, t) are
applied to Σ and ΣR, respectively. Let p ∈ ∆N and
let q = Cp. Then there is a τ such that the trajec-
tory of ΣR with xR(0) = q satisfies xR(t) ∈ MR for
all t ≥ τ . Since the trajectory of Σ with x(0) = p al-
ways satisfies Cx(t) = xR(t), to each t ≥ τ there corre-
sponds some b ∈ M such that Cx(t) = Cb, and hence
(x(t), b) ∈ R ⊆ S. This forces x(t) ∈ M whenever t ≥ τ ,
since S is the equivalence relation yielded by the parti-
tion {M, ∆N −M}. Since p was arbitrary, we conclude
that stabilization of Σ toM is achieved, via the feedback
law (x, t) 7→ u(Cx, t).

Remark 3. Note that in Proposition 2 we do not assume
R to be maximal, although that will be the case in most
applications of the proposition. A similar remark applies
to Proposition 3 below.

4.2 Optimal control

As another example of application we consider the
following finite-horizon optimal control problem, intro-
duced in [25].

Problem 1. Consider a BCN Σ as in (3). Given an
initial state x0 and a finite time horizon T ∈ Z

+, find a
control sequence that minimizes the cost function

J =

T−1∑

t=0

l(u(t), x(t)) + g(x(T )), (12)

where l(u, x) and g(x) are functions defined on∆M×∆N

and ∆N , respectively.

We show that the solution to Problem 1 for Σ can be
easily derived on the basis of a solution to Problem 1 for

a suitably chosen quotient system. Let S be the equiva-
lence relation on ∆N given by

(x, x′) ∈ S ⇐⇒ g(x) = g(x′) and

l(u, x) = l(u, x′) for all u ∈ ∆M . (13)

We observe that, for a matrix C ∈ LÑ×N with full row
rank, if the equivalence relationR induced by C satisfies
R ⊆ S, then the following two maps are well defined:

lR : ∆M ×∆
Ñ

→ R, (u, a) 7→ l(u, x)

whenever a = Cx, (14)

gR : ∆
Ñ

→ R, a 7→ g(x) whenever a = Cx. (15)

Based on this observation, we can state the following
proposition.

Proposition 3. Let Σ be a BCN described by (3). Sup-
pose that S is the equivalence relation on ∆N given by
(13), R is an equivalence relation on ∆N induced by a

full row rank logical matrix C ∈ LÑ×N ,R ⊆ S, and (11)
holds. Consider Problem 1 with given x0, T , and J . Let
ΣR be the Boolean system constructed in Theorem 1, and

define JR =
∑T−1

t=0 lR(u(t), xR(t)) + gR(xR(T )), where
lR and gR are given by (14) and (15).

(a) If U∗ = {u∗(0), . . . , u∗(T − 1)} is an optimal control
sequence solving Problem 1 withΣ, x0, and J replaced
by ΣR, x0

R
= Cx0, and JR, respectively, then U∗ is

also an optimal control for Σ. Moreover, let J∗ be
the optimal cost minu(·) J under the initial condition
x(0) = x0 and let J∗

R
be the optimal cost minu(·) JR

under the condition xR(0) = Cx0. Then J∗ = J∗
R
.

(b) If (xR, t) 7→ u∗(xR, t) is an optimal control pol-
icy 2 solving Problem 1 with Σ and J replaced by ΣR

and JR, respectively, then the control policy given by
(x, t) 7→ u∗(Cx, t) is an optimal control policy for Σ.

Proof. (a) An argument similar to the first paragraph
of the proof of Proposition 2 shows that, if the initial
states of Σ and ΣR satisfy Cx(0) = xR(0), then for
any control sequence u(0), . . . , u(T −1), the correspond-
ing trajectories satisfy Cx(t) = xR(t) for t = 0, . . . , T ,
and hence g(x(T )) = gR(xR(T )) and l(u(t), x(t)) =
lR(u(t), xR(t)) for each 0 ≤ t ≤ T − 1, so that the
cost functions J and JR return the same value. This
implies that if U∗ minimizes JR with the initial condi-
tion xR(0) = Cx0, then it also minimizes J subject to
x(0) = x0, and moreover, the associated optimal costs
J∗ and J∗

R
are equal.

2 It was shown in [25] that the optimal control input can
always be implemented as a time-varying feedback from the
states.
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Part (b) follows directly from (a) and the fact (explained
in the first paragraph of the proof of Proposition 2)
that the feedback laws (x, t) 7→ u∗(Cx, t) and (xR, t) 7→
u∗(xR, t) generate the same control sequence whenever
Cx(0) = xR(0).

Example 4. To give an intuitive example of the equiv-
alence relation defined by (13), suppose that M = 2,
N = 4, and the functions l : ∆2 ×∆4 → R and g : ∆4 →
R are given by

l(δ12 , δ
1
4) = 1, l(δ12 , δ

2
4) = l(δ12 , δ

3
4) = l(δ12 , δ

4
4) = 2,

l(δ22 , x) = 3 (x ∈ ∆4),

g(δ14) = g(δ24) = g(δ34) = 1, g(δ44) = 2.

First, by definition the relation S contains all pairs of
the form (a, a), namely, (δ14 , δ

1
4), (δ

2
4 , δ

2
4), (δ

3
4 , δ

3
4), and

(δ44 , δ
4
4). Second, note that g(δ

2
4) = g(δ34) = 1, l(δ12 , δ

2
4) =

l(δ12 , δ
3
4) = 2, and l(δ22 , δ

2
4) = l(δ22, δ

3
4) = 3. Thus, both

pairs (δ24 , δ
3
4) and (δ34 , δ

2
4) belong to S. Moreover, it is

easily checked that they are the only pairs of distinct
states that satisfy g(x) = g(x′), l(δ12 , x) = l(δ12, x

′), and
l(δ22 , x) = l(δ22 , x

′) simultaneously. Hence no pair other
than those listed belongs to S.

Remark 4. It is noted in [25] that the cost function de-
scribed in (12) can be equivalently expressed in a linear

form as J =
∑T−1

t=0 θ ⋉ u(t) ⋉ x(t) + µx(T ), where µ is
a row vector of N components and θ = [θ1, θ2, . . . , θM ]
with each θi being an N -component row vector. We re-
mark that the index JR appearing in Proposition 3 is
easily obtained from this expression. In fact, since the
function gR is defined on ∆

Ñ
, it can be expressed in the

form gR(x) = µRx for some Ñ -component row vector
µR. Let C be as in Proposition 3. Then by (15) we have
µRC = µ and so µR = µC+, where C+ = C⊤(CC⊤)−1

is the pseudoinverse of C. In a similar manner, the func-
tion lR defined by (14) can be equivalently expressed as
lR(u, x) = θR⋉u⋉x, where θR = [θ′1, θ

′
2, . . . , θ

′
M ] with

θ′i = θiC
+ for each i. Thus the index cost JR can be

rewritten in a linear form as follows: JR =
∑T−1

t=0 θR ⋉

u(t)⋉ xR(t) + µRxR(T ).

One can obtain analogs of Proposition 3 for other kinds
of optimal control problems (such as the infinite-horizon
optimal or average-cost optimal problems [25]). The
essence of the arguments is the same as that of Propo-
sition 3, and so we omit them.

4.3 Comparative simulations

The proposed methods have been tested on several ran-
domly generated 16-node networks. Recall that a BCN
expressed by (1) consists of two types of nodes, namely,
internal nodes (x1, . . . , xn) and external control nodes
(u1, . . . , um). We considered the cases ofm = 1, 2, 3, and

Table 2
Comparison between controller design done with the
quotient-based method and done the conventional way.

Size CPU time (sec)

Orig. BCN Quotient Orig. BCN Quotient

m = 1
32768 6815 9256.08 454.47

k = 1

m = 1
32768 5807 9845.81 475.89

k = 100

m = 2
16384 4014 2327.27 303.04

k = 1

m = 2
16384 4647 2401.16 158.76

k = 100

m = 3
8192 2793 590.42 53.79

k = 1

m = 3
8192 3071 601.22 65.40

k = 100

m = 5
2048 887 37.78 5.50

k = 1

m = 5
2048 1015 32.20 6.28

k = 100

5.Whenm = 1, there are 15 internal nodes and 1 control
nodes; the original network size is 215 = 32768. When
m = 2, there are 14 internal nodes and 2 control nodes;
the original network size is 214 = 16384. When m = 3,
there are 13 internal nodes, so the original network size
is 213 = 8192, and when m = 5 the original network size
is 211 = 2048. First, we evaluate the efficiency of the
quotient-based method given in Proposition 2. The tar-
get sets M of the stabilization problem were randomly
selected, with cardinality k = 1 and k = 100. Table 2
shows the numerical results obtained for different com-
binations of m and k. The second and third columns
give the number of states of the original networks and
the number of states of the quotient systems, reflecting
the degree of reduction. The fourth column records the
CPU time spent for constructing stabilizing controllers
directly based on the original networks. Specifically, we
followed the design procedure proposed by Fornasini and
Valcher [45] and Li et al. [46] when k = 1, and the pro-
cedure of Guo et al. [47] when k = 100. The CPU time
required for determining stabilizers via Proposition 2 is
shown in the last column. Similarly, Table 3 compares
the network size and the CPU time to obtain a solution
to Problem 1, with T = 40. For the sake of simplicity,
we assumed that the function l(u, x) depends only on u,
with the value 1 if u1 = 1 and 0 if u1 = 0; the function
g(x) was assumed to take the value 5 if x1 = 0 and the
value 0 otherwise. (Here we use binary representations
of x and u.) The corresponding optimal control problem
was solved both by applying the algorithm of Fornasini
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Table 3
Comparison between direct and quotient-based methods for
solving Problem 1.

Size CPU time (sec)

Orig. BCN Quotient Orig. BCN Quotient

m = 1 32768 6087 490.67 115.87

m = 2 16384 4506 256.51 74.94

m = 3 8192 3441 130.33 55.50

m = 5 2048 829 27.96 10.81

and Valcher [25] directly to the original network, and by
using the indirect method given in Proposition 3. It is
seen that the proposedmethods offer a reduction in com-
putation time compared to the state of the art, and the
extent of reduction increases (as a trend) with increasing
size of the original network. All computations were run
on an Intel Core i7-3.00 GHz personal computer with 8
GB of RAM.

5 A biological example

We apply our methods to a Boolean model for lactose
metabolism in the bacterium E. coli [48]. The model
consists of 13 variables (1 mRNA, 5 proteins, and 7
sugars) denoted by M , P , B, C, R, Rm, A, Am, L,
Lm, Le, Lem and Ge. Here, R and Rm are combined
to indicate concentration levels of a specific substance
(the repressor protein); that is, the concentration is low
when (R,Rm) = (0, 0), medium when (R,Rm) = (0, 1),
and high when (R,Rm) = (1, 1). The fourth possibility,
(R,Rm) = (1, 0), is meaningless and not allowed. The
same situation is for the pairs (A,Am), (L,Lm), and
(Le, Lem) (see [48] for more details on this aspect). The
equations describing the model are as follows:

M(t+ 1) = C(t) ∧ ¬R(t) ∧ ¬Rm(t),

P (t+ 1) = M(t), B(t+ 1) = M(t),

C(t+ 1) = ¬Ge(t),

R(t+ 1) = ¬A(t) ∧ ¬Am(t),

Rm(t+ 1) = (¬A(t) ∧ ¬Am(t)) ∨R(t), (16)

A(t+ 1) = B(t) ∧ L(t),

Am(t+ 1) = L(t) ∨ Lm(t),

L(t+ 1) = P (t) ∧ Le(t) ∧ ¬Ge(t),

Lm(t+ 1) = ((Lem(t) ∧ P (t)) ∨ Le(t)) ∧ ¬Ge(t).

We assume that the concentration of extracellular lac-
tose is low (Le = Lem = 0), and treat the extracellular
glucose levels (Ge) as input to themodel. Then themodel
can be rewritten as in (3) with 3 N = 432 and M = 2.

3 Here, N is not a power of 2, since for some Boolean pairs
in the model only three of the four values are admissible.
More precisely, since each of the variables M , P , B, and C
has two possible values, whereas each of the pairs (R,Rm),
(A,Am), and (L,Lm) takes on only three possible values,

The matrix F ∈ L432×864 is detailed in the Appendix.

(1) Stabilization. When extracellular lactose levels get
low, the model is known to exhibit two steady states [48],
expressed in the canonical vector form as δ387432 and δ414432 .
Let M = {δ387432} and let S be the equivalence relation
produced by the partition {M, ∆432 − M}. Then by
following the procedure described in Section 3, we get

a quotient system ΣR : xR(t + 1) = F̃ ⋉ u(t) ⋉ xR(t),

with xR ∈ ∆8, u ∈ ∆2, and F̃ ∈ L8×16 given by

F̃ =
[
δ28 δ28 δ78 δ28 δ48 δ78 δ28 δ48 δ18 δ18 δ68 δ68 δ38 δ78 δ28 δ48

]
.

The matrixC obtained during the procedure (which is of
size 8×432 and not given explicitly) satisfiesCδ387432 = δ18 .
It is not hard to see that for any

K =
[
δ22 δ22 ∗ ∗ ∗ ∗ ∗ ∗

]

(∗ denoting columns that can be either δ12 or δ22), the
feedback law given by xR 7→ u(xR) = KxR stabilizes
the quotient system to δ18 . Proposition 2 then ensures
that the original model can be globally stabilized to the
state δ387432 via the feedback law x 7→ u(Cx) = KCx.
A similar argument can be made for finding a feedback
controller that stabilizes the model to the state δ414432 ; the
details are not repeated here.

Remark 5. It required about 6.5 s to find the above
controller directly based on the procedure described in
[45] and [46]. In contrast, it took only 1.16 s to obtain
the same stabilizer by using the quotient-based method.
Thus in this case there is an increase in speed by a factor
of about 5 to 6 when the proposed method is employed.

(2) Optimal control. Assume that T = 3, the initial con-
dition x(0) = δ10432, and the functions l(u, x) and g(x) are
given by

l(δ12 , x) = 1, l(δ22 , x) = 2 (x ∈ ∆432),

g(δ1432) = · · · = g(δ54432) = 0, g(δ55432) = · · ·

= g(δ432432) = 5.

Here we remark that the states δ1432, . . . , δ
54
432 corre-

spond to the lac operon, which is responsible for the
metabolism of lactose, being ON (induced); cf. [48].
The above choice of g(x) then indicates that the operon
is desired to be in an ON state after intervention. By
proceeding as in Section 4.2, one can obtain a quotient

the total number of states of (16) is equal to 24 · 33 = 432;
thus N = 432 in the algebraic representation.

9



system ΣR with N = 12, M = 2, and the matrix

F̃ =
[
δ712 δ712 δ1212 δ1212 δ1212 δ712 δ712 δ1212 δ1212 δ1212 δ712 δ712

δ312 δ412 δ1212 δ812 δ912 δ112 δ712 δ1212 δ812 δ912 δ112 δ712
]
.

The matrix C satisfies Cx(0) = δ1112 , and the induced
functions lR and gR are defined by

lR(δ12 , xR) = 1, lR(δ22 , xR) = 2 (xR ∈ ∆12),

gR(δ112) = · · · = gR(δ712) = 5, gR(δ812) = · · ·

= gR(δ1212) = 0.

It is straightforward to see that the input sequence

u∗(0) = u∗(1) = δ22 , u∗(2) = δ12

is optimal for ΣR, with the optimal cost J∗
R

= 5, so it
also solves the optimal control problem for the original
model, and the optimal cost is J∗ = J∗

R
= 5. Moreover,

we see from the value of J∗ that the optimal input indeed
steers the model to an ON state, as desired.

Remark 6. As for the time comparison, we report that
it took about 1.5 s to solve this problem directly by the
method of Fornasini and Valcher [25], while the above
indirect procedure took only 0.79 s. Thus there is about
2 times saving in speed when the quotient-based method
is employed.

6 Discussions

The paper has considered quotients of BCNs. Two pos-
sible applications of the quotient description have been
presented in Section 4, where we have seen that the sta-
bilization and optimal control problems of the original
BCNs can be boiled down to those of the quotient sys-
tems. Let us mention that we have presented only a few
examples of such applications, and there are quite a few
other problems such as output tracking and observabil-
ity checking that can also be dealt with in this manner.
We do not include the details of these applications for
reasons of space.

Since the number of states of the quotient ΣR is precisely
the number of the equivalence classes generated by R,
the coarser the relation R, the smaller is ΣR and, thus,
the greater is the degree of reduction. Recall that the
relation R is required to satisfy (11), which is related
to the dynamics of Σ. Thus, the degree of reduction is
affected by the specific dynamics of the original network.
Also, since in practice different relations are required for
different applications (cf. Sections 4.1 and 4.2), despite
the same original network, the reduction degree may still
be different, depending on the specific problems to be
solved. The size of the quotient systems appearing in the

numerical experiments reported in Section 4.3 is about
50–20% when compared to the original networks. In the
biological example presented in Section 5, the size of the
reduced state space is less than 3% of that of the original
one.

In Section 4.3, we have limited the discussion to net-
works with 16 nodes, since we would like to compute the
control policy on each originally generated network and
list the exact time that the standard methods require,
in order to make the comparisons. Here we report that
besides these simulations, we also tested our methods on
networks with about 20–23 nodes. We observed that for
most instances, the standard methods ran out of mem-
ory whereas the proposed methods were able to obtain
a solution in a matter of minutes to hours. We do not
present the detailed numerical results due to the limita-
tions on the paper length.
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Appendix

The matrix F for the biological model discussed in Section 5 is

F = δ432[255 258 261 255 258 261 246 249 252 264 267 270 264 267 270 246 249 252 48 51 54

48 51 54 30 33 36 255 258 261 255 258 261 246 249 252 264 267 270 264 267 270

246 249 252 264 267 270 264 267 270 246 249 252 258 258 261 258 258 261 249 249 252

267 267 270 267 267 270 249 249 252 51 51 54 51 51 54 33 33 36 258 258 261

258 258 261 249 249 252 267 267 270 267 267 270 249 249 252 267 267 270 267 267 270

249 249 252 255 258 261 255 258 261 246 249 252 264 267 270 264 267 270 246 249 252

48 51 54 48 51 54 30 33 36 255 258 261 255 258 261 246 249 252 264 267 270

264 267 270 246 249 252 264 267 270 264 267 270 246 249 252 258 258 261 258 258 261

249 249 252 267 267 270 267 267 270 249 249 252 51 51 54 51 51 54 33 33 36

258 258 261 258 258 261 249 249 252 267 267 270 267 267 270 249 249 252 267 267 270

267 267 270 249 249 252 417 420 423 417 420 423 408 411 414 426 429 432 426 429 432

408 411 414 210 213 216 210 213 216 192 195 198 417 420 423 417 420 423 408 411 414

426 429 432 426 429 432 408 411 414 426 429 432 426 429 432 408 411 414 420 420 423

420 420 423 411 411 414 429 429 432 429 429 432 411 411 414 213 213 216 213 213 216

195 195 198 420 420 423 420 420 423 411 411 414 429 429 432 429 429 432 411 411 414

429 429 432 429 429 432 411 411 414 417 420 423 417 420 423 408 411 414 426 429 432

426 429 432 408 411 414 210 213 216 210 213 216 192 195 198 417 420 423 417 420 423

408 411 414 426 429 432 426 429 432 408 411 414 426 429 432 426 429 432 408 411 414

420 420 423 420 420 423 411 411 414 429 429 432 429 429 432 411 411 414 213 213 216

213 213 216 195 195 198 420 420 423 420 420 423 411 411 414 429 429 432 429 429 432

411 411 414 429 429 432 429 429 432 411 411 414 228 231 234 228 231 234 219 222 225

237 240 243 237 240 243 219 222 225 21 24 27 21 24 27 3 6 9 228 231 234

228 231 234 219 222 225 237 240 243 237 240 243 219 222 225 237 240 243 237 240 243

219 222 225 231 231 234 231 231 234 222 222 225 240 240 243 240 240 243 222 222 225

24 24 27 24 24 27 6 6 9 231 231 234 231 231 234 222 222 225 240 240 243

240 240 243 222 222 225 240 240 243 240 240 243 222 222 225 228 231 234 228 231 234

219 222 225 237 240 243 237 240 243 219 222 225 21 24 27 21 24 27 3 6 9

228 231 234 228 231 234 219 222 225 237 240 243 237 240 243 219 222 225 237 240 243

237 240 243 219 222 225 231 231 234 231 231 234 222 222 225 240 240 243 240 240 243

222 222 225 24 24 27 24 24 27 6 6 9 231 231 234 231 231 234 222 222 225

240 240 243 240 240 243 222 222 225 240 240 243 240 240 243 222 222 225 390 393 396

390 393 396 381 384 387 399 402 405 399 402 405 381 384 387 183 186 189 183 186 189

165 168 171 390 393 396 390 393 396 381 384 387 399 402 405 399 402 405 381 384 387

399 402 405 399 402 405 381 384 387 393 393 396 393 393 396 384 384 387 402 402 405

402 402 405 384 384 387 186 186 189 186 186 189 168 168 171 393 393 396 393 393 396

384 384 387 402 402 405 402 402 405 384 384 387 402 402 405 402 402 405 384 384 387

390 393 396 390 393 396 381 384 387 399 402 405 399 402 405 381 384 387 183 186 189

183 186 189 165 168 171 390 393 396 390 393 396 381 384 387 399 402 405 399 402 405

381 384 387 399 402 405 399 402 405 381 384 387 393 393 396 393 393 396 384 384 387

402 402 405 402 402 405 384 384 387 186 186 189 186 186 189 168 168 171 393 393 396

393 393 396 384 384 387 402 402 405 402 402 405 384 384 387 402 402 405 402 402 405

384 384 387].

The above notation means that the first column of F is δ255432 , the second column is δ258432 , and so on.
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