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Surrogate-basedDistributedOptimisation forExpensive

Black-boxFunctions ?

Zhongguo Li a, Zhen Dong a, Zhongchao Liang b, Zhengtao Ding a

aDepartment of Electrical and Electronic Engineering, University of Manchester, Manchester, M13 9PL, UK

bSchool of Mechanical Engineering and Automation, Northeastern University, Shenyang, 110819, China

Abstract

This paper considers distributed optimisation problems with black-box functions using surrogate-assisted methods. Since the
cost functions and their derivatives are usually impossible to be expressed by explicit functions due to the complexity of
modern systems, function calls have to be performed to obtain those values. Moreover, the cost functions are often expensive
to evaluate, and therefore designers prefer to reduce the number of evaluations. In this paper, surrogate-based methods are
utilised to approximate the true functions, and conditions for constructing smooth and convex surrogates are established, by
which the requirements for explicit functions are eliminated. To improve the quality of surrogate models, a distance-based
infill strategy is proposed to balance the exploitation and exploration, which guarantees the density of the decision sequence in
a compact set. Then, a distributed optimisation algorithm is developed to solve the reformulated auxiliary sub-problems, and
the convergence of the proposed algorithm is established via Lyapunov theory. Simulation examples are provided to validate
the effectiveness of the theoretical development and demonstrate the potential significance of the framework.

Key words: Distributed algorithms, expensive optimisation methods, black-box functions, surrogate models, multi-agent
systems.

1 Introduction

Over the past decade, distributed optimisation for multi-
agent systems has received significant attention, due
to its wide applications in engineering, social and eco-
nomic networks [1–5]. For large-scale and complex sys-
tems over networks, the traditional centralised meth-
ods are no longer feasible mainly owing to the lack of
central authority, massive data communication, limited
processing power, robustness and privacy concerns [1].
Distributed algorithms, on the other hand, can be imple-
mented via local interactions among networked agents.
Private information are confined to local communication
without sharing to remote fusion centres, which conse-
quently relieves the privacy concern and communication
burden. More importantly, the distributed approaches
do not require central processors, and therefore improve
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the robustness and resilience to single endpoint failures.

Recent advances on distributed optimisation have been
reported in many state-of-the-art works, e.g., [3, 6–12].
Discrete-time algorithms are proposed in [3, 6] where
consensus algorithms with sub-gradients are used in [3],
and a primal-dual method is developed with inequality
constraints in [6]. More recently, continuous-time algo-
rithms have been proposed to solve the distributed op-
timisation problems. The saddle-point method is stud-
ied for balanced graphs [9], and some variations have
been further explored to deal with more general classes
of problems [10]. Fixed-time consensus algorithms have
been introduced to solve distributed optimisation prob-
lems [13–15], which demonstrate a fast convergence to
the optimal solutions. Projection-based methods have
been proposed to handle the problems with set con-
straints [11, 16].

The aforementioned works assume that the local objec-
tive functions and their derivatives are directly avail-
able, which poses a critical limitation to applications
of those algorithms. It is usually impractical to obtain
the explicit objective functions owing to the complexity
of modern systems. Moreover, evaluating the black-box
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functions is often time-consuming for many engineering
applications, for example, aerospace design optimiza-
tion [17, 18], where the black-box models are considered
as expensive or costly functions [19, 20]. The traditional
gradient-based algorithms using real-time stimulations
are infeasible to be implemented, since a large number
of function evaluations are required. To eliminate the
requirement for costly gradients, derivative-free optimi-
sation has been actively studied mainly in centralised
settings (referring to [21] for a comprehensive overview).
Besides, it should be noted that models obtained from
trust-region methods may be local, because they are con-
fined to a specific subregion of interest [22].

The surrogate model, also known as meta model or re-
sponse surface, has been widely investigated for black-
box functions in both single and multi-objective opti-
misation problems [17, 19]. It approximates the objec-
tives by using interpolation approaches, e.g., radial ba-
sis function methods [20], polynomial interpolation [23]
and Kriging models [24]. Considering that evaluating the
black-box functions is expensive, we have to make full
use of the currently available information to choose the
next evaluation point wisely based on the present sur-
rogate and the infill strategy. When selecting the next
point of black-box evaluation, there are conflicting dual
goals that should be considered simultaneously: exploit-
ing the current model by selecting the point having a low
objective value, and exploring the undiscovered space
to improve the fitness of the surrogate. Infill criteria,
also referred as adaptive sampling, have been proposed
in the literature aiming to balance the exploitation and
exploration, see [17, 25] for a comprehensive overview.
In [20, 26, 27], an effective distance-based infill strategy
has been developed, which aims to optimise the current
surrogate subject to a constraint that takes those points
of some distance from previously evaluated points. With
this setting, exploitation is reflected by the optimisa-
tion of current surrogate, and exploration is incorpo-
rated in the constraint. Then, centralised algorithms can
be applied to derive the next optimal point, and accord-
ingly to solve the real optimisation problems. However,
most of the existing works require additional optimi-
sation toolboxes to solve the auxiliary sub-problems in
centralised settings, e.g., [20, 27], which have struggled
with the computation and communication complexity in
network-connected systems.

There is an urgent need in developing distributed al-
gorithms for multi-agent systems with expensive black-
box functions. To date, the existing literature has not
focused on this important class of distributed optimi-
sation problems. In this paper, distributed approaches
will be combined together with surrogate models to es-
tablish an efficient optimisation framework for costly
functions. Nevertheless, three critical challenges arise in
dealing with this class of problems. Firstly, establish-
ing a surrogate that can approximate the true functions
and facilitate the development of distributed algorithms

is difficult. Secondly, developing a suitable compromis-
ing strategy that balances between exploitation and ex-
ploration over network is challenging. Finally, designing
the cooperative algorithm taking the above two objec-
tives into consideration is non-trivial mainly owing to
the problem transformation, and the complexity of con-
vergence analysis.

In this work, we first establish that the true functions
can be interpolated by smooth and convex models under
commonly-used assumptions. Because those surrogates
are cheap to evaluate, it is feasible to develop gradient-
based algorithms, which usually requires a large num-
ber of function and gradient evaluations. We introduce
an adaptive constraint-based method that searches the
next evaluation point with some distance from the pre-
viously evaluated points and with a low objective value
in the current surrogate. Such a strategy is then trans-
ferred to a penalty-based optimisation problem, which
is proved to be efficient to handle “soft” constraints in
practice. By investigating the relationship between the
centralised and distributed problems, we allocate each
agent a local copy of the decision vector, regarded as
the consensus variable. When the consensus of the local
copies is achieved, the original problem can be solved
in a distributed manner under connected graphs. The
distributed projection-based algorithm is then proposed
to find the most suitable decision vector for the next
costly evaluation by compromising between the local
and global searches. It is worth noting that the gradi-
ents used in the proposed algorithm are from the surro-
gates rather than the true black-box functions. Consen-
sus tools and convex analysis are employed to establish
the convergence of the proposed algorithm.

The significance of our study is to establish a surrogate-
assisted optimisation framework for network-connected
multi-agent systems, where the local cost functions
and their derivatives are unavailable. Many engineer-
ing systems are too complex to be modelled by explicit
functions, and evaluations of those systems are often
time-consuming and costly. We utilise surrogate-assisted
approaches to approximate the black-box functions
by cheap surrogates such that efficient gradient-based
distributed algorithms can be deployed. The proposed
framework can be implemented for complex networks
with potentially less communication and computation
resources over connected communication graphs. The
numerical example with detailed simulation results
manifests the effectiveness of the proposed framework.
Furthermore, the power charging problem of plug-in
electric vehicles (PEVs) is formulated as a black-box
optimisation problem in distributed settings, which re-
veals the practical significance of our work in real-world
applications. This application has been very popular in
recent studies [28, 29]; however, most of the existing
works utilise theoretical models of the charging process,
which might be unsuitable due to the complexity of the
modelling and uncertainties of the real-time parameters.
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The remainder of this paper is organised as follows. In
Section 2, preliminaries and mathematical background
will be introduced. Section 3 formulates the problem of
interest and provides basic assumptions. In Section 4, the
structure of our method and theoretical analysis will be
presented. Simulation results are demonstrated in Sec-
tion 5. Finally, Section 6 concludes this paper.

Notation: Let R, Rn and Rn×m denote the real numbers,
real vectors of n dimensions and real matrices of dimen-
sion n×m. R+ and R− represent the real non-negative
and non-positive numbers, respectively. For a series of
vectors, a1, . . . , aN , let col(a1, . . . , aN ) be a column vec-
tor by stacking (a1, . . . , aN ) on top of each other. The
identity matrix of dimension n is represented by In. AT

denotes the transpose of a matrix A ∈ Rn×m, and λi(A)
denotes the ith eigenvalue of a square matrix A ∈ Rn×n.
The Kronecker product is denoted by ⊗. For a vector

x ∈ Rn, ‖x‖ =
√
xTx denotes the Euclidean norm. In

this paper, the subscript index k denotes a variable at
the kth iteration, e.g., xk and γk. The subscript i repre-
sents the variable of the ith agent in the network, e.g.,
xi and Ωi.

2 Preliminaries

This section presents background on graph theory and
convex optimisation.

2.1 Graph Theory

The connection among a group of N agents is described
by a graph G(V, E), which consists of N vertices, V =
{1, . . . N}, denoting the agents in the network, and a
set of edges, E ⊆ V × V, representing the communica-
tion links among the agents. The adjacent matrix is de-
fined as A = [aij ]N×N , where aij = 1 if the edge pair
(i, j) ∈ E , and zero otherwise. The Laplacian matrix is

denoted by L = [lij ]N×N , with lii =
∑N
j=1,j 6=i aij and

lij = −aij , for j 6= i. The graph is undirected if aij = aji
for all i, j ∈ V, and it is directed otherwise. In this paper,
all communication graphs are assumed to be undirected.
For a connected undirected graph, zero is a simple eigen-
value of the Laplacian matrix, and all other eigenvalues
are positive.

2.2 Mathematical Background

In this subsection, preliminaries on convex analysis and
projection mapping will be presented.

Given a compact and convex set Ω ⊂ Rn, the projection
mapping, denoted by PΩ(x) : Rn → Ω, is defined as
PΩ(x) = argmin y∈Ω ‖x− y‖. The normal cone at x ∈ Ω
is defined by

NΩ(x) = {ϕ ∈ Rn |ϕT (y − x) ≤ 0,∀y ∈ Ω}. (1)

The following lemma on projection operator will be used
in the convergence analysis of the proposed framework.
By using projected gradient of the surrogates, the local
decision variable can be confined to the design space, as
demonstrated later in Section 4.

Lemma 1 ([30]) For a compact and convex set Ω ⊂ Rn,
the following properties of the projection mapping hold:

(x− PΩ(x))T (PΩ(x)− y) ≥ 0, ∀x ∈ Rn, and ∀y ∈ Ω
(2)

‖PΩ(x)− PΩ(y)‖ ≤ ‖x− y‖, ∀x, y ∈ Rn. (3)

Definition 1 (Smoothness and convexity [31])
A differentiable function h(x) : Ω → R is α-strongly
convex if, for any a, b ∈ Ω,

(a− b)T (∇h(a)−∇h(b)) ≥ α‖a− b‖2 (4)

and is β-smooth if

‖∇h(a)−∇h(b)‖ ≤ β‖a− b‖ (5)

where α and β are nonnegative constants. Moreover,
Hα,β is defined as a set of α-strongly convex and β-
smooth functions. In the case of non-strong convexity, it
is denoted by H0,β, and the non-smooth set is denoted by
Hα,∞. In addition, H0,∞ is equivalent to the first-order
condition for convex functions.

Given a set of evaluation points, the conditions for estab-
lishing convex and smooth surrogates will be analysed,
and therefore we introduce the definition of interpola-
tion as follows.

Definition 2 (Hα,β-interpolation [32]) Let K =
{1, . . . , k} denote a finite index set. For a given set
of triples S = {xj ,∇hj(xj), hj(xj)},∀j ∈ K, with
xj ∈ Rn,∇hj(xj) : Rn → Rn and hj(xj) : Rn → R,
the set S is said to be Hα,β-interpolable iff there exists
a function h ∈ Hα,β such that ∇hj(xj) = ∇h(xj) and
hj(xj) = h(xj) for any j ∈ K.

3 Problem Formulation

In this section, we formulate the distributed optimisa-
tion problems for expensive black-box functions using
surrogate-based methods.

We consider a group of N agents, where each of them
possesses a private cost function, denoted as fi(xi) with
xi ∈ Ωi being the optimisation variable in a compact
and convex set. The global set constraint Ω is the inter-

section of all local ones, i.e., Ω =
⋂N
i=1 Ωi ⊂ Rn, where

Ωi is privately known to agent i. It should be noted that
Ω is used for analytical purpose, which does not have
to be available to the distributed agents when running
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the proposed algorithms. The goal of the network is to
optimise the summation of the local cost functions, in a
distributed way,

min
z∈Ω

N∑
i=1

fi(z) (6)

where the local cost functions are unknown. Note that
we denote xi ∈ Ωi as the local action of agent i, and
denote z ∈ Ω as the consensus action of the network.

The problem under consideration is to find the global
optimum, in a distributed manner, without knowing
the cost functions and their gradients. By exploring the
structure of surrogate-assisted optimisation, we divide
the problem into three stages: establishing a suitable
surrogate, developing a feasible infill strategy and de-
signing a cooperative optimisation algorithm. The fol-
lowing assumptions are made on the communication
graph and the cost functions.

Assumption 1 The communication graph is connected.

Assumption 2 The cost functions, fi(xi),∀i ∈ V, xi ∈
Ωi are differentiable and strongly convex. Furthermore,
the gradients of the cost functions are β-smooth.

Remark 1 The communication graph is assumed to be
connected such that the information flow among the dis-
tributed agents is complete, as stated in Assumption 1.
This condition has been widely-used in the earlier dis-
tributed frameworks, e.g., [6, 9, 10]. Assumption 2 en-
sures that the cost functions are all strongly convex and
smooth. Similar conditions are employed in distributed
optimisation problems, for example, [9, 11]. In some
works, additional assumptions on the smoothness of the
gradients are required, e.g., [7, 10].

4 Main Results

In this section, we first prove that the local samples
can be interpolated as smooth and convex functions (see
Theorem 1), and then provide an infill principle for func-
tion evaluations, which can improve the surrogate model
gradually. Then, we propose a distributed algorithm to
seek the optimal solution as in (36) further ahead, where
the local cost functions are reformulated by taking the
infill criteria into account. Finally, the overall structure
of the framework will be presented.

4.1 Surrogate Condition and Formulation

Now, to show that the local samples can be interpolated
by smooth and convex functions, the following prelimi-
nary results are needed.

Lemma 2 ([32, 33]) For agent i in the network, the

finite triple set {xji ,∇fi(x
j
i ), fi(x

j
i )},∀j ∈ K, where

xji ∈ Ωi,∇fi(xji ) : Rn → Rn, fi(x
j
i ) : Rn → R, is Hα,β-

interpolable iff {xji ,∇fi(x
j
i ) − αx

j
i , fi(x

j
i ) − α

2 ‖x
j
i‖2} is

H0,β−α-interpolable. Furthermore, {xji ,∇fi(x
j
i ), fi(x

j
i )}

is H0,β-interpolable iff {∇fi(xji ), x
j
i ,∇T fi(x

j
i )x

j
i −

fi(x
j
i )} is H1/β,∞-interpolable.

We are ready to show the foundation for constructing
smooth and convex surrogate.

Theorem 1 Let Assumption 2 hold. If for any a, b ∈ Ωi,
the following inequality holds

fi(a) ≥ fi(b) +∇fTi (b)(a− b) (7)

+
β

2(β − α)

(√
α(a− b)− 1√

β
(∇fi(a)−∇fi(b))

)2

then, for each agent i, given a set of evaluation points
{xji},∀j ∈ K randomly generated from Ωi, the triple set

of {xji ,∇fi(x
j
i ), fi(x

j
i )}, ∀j ∈ K is Hα,β-interpolable.

Proof: A sufficient and necessary condition for convex
interpolation, i.e., H0,∞-interpolation [32], is given by

fi(a) ≥ fi(b) +∇T fi(b)(a− b), ∀a, b ∈ {xji}. (8)

It can be obtained that the set{
βxji
β − α

− ∇fi(x
j
i )

β − α
,∇fi(xji )− αx

j
i ,

fi(x
j
i ) +

α∇T fi(xji )x
j
i

β − α
− αβ‖xji‖2

2(β − α)
− ‖∇fi(x

j
i )‖2

2(β − α)

}
(9)

is H0,∞-interpolable, since the following inequality

fi(a) +
α∇T fi(a)a

β − α
− αβ‖a‖2

2(β − α)
− ‖∇fi(a)‖2

2(β − α)

≥ fi(b) +
α∇T fi(b)b
β − α

− αβ‖b‖2

2(β − α)
− ‖∇fi(b)‖

2

2(β − α)

+ (∇fi(b)− αb)T
(
β(a− b)
β − α

− ∇fi(a)−∇fi(b)
β − α

)
(10)

is equivalent to (7). The equivalence can be obtained by

fi(a) ≥ fi(b) +∇fi(b)(a− b) +
α∇T fi(b)(a− b)

β − α

− ∇fi(a)T∇fi(b)
β − α

+
‖∇fi(b)‖2

β − α
− αβaT b

β − α

+
α∇T fi(a)b

β − α
+
αβ‖b‖2

β − α
− α∇T fi(a)a

β − α
+

αβ‖a‖2

2(β − α)

+
‖∇fi(a)‖2

2(β − α)
− αβ‖b‖2

2(β − α)
− ‖∇fi(b)‖

2

2(β − α)
. (11)

4



After some calculations, we have

fi(a) ≥ fi(b) +∇fi(b)(a− b) +
‖∇fi(a)−∇fi(b)‖2

2(β − α)

+
αβ‖a− b‖2

2(β − α)
− α(∇fi(a)−∇fi(b))T (a− b)

β − α
≥ fi(b) +∇fTi (b)(a− b)

+
β

2(β − α)

(
α‖a− b‖2 +

1

β
‖∇fi(a)−∇fi(b)‖2

− 2α

β
(a− b)T (∇fi(a)−∇fi(b))

)
. (12)

Using the second result in Lemma 2, we obtain that

{
∇fi(xji )− αx

j
i ,

βxji
β − α

− ∇fi(x
j
i )

β − α
,

− fi(xji ) +
β∇T fi(xji )x

j
i

β − α
− αβ‖xji‖2

2(β − α)
− ‖∇fi(x

j
i )‖2

2(β − α)

}
(13)

is H0,∞-interpolable, which is then equivalent to con-
clude that, by using the first result in Lemma 2,{
∇fi(xji )− αx

j
i , x

j
i ,−fi(x

j
i ) +∇T fi(xji )x

j
i −

α

2
‖xji‖

2

}
(14)

is H1/(β−α),∞-interpolable. By similar arguments used

in (13) and (14), it can be derived that
{
xji ,∇fi(x

j
i ) −

αxji , fi(x
j
i ) − α

2 ‖x
j
i‖2
}

is H0,β−α-interpolable, and{
xji ,∇fi(x

j
i ), fi(x

j
i )
}

is Hα,β-interpolable. This com-
pletes the proof. �

Remark 2 Note that the interpolation function, de-

noted by f̂i, is not unique. A variety of interpolating
methods can be used to generate the surrogate models, for
example, radial basis function based neural networks [34],
polynomial interpolation [23], and Kriging models [24].
From the proof of Lemma 1, it is straightforward to
establish a strongly convex and smooth interpolating
function in the form

f̂ki (xi) = conv

( ⋃
j∈K

epi hji (xi)

)
+
α

2
‖xi‖2 (15)

where conv(·) takes the convex hull (also referred as con-
vex envelope) of the argument, epi denotes the epigraph
operator, and

hji (xi) =fi(x
j
i ) +∇T fi(xj)(xi − xji )

+
1

2(β − α)
‖xi − xji‖

2. (16)

Remark 3 The smoothness of the surrogate enables us
to deploy the gradient-based algorithms in the following
subsections, which derives the optimal solution at each
iteration without solving auxiliary sub-problems. The in-
equality (7) has been used in some related works for
surrogate-based optimisation problems, e.g., [33]. Strong
convexity can generate more robust solutions with fast
convergence speed, which makes the gradient-based opti-
misation more efficient [35]. It should be noted that non-
smooth convex surrogates can be employed using non-
smooth optimisation techniques [16].

To this end, distributed radial basis function (RBF) net-
works will be deployed to construct the surrogate for
the expensive functions. For a set of k samples, Si =
{(xji ; f(xji ))|x

j
i ∈ Ωi, f(xji ) ∈ R,∀j = K}, the true func-

tions can be approximated by a set of RBF models, given
by

f̂ki (xi) =

k∑
j=1

ωjiφi(‖xi − x
j
i‖) (17)

where f̂ki (xi) is the RBF interpolant of the ith agent,

ωji ,∀i ∈ V, j ∈ K, are real coefficients, and φi(‖xi−xji‖)
is the jth basis function centred at xji . There are a variety
of basis functions that can be employed, for example,
linear, cubic and Gaussian basis functions [17]. In this
paper, we employ the Gaussian function as the basis,
given by

φi(r) = exp(−γir2), γi > 0 (18)

since it possesses some useful properties, as will be exam-
ined later. Let ωi = [ω1

i , . . . , ω
k
i ]T and Φi(xi) = [φi(‖xi−

x1
i ‖), . . . , φi(‖xi − xki ‖)]T . Then, the interpolant of the
ith agent can be written as

f̂ki (xi) = ωTi Φi(xi). (19)

Define the interpolation matrix Gi ∈ Rk×k by

[Gi]rc = φi (‖xri − xci‖) ,∀r, c ∈ K (20)

which is also referred as Gram matrix. Note that the
RBF surrogates should generate the same output as the
real samples, that is,

GTi ωi = Fi (21)

with Fi = [fi(x
1
i ), . . . , fi(x

k
i )]T .

Theorem 2 Given a set of different samples Si, there
exists a unique ωi such that the RBF surrogate coincides
with the true function of the ith agent at all samples, i.e.,
GTi ωi = Fi, using the basis function (18).
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Proof: To show the uniqueness of ωi, it is sufficient
to show that the interpolation matrix Gi is invertible,
which consequently yields ωi = G−1

i Fi. Instead, we fur-
ther prove that Gi is positive definite by using the Gaus-
sian basis function (18), since this guarantees that ωi
can be safely computed by Cholesky decomposition [36].

For any ξ ∈ Rk and ξ 6= 0,

ξTGiξ =
∑
r∈K

∑
c∈K

ξrξcφi (‖xri − xci‖)

=
∑
r∈K

∑
c∈K

ξrξc exp(−γi(‖xri − xci‖
2
). (22)

Denoting a non-trivial measure ς(xi), which has the mass
ξr at xi = xri ,∀r ∈ K, and has zero mass elsewhere over
compact set Ωi, then we have

ξTGiξ =

∫∫
Ωi×Ωi

exp(−γi ‖µ− ν‖2)dς(µ)dς(ν). (23)

Note that the right-hand side of (23) can be expressed as∫∫
Ωi×Ωi

exp(−‖γi(µ− ν)‖2)dς(µ)dς(ν)

=

∫∫
Ωi×Ωi

π−
n
2

[ ∫
Rn

exp(j2γiτ(µ− ν)) exp(−‖τ‖2)dτ

]
dς(µ)dς(ν) (24)

where we have used the fact that exp
(
−‖y‖2

)
=

π−n/2
∫
Rk exp(j2τy) exp(−‖τ‖2)dτ , with j being the

unit imaginary number. Using | exp(j2yτ)| = 1,∀y ∈
Ωi, τ ∈ Rn, and Fubini’s theorem, we obtain

ξTGiξ =π−
n
2

∫
Rn

exp(−‖τ‖2)

∫
Ωi

exp j2γiτµdς(µ)∫
Ωi

exp−j2γiτνdς(ν)dτ (25)

=π−
n
2

∫
Rn

exp(−‖τ‖2)

∣∣∣∣∫
Ωi

exp j2γiτµdς(µ)

∣∣∣∣2 dτ.
Since the integrand in above equation is positive when-
ever ς(µ) is of non-zero mass, and zero otherwise, it fol-
lows that ξTGiξ > 0. Thus, there exists a unique ωi
such that the surrogate coincides with the true objective
function. This completes the proof. �

From the above result, it can be guaranteed that each
local surrogate will generate the same output as the true
function, and therefore, the global surrogate can mimic
the network objective at the sampling instants. It fol-
lows from (17) and (18) that the surrogate generated
by Gaussian basis function is smooth. According to [37],
the model error at any xi ∈ Ωi can be estimated by

ε2
i (xi) = 1− Φi(xi)

TG−1
i Φi(xi). (26)

Over a compact set, if the samples are dense in the design
domain, the surrogate error will converge to zero [20].

4.2 Distributed Cooperative Algorithm with RBF Sur-
rogate and Balanced Infill Strategy

In the previous subsections, we have proved that the
cost functions can be interpolated by smooth and con-
vex surrogate (Theorem 1), and then we have developed
RBF networks for local surrogate construction (Theo-
rem 2). In this subsection, we will propose an evaluation
strategy that can guarantee the density of the evalua-
tion sequence by reformulating the original problem as
a constrained optimisation problem (Theorem 3). Then,
we develop an equivalent formulation of the centralised
problem, and then present a distributed algorithm that
can be implemented by each agent with local interac-
tions. Convergence of the proposed algorithm will be es-
tablished in Theorem 5 further ahead.

In order to guarantee that the surrogate model converges
as the number of iteration increases, an algorithm should
be able to generate a sequence of evaluation points that
is everywhere dense in Ωi, as stated in the following
lemma. This underlying principle has been established
in the earlier work [38], and then further developed in
[20, 27].

Lemma 3 ([38]) An algorithm converges to the opti-

mum for the continuous functions
∑N
i=1 fi(xi) iff the de-

cision sequence {xji} generated by the algorithm is dense
in the compact set Ω.

One of the commonly-used strategies to ensure the den-
sity of the sequence is to select the next evaluation point
that maintains certain distance from the previously eval-
uated points [19, 25, 27]. Given a set of previously eval-

uated points, {xji},∀j ∈ K, the maximum distance in a
compact set is

Dmax,i = max
d∈Ωi

min
j∈K
‖d− xji‖. (27)

Therefore, the next evaluation point xk+1
i can be chosen

according to the distance from previous points, given by

‖xk+1
i − xji‖ ≥ γ

kDmax,i, ∀j ∈ K (28)

where 0 ≤ γk ≤ 1. To save space and avoid notational
complexity, xi will be used to represent xk+1

i in the rest
of this paper. By introducing this inequality constraint,
the surrogate-based optimisation problem becomes

min
xi∈Ωi,∀i∈V

N∑
i=1

f̂ki (xi)

s.t. ‖xi − xji‖ ≥ γ
kDmax,i, ∀j ∈ K

xi = xl,∀i, l ∈ V.

(29)
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Remark 4 The reformulated problem (29) selects the

next evaluation point that minimises
∑N
i=1 f̂

k
i (xi) with

a distance at least γkDmax,i from the previously eval-
uated points. In the case of γk = 0, the problem (29)
reduces to an unconstrained optimisation problem that
searches the best optimiser of the current surrogate model∑N
i=1 f̂

k
i (xi), which can be understood as a pure exploita-

tion strategy. When γk = 1, it becomes a pure exploration
strategy that aims to find the next point having the largest
distance from the previously evaluated points. It is worth
noting that γk = 1 and 0 correspond to the global and lo-
cal search, respectively. Various search mechanisms can
be used according to the evaluation budget and evaluation
costs, for example, constant pattern γk = c ∈ [0, 1], de-
caying pattern γk = 1

k+1 and cycle search [20, 27]. From
the practical point of view, if function evaluation is ex-
tremely expensive, γk should be designed as fast decaying
sequence, e.g., 1

k+1 , while it can be relaxed to slow decay-

ing sequence, e.g., 1
0.1k+1 or constant patterns, for less

expensive cases. As a trade-off, if slow decaying sequence
is used, surrogate fitting can be improved, and more func-
tion evaluations are required.

Now, we show the sequence of evaluation points, gener-
ated by the reformulated problem (29), is dense in Ω.

Theorem 3 The strictly increasing sequence of itera-
tions {xji}, generated by the optimisation problem (29)
with 0 < γk ≤ 1, is everywhere dense in Ω, and therefore

solving (29) yields the global minimum of
∑N
i=1 f̂

k
i (xi)

as k →∞.

Proof: We prove this theorem by seeking a contradic-
tion. First, we assume that the generated sequence {xji}
is not dense in Ω. It follows that there exist a positive
constant ε > 0 and a decision vector z̄ ∈ Ω such that the
open ball O = {oi|‖oi − z̄‖ < ε} does not contain any

elements in the sequence {xji}, that is,

‖xji − z̄‖ ≥ ε, ∀j ∈ K. (30)

From the constraints in (29) and (27), it can be obtained
that

min
m,n∈K,m6=n

‖xmi − xni ‖ ≥ γmax
d∈Ω

min
j∈K
‖d− xji‖ ≥ γε (31)

where γ = minj∈K γ
j . This indicates that any two ele-

ments in the sequence satisfy

‖xmi − xni ‖ ≥ γε, ∀m,n ∈ K,m 6= n. (32)

As the number of evaluation k goes to infinity, the el-
ements in the sequence cannot be encompassed into a
compact set since any two elements are of certain dis-
tance shown in (32), which leads to a contradiction with

the compactness of Ω. Therefore, the iteration sequence
{xji} is dense in Ω. Then, the rest of the results can
be concluded by invoking Lemma 3. This completes the
proof. �

Remark 5 Theorem 3 illustrates that, with an unlim-
ited number of function evaluations, exact optimal so-
lution can be obtained by solving the constrained opti-
misation problem. This is a common practice and a ba-
sic requirement when designing an algorithm for expen-
sive optimisation problems, as shown in many pioneer-
ing works [27, 38]. A suitable selection of parameter γk

can be formed by employing time-varying γk that is ini-
tially set as some value close to 1 and decreases to 0 when
approaching to the limit of function evaluation [17, 25].
Hence, the designer should balance the trade-off between
the optimal error and the number of evaluations required.

To facilitate the distributed algorithm design in the
following subsections, we introduce a penalty-based
method in [39] to handle the inequality constraints

in (29). Let gi(xi) = γkDmax,i − ‖xi − xji‖,∀j ∈ K, at
the kth iteration. The smoothed penalty function can
be defined as

P (gi) =


0, if gi ≤ 0
g2i
2δ , if 0 ≤ gi ≤ δ
gi − δ

2 , if gi ≥ δ
(33)

with δ being a positive constant.

Remark 6 It is worth mentioning that the smoothed
penalty is proved to be efficient and robust in applications
that are with “soft” constraints as discussed in [39]. In
this paper, the inequality introduced in (29) does not have
to be satisfied at all iterations. Therefore, the penalty-
based method can be efficiently implemented in practice.

Then, the local cost function can be formulated as

f̄ki (xi) = f̂ki (xi) + κiP (gi(xi)) (34)

where κi denotes the weight of the penalty function.
Under Assumption 1, the problem is equivalent to

min
xi∈Ωi,∀i∈V

N∑
i=1

f̄ki (xi)

s.t. (L ⊗ In)X = 0

(35)

where X = col(x1, . . . , xN ). Note that the reformulated
functions combine both the surrogate model and the in-
fill criteria.

Remark 7 In conventional works on surrogate-based
optimisation, e.g., [27, 34], it is usually assumed that
centralised optimisation toolboxes that can be used to
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find the solution of the auxiliary problem (35) are di-
rectly available. In this paper, we will further develop a
distributed algorithm to solve (35) so as to facilitate a
fully distributed operation.

The distributed algorithm is designed as

ẋi =PΩi

[
xi −∇f̄ki (xi)

−
N∑
j=1

aij(xi − xj)−
N∑
j=1

aij(λi − λj)
]
− xi

λ̇i =τ

N∑
j=1

aij(xi − xj)

(36)

where λi ∈ Rn is the Lagrangian multiplier of agent
i, and τ > 0 is to be designed. To analyse the
network behaviour, we concatenate the local vari-
ables to form the augmented ones. Let F k(X) =
col(f̄k1 (x1), . . . , f̄kN (xN )),∇F k(X) = col(∇f̄k1 (x1), . . . ,
∇f̄kN (xN )), Λ = col(λ1, . . . , λN ), and Ω̄ = Ω1×, . . . ,×ΩN .
The compact form of (36) can be written as

Ẋ =PΩ̄

[
X −∇F k(X)

− (L ⊗ In)X − (L ⊗ In)Λ
]
−X

Λ̇ =τ(L ⊗ In)X.

(37)

Remark 8 The proposed algorithm in (36) takes advan-
tage of the saddle-point dynamics [9, 10] and the projec-
tion operator [11, 16]. The projection operator guaran-
tees the decision variable is always in the compact set Ω,
which consequently ensures the density of the sequence
as k →∞, due to the adoption of the penalty functions.
All the local copies of the decision vector will converge
to the same optimum that minimises the sum of local
cost functions by using the distributed gradient-based al-
gorithm in (36). Some related schemes dealing with dif-
ferent problems have been reported in [7, 9, 10, 35].

Remark 9 In the existing literatures, various ap-
proaches have been developed to solve distributed optimi-
sation problems, e.g., the alternating direction method
of multipliers (ADMM)/Douglas-Rachford splitting
method [40, 41] and distributed proximal gradient (DPG)
[42]. ADMM-based approaches require more auxiliary
dynamics, usually consisting of two primal-variable up-
dates and one dual-variable update that are performed
in an alternating fashion. Such alternating methods can
lead to slow convergence rate and synchronisation issues
[43]. Moreover, ADMM and DPG algorithms introduce
additional sub-optimisation problems, as they have to
deploy extra tools to solve argmin and proximal operators
(see [40, 42, 43]). The proposed algorithm in this paper
employs a projected gradient to deal with the constraints
of the design domain, which is different from the vanilla
gradient used in related works [3, 7, 40, 42, 44]. By using

the projection-based algorithm, it is guaranteed that the
next evaluation point is confined to the feasible design
space Ω, even though such a global set is unavailable to the
local agents. Furthermore, algorithm (36) only requires
to exchange two variables (λj and xj) with neighbours,
while some algorithms rely on additional information ex-
change, e.g., local gradient [45], and the proposed method
does not need to solve any sub-optimisation problems.

In the following, we show that the equilibrium of the pro-
posed algorithm (36) is the solution to the reformulated
problem in (35), and then we prove the convergence of
the algorithm.

Theorem 4 Let Assumptions 1 and 2 hold. Under in-
equality (7), the equilibrium point of the proposed algo-
rithm (36) is an optimal solution to the reformulated
problem (35).

Proof: The equilibrium of (37), denoted by (X̃, Λ̃), can
be obtained from

0 =PΩ̄

[
X̃ −∇F k(X̃)

− (L ⊗ In)X̃ − (L ⊗ In)Λ̃
]
− X̃

0 =τ(L ⊗ In)X̃.

(38)

For connected graphs, the null-space of the Laplacian
matrix L is κ1N ,∀κ ∈ R, i.e., the consensus space. Thus,
the second equation in (38), τ(L ⊗ In)X̃ = 0, holds if

and only if x̃i = x̃j , x∗,∀i, j ∈ V, x∗ ∈ Rn. Then,
by substituting the result into the first equation and
decomposing the network variables, we have

x̃i = x∗,∀i ∈ V, x∗ ∈ Rn

−∇f̄ki (x∗)−
N∑
i=1

aij(λ̃i − λ̃j) ∈ NΩ(x∗).
(39)

Comparing (39) with the Karush-Kuhn-Tucker (KKT)
conditions in [46], it can be concluded that the equilib-

rium (X̃, Λ̃) is an optimal solution to (35). This com-
pletes the proof. �

Now, we present the convergence analysis of the pro-
posed algorithm.

Theorem 5 Suppose Assumptions 1 and 2 hold. The
distributed algorithm (36), with τ < 1

λN (L) , solves the

reformulated problem (35), under inequality (7).

Proof: The Lyapunov candidate is proposed as

V = V1 + V2 + V3 (40)
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where

V1 =
1

2
(X − X̃)T (X − X̃)

+
1

2
(Λ− Λ̃)T

[
(
1

τ
IN − L)⊗ In

]
(Λ− Λ̃)

V2 =1TNF
k(X)− 1TNF

k(X̃)−∇TF k(X̃)(X − X̃)

V3 =
1

2
(X + Λ)T (L ⊗ In)(X + Λ)

− 1

2
(X̃ + Λ̃)T (L ⊗ In)(X̃ + Λ̃)

− (X̃ + Λ̃)T (L ⊗ In)(X − X̃ + Λ− Λ̃).

(41)

Due to the condition τ < 1
λN (L) , we have 1

τ IN − L is

positive definite, and therefore V1 ≥ 0. Note that we
assume 1TNF

k(X) and 1
2 (X + Λ)T (L ⊗ In)(X + Λ) are

convex. Thus, it is clear that V2, V3 ≥ 0 by using the
first-order property of convexity. The time derivative of
V1 along (37) is obtained as

V̇1 =(X − X̃)T Ẋ + (Λ− Λ̃)T
[
(
1

τ
IN − L)⊗ In

]
Λ̇

=(X − X̃)T (PΩ̄[X −Ψ]−X)

+ (Λ− Λ̃)T
[
(
1

τ
IN − L)⊗ In

]
Λ̇

(42)

with Ψ = ∇F k(X)+(L⊗In)X+(L⊗In)Λ. The deriva-
tive of V2 is calculated as

V̇2 = [∇F k(X)−∇F k(X̃)]T (PΩ[X −Ψ]−X). (43)

For V3, we have

V̇3 =(X + Λ)T (L ⊗ In)(PΩ̄[X −Ψ]−X)

− (X̃ + Λ̃)T (L ⊗ In)(PΩ̄[X −Ψ]−X)

+ (X + Λ)T (L ⊗ In)Λ̇− (X̃ + Λ̃)T (L ⊗ In)Λ̇.
(44)

Denote Ψ∗ = ∇F k(X̃) + (L⊗ In)X̃ + (L⊗ In)Λ̃. Then,

adding V̇1, V̇2 and V̇3 together yields

V̇ =ΨT (PΩ̄[X −Ψ]−X)−Ψ∗T (PΩ̄[X −Ψ]−X)

+ (X − X̃)T (PΩ̄[X −Ψ]−X)

+ (Λ− Λ̃)T
[
(
1

τ
IN − L)⊗ In

]
Λ̇

+ (X − X̃)T (L ⊗ In)Λ̇ + (Λ− Λ̃)T (L ⊗ In)Λ̇.
(45)

To take the advantage of the properties of projection

operators, we regroup the items in (45) as

V̇ =(Ψ−X + PΩ̄[X −Ψ])T (PΩ̄[X −Ψ]− X̃)

− (PΩ̄[X −Ψ]−X)T (PΩ̄[X −Ψ]− X̃)

−ΨT (X − X̃)−Ψ∗T (PΩ̄[X −Ψ]− X̃)

+ Ψ∗T (X − X̃)− (X − X̃)T (PΩ̄[X −Ψ]−X)

+
1

τ
(Λ− Λ̃)T InN Λ̇ + (X − X̃)T (L ⊗ In)Λ̇. (46)

Since Λ̇ = τ(L ⊗ In)X, we have

V̇ = (Ψ−X + PΩ̄[X −Ψ])T (PΩ̄[X −Ψ]− X̃)︸ ︷︷ ︸
W1

− (PΩ̄[X −Ψ]−X)T (PΩ̄[X −Ψ]−X)

−Ψ∗T (PΩ̄[X −Ψ]− X̃)︸ ︷︷ ︸
W2

−(Ψ−Ψ∗)T (X − X̃)︸ ︷︷ ︸
W3

+(Λ− Λ̃)T (L ⊗ In)X + τ(X − X̃)T (L2 ⊗ In)X︸ ︷︷ ︸
W4

.

(47)

It follows from the property of projection mapping in
Lemma 1 that W1 ≤ 0. According to the definition of
Ψ∗ = ∇F k(X̃) + (L ⊗ In)X̃ + (L ⊗ In)Λ̃ and the opti-

mality condition in (39), we can obtain Ψ∗ = ∇F k(X̃)+

(L ⊗ In)Λ̃ ∈ −NΩ̄(X̃) due to (L ⊗ In)X̃ = 0. Then,

W2 = −Ψ∗T (PΩ̄[X −Ψ]− X̃)

∈ {ςT (PΩ̄[X −Ψ]− X̃)|∀ς ∈ NΩ̄(X̃)}. (48)

Invoking the definition of normal cone at X̃ as in (1), we
haveW2 ≤ 0 by usingPΩ̄[X−Ψ] ∈ Ω̄. Now, decomposing
W3 gives

W3 =− [∇F k(X)−∇F k(X̃)]T (X − X̃)

− (X − X̃)T (L ⊗ In)(X − X̃)

− (Λ− Λ̃)T (L ⊗ In)(X − X̃).

(49)

Notice that, for connected graphs, we have (L⊗ In)X̃ =
0. Then, combining W3 and W4 results in

W3 +W4 =− [∇F k(X)−∇F k(X̃)]T (X − X̃)

+ τ(X − X̃)T (L2 ⊗ In)(X − X̃)

− (X − X̃)T (L ⊗ In)(X − X̃)

≤− (X − X̃)T [(L − τL2)⊗ In](X − X̃)
(50)

where −[∇F k(X) − ∇F k(X̃)]T (X − X̃) ≤ 0 has been
utilised to derive the inequality. Finally, it can be ob-
tained that W3 + W4 ≤ 0, since L − τL2 is negative
semidefinite. Thus, we have V̇ ≤ 0, and V̇ = 0 iff the
optimal solution is achieved. �
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Remark 10 From Theorems 4 and 5, it is proved that al-
gorithm (36) converges to the optimal solution of the aux-
iliary problem (35). Then, such a solution is selected as

the next evaluation point, i.e., xk+1
i = x∗, which achieves

an appropriate balance between exploration and exploita-
tion.

4.3 Implementation Structure

To this end, we are ready to summarise the implemen-
tation structure of our distributed solution to the ex-
pensive black-box optimisation with surrogate models.
Algorithm 1 illustrates the detailed procedures of the
proposed framework.

Algorithm 1 The Implementation Structure.

Initialisation:
for each agent i ∈ V
1. select an initial set of points, S0 = {x1

i , . . . , x
m
i };

2. evaluate the functions at the specified points S0;

3. construct the initial surrogate model f̂mi (xi).
Iteration:
set k := k + 1, for i ∈ V
4. update the surrogate f̄ki (xki ) with the penalty func-
tion and a time-varying γk;
5. run the distributed algorithm (36) to drive xk+1

i by
communicating with its neighbours Ni;
6. evaluate the local function at xk+1

i ;

7. update iteration information Sk+1 := Sk ∪ {xk+1
i }.

End if termination condition is satisfied or iteration
budget is approached.

In Section 4.1, the conditions for constructing smooth
and convex models are analysed, and then distributed
RBF networks are utilised to establish cheap surrogate
such that gradient-based algorithms can be devised to
solve the auxiliary problem. Because we have to optimise
the surrogate functions and also have to improve the
surrogate fitness, an effective infill strategy is needed to
balance the exploration and exploitation. As presented
in Section 4.2, we develop a helpful distance-based in-
fill method, which can guarantee the density of the de-
cision sequence, and enable the designer to choose the
balancing parameters. Then, to avoid using additional
optimisation toolboxes, we propose a fully distributed
algorithm solving the auxiliary problem. Such an algo-
rithm takes advantage of the cheap surrogates by using
fast gradient descent method, and uses the projection
operator to guarantee all local actions are aligned with
the global decision space, even if this global information
is unknown to the local agents. This is particularly im-
portant, as the local surrogate should be feasible in the
global decision set. Consequently, the obtained solution
can be used for the surrogate update in next iteration.

Combining previous results in Theorems 1-5, the follow-
ing corollary on the overall convergence of Algorithm 1
can be obtained. From Theorem 2, the proposed RBF
surrogate (17) with basis function (18) can generate ex-
act true function, i.e., ε2

i (xi) → 0, as k → ∞ since the
decision sequence is dense over the design domain, which
is guaranteed due to the employment of balanced infill
strategy and distributed algorithm in (36) as proved in
Theorems 3-5.

Corollary 1 Let the conditions in Theorems 1-5 hold.
The decision sequence {xji} obtained from Algorithm 1
with the RBF surrogate (17) converges to the optimal
solution of the original problem (6) as k →∞.

The combined scheme, as shown in Algorithm 1, con-
tains two parts: initialisation and iteration. By selecting
a set of initial evaluation points, a rough surrogate model
can be generated based on the RBF networks. Then, al-
gorithm (36) can be employed to obtain the next evalu-
ation point, which utilises a balanced infill strategy in-
tegrated in the penalty functions. This new evaluation
point will then be used to improve the surrogate for bet-
ter interpolation performance. According to Corollary 1,
the combined algorithm will converge to the optimal so-
lution of the original problem when k goes to infinity,
since the generated sequence from the algorithm is dense
in the design space and the RBF networks converge to
the true functions.

Remark 11 Compared with the centralised approaches,
the distributed algorithm possesses several significant ad-
vantages, for example, potentially less communication,
less computation requirement and robustness to network
uncertainties. All the procedures can be performed by the
distributed individuals using local interactions with their
adjacent neighbours, by which private information can be
well-protected. In algorithm (36), the local information
required by agent i includes the gradient of the augmented
surrogate function∇f̄ki (xi) and the auxiliary variable λi,
and the shared information from its neighbours includes
the decision vector xj and the Lagrangian multiplier λj,
for all neighbours j ∈ Ni.

Remark 12 The proposed framework is different from
the existing studies on distributed optimisation [7, 9–
11, 16, 47] which assume the cost functions are explic-
itly known and can be evaluated efficiently. On the other
hand, centralised methods are proposed in the early liter-
ature to solve expensive optimisation [20, 27], which does
not consider network cooperation and communication. In
this paper, we propose a useful framework that integrates
network communication and surrogate models together
to solve distributed expensive optimisation problems.

Remark 13 Since solving the surrogate-based optimi-
sation problem as in (35) is computationally affordable,
multiple runs of the distributed algorithm (36) can be car-
ried out simultaneously to deal with the non-convexity,
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from which the optimal solution can be selected [27].
Therefore, convexity has been utilised in the theoretical
analysis such that the convergence of the proposed scheme
can be established. From practical point of view, local min-
imum can also be used in the decision update, because it
introduces another source of exploration that can be help-
ful for finding the global optimum.

5 Simulation Study

In this section, we provide two examples with detailed
simulation results to demonstrate the effectiveness of our
work.

5.1 Numerical Example

We consider a network of 6 agents that aim to solve

min
xi∈[−10,10]

6∑
i=1

fi(xi)

s.t. xi = xj ,∀i, j = 1, . . . , 6

f1(x1) = (x1 − 2)2 f2(x2) = 0.5x2
2 + x2

f3(x3) =
x2

3√
x2

3 + 7
+ 1.3x2

3 f4(x4) = ln(x2
4 + 1) + 0.7x2

4

f5(x5) = 0.8(x5 − 3)2 f6(x6) = 0.5x2
6 − 4.

It is worth emphasising that the cost functions are as-
sumed to be unknown, and function calls should be per-
formed at specified points. In practice, the cost values
are generated by black-box functions, which are usually
expensive to evaluate. Here, the functions are given for
analytical purposes only. The Laplacian matrix of the
connected graph is assumed as

L =



3 −1 −1 0 0 −1

−1 2 −1 0 0 0

−1 −1 3 −1 0 0

0 0 −1 3 −1 −1

0 0 0 −1 2 −1

−1 0 0 −1 −1 3


with λN (L) = 5. With those graph and function settings,
it can be easily verified that Assumptions 1 and 2 are
satisfied. The initial evaluation points are set as S0 =
{−8.7;−6.1;−4.2; 5.9; 6.6; 9.6}, based on which a rough
surrogate can be constructed.

We assume the total number of function evaluation is
limited to 20 times. Then, the sequence of xki is obtained
by implementing Algorithm 1 as shown in Fig. 1. The
rest evaluation points of the sequence are obtained as

0 10 20 30 40 50 60 70

sequence
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Fig. 1. The sequence of the decision vector.

{−4.479;−3.284;−2.680;−2.169;−1.706;−1.283;−0.89
2;−0.219;−0.003; 0.218; 0.326; 0.380; 0.413; 0.425}. To
obtain those points, the distributed cooperative algo-
rithm in (36) is utilised. The time interval between two
contiguous iterations is set as 5 seconds, which is suf-
ficient for the algorithm to converge as illustrated in
Fig. 1. The optimal solution of the true cost functions is
calculated as z∗ = 0.434. The difference between the real
optimal solution and the current solution is displayed in
Fig. 2. It can be seen that the optimality error decreases
as the number of evaluation increases. As the objective
functions are expensive black-box, it is desirable to bal-
ance the evaluation cost and the design precision. To
achieve better performance, a fast-decaying γk = 1

k+1

is implemented, which initially explores globally over
the decision space, then quickly settles to exploit the
current surrogate to search the optimum. This choice
can significantly reduce the number of evaluations at
the expense of precision. For most of engineering ap-
plications, the trade-off is necessary and feasible. For
comparison purpose, we have implemented a slower de-
caying sequence, γk = 1

0.2k+1 , and the simulation result
is presented in Fig. 2. In this case, the agents are given
more exploration chances, and consequently the opti-
mal error is relatively larger at the early stage. Because
of the initial exploration, more precise surrogates are
established, which is helpful for reducing the optimal
error after a number of iterations, as demonstrated in
the enlarged profile in Fig. 2.

To show the change of the surrogate models, we present
the initial and final surrogate models in Fig. 3 by tak-
ing agent 5 as an example. Initially, due to the lack of
samples, there are some errors between the true func-
tion and the surrogate in the domain where few samples
have been collected. After a number of iterations, the
interpolation performance is significantly improved, as
shown in Fig. 4. The error of the surrogate is obtained

by integrating |f5− f̂k5 | over the decision space [−10, 10].
Because the number of black-box evaluation is quite lim-
ited, we have chosen a fast-decaying γk that searches
over the promising decision space (local search).
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5.2 Practical Application

In this subsection, the proposed framework is applied
to the optimal charging problem of plug-in electric ve-
hicles. We consider a group of PEVs at a charging sta-
tion aiming to optimise their charging power via local in-
teractions with their adjacent neighbours. Each vehicle
maintains a local cost function consisting of a series of
system parameters, including the charging current, in-
ternal resistance, state of charge, and the charging price,
etc. Modelling of the problem has been studied in re-
cent works, e.g., [28, 29]. Nevertheless, those formula-

Charging 
Station

Fig. 5. Connections of the PEVs where the solid lines rep-
resent the power network and the dotted lines denote the
communication network.

tions are heavily dependent on uncertain or time-varying
parameters, which are difficult to be modelled precisely.
Therefore, surrogate-assisted methods are applicable to
be implemented by performing black-box evaluations.
In each vehicle, a local control centre is equipped with
a performance indicator, communication and computa-
tion units, which can deploy the proposed framework
in distributed settings. The objective of this task is to
obtain the optimal charging power for multiple parallel-
connected vehicles via stimulating the black-box perfor-
mance functions.

In this simulation, the black-box functions are adopted
from [28], formulated as

fi(PEV ) = pi

(
PEV
Ri
− Vo,i + 2RiI

ref
i

2R2
i

√
4RiPEV + V 2

o,i

)
0 ≤ PEV ≤ Pmax

EV

where PEV is the charging power to be optimised; pi de-
notes the priority weight of the ith EV; Ri is the equiva-
lent internal resistance; Vo,i represents the open-circuit
voltage; and Iref

i is the desired charging current refer-
ence. According to the formulation of the cost function
fi(PEV ), the objective of each PEV is to minimise the
derivation from the desired charging current subject to
a set of system constraints. The cost functions are as-
sumed to be unavailable, and objective values can only
be generated by function calls to the performance indica-
tor inside each PEV. The connections among the electric
vehicles are illustrated in Fig. 5, and the simulation pa-
rameters are adopted from [28], by which Assumptions 1
and 2 are fulfilled.

The optimality error is illustrated in Fig. 6, which shows
a decreasing profile as the number of function evalua-
tions increases. It is clear that the optimality error de-
creases significantly at the first few iterations due to
the improvement of the surrogate. In Fig. 7, the con-
vergence of the distributed algorithm (36) is manifested
for randomly generated initial values at the 160th func-
tion evaluation, where the convergence time is about 5
seconds. The advantages of using the proposed frame-
work include that it does not require the modelling of
the charging process; and it is straightforward to be de-
ployed in large-scale networks.
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6 Conclusion

This paper has studied an important class of distributed
optimisation problems with unknown cost functions
over connected networks. A novel framework is devel-
oped to solve the problems by using surrogate-assisted
methods. We have proved that smooth and convex
models can be deployed to approximate the true cost
functions with commonly-used assumptions. Then, a
compromise between the exploration and exploitation
has been achieved by using distance-based infill criteria.
The density of the decision sequence generated by the
infill strategy has been demonstrated. The distributed
algorithm has been proposed with a projection operator
to solve the auxiliary problems with the compact set
constraints. The convergence of the algorithm is investi-
gated via exploring the consensus dynamics and convex
properties. The numerical and practical examples have
been presented to verify the theoretical development
and demonstrate the significance of the our framework
in engineering practices.
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