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Abstract

The identification of switched systems is a challenging problem, which entails both combinatorial (sample-mode assignment) and
continuous (parameter estimation) features. A general framework for this problem has been recently developed, which alternates
between parameter estimation and sample-mode assignment, solving both tasks to global optimality under mild conditions. This
article extends this framework to the nonlinear case, which further aggravates the combinatorial complexity of the identification
problem, since a model structure selection task has to be addressed for each mode of the system. To solve this issue, we reformulate
the learning problem in terms of the optimization of a probability distribution over the space of all possible model structures. Then,
a randomized approach is employed to tune this distribution. The performance of the proposed approach on some benchmark
examples is analyzed in detail.
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1. Introduction

In many modeling problems the system under study is char-
acterized by the presence of some heterogeneity arising from
changes in the operational conditions, so that both continuous
(physical) and discrete (logical) dynamics are observed. Ex-
amples range from stock market analysis [29, 12], to human
motion [30, 11, 33] and speech recognition [32, 38], just to
cite a few. This heterogeneity is hardly captured with a single
model, and typically requires to switch among multiple mod-
els (modes), each associated with a different system condition.
The resulting learning problem is particularly complex, in that,
besides having to fit multiple models, no prior information is
usually available on the switching mechanism, which must also
be inferred from the data.

In this work, we address the identification of a general class
of switched systems, where the continuous dynamics is de-
scribed by a set of linear-in-the-parameters regression models
defining the relationship between the regression vector ϕ ∈ Rn

and the output y ∈ R. To fully estimate a model of this class
from data, one needs to jointly perform data clustering (i.e. as-
sign each sample to a mode) and multi-model identification (i.e.
estimate the parameters of the model associated to each mode).
The induced optimization problem is therefore of the mixed-
integer type, since it involves the identification of discrete vari-
ables representing the mapping of the samples to the modes, as
well as continuous ones describing the model parameters.
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Many approaches have been proposed to solve this problem
over the last two decades (see, e.g., [35], [13], and [18], for a
comprehensive review). These methods can be roughly clas-
sified into two categories, depending on how the optimization
problem is tackled. Some methods adopt a solution strategy
which addresses the problem in one shot, optimizing simultane-
ously over both the continuous and discrete variables, [3], [39],
[26], [28], [1], [34], [31], [27], [20], [36], while others deal
separately with the sample-mode assignment and the parameter
estimation tasks, [4], [10], [15], [37], [14], [9].

Some of these works have also been extended to the case of
nonlinear modes, by resorting to the Nonlinear AutoRegressive
with eXogenous input (NARX) modeling framework [23], [24].
For example, a framework based on kernel functional expan-
sions to represent the nonlinear functions and on the minimiza-
tion of a cost function involving only the continuous parameters
of the model as variables is introduced in [20] (and later ex-
tended in [19], [21]). In [17], the authors propose an extension
of the sum-of-norms approach described in [31] to piecewise
systems with nonlinear dynamics, based again on kernel func-
tional expansions. In [2], [22] the identification problem is first
formulated as a sparse optimization problem and then relaxed in
a convex form by approximating the `0 norm with the `1 norm.
Although these approaches do allow to learn switching models
with nonlinear sub-models, they might result in a model that
is rather difficult to interpret due to the use of nonparametric
techniques.

Alternatively, one can pursue a parametric approach, e.g.,
by approximating the nonlinear functions through finite-
dimensional parametrized polynomial expansions. This is in-
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deed a popular approach in black-box nonlinear model iden-
tification [8], provided the identification procedure includes a
model structure selection (MSS) process to tackle the curse of
dimensionality that is inherent to polynomial expansions. This
consists in selecting the smallest subset of model terms that
yields a prescribed level of accuracy. MSS requires the solu-
tion of a combinatorial problem of exponential complexity in
the number of candidate model terms, and is often tackled with
heuristic techniques, such as greedy incremental model build-
ing methods.

If, as in the present work, the objective is to identify a
switched NARX (SNARX) model, the combinatorial complex-
ity of the problem is further aggravated, since a MSS task must
be addressed for each of the NARX sub-models, not to mention
the sample-mode assignment problem. For these reasons the
identification of SNARX models is a rather challenging prob-
lem. A first attempt to address this problem is presented in
[7], where an iterative two-stage randomized approach for the
identification of SNARX models with time-ordered data is pro-
posed. This method relies on the definition of a probability dis-
tribution over the space of possible SNARX model structures,
including in this concept not only the structure of the NARX
sub-models but also the switching signal. This distribution rep-
resents the likelihood of each structure being the actual one and
is progressively refined through a sample-and-evaluate strategy.
More in detail, several structure samples are extracted from the
distribution, and for each of them the NARX sub-models are
identified (exploiting the segmentation of the dataset induced
by the extracted switching signal). Then, the probability dis-
tribution is updated based on the aggregate evaluation of the
obtained SNARX models, favoring the structure choices result-
ing in better models. To manage the combinatorial complexity
of the sample-mode assignment problem, switching is only al-
lowed in a small number of pre-assigned time instants, which
motivates the introduction of a second stage devoted to the re-
finement of the number and location of the switching times,
based on the evidence gathered in the first step. While relatively
effective, this method heavily depends on the initial choice of
the switching time instants and on the heuristic nature of the
refinement stage.

This article presents a new approach for the identification of
parametric SNARX models, which incorporates some features
of the described method of [7], and specifically the randomized
approach to MSS, but addresses the sample-mode assignment
in a completely different way, that does not require to limit a
priori the number of switching time instants, and consequently
avoids the necessity to resort to a refinement stage. More pre-
cisely, the proposed method builds on the general framework of
[4], that alternates between parameter estimation and sample-
mode assignment, using a cost function that accounts for both
tasks, and incorporates constraints on the switching mechanism
directly within the objective. Under certain conditions, both
tasks can be solved to global optimality using convex optimiza-
tion and dynamic programming, respectively.

To deal with the MSS task in the framework of [4], which

is not naturally equipped with this ability1, we reformulate the
learning problem in terms of the optimization of a probabil-
ity distribution over the space of all possible model structures,
along the lines of [7]. This distribution is progressively tuned
via a sample-and-evaluate strategy, where each extracted struc-
ture is used to run an instance of the method of [4]. More pre-
cisely, the extracted mode sequence is used as initialization for
the sample-mode assignment optimization, whereas the param-
eter estimation phase assumes the extracted NARX sub-model
structures. In summary, the outer algorithm addresses the MSS
problem, using the approach of [4] to estimate the parameters
of the given model structures and to optimize the sample-mode
assignment. The method is iterated until convergence to a limit
distribution concentrated on the best switched model of the sys-
tem generating the observed data. Besides addressing the MSS
task in a structured way, this approach provides an efficient
warm start for the sample-mode assignment task, the initial-
ization of which is a crucial point in the method of [4]. Indeed,
multiple guesses for the initial mode sequence have to be con-
sidered there, to alleviate the dependence of the resulting model
on the initialization.

The rest of the paper is organized as follows. The SNARX
identification problem is formalized in Section 2. In Section 3
the model structure selection problem is reformulated in a prob-
abilistic setting. The identification algorithm, called SNARX-id
algorithm, is detailed in Section 4. Finally, some examples are
presented in Section 5, followed by concluding remarks.

1.1. Notation
The following notation will be used throughout the paper.

The set of integers is denoted by N and the set of real numbers
by R. Given r ∈ R, let brc denote the largest value in N that is
not greater than r.

Let S ⊂ {1, 2, . . .} be a finite set of integers and denote by
# S the cardinality of S . Then, 1[s=i] represents an indicator
function defined on the set S which has value 1 when s ∈ S is
equal to i and 0 for all the remaining values in S .

Given a vector a ∈ Rn, ai denotes the i-th entry of a and
‖a‖2 is the Euclidean norm of a. Given a matrix A ∈ Rn×m, AT

denotes the transpose of A, and Ai j, i = 1, . . . , n, j = 1, . . . ,m,
the element of A at row i and column j. The identity matrix
of size n is denoted as In. Given an ordered collection C of N
elements, let ci, i = 1, . . . ,N, denote the i-th element of C.

Given a random variable x with probability distribution Px,
EPx [x] denotes the expected value of x w.r.t. Px. Let x be a dis-
crete random variable defined on domain X. Then, with some
abuse of notation, we will refer toPx(x̄) as the value of the prob-
ability mass function of the distribution Px evaluated at x̄ ∈ X.
Let x be a random binary variable that takes the value 1 with
probability µ and the value 0 with probability (1 − µ). We say
that x is distributed according to a Bernoulli distribution with
parameter µ, i.e., x ∼ Be(µ). Let x be a random variable that can
take one of K possible values, the probability of each value be-
ing separately specified by η =

[
η1, . . . , ηK

]
, with

∑K
i=1 ηi = 1.

1The approach of [4] encompasses the use of regularization techniques,
which can only partially address the MSS task.
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Then, we say that x is distributed according to a Categorical
distribution with parameter η, i.e., x ∼ Cat(η).

2. Problem setting

2.1. System description
Consider a single-input single-output (SISO) nonlinear

switched system with K ∈ N modes in the form

yt = gσt (xt) + et, (1)

where xt ∈ X ⊆ Rny+nu is the vector [yt−1, · · · , yt−ny , ut−1, · · · ,
ut−nu ]; ut ∈ R and yt ∈ R are the input and output signals at
time t ∈ N, respectively; the model orders ny and nu describe
the dynamical order of the system; and gk : X → R, with
k = 1, . . . ,K, is a nonlinear function of xt. The term et is
a white noise independent of ut, assumed to be Gaussian dis-
tributed with zero-mean and variance ζ2. The latent variable
σt ∈ K = {1, . . . ,K} indicates the active mode at time t.

2.2. SNARX identification
Given a dataset D = {(ut, yt)}Nt=1 of time-ordered samples

generated by system (1), we aim to fit a model to the data D
by approximating the unknown nonlinear maps {gk}

K
k=1 with a

polynomial functional expansion, i.e. a linear combination of
all monomials of x(t) up to a given order nd. The latter param-
eter accounts for the desired level of flexibility of the model.
This choice has the advantage of making the model linear-in-
the-parameters, and, as argued in [8], more amenable to inter-
pretation and analysis.

Accordingly, the identification problem requires both to re-
construct the mode sequence σ = {σt}

N
t=1 ∈ K

N and to estimate
the parameters of the following linear regression model:

ŷt(ϑσt ) = ϕT
t ϑσt =

n∑
j=1

ϕ
j
tϑ

j
σt , (2)

where ϕt =
[
ϕ1(xt), . . . , ϕn(xt)

]
∈ F ⊆ Rn is the regressor

vector, a regressor ϕi(xt), i = 1, . . . , n, being a mapping that
projects xt onto a finite-dimensional space, and ϑk ∈ Rn is the
parameter vector defining the submodel associated to the k-th
mode, with k = 1, . . . ,K.

The generic regressor has the form χ1χ2 . . . χnd , where χm,
m = 1, . . . , nd can be either 1 or any element of xt. Vector ϕt

contains all n =
(nd+ny+nu)!
nd!(ny+nu)! possible (distinct) regressors of this

type.
Under the assumption that the number of modes K is known,

the estimation of sequence σ and parameters Θ = [ϑ1 . . .ϑK]
for a given ϕt is addressed by minimizing the following cost
function [4]:

J̃(Θ,σ) =

N∑
t=1

(yt − ŷt(ϑσt ))
2 + β

K∑
k=1

‖ϑk‖
2
2 +L(σ), (3a)

where β > 0 is a tunable regularization parameter. The first two
terms of the cost function account for the model precision and

size. The term L : KN → R is introduced to explicitly account
for the switching nature of the underlying system and is defined
as

L(σ)=

N∑
t=2

Ltrans(σt, σt−1), (3b)

where the mode transition cost Ltrans : K2 → R accounts for
changes in the operating condition.

2.3. Model structure selection (MSS)
The setting described in the previous subsection allows one

to completely identify the switching model, based on the model
structure defined by ϕt. In practice, however, addressing the
estimation problem in this way is typically a recipe for over-
parametrization, since the number n of regressors grows rapidly
with the model orders nu and ny and the polynomial degree nd,
and gets easily very large. Conversely, it is often observed that
a model constructed with a small subset of the regressors in
ϕt provides a better balance between accuracy and robustness.
This subset has to be selected carefully, as an incorrect or in-
complete map might result in a poorly performing and struc-
turally biased approximation of the underlying system. Thus,
a MSS procedure must be put in place, as discussed in the fol-
lowing.

Let S = [s1, . . . , sK] ∈ S = {0, 1}n×K be an n × K matrix
coding the K NARX structures associated to the local linear-
in-the-parameter models, such that s j

k = 1 if the j-th regressor
ϕ j belongs to the k-th sub-model structure and sk

j = 0 other-
wise. As the main information on the switching mechanism is
retained in the active mode sequence σ, the overall structure of
the model in (2) is fully embedded into the pair λ = (σ, S ), tak-
ing values in Λ = KN × S. The performance of a given model
structure λ can thus be measured as the optimal value of the
cost J̃(Θ,σ), i.e.,

J(λ) = min
Θ
J̃(Θ,σ), (4a)

s.t. ϑ
j
k = 0 if s j

k = 0, j = 1, . . . , n, k = 1, . . . ,K, (4b)

where the constraints in (4b) take into account the model struc-
ture. Accordingly, the MSS problem is discussed below.

First, the following useful definition is introduced.

Definition (Z-score). For Gaussian distributed noise, the Z-
score z j

k associated to the estimate of the parameter ϑ j
k is given

by the ratio:

z j
k =

ϑ
j
k

ζ̂k
√

V j j
, (5)

where

ζ̂k =

√
1

Nk − n

∑
σt=k

(
yt − ŷt(ϑσt )

)2,

is the sampled estimate of the noise standard deviation ζ, Nk =

#{σt =k} is the number of samples assigned to mode k, and V j j

denotes the j-th diagonal element of the matrix

V =
(
ΦTΦ + βIn

)−1
ΦTΦ

[(
ΦTΦ + βIn

)−1
]T
, (6)
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with Φ ∈ RNk×n stacking on its rows the regression vectors ϕt,
for t ∈ {t : σt = k}. �

In this work, regressor redundancy is tackled by applying an
a posteriori t-test on the estimated parameter vectors to detect
terms that are statistically indistinguishable from 0, which are
then pruned from the corresponding local model structure. The
t-test relies on the computation of the local Z-scores z j

k, for j =

1, . . . , n and k = 1, . . . ,K.
Based on the considerations above, the MSS problem is for-

malized as follows.

Problem 1 (Model Structure Selection). Given K and ϕt, the
MSS problem consists in finding λ? =

(
σ?, S ?) that solves to

optimality the fitting problem in (4), without introducing redun-
dant terms. Formally:

λ? = arg min
λ∈Λ

J(λ)

s.t. s j
k = 0 if

∣∣∣∣z j
k

∣∣∣∣ < tα/2,Nk−n,

k = 1, . . . ,K, j = 1, . . . , n,

(7)

where z j
k is the Z-score associated to the estimate of the param-

eter ϑ j
k and tα/2,Nk−n is the critical value of a t-Student distribu-

tion with Nk−n degrees of freedom and customizable confidence
level α. �

Assumption 1 (Uniqueness of the solution). Let Λ? ⊂ Λ be
the set of the K! optimizers for (7) that are equivalent under
a permutation of the mode labels σ?. We assume that a lex-
icographic rule is specified to choose λ? ∈ Λ? such that the
solution in (7) is unique. �

3. Continuous reformulation of the MSS problem

Problem (7) is a mixed-integer programming problem involv-
ing N categorical variables σ taking values in K and n × K
binary variables S . Thus, the optimization problem (7) can
quickly become computationally intractable for mixed-integer
numerical solvers using e.g., branch-and-bound methods. To
overcome this limitation, we look at problem (7) from a prob-
abilistic perspective which allows us to reformulate the MSS
problem using only continuous optimization variables.

Let γ be a discrete random variable which takes values in the
set of model structures Λ, according to some probability dis-
tribution Pγ. The expected performance of γ can be measured
as:

EPγ [J(γ)] =
∑
λ∈Λ

J(λ)Pγ(λ), (8)

and if we let Pγ span all possible distributions over the set Λ,
the minimum value of (8) with respect to Pγ is obtained by
making all the probability mass concentrate on the optimizer
λ? of the original MSS problem (7). Formally, by introducing

P?γ = arg min
Pγ

EPγ [J(γ)], (9)

it thus holds that under Assumption 1 P?γ (λ?) = 1 and P?γ (λ) =

0 for all λ ∈ Λ \ {λ?}.

In order to tackle the optimization of (8) with respect to Pγ,
it is necessary to adopt a suitable parametrization of Pγ. To this
end, we introduce the following assumption.

Assumption 2 (Independence assumptions). We work under
the following probabilistic assumptions:

A2.1 The mode sequence σ and the K NARX structure S are
independent random variables.

A2.2 The local model structures sk, k = 1, . . . ,K, are mutually
independent and the elements s j

k, j = 1, . . . , n, of the k-th
sub-model are also mutually independent, k = 1, . . . ,K.

A2.3 The mode activation elements σt, t = 1, . . . ,N are mutu-
ally independent. �

Remark 1. The independence assumptions 2 are not meant to
provide any statistical insight on the data-generating system,
but they are only functional to the sampling of the model struc-
tures λ when applying the randomized method discussed in this
paper. Stated otherwise, no information regarding the inter-
dependence among elements of λ is taken into account when
sampling from Pγ. In principle, a more complex relationship
between the selected terms in the extraction phase can be con-
sidered, as discussed in [6], where second-order information
between the extracted regressors is exploited. However, accord-
ing to the results reported in [6], the significant increase in the
computational burden is hardly justified by the small perfor-
mance improvements that might be achieved. �

Under Assumption A2.1 , the probability density function of
Pγ can be expressed as

Pγ(λ) = Pξ(σ) · Pρ(S ), (10a)

where Pξ(σ) accounts for the mode sequence and Pρ(S ) for the
K local model structures.

Let us associate a Bernoulli random variable ρ j
k ∼ Be(µ

j
k) to

each element s j
k, for k = 1, . . . ,K and j = 1, . . . , n. The suc-

cess probability µ j
k thus represents the belief that the regressor

ϕ j belongs to the k-th local model, and thus µ j
k is referred to as

Regressor Inclusion Probability (RIP). Based on the indepen-
dence assumption A2.2 , Pρ can be factorized as

Pρ(S ) =
∏
k∈K

∏
j:s j

k=1

µ
j
k

∏
j:s j

k=0

(1 − µ j
k). (10b)

Similarly, Pξ(σ) is defined by associating to each σt a Categor-
ical random variable ξt ∼ Cat

(
ηt

)
, where ηt =

[
η1

t , . . . , η
K
t

]
and

ηk
t denotes the probability of σt taking value k. In the follow-

ing, we refer to ηk
t as the Mode Extraction Probability (MEP),

for which it holds that

K∑
k=1

ηk
t = 1.
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Under assumption A2.3 Pξ(σ) is factorized as

Pξ(σ) =

N∏
t=1

ησt
t . (10c)

Using parametrization (10) of Pγ, the MSS problem is ad-
dressed as discussed in the next section.

4. The SNARX-id algorithm

To solve the MSS problem through the continuous formula-
tion presented in Section 3, we employ a randomized strategy,
that operates by sampling and evaluating model structures from
the distribution Pγ. This procedure employs the gathered in-
formation to iteratively update both the RIPs {µ j

k}
n
j=1 in (10b),

for all sub-models k = 1, . . . ,K, and the MEPs {ηk
t }

K
k=1 in (10c),

for t = 1, . . . ,N, thus modifying the sampling distribution to
increase the probability of selecting good model structures.

The algorithm (denoted SNARX-id algorithm in the sequel)
iteratively repeats the following four steps:

1. Structure extraction – A population of Np model structures
λp, p = 1, . . . ,Np, is extracted according to the distribution
Pγ. Each extracted λp = (σp, S p) represents a fixed model
structure.

2. Model fitting – For each model structure λp, the fitting cost
J̃(Θ,σ) in (3) is minimized using the coordinate descent
approach [4], alternating optimization w.r.t. Θ and σ. The
mode sequence σp extracted at step 1 is used as initial
guess in the coordinate descent algorithm.

3. Redundancy check – A redundancy check is performed on
the parametersΘ estimated at stage 2. Redundant parame-
ters (if any) are pruned from the model and the parameters
Θ of the pruned model are re-estimated by solving prob-
lem (4) with the reduced model structure. The optimal
fitting loss J(λp) (with p = 1, . . . ,Np) is also computed.

4. Distribution update – The RIPs and MEPs are updated
based on the optimal fitting losses computed at step 3.

The overall identification procedure is sketched in Figure 1.
Each stage is discussed in detail in the next sections. Note that
the algorithm requires the initialization of the MEPs ηk

t , t =

1, . . . ,N, k = 1, . . . ,K, and the RIPs µ j
k, k = 1, . . . ,K, j =

1, . . . , n. To encourage the extraction of sparse models at the
early stages, a convenient choice is to set µ j

k = ε, for small
values of ε ∈ (0, 1). In the absence of any a priori assumption
on the switching signal, one can attribute equal probabilities
ηk

t = 1/K, ∀t to all modes.
The algorithm ends when a stopping criterion is met. This

can either be associated with a maximum number of iterations,
or to a practical convergence condition on the MEP and RIP
parameters, which is achieved when the relative difference be-
tween the ηk

t and µ j
k calculated at subsequent iterations is lower

than a given threshold.
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Figure 1: Flow chart of the SNARX-id algorithm.

4.1. Structure extraction

According to the continuous formulation presented in Sec-
tion 3, the definition of a structure λ amounts to assigning each
input-output pair

(
ϕt, yt

)
to a mode σt ∈ K and establishing if

the regressor ϕ j belongs to the k-th local model structure, for
k = 1, . . . ,K and j = 1, . . . , n. The former task is carried out
by extracting a random variable σp from the Categorical distri-
bution Pξ(σ) in (10c). The latter involves sampling a random
variable S p from the Bernoulli distributionPρ(S ) in (10b). This
procedure is performed Np times until a population of Np can-
didate structures {λp}

Np

p=1 is extracted, with λp = (σp, S p).

4.2. Model fitting

For each extracted structure λp, the corresponding SNARX
model is identified via an instance of the procedure proposed
in [4], which alternates between the minimization of the cost
J̃(Θ,σ) in (3) with respect to {ϑk}

K
k=1, for a fixed mode se-

quence σ, and the optimization of J̃(Θ,σ) with respect to σ,
this time keeping the parameters of the local models fixed. The
procedure ends when either the identified optimal mode se-
quence computed at two consecutive iterations does not change
or a stopping criterion on the performance of the fitted model is
met.

As the outcome of this iterative procedure depends on the
chosen initial conditions, we propose to exploit the extracted
mode sequenceσp to initializeσ. This choice is shown to speed
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up the convergence of the coordinate descent approach in prac-
tice, since the optimization starts from an educated initial guess
of the mode sequence as the SNARX identification algorithm
proceeds.

Thanks to the separability of the cost in (3), the estimation of
the local model parameters when σt = σ?t amounts to solving
K separate constrained Least Squares (LS) problems:

ϑ?k = arg min
ϑk

K∑
k=1

∑
t:σ?t =k

(
yt − ŷt(ϑk)

)2
+ β‖ϑk‖

2
2, (11)

subject to ϑ j
k = 0 if s j

k = 0, j = 1, . . . , n,

for k = 1, . . . ,K, with the constraint accounting for the ex-
tracted model structure.

Once the parameters {ϑ?k }
K
k=1 are computed, the mode se-

quence is updated by solving the following optimization prob-
lem:

σ? = arg min
σ∈Σ

N∑
t=1

(
yt − ŷt(ϑ

?
σt

)
)2

+L(σ), (12)

that can be solved via standard discrete dynamic programming
(DP) [5], as briefly summarized in the following.

Let Q ∈ RK×N be a matrix that stores the cost of assigning
each data pair

(
ϕt, yt

)
, t = 1, . . . ,N, to each mode k ∈ K . By

setting Qk,N as the cost of assigning the last data pair to the k-th
mode, i.e.,

Qk,N = (yN − ŷN(ϑ?k ))2, (13a)

for k = 1, . . . ,K, the elements of Q can be computed backwards
for t = N − 1, . . . , 1 as follows:

Qk,t = (yt − ŷt(ϑ
?
k ))2+ QVk,t ,t+1+Ltrans(k,Vk,t), (13b)

with the index Vk,t retaining information on the optimal back-
ward path followed to reach the k-th mode, namely

Vk,t = arg min
i∈K

(
Qi,t+1 +Ltrans(k, i)

)
, k = 1, . . . ,K. (13c)

Once the initial costs

Qk,1 = min
i∈K

(
Qi,2 +Ltrans(k, i)

)
(13d)

are computed for k = 1, . . . ,K, the optimal mode sequence can
then be retrieved forwards, from 1 to N, by setting

σ?1 = arg min
k
Qk,1, (13e)

σ?t = Vσ?t ,t, t = 1, . . . ,N. (13f)

It is worth remarking that selecting the transition loss Ltrans

usually requires several attempts that involve fitting and cross-
validation. A simple approach proposed in [4] consists in updat-
ing the mode transition loss Ltrans after the fitting phase based
on the computed best sequence σ?, and then run the fitting al-
gorithm again.

More specifically, given a set of relative weights τ1, . . . , τK ,
Ltrans is updated by computing the empirical switching fre-
quencies (with Laplace smoothing) from mode j to mode i:

πi j =
1 + #{t ∈ {2, . . . ,N} : σ?t = i, σ?t−1 = j}

N + K2 (14a)

and the empirical frequency of being in mode j:

π j =
1 + #{t ∈ {2, . . . ,N} : σ?t−1 = j}

N + K
. (14b)

and then setting

Ltrans(i, j) = −τi

log
(
πi j

π j

)
∑K

j=1 log
(
πi j

π j

) , i, j = 1, . . . ,K, (14c)

τi =

K∑
j=1

Ltrans(i, j), i = 1, . . . ,K. (14d)

The proposed update of τi (with i = 1, . . . ,K) in (14d), pre-
serves the initial relative weight between the components of the
fitting cost in (3).

4.3. Redundancy check

The model fitting step described in Section 4.2 does not take
into account possible redundancies in the model parametriza-
tion. To this end, in the third step, the estimated parameters
{ϑ?k }

K
k=1 undergo a statistical t-test based on the Z-score defined

in (5), computed for fixed σt = σ?t and for Nk −
∑n

j=1 s j
k degrees

of freedom.
Let ϑ◦k be the true parameter vector describing the k-th local

model of the data-generating system in (1), with k = 1, . . . ,K.
For each j ∈ { j : s j

k = 1}, we test the null hypothesis

H0 : ϑ◦ j
k = 0, (15)

by analyzing the Z-score z j
k associated with ϑ? j

k . A large abso-
lute value of z j

k leads to reject the null hypothesis, while small
values of the Z-score indicate that there is no sufficient evidence
in the data to reject the null hypothesis.

The regressors for which the t-test fails to reject the null hy-
pothesis H0 are removed from the NARX model structure sk.
Then, a new least-squares parameter estimation is carried out
as in (11), assuming the reduced structure S and the previous
identified optimal mode sequence σ?.

Remark 2. The statistical t-test is not well-defined when Nk −∑n
j=1 s j

k is less or equal than zero. Nonetheless, this is very
unlikely to happen when applying the proposed method for two
reasons:

1. The term
∑n

j=1 s j
k tends to be small by construction, since

the chosen RIP initialization (i.e., µ j
k = ε) encourages the

extraction of sparse models even at early stages of the al-
gorithm, when the mode assignment may be quite inaccu-
rate. As the algorithm is iterated, the results of the data
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classification steps are likely to be increasingly accurate,
ultimately leading to the detection of the optimal model
structures, that are usually rather sparse.

2. Experience indicates that it is quite uncommon that the
number of samples assigned to each mode (Nk) gets too
small, provided that the number of modes K is properly
chosen.

In the rare occurrence of such a degenerate case, the redun-
dancy check is skipped and all the extracted regressors are re-
tained. �

4.4. Distribution update

Finally, the mode extraction and regression inclusion proba-
bilities are updated, with the purpose of encouraging the extrac-
tion of “good” samples from the distribution Pγ, i.e. samples
corresponding to SNARX model structures yielding good per-
formance. The update rules are based on the aggregate compar-
ison of the sub-populations of extracted structures λ obtained
for the different values of each element σk

t and s j
k. To facilitate

such comparisons, we adopt the following exponential perfor-
mance index to characterize the structure λ:

J(λ) = e−KλJ(λ), (16)

where Kλ > 0 is a tunable scaling parameter. This choice
can help in discriminating between models with similar perfor-
mance by amplifying their differences [40]. The parameter Kλ

can be tuned in the first iteration of the algorithm as suggested
in [7]:

Kλ = 10−(min(OM(J(λ)))+1), (17)

where OM(x) = blog10(x)c denotes the order of magnitude of a
non-negative number x.

The MEPs ηk
t and RIPs µ j

k are updated as discussed next
along the lines of [7]. Given ξt ∼ Cat

(
ηt

)
(with t ∈ N), un-

der the independence assumptions 2, for the total expectation
theorem it holds that:

EPγ [J(γ)] = ηk
t EPγ [J(γ) | ξt = k]+

(
1 − ηk

t

)
EPγ [J(γ) | ξt , k],

(18)
for all k ∈ K . Taking the derivative of (18) w.r.t. ηk

t , one ob-
tains:

∂EPγ [J(γ)]

∂ηk
t

= EPγ
[
J(γ) | ξt = k

]
− EPγ

[
J(γ) | ξt , k

]
.

(19a)
Similarly, for ρ j

k ∼ Be(µ
j
k) (for all j = 1, . . . , n), the following

expression is obtained for the gradient:

∂EPγ [J(γ)]

∂µ
j
k

= EPγ
[
J(γ) | ρ j

k = 1
]
− EPγ

[
J(γ) | ρ j

k = 0
]
.

(19b)
The information provided by (19) is used to update the mode

extraction and regression inclusion probabilities as follows:

ηk
t ← ηk

t + χ
∂EPγ [J(γ)]

∂ηk
t

(20a)

µk
j ← µk

j + χ
∂EPγ [J(γ)]

∂µ
j
k

, (20b)

where χ > 0 is the learning rate. As suggested in [7], χ > 0 is
chosen according to the following adaptive rule:

χ =
1

10
(
Jbest − J

)
+ 0.1

, (21)

where Jbest and J are the best and the mean value for J com-
puted on the extracted samples of γ, respectively.

A saturation is applied a posteriori to ensure that the MEP
and RIP values resulting from (20) still represent valid prob-
abilities i.e., ηk

t ∈ [0, 1] and µ
j
k ∈ [0, 1], k = 1, . . . ,K and

j = 1, . . . , n. In addition, the MEPs are normalized to impose∑K
k=1 η

k
t = 1.

Remark 3. The MEPs updated in (20a) are used at the next
iteration of the SNARX-id algorithm to extract a set of Np mode
sequences σp. Although this population of sequences is solely
used to initialize the coordinate descent approach described in
Section 4.2, the iterative update of the MEPs causes a progres-
sive restriction and improvement of the set of initial conditions
tested when learning the model. This, in turn, is likely to re-
duce the learning time and improve the accuracy of the result-
ing SNARX model. �

Remark 4. In practice, only an approximate sampled version
of the gradients in (19) can be computed, since the exact com-
putation of the conditional expectations would require to ex-
haustively explore the entire solution space Σ. Therefore, at
each iteration, the expected values are approximated by their
corresponding sample estimates, computed based on the ex-
tracted candidate solutions λp, p = 1, . . . ,Np. �

4.5. Algorithm convergence

The coordinate approach described in Section 4.2 always ter-
minates in a finite number of steps, since at each stage the cost
J̃(Θ,σ) in (3) is non-increasing and the number of possible
mode sequences σ is finite for a fixed number K of system
modes.

The convergence of the randomized sample-and-evaluate
procedure proposed to solve the MSS problem 7 within the
continuous framework described in Section 3 has been shown
in [7]. In particular, when Pγ is sufficiently close to P?γ in (9),
then the sign of the gradients in (19) provide a reliable infor-
mation for tuning the mode extraction and regression inclusion
probabilities towards P?γ by the iterative application of the up-
date rules in (20). Practical experience shows that the algorithm
converges even when it is iterated with Pγ randomly initialized.
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5. Examples

We tested the proposed algorithm both on simulation exam-
ples using synthetic data and on an experimental case study ad-
dressing the unsupervised segmentation of honeybee dances.

5.1. Algorithm settings and performance indices
We recall that the presented SNARX-id algorithm works un-

der the assumption that number of modes K is known. The
model orders ny and nu, and the maximum polynomial de-
gree nd are user choices, which are typically set large enough
for flexibility, but not so that the number of resulting regres-
sors n turns out to be excessively large. In all the analysis
which follows, the RIPs are initially set equal to µ j

k = 0.1 (for
k = 1, . . . ,K, j = 1, . . . , n), and equal MEPs ηk

t = 1/K (for
t = 1, . . . ,N) are assumed for all modes. The number of can-
didate model structures λp extracted at each iteration is set to
Np = 100. During the model redundancy step, each estimated
model undergoes a t-test with confidence level α = 10−3. The
coordinate descent approach tackling the model fitting step 4.2
terminates when either the identified optimal mode sequence or
the performance of the fitted model does not change over two
consecutive iterations (we employ a threshold of 10−8 for the
performance). The regularization parameter β in (3) is set to
10−5, while the following mode transition cost Ltrans(σ?t , σ

?
t−1)

in (3b) is considered:

Ltrans(σ?t , σ
?
t−1) =

−τ log (1 − (K − 1) π) if σ?t = σ?t−1

−τ log π if σ?t , σ
?
t−1

(22)
where π ∈ [0, 1] denotes the transition probability and τ > 0 is
a weight.

In the following, whenever the true mode sequenceσ is avail-
able, it is used to evaluate the accuracy of the reconstructed
mode sequence σ?, which is measured through the following
clustering accuracy index:

Ctrue
N =

100
N

N∑
t=1

1[σ?t = σt]. (23)

Likewise, when available, the true K NARX structure S is used
to assess the correctness of the selected structure S ?.

The quality of the predicted output is measured in terms of
the fit rate index defined as:

FIT = 100

1 − ∑N
t=1 ‖yt − ŷt‖

2
2∑N

t=1 ‖yt − ȳ‖22

 , (24)

where ȳ denotes the average of the output y1, . . . , yN . For
the SNARX-id algorithm, the predicted output values ŷt, t =

1, . . . , Ñ are computed via the recursive inference algorithm
presented in Section 4.2.2 [4] for the case of one-step ahead
prediction, with σ?t predicted by exploiting Ltrans in (3b) and
the fitting losses computed up to time t − 1 with the observed
past output values ỹ1, . . . , ỹt−1. We stress that validation is not
performed through open-loop simulations, since it would re-
quire to test all possible switching paths.

Figure 2: Simulation example 1: fit rate (left) and clustering accuracy (right)
indices as a function of τ for different values of ζ. Optimal theoretical values
τ? = 2ζ2 are emphasized by vertical dashed lines. Results obtained on valida-
tion data using recursive one-step ahead prediction.

All tests have been performed in a MATLAB 2019b envi-
ronment, on an HP ProBook 650 G1 CORE i7-4702MQ CPU
@2.20 GHz with 8GB of RAM.

5.2. Simulation example 1: SNARX system

We first apply the proposed MSS procedure to the example
in [16], which switches with probability π = 2.5% between a
linear mode 1:

yt = −0.905yt−1 + 0.9ut−1 + et,

and a nonlinear mode 2:

yt = −0.4y2
t−1 + 0.5ut−1 + et,

where et is a zero mean Gaussian noise of variance ζ2 and ut

is uniformly distributed in the interval [0, 1]. Regarding the
NARX model structure selection, the candidate regressor set is
defined by nd = 2, ny = nu = 3, amounting to n = 28 regressors.

The algorithm was applied for several levels of the output
noise ζ and weights τ in (22). For each value of ζ, a Monte
Carlo (MC) analysis was carried out for each possible τ over
the same data realization, consisting of 2000 samples for iden-
tification purposes and 2000 samples for validation. The aggre-
gated results are summarized in Figure 2. The best values for
τ obtained by cross-validation, corresponding to the maxima
of the displayed curves, confirm the optimal theoretical values
τ? = 2ζ2 estimated according to the statistical interpretation of
the mode transition cost Ltrans (see [4, Section 3]).

From now on, we consider ζ2 = 0.012 and τ = 0.0240. An
MC analysis was carried out over 100 different data realizations
of 4000 samples each, 2000 for the training and 2000 for valida-
tion. Table 1 reports the aggregated results, showing that both
local structures have been always estimated correctly, and that
the algorithm proved to be very accurate in reconstructing the
mode sequence. It is all the more remarkable that the algorithm
achieved such results by exploring a fairly small fraction of the
overall solution space.

Additionally, we ran a comparative analysis with the non-
parametric approach of [22], extending the one presented
in [16] by fixing the submodel size and limiting the number
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Table 1: Simulation example 1: Aggregated results from the MC analysis (com-
puted on the training data).

Average elapsed time [s] 29.13
Average # of iterations 50.00
Average clustering accuracy [%] 97.09
Average # of explored sequences 1.96·103

Percentage of correct selection of s1 [%] 100
Average # of explored models for mode 1 673.63
Total # of possible model structures for mode 1 2.68·108

Percentage of correct selection of s2 [%] 100
Average # of explored model structures for mode 2 756.23
Total # of possible model structures for mode 2 2.68·108

of optimization variables. As in [16], the two modes are mod-
eled via a linear kernel and a RBF kernel2, respectively. Note
that the method requires that the true model orders are known,
i.e., ny = nu = 1. Among the four methods proposed in [22]
to fix the submodel size, we chose the Feature Vector Selec-
tion (FVS) method. The method of [22] selects the active mode
based on the following criterion:

σ?t = arg min
k=1,...,K

(
yt − ŷt,k

)2 , (25)

where ŷt,k is the output predicted by the k-th mode. Notice that
this clustering rule requires the measurement of the output at
time t to select the active mode, whereas the proposed approach
relies only on past data and the transition cost in (3b).

Figure 3 reports the results of this comparative study, show-
ing that we manage to outperform [22] in terms of clustering
accuracy, but apparently obtain a lower fit rate index. As dis-
cussed earlier, the proposed algorithm is capable of reconstruct-
ing quite accurately both the models and the switching signal
(see also Figure 4), and this provides nearly equivalent one-
step-ahead prediction performance compared to the true sys-
tem. In view of this, at first glance, the better fitting perfor-
mance of [22] is somewhat surprising. Observe, however, that
the method of [22] assigns the data to the modes based only
on a fitting error criterion. This ultimately leads to a clustering
which is quite loosely related to the true sample-mode subdivi-
sion, but allows to achieve a better overall fitting performance.
Indeed, a closer inspection of the sample-mode assignment of
the method of [22] (see Figure 4) reveals a high level of frag-
mentation, which implies a much higher number of switchings
compared to the true system. Stated otherwise, the discrete
dynamics of the underlying system is completely lost. Notice
that this implies some level of distortion on the part of the sub-
model identification as well.

We further analyzed the impact of an increasing number of
mode commutations on the algorithm performance, by vary-
ing the transition probability π while keeping the data set size
fixed. Figure 5 displays the trend of the clustering accuracy in-
dex for increasing π values, computed on training data sets of
size N = 2000. The corresponding number of switching time

2By cross-validation, we set the width of the RBF kernel to 0.3 and C =

103, with C/N governing the trade-off between model complexity and model
accuracy.

(a) SNARX-id algorithm (b) Algorithm [22]

Figure 3: Simulation example 1: Comparative analysis with the method of [22].
Results obtained on the validation data using one-step ahead prediction.

Figure 4: Simulation example 1: true mode sequence (top), reconstructed se-
quence by the SNARX-id algorithm (middle), reconstructed sequence by Algo-
rithm [22] (bottom).

instants ranges from 2 to 1400. The NARX structure selection
sub-task seems to be unaffected by the increase in π, with the
two structures correctly selected 96% (mode 1) and 93% (mode
2) of the times, respectively. On the other hand, for π values
greater than 5%, a loss on the clustering accuracy is apparent
due to the increasing complexity of the discrete dynamics. This
reflects also on the fit rate index, which drops with a similar
trend from 80.5% to 66%, but in our tests it seemed not to im-
pact on the elapsed time required to reach algorithm conver-
gence.

Finally, the computational time required to run the SNARX-
id algorithm was evaluated for training sets of increasing length
N (for each N, 100 MC runs were carried out). As expected, the
elapsed time (ET ) increases with N as shown in Figure 6, prov-
ing that the computational burden for a fixed number of modes
is mainly linked to the dimension of the data set. We stress
that the clustering accuracy is almost 97% in all the performed
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Figure 5: Simulation example 1: clustering accuracy index for varying transi-
tion probability π. Results obtained on the training data using one-step ahead
prediction.

experiments and the linear model structure is always correctly
identified, while the structure selected for the nonlinear mode
is correct with a rate always greater than 96%.

Figure 6: Simulation example 1: computational time for increasing training set
size.

5.3. Simulation example 2: SARX system
The aim of this example is to assess how the proposed algo-

rithm copes with local models that share the same structure. To
this end, consider the system presented in [14]:

yt = ϑ1
kyt−1 − 0.7yt−2 + ut−1 − 0.5ut−2 + et, (26)

that switches every 100 samples between K = 4 local models
described by ϑ1

1 = 1.5, ϑ1
2 = 1, ϑ1

3 = 0.5, and ϑ1
4 = −0.5, re-

spectively. The input signal u(t) is a ±1 Pseudo-Random Binary
Sequence (PRBS), while the noise is an i.i.d. Gaussian pro-
cess, e(t) ∼ N(0, 0.25). The regressor set is defined by nd = 1,
ny = nu = 10, amounting to n = 21 regressors. We set τ and π
in (22) equal to 0.5 and 0.01, respectively.

Table2 reports the aggregated results of an MC study which
has been carried out by executing the algorithm 100 times on
different data realizations of size N = 2000. The obtained re-
sults show that the overall accuracy is satisfactory, in that all
the NARX structures have been correctly selected with a rate
greater than 80%. Nonetheless, they clearly show that the algo-
rithm has struggled in distinguishing the first three modes, due
to the common structure and equal parametrization of all local
models except for one term. Indeed, the inspection of Table 3,
which displays the parameter estimates associated to the true

regressors, indicates a non-negligible dispersion of the results,
although the mean values are quite accurate.

Table 2: Simulation example 2: Aggregated results from the Monte Carlo anal-
ysis (computed on the training data).

Average elapsed time [s] 54.36
Average # of iterations 114.93
Average clustering accuracy [%] 94.36
Median clustering accuracy [%] 98.94
Percentage of correct selection of s1 [%] 88
Percentage of correct selection of s2 [%] 80
Percentage of correct selection of s3 [%] 87
Percentage of correct selection of s4 [%] 98

We further used the same example to compare our algorithm
with the SON-EM method described in [14]. The results of this
comparison are reported in Figure 7 in terms of fit rate index
and clustering accuracy, showing that the overall performance
of the estimated models is comparable. In this respect, observe
that the SON-EM method does not perform the MSS task (the
NARX structures are fixed to the correct form), as opposed to
the proposed algorithm. It is worth remarking that the optimiza-
tion problem solved by the SON-EM accounts for mode tran-
sitions through the regularization term3 ∑N

t=2 ‖ϑ̂(t) − ϑ̂(t − 1)‖,
where ϑ̂(t) is the estimate of the parameter vector of the mode
active at time t ∈ N. This term acts similarly to the mode transi-
tion costLtrans in the proposed approach, thus leading to a fairly
good clustering accuracy when exploiting SON-EM. This con-
firms the importance of accounting explicitly for the discrete
dynamics when training the model, as we do through Ltrans.

5.4. Experimental case study: segmenting the honeybee dance

The effectiveness of the proposed approach is further as-
sessed on the same example considered in [11]. Given 6 hon-
eybee dance sequences, each comprising the 2D coordinates of
the bee’s body (xt, yt) and its head angle θt, our goal is to seg-
ment them into the K = 3 modes characterizing the bee dance,
namely “turn left”, “turn right” and “waggle”. Manually as-
signed labels are available for all six sets, that are only used as
ground truth to assess the performance of the approach.

In this example, the MSS task is unnecessary, as the model
structure is fixed and equal for each mode, in the form:

ˆcos(θt) =
[
1 cos(θt−1) sin(θt−1) xt−1 yt−1

]
ϑσt + et. (27)

3The regularization parameter is set to λ = 1 by cross-validation.

Table 3: Simulation example 2: Parameter estimates: mean value and standard
deviation. Aggregated results from the Monte Carlo analysis (computed on the
training data).

Parameter Mode
1 2 3 4

ϑ1 1.4994 (0.0270) -0.7024 (0.0507) 1.0028 (0.0225) -0.5010 (0.0510)
ϑ2 0.9907 (0.1045) -0.6926 (0.0818) 0.9846 (0.1171) -0.4954 (0.0667)
ϑ3 0.4914 (0.0599) -0.6971 (0.0317) 1.0015 (0.0234) -0.4943 (0.0650)
ϑ4 -0.5009 (0.0143) -0.7012 (0.0131) 1.0009 (0.0244) -0.5008 (0.0249)
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(a) SNARX-id algorithm (b) Algorithm [14]

Figure 7: Simulation example 2: Comparative analysis with the SON-EM
method [14]. Results obtained on the training data using one-step ahead pre-
diction.

However, the application of the proposed algorithm is still valu-
able for estimating the segmentation of the data in the three
modes. In particular, we are here interested in the potential ben-
efits introduced by the initialization strategy resulting from the
application of the proposed SNARX identification approach,
w.r.t. the plain application of the method of [4].

When running the SNARX-id algorithm, for each honeybee
dance sequence the transition probability π in (22) is obtained
from the true mode sequence σ as:

π =
1
N

N∑
t=2

1[σt , σt−1], (28)

while the weight τ in (22) is chosen by testing different values
and selecting the maximizing Ctrue

N in (23), see Table 4.

Table 4: Honeybee dance: optimal τ values.

Sequence τ?

1 0.110
2 0.057
3 0.075
4 0.080
5 0.027
6 0.020

The actual and estimated motion patterns for the six se-
quences are compared in Figure 8, where the segments associ-
ated with different modes are depicted with different colors. As
confirmed by the results reported in Figure 9 and Table 5, better
segmentation performance is obtained for the 4-th, 5-th and 6-th
sequences, with the least accuracy achieved for the 2-nd subset.
This result is due to the consistent variations of the head angle
during waggle dances, that makes it more challenging to distin-
guish between different modes. Comparing the results with the
approaches of [4] and [11], we observe a significant improve-
ment in the segmentation performance (see Table 5). Indeed,

the proposed approach achieves an average clustering accuracy
index of 81.0%, against the 76.7% and 66.9% obtained with
the other methods. This improvement is remarkable, in con-
sideration of the fact that in this particular experiment the main
difference between the SNARX-id algorithm and Algorithm [4]
lies in the choice of the initial mode sequences.

Table 5: Honeybee dance: data clustering accuracy Ctrue
N [%] .

Sequence
1 2 3 4 5 6

SNARX-id algorithm 79.6 69.2 75.3 88.4 87.5 86.0
Algorithm [4] 74.7 65.0 64.1 88.0 85.6 82.6
Algorithm [11] 46.5 44.1 45.6 83.2 93.2 88.7

6. Conclusions

A novel algorithm for the identification of general switched
nonlinear models in a parametric setting has been discussed.
The proposed approach blends the features of two different
methods. In particular, it exploits the randomized scheme
for the estimation of the discrete part of the switched model
(sample-mode assignment and model structure selection) of [7]
and the optimization approach of [4] that alternates between
parameter estimation and sample-mode assignment. In doing
so, the limitations of [7] regarding the solution of the sample-
mode assignment task are removed, while the approach of [4] is
extended with the capability of performing MSS. Furthermore,
the issue of the sensitivity of the method of [4] to the initial
conditions is greatly alleviated. The resulting algorithm is ca-
pable of solving challenging nonlinear switched model identi-
fication problems, as illustrated in the experimental section. In
particular, it displays a remarkable accuracy both in associating
the data to the modes and in the identification of the nonlin-
ear models representing the modes. Different comparisons with
state-of-the-art methods are also discussed, which emphasize
the potential of the presented approach.

Current and future research activities include extensions of
the methodology to: (i) model structure and model order selec-
tion in the identification of switching linear-parameter varying
systems [25, 41]; and (ii) identification of switching systems
with output-error and Box-Jenkins noise structures.
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