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Abstract

Linear Quadratic Regulator (LQR) design is one of the most classical optimal control problems, whose well-known solution is
an input sequence expressed as a state-feedback. In this work, finite-horizon and discrete-time LQR is solved under stability
constraints and uncertain system dynamics. The resulting feedback controller balances cost value and closed-loop stability.
Robustness of the solution is modeled using the scenario approach, without requiring any probabilistic description of the
uncertainty in the system matrices. The new methods are tested and compared on the Leslie growth model, where we control
population size while minimizing a suitable finite-horizon cost function.
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1 Introduction

Optimal control is a mature branch of applied mathe-
matics, arising from the interaction of calculus of vari-
ations [43], optimization [37], differential geometry [12]
and control system design [36]. This area has recently at-
tracted the machine learning community thanks to the
parallels with reinforcement learning [46]: both disci-
plines deal with the problem of finding an optimal input
that minimizes some cost function under the constraint
of the (possibly uncertain) system dynamics. Moreover,
the same problem is the main ingredient in Model Pre-
dictive Control (MPC) [45]. In the stochastic setting, op-
timal control sees its dual in the theory of optimal state
estimation [48].

The best known problem in optimal control is likely the
Linear Quadratic Regulator (LQR) design, where the
cost is taken as quadratic and the differential /difference
equation governing the system is assumed to be lin-
ear and deterministic [2]. The assumptions above yield
a conver problem. It turns out that the optimal input
is a state-feedback, whose expression is related to the
solution of a Riccati equation [34], which will be Dif-
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ference/Differential (DRE) for finite-horizon, and Alge-
braic (ARE) for infinite-horizon setups. Usually, generic
optimal control problems do not allow for a closed form
solution.

This work focuses on discrete-time, finite-horizon LQR
problem in the following context:

(1) casting the solution to be a state-feedback, the final
closed-loop system has to be stable;

(2) system matrices are affected by uncertainty, avail-
able through samples rather than a functional prob-
abilistic description.

In the optimal control literature, stability has been thor-
oughly investigated only in the infinite-horizon setting
[28]. Indeed, as pointed out in [9], discussing stability
in the classic finite-horizon LQR solution is not reason-
able, since the DRE has no finite escape properties: at
each updating step, all terms in the DRE are well de-
fined and finite. In [40], a finite-horizon LQR problem is
studied but stability results are achieved by interpreting
it as an approximation of an infinite-horizon problem.
Optimizing a finite-horizon cost is the fundamental step
in MPC, where the issue of stability is carefully stud-
ied, e.g see [19], [41]. MPC is an iterative method that
solves a finite-horizon optimal control problem at each
time step; next, only the first input is applied to the sys-
tem, and then the procedure is repeated on the updated
state. The algorithm resembles dynamic programming
approaches [8], but instead of looking for a closed-loop
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solution, MPC seeks an open-loop input sequence that
can be computed online. For this reason, it avoids the
so-called “curse of dimensionality” and has less compu-
tational burden arising from constraints on inputs and
states. Since MPC solution is expressed as open-loop,
stability questions have to be posed focusing on the or-
bits induced by the designed inputs. Originally, the dis-
cussion focused only on the horizon length, but in more
recent work two main approaches concerning stability
have emerged ([45], [24] [41]):

(a) treat the cost as a Lyapunov function, carefully tun-
ing its parameters;

(b) force the final state to lie in the neighbourhood of
the equilibrium point (usually the origin).

Approach (a) was suggested by [28] for the infinite-
horizon LQR, while (b) was first used by [29], [47] and
[32]. In [7], both approaches are used, along with an
extra set of variables that lets the original system be
asymptotically stable.

Contribution The main novelty of this work is to fill
the gap between dynamic programming and open-loop
solutions, searching for a static feedback matrix that
yields a stable closed-loop system by keeping a finite-
horizon cost as low as possible. Hence, the problem is
formulated in terms of trade-off between stability and
cost value. Moreover, the approaches we propose to deal
with stability do not rely on (a) or (b): specifically, we
do not tune the parameters in the cost in order to obtain
a suitable Lyapunov function, and we do not impose a
dead-beat behaviour (as e.g. in [14]) or any constraint
on the value of the final state. Our point of view leads to
nonconvex problems that are anyway effective in terms
of stability, cost value and computational time. For all
of them, we will perform the convergence analysis for
the optimization problems involved.

The second issue, i.e. uncertainty in system matrices,
prevents the application of classic methods such as dy-
namic programming dealing with uncertain parameters
[8], [26]: in fact, no probabilistic description of system
dynamics uncertainty is available. We complement our
new optimal control technique with the so-called sce-
nario approach, a data-driven method introduced in [15]
that exploits just samples of the uncertain quantities.
The scenario approach was also used for model predic-
tive control applications [44], [14], but not in the form
explored in this paper.

The new robust approach to LQR is especially useful
when the original system is unstable with uncertain pa-
rameters and the aim is to stabilize it in such a way that
a cost function over a finite time horizon is minimized.

Such a situation arises in many cases e.g. to control the
growh of a cell population. One of the possible mod-
els describing this dynamics in discrete time is the one
introduced by Leslie in [35]. It will be used in the nu-
merical experiments.

Roadmap This work proceeds as follows. In Section
2, we review concepts in linear dynamical systems and
scenario approach optimization. Section 3 introduces the
LQR problem in the discrete-time, finite-horizon case,
providing its formulation in four equivalent ways that are
all used in developing the new approaches. In particular,
one viewpoint is generalized to solve the unconstrained
case with uncertainty, while the others are used as start-
ing points to develop the approaches dealing with sta-
bility constraints. The latter are investigated in Section
4, both in the deterministic and in the robust case. Sec-
tion 5 gathers all the numerical tests. Finally, in Section
6, conclusions are drawn.

Notation Throughout this paper, £(-) will be used to
denote all the Lagrangians that appear, and similarly
A¢ is denoting a general multiplier at time ¢. A gradi-
ent of a function g w.r.t. a vector v will be written as
Vvg- As regards matrix manipulations, ® is used for
Kronecker products, vec(+) for the vectorization opera-
tor and %y, 4, indicates the didy X didy commutation
matrix. Moreover, diag(---) denotes a (block-)diagonal
matrix, 15 is a column vector composed by ones, I is
the N x N identity matrix and 0, ., is a n x m matrix
of zeroes. If a matrix P is (semi)definite positive, then
it will be expressed as P > 0 (P = 0). Eigenvalues are
denoted by the letter o. Finally, the Frobenius norm of
a matrix will be defined as || - ||, while || - || denotes the
standard 2-norm.

2 Preliminaries
2.1 Review on Linear Systems Theory

We start with the deterministic setup. We consider dy-
namical systems that are linear, time-invariant, and with
dynamics described by the difference equation

Tip1 = Fay + Guy, Ty =T, (1)
where, for all ¢, z; € R™ and u; € R™ are the state
and the input respectively. We use = and u to denote
the column ”"meta-vectors” obtainined by stacking the
state/input sequences, e.g. u = [ug u; ---]".
Considering the solution of the homogeneous (i.e. input-
less) case, the dynamics are governed by the eigenvalues
of F. In particular, if their modulus is strictly less than



or bigger than 1, a mode is asymptotically stable or un-
stable (we do not discuss the case in which |- | =1). A
famous criterion to assess if a system is asymptotically
stable without computing its eigenvalues is due to Lya-
punov [33]. Going back to the original system (1), the
main task in control theory consists in designing the in-
put u in order to avoid unstable state trajectories. This
is effectively done by imposing the input to be a state-
feedback ruled by some gain matrix K, i.e. u; = Kxy:
in this way, the dynamics becomes z; 1 = (F + GK)x;.
Matrix K can be suitably designed to stabilize the sys-
tem if the system is controllable: hence we will assume
throughout the paper that each system has this property.
We refer to [2] for a review on the notions of reachabil-
ity /controllability and observability /detectability. Un-
der the hypothesis of controllability, we are ready to
state an extended version of Lyapunov’s Theorem above
mentioned, with both the classical statement for linear
systems and its version as a Linear Matrix Inequality
(LMI) [20],[21] [10].

Theorem 1 The following are equivalent:

o system (1) is asymptotically stable with uy = Ky

e VZ =0, 3P = 0 such that (F+GK)" P(F+GK)—
P=-%

e for some matrices P, C and D of suitable dimen-
stons,

P FC+GD
=0. (2
C'TFT+D'GT c+C"-P
Moreover, knowing matrices C and D, it results that
K = DC~! whenever C is invertible.

To obtain a robust solution, the region of uncertainty
is parametrized by § € A. While in theory A may be
infinite, we assume it is endowed with a o—algebra D
and a probability Prob. Uncertainty will enter system
matrix F = F(§). In this work we assume that matrix
G is deterministic; however, the case in which G = G(9)
does not require any methodological novelty, and the
tools below introduced can be easily extended to deal
with this situation.

2.2 On the scenario approach

Consider the following convex optimization problem

min max c(6,90), (3)

which can be rephrased in epigraphic form [11]:

migl a st.c(0,0)<a VieA. (4)

Since A is uncountable, this problem involves an infinite
number of constraints. The so-called scenario approach

is a data-driven relaxation of this problem. Instead of
considering a standard worst-case approach, which may
be too conservative, optimization is carried out w.r.t. N

of samples {6}V, | thus considering

min  a st c6,69)<a VD i=1.N. (5)

a,l

The power of the theory of the scenario approach in the
convex setup lies in the fact that it is possible to know in
advance the number N of samples in order to guarantee
a certain level of robustness with desired confidence. In
fact, define the following quantities:

e V() =Prob{d € A:¢(0,d) — a > 0} is the proba-
bility that a solution @ of problem (4) violates the
constraint ¢(6,0) —a < 0.

e The parameter € € (0,1) is aimed at defining the
concept of e—level solution, which is: § € © such
that V(0) <e.

e 3 € (0,1)is the risk of failure, i.e. 8 bounds the risk
that our solution is not an e—level solution.

Then, the following Theorem holds [17]:

Theorem 2 Fix ¢ and 8 above defined, and let d be the
number of optimization variables. If the number of sce-
narios N satisfies

Nz%(m%+d—0 (6)

then, with probability no smaller than 1 — 3, either prob-
lem (5) is infeasible (then also the original robust convex
program is); or, if it is feasible, then the optimal solution
0 is e—robustly feasible.

This strong result depends on a consequence of Helly’s
Theorem [25]: in particular, the number of support con-
straints (i.e. constraints that, if removed, improve the
solution) never exceeds the number of optimization vari-
ables if the problem is convex.

What if the problem is non-convex? The result
given above cannot be applied if the cost is nonconvex.
If this is the case, then no guarantee about the number
of support constraints can be provided: hence, a solu-
tion of the minmax problem can be given without any
a-priori guarantee on its optimality /robustness. Never-
theless, significative results are present in [1], where the
Vapnik-Chervonenkis theory [51] is exploited; then in
[23], where the nonconvex support is reduced to a con-
vex setup in order to apply Theorem 2; finally, in [18],
where the less conservative and most flexible approach
is presented. In particular, the following Theorem holds:



Theorem 3 Consider problem (5). Fix confidence pa-
rameter § € (0,1) and a certain number N of scenarios.
Consider a function e : {0,--- , N} — [0,1] such that

N

=1 (3 )a-emrr=p.

k=0

Then it holds that
Prob(V(éN > e(gN))) <B

where 5 1is the cardinality of the considered support sub-
sample and O is the corresponding optimal solution.

Therefore, when dealing with nonconvex problems, the
procedure consists in selecting the support constraints,
solving the problem and then retrieving a posteriori the
robustness of the solution according to Theorem 3.

3 LAQR and its solution in the scenario approach
3.1 General theory for LQR

The classic discrete-time, finite-horizon LQR problem is
formulated as follows:

T—1
min x5 Sxr + Z(x:Q:ct + u/ Ruy) (7)
t=0
s.t. {xtﬂ f Fay + Gu,
o=

where @, S = 0 and R > 0. The problem can be
posed/solved in four equivalent ways, denoted by (P1),
(P2), (P3) and (P4) below described. All of these view-
points are used in new developments later in the paper.

3.1.1 Approach (P1): use the dynamics to rewrite the
problem only in terms of the inputs

Use the constraint on the system dynamics (1) to rewrite
the objective (3) in terms of u only, obtaining the prob-
lem

minu' Bu + 2a" u (8)

whose solution is © = —B~'a. The expressions for a
and B are obtained by substituting in the objective the
expression derived from (1) for each ¢:

t—1
xy = F'7 + ZFtil*SGus.
s=0

Then, the following properties for multiple sums are
used:

T-1 t T-1T-1 T-1 t ¢ T-1T-1 T-1
> = and 3,3 ) = 2
t=1 k=1 k=1 t=k t=1 i=1j=1  i=1 j=1 t=max(i,j)

The final expressions are two block matrices, whose (3, j)
block is expressed as

Blijor.r = [GTETHTSFTIG] Rl
i,j=1...T
B T-1 ) ]
+ Z GT(FT—z)TQFt—jG
L t=max(i,j) 4,j=1...T—1
_ _ =TT\ o pT—i
dirr = [aT(FT) SFTG] 4
[T—1 )
+ Z jT(Ft)TQthzG
t=1 i=1...T—1

3.1.2  Approach (P2): matricial form and KKT condi-
tions

Consider objective and constraints written in matricial
form as

minz' Qr +u' Ru st. Ajz+ Asu—b=0  (9)

where Q = diag(It ® Q,S), R=Ir ® R,

I
-F I
Al — 6Rn(T+1)><n(T+1)’ (10)
0 —-F I
0 - —F1I
A2 = |-G e]Rn(T+1)><mT7 b= |0 eR™(T+1)
0o --. -G

Then, compute the KKT conditions [11], [30] on the La-
grangian L(z,u, \) = ' Qz+u' Ru+\' (Ajx+Asu—b):

Vel =0—=2Qx+ A A=0
Vul=0—2Ru+AJA=0 (11)
AL=0— A1z +Au—0b=0

Since the problem is convex, necessary optimality condi-
tions are also sufficient for the solution. We obtain thus

u=(R+ A3 A7 TQAT A2) 71 A3 ATT QAT
= RTAJ AT Qu.



3.1.8  Approach (P3): Objective manipulation and DRE

The objective can be rewritten as follows [31]:

:EJMO;BO + x—'T—[S — Mrylxr+

!
—

T
([R+GTMt+1G]Ut + GTMtJrlFZL't) X

t

Il
=]

X [R+G" My 1G]t x
X ([R + GTMt_i_lG}Ut + GTMt+1FIEt) .

This form is valid for any arbitrary matrix sequence
{M,}L_,, but it can be proved via e.g. Bellman’s op-
timality principle [6] that the optimal sequence has to
satisfy the DRE

My =Q+F"My 1 F

12
—F"M 1G(R+G "My 1G) 'G T My, F. (12)

Then, by inspection of the objective, it results that the
DRE has to satisfy the boundary condition My = S and
that uy = —(R+ G M;;1G) " 'G" My F ; for each t.

K

3.1.4  Approach (P4): Pontryagin Mazimum Principle
Let us recall the main result [43]:

Theorem 4 (Pontryagin’s maximum principle)
Consider the problem

T—1
min () + Z Uxe,ug) st xpq1 = f(Te,ue), o = T
u,xr i—0
and consider its optimal solution. Define the Hamiltonian

H(z,u,\) =l(z,u) + )‘T(f(xvu))'

Then there exists a sequence {\¢ }1—_o such that u;, z; and
At satisfy the following conditions:

Tey1 = f(xe,ue)

To=2
A = %l(ajt,ut) — f(xt,ut)T)\tH
i)
Ap = — 52 (ar)
OH (e ur,Mt1) _
ou -

The proof of this Theorem is made exploiting varia-
tional considerations [38] and does not invoke KKT con-
ditions. In the LQR setup, ¢(z71) = x-Sz, l(24, ut) =
2] Qx; + v Ru; and the optimality conditions listed in

Pontryagin’s maximum principle reduce to this set of
equations:

Ti41 = Fl‘t + Gut

o = T
At = —2Qz; + F T A\ya (13)
)\T = —2S$T

2Rut — GT/\H_l =0.

From this, we obtain the control law u; = %R‘lGTAtH.
By construction, z; and A; depend linearly on xg,
thus hinting that there is a linear relation between
A+ and zy: we then guess that \;, = —2Px; for
some matrix sequence [P,. This operation is re-
ferred to as ”"sweep method” in [13]. We then obtain
u; = —(R+GT Py 1G) G T Py Fay. To find out which
rule has to be satisfied by P, we consider the dynamics
of the multiplier A;:

A= —2Qx; + FT A\
— 2Ptl‘t = QQ.’Et + 2FTPt+1 (F.Z‘t + G’U,t)

where, substituting the expression for u; and dropping
the dependence from z;, we recognize the Riccati equa-
tion (12).

Comments

We have shown four equivalent approaches that can be
used to obtain the solution for the classic LQR problem.
The optimal input can be expressed both in closed form
(P1, P2) and as a state-feedback (P2, P3, P4).

From a computational point of view, the solution ob-
tained via (P3) and (P4) is computed in O(T) time, since
it basically requires only the computation of the DRE.
In contrast, naive implementation of (P1) and (P2) re-
quires inversion of full-state matrices and thus needs
O(T?) time. The equivalence allows us to think of the
efficient methods (P3) — (P4) as numerical subroutines
to solve the full-state optimization problems (8) and (9),
which is very convenient when developing extensions to
the approach.

3.2 FEaxtension to the scenario case

The robust unconstrained LQR, problem is solved draw-
ing inspiration from approach (P1), whose formulation
aligns with (5). Each sample of system matrix F(5(*))
yields different matrices B and a(?, so that the prob-
lem becomes the convex program

; AT
mina st u BOu+ 2D uw<aVi=1.N, (14)

U,

where N can be chosen according to Theorem 2. The so-
lution can be implemented e.g. in MATLAB using cvx. A



possible way to assess the correctness of the solution is
to compare the dual variables that can be given as out-
put in cvx with the optimality conditions. In particular,
define B = diag(BW,---BW)) and @ = [aV) .- a)]
that yield J(u) = (Iy ® u")B(1x ® u) + 2a'u. No-
tice that J(u) is just a compact way to express the N
constraints. Then, taking the Lagrangian L(«,u,p) =
a+ A" (aly — J(u)) and computing the gradients w.r.t.
o and p, we get

INA+1=0, aly—J(u)>0.

4 Adding the stability constraint

We first consider the deterministic setup. In Section 3
we saw that the optimal solution is described by a se-
quence of feedback matrices {K;}7 ', which in turn is
derived by the DRE “initialized” at My = S. In our
setup, we imagine applying this sequence to the origi-
nal system in order to minimize the cost, and then let
the system evolve in closed loop with the last feedback
Kr 1 = —(R+GTSG)"*GTSF. Our aim is to obtain
a final closed-loop system that is asymptotically stable.
Depending on the choice of S and R, F' + GKp_1 may
be unstable. So, instead of considering S and/or R as
additional optimization variables, we look for a solution
which is expressed in terms of a constant feedback able
to stabilize the system. This is going to be a subopti-
mal solution w.r.t. the one obtained with (P1) — (P4):
the advantage of the LQ setup is that it will be possible
to compare how far is the stabilizing solution from the
classic unconstrained one.

The new problem in the deterministic setup has the fol-
lowing structure:

T-1
min x-Sz, + Z u, Ru; + z] Qx, (15)
* t=0
Uy = Kl‘t
(F 4+ GK) is stable
Ti41 = FSCt + Gut
To =21

subject to

We consider two possible strategies to handle the stabil-
ity constraint:

(1) include it in the set of constraints as LMI, drawing
inspiration from Theorem 1;

(2) exploit the theory for the infinite-horizon case, aim-
ing at finding an approximate solution of the ARE.
The Riccati equation, under suitable conditions on
the matrices involved, is guaranteed to yield a sta-
bilizing solution.

Now we present those approaches in more detail. The
first produces a method that we denote by (S0). The

second can be treated in different ways, and yields (S1),
(S2) and (Seo)-

4.1  First strategy: Lyapunov stability included as con-
straint - approach (S0)

Taking the problem expressed as (15), substituting the
expression for u; in the objective and including the sta-
bility constraint along the lines of Theorem 1, we obtain
the following problem:

T-1
- T T T
oD, xp Sz + ; z, (Q+ K'RK)x,

Ti41 = (F + GK)CEt, o = T

P FC +GD
t. >
st {(FCHLGD)T C+CT—P] = &lzn

KC =D.

The LMI above differs from the one in (2): indeed,
semidefinite programming allows only for non-strict
inequalities, and our aim is to impose the constraint
matrix to be positive definite. We therefore choose the
parameter ¢ to be small and positive (e.g. 1079).

The first crucial step is to relax the problem by inserting
the constraint KC' = D (see Theorem 1) as a regular-
ization term in the objective. We then include the linear
constraints via a Lagrange formulation:

L(z, N\, K) =z Szp + N\ (20 — Z)+
T-1
+> 2/ (Q+ K'RE)x,
=0
A1 (T4 — (F + GK)y)

=z B(K)z + A (A(K)x —b),

(16)

where B(K) = Q+diag(IT®(KTRK)7 on,n) and A(K)

has the structure of matrix A; in (10), with F' replaced by
F + GK. Moreover, introducing the shorthand notation

¢I, — P —(FC + GD)
—(FC+GD)" &1, +P—-C—-CT

FE =

)

the problem can be written as

e, K,
P,C,D

8

- 1
in nf\larx/:(x,/\,K)+EHKC'—D||2F+IST(FTE). (17)

The overall problem is nonconvex; nevertheless, it is a
bi-convex program in the variables (z, K') and (P, C, D).
We solve it using alternating minimization [27], [49]; the
overall procedure is summarized in Algorithm 1.



Algorithm 1 - Solution of (S0). The inputs are sys-
tem matrices F' and G, initial state T, objective matrices
@, R and S, parameters p and £. The desired output is
the (stabilizing) feedback matrix K.

1= 0;

initialize K(0), C(0), D(0), P(0) randomly;

1 =1;

while not converge do ~

C4) predispose v(-) = min, maxy L(x, A, -) via (19);

Cs) K(i) = mino(K) + 5 [KC(i = 1) = Dl = D
Cy) P(), CG), DGi) = in [K()C — DI

_ P FC +GD
subject to = &lon;
(FC+GD)T Cc+CT - P
o i=i+1;
end while

The preliminary step, which is denoted by (Cp), consists
in partially minimizing over the primal and dual vari-
ables x and A, leaving a value function of K alone:

v(K) = minm/gx/j(x, A\ K)
f (18)
= L(z(K),\(K), K)

where the tuple (z(K),A(K)) denotes the optimal
primal-dual pair at a fixed K, and L is as in (16). Using
problem structure, we have explicit expressions of these
quantities:
r=A(K) b (19)
A= —1AT(K)B(K)A(K)b.

At this point one should minimize the objective w.r.t. K:
this step is denoted as (C7). The expressions z(K') and
A(K) depend on K in a complex way, but this depen-
dence does not affect the first derivative of the value func-
tion, in fact we do not need use the specific closed form
expressions (19) to implement the method; we need any
computational routine that returns (z(K), A(K)) [3]. In
other words, Vu(K) can be completely captured using
the values of (x(K),A(K)), again through the struc-
ture (16):

Vo(K) = 2(K) "0k B(K)z(K)

_ (20)

+A(K) " (O A(K))z(K) = b),
where the differentials with respect to the matrix K are
written formally and must be correctly computed in co-
ordinates. Since the derivative is now available, we can
use L-BFGS to solve (C1). With some computations re-
ported in the Appendix we obtain an explicit represen-
tation for the value function gradient:

T-1
> 2RKzx] — G Aprz) + (KCCT = DC)/p. (21)
t=0

The last subproblem is denoted as (C2) and consists in
minimizing over (P,C, D) while keeping K fixed. We
obtain the convex program

in |KC — D|? 22
Juin | KC = D3 (22)

) P FC+GD
subject to

= &§lop.
(FC+GD)T C+CT — P ?

which is solved using cvx applying interior point meth-
ods [42] to minpc p [|[KC — D||% + tr(I'TE).

The block-alternating scheme summarized in Algorithm
1 consists in partially minimizing w.r.t. , and then us-
ing an alternative update on the value function with re-
spect to K and (P,C, D). The special structure of the
problem ensures convergence according to the main re-
sults of [50]. In particular, we notice that the problem
is structured as

min g(z1, 22)
Z1,%2

with z; = K and 2z, = (P,C, D). The value function
g is convex with respect to each variable block; Then,
Theorem 4.1.a in [50] can be applied, and convergence
to a stationary point is guaranteed.

4.2 Second strategy: ARE theory - approaches (S ),
(S1) and (S2)

This strategy draws inspiration for the results of the
infinite-horizon LQR, problem, whose objective is (7)
with T' — +o0:

+oo
min E x:Qa?t + u;rRut.
u

t=0

Accordingly, its optimal solution is u; = —(R +
GT"MyG) 'GT My, Fx;. Matrix M, comes from the
asymptotic version of the DRE initialized at 0, ,, and
is one of the possible solutions of the ARE [36]. In
particular, this important result holds:

Theorem 5 Let (F,G) be controllable. My, » 0 is the
unique stabilizing solution of ARE if and only if (F, Q/?)
is detectable.

Therefore, a suboptimal solution of the finite-horizon
LQR problem can be expressed in terms of M, that is
also stabilizing under the detectability condition. This
approach will be denoted as (S ). This solution is re-
liable only if we know that the detectability hypothesis
in Theorem 5 is verified for each scenario: if this is not
the case, then numerical solvers fail in providing a so-
lution. The other two approaches, denoted by (S1) and
(S2), try to approximate the ARE solution. The three
approaches are furtherly investigated below.



4.2.1  Approach (Ss)

The solution of the ARE is obtained numerically using
methods that hinge on [4]. Under the hypotheses of The-
orem 5, the matrix obtained coincides with the asymp-
totic solution of the DRE initialized at 0,, . Moreover,
for a sufficiently high 7', the DRE solution aligns with
M, after a transitory given by matrix S: in particular,
if S = M, the DRE yields its stationary solution.

4.2.2  Approach (S1)

This approach draws inspiration from (P4). A key pas-
sage in the application of Pontryagin’s Maximum Princi-
ple was setting \; = —2P,x;, and subsequent rearrange-
ments of the optimality conditions yielded the solution
to the LQR problem. Since a constant feedback matrix
is searched, we approximate the optimal solution by set-
ting Ay = 2L" Lz, for some L € R™ ™ and consider
only the optimality condition W. Then we obtain
us = —(R+GTLTLG)"*GT LT LFx;, that we then sub-
stitute in the original problem (7). We thus obtain the
nonconvex problem

min T (FT+K'GNTS(F+GK) z+
T—-1
+> 2" (FT+ K'G")(Q+ K"RK)(F + GK)'z
t=0
with K = —(R+G'L"LG)'G"L"LF, (23)

which is solved using a gradient-free method, e.g. Nelder-
Mead’s [42] implemented with fminsearch in MATLAB.

4.2.3  Approach (S2)

This method is derived from (P3), where the objective
had been rewritten using an (at first) arbitrary matrix
sequence. Imposing that this sequence has to be con-
stant, we obtain that the optimal feedback has the same
structure of (23), and the objective is

min ' LTLi+z (FT+K'GNT(S—L"L)(F+GK)Tz.

Again, this problem is solved via Nelder-Mead’s method.
We can see that LT L = S is one of the solutions, and is
the optimal one but is possibly non stabilizing. Never-
theless, the aim of this method (and of the previous one
as well) is to try to find suboptimal solutions in which
|lz¢]| is decreasing as ¢ increases.

4.8 Extension with the scenario approach

The previous part of Section 4 was devoted to the deter-
ministic setup only: now we want to consider the robust

case. First of all, it can be noticed that all approaches
exposed in Section 4 yield nonconver problems: there-
fore, Theorem 2 cannot be applied. The only guarantee
can be given a posteriori using Theorem 3. The key pas-
sage consists in isolating an irreducible support subsam-
ple, i.e. a set such that no element can be furtherly re-
moved without changing the solution. A possible proce-
dure, proposed in [18], consists in (1) solving the original
problem with all N constraints, i.e. S = {§(),...,6(M)},
(2) for each i = 1...N, consider &’ < S\3? and solve
again with S’: if the result is unchanged, then 6 is a
support constraint. Having isolated a support subsample
of cardinality s} with the procedure above sketched, we
can proceed in evaluating e(s%) and get the measure of
robustness of our solution. Following [18], function €(-)
in Theorem 3 is chosen for all cases as

1 itk=N

1- Nm

We now adapt all approaches to the robust case. To align
with (5) and to facilitate the support constraint selection
procedure, all minmax formulations will be rephrased
in epigraphic form. As proved e.g. in [16], this yields an
equivalent statement of the problem.

e(k) = (24)

otherwise.

Asregards (S0), Algorithm 1 is modified as follows. First,
subproblem (C1) is expressed as

_ ) ) 1
i (@) Q] — —_DI?
m&nrglgzﬁ(x(é LK), A(6 ,K)7K)+2M||KC’ D||%.

At this point, subproblem (C2) presented in (22) be-
comes again a minmax problem, where the maximisa-
tion step is taken over all scenarios, i.e.

min max [|[KC — DH%
P.C,D §(1)
P F(")C +GD

s. t. )
(F(6YC +GD)T C+CT—P

t 51271

As regards (S1) and (52), let us call J(5®), L) the objec-
tive of both approaches. Then we have to solve for

minmax J (6 L).
L @

Having obtained the solution L, the feedback matrix
K=—(R+GTLTLG) 'GTLTLF(6®") is built for ev-
ery new scenario yielding F(5(*).

Lastly, for (S ), we have to solve N AREs numerically
in order to find the scenario that maximizes the objec-
tive. If (F(6()), Q/?) fails to be detectable for some 4,
no numerical solution of the ARE is provided. We deal
with this situation by sampling N scenarios, and then



discard the ones that are not detectable. Hence, when
computing €(-) of Theorem 3, the starting number of sce-
narios is the one corresponding to the detectable ones.

5 Numerical experiments

In this Section, we study the LQR problem with a sta-
bility constraint, both in the deterministic and uncer-
tain setting. We do not report numerical examples for
the unconstrained case.

Before presenting the experimental results, we first re-
cap Leslie’s model to fix the notation.

5.1 Introduction to Leslie population growth model

The aim is to describe the dynamics of a population
that can be subdivided into age classes. Each element of
the state vector describes the numerosity of one of these
classes. Following the notation of (1), matrix G repre-
sents the immigration and is usually taken as the iden-
tity matrix: this implies that there are as many inputs
as states. The system matrix F' is given by

vy Vg rrr VUp—1 Vp
R1

F = K2

Rnp—1 0

where v; > 0 is the fecundity, i.e. the average number
of newborns that a member of the i-th class expects
between ¢t and t+1, and k,; € (0, 1) represents the survival
rate of the i-th class, i = 1...n.

5.2 Tests on Leslie model: deterministic setup

Ths first experiment compares approaches (S0), (S1),
(S2) and (S ) in the deterministic case. We perform a
Monte Carlo test on 100 mostly unstable Leslie models
with n = m = 5 and random parameters v; uniform in
(0,4) and x; uniform in (0,1). The objective matrices
@, R and S in (7) are Q = diag(5,4,3,2,1), R = 5I5
and S = @, while the time horizon is set to T' = 8. The
initial condition is taken as z = [5 01,4] " . Parameters ¢
and yu entering approach (S0) are chosen 1075 and 0.01
respectively| ' | For each system we compute the feedback
matrices Ky, K7, Ko and K, corresponding to the four
approaches.

! These values are the same for all numerical experiments
of this Section.

Remark In all Figures concerning this experiment,
we do not present the results obtained by (S2); never-
theless, the performance of this method is described in
the text below.

In Figure 1 we study the performance in terms of sta-
bility: to do this, we consider the eigenvalue yielding the
maximum absolute value, |04 |. In particular, we com-
pare the ones yielded in closed-loop by Ko 12,0 With the
open-loop one, and the one yielded by the optimal LQR
solution P*. The straight black line in the figure de-
notes the threshold between stable and unstable eigen-
values. From Figure 1 it is possible to see that the orig-
inal system, as well as the closed-loop obtained by P*,
are mostly unstable. It can be noticed that the most sta-
bilizing one is (S ). It is followed by (S1), which in fact
tries to find an approximation of the stabilizing solution
of the ARE; nevertheless, we have to notice that some
systems were not successfully stabilized. Then, it can be
noticed that (S0) is the one that shows the most robust
performance.

We now compare the performance of these approaches
with respect to minimizing the optimal control cost. We
know that the minimum is achieved by P*, which is the
solution of the classic LQR problem discussed in Section
3. The performance measure we consider is the relative
objective value difference, i.e. (Jg—J*)/J*, where J* is
the minimum and Jg is the cost yielded by approaches
0 = 0,1,2,00. The resulting boxplots are shown in
Figure 2. Approach (S2) is largely outperformed by the
others and its boxplot is therefore omitted. (SO) yields
acceptable results, but it is outperformed by (S1); on
the other hand, the first guaranteed robust stability on
each random system. Finally, (So,) performs similarly
to (S1) in terms of cost value.

To compare computational load, Figure 3 presents the
boxplot of the 100 runs. (Ss,) is the fastest, because
its computation does not depend on T'. Approach (S0)
shows large variability in the running time, but over-
all has a better performance w.r.t. (S1). Moreover,
(S2) is (S1) because the latter is more nonlinear, and
therefore Nelder-Mead’s algorithm is slower in contract-
ing/reflecting to find a function minimum.

5.8 Test with a simple non-detectable system

In the previous tests, (Seo) seemed to be the best ap-
proach: it stabilizes effectively the system and yields in a
fast way an objective value comparable with the optimal
one. Nevertheless, when the detectability hypothesis in
Theorem 5 does not hold, then (Ss,) cannot be applied,
since numerical algorithms provide the output only if a
stabilizing solution for the ARE exists. If this is the case,
we can see from the following experiment that all other
approaches are able to provide a stabilizing solution.
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Let us consider F' = diag(2,1), G =13, R=1,Q =
diag(1,0), S = I, and £ = [10]". It can be readily
checked that (F, Q'/?) is not detectable. We apply meth-
ods (S0), (S1), (S2): in this case, (So) concides with the
open loop.

The experiment is run 100 times on the same determinis-
tic system, to highlight the dependence of all approaches
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Fig. 4. Maximum eigenvalue in a case in which (F,Q/?) is
not detectable

from the initial conditions, that are set random. We can
notice in particular that (S2) for 8/100 times minimizes
its objective by putting LL " = S, thus yielding solution
P* which is optimal in terms of the cost but is not sta-
bilizing. Approaches (S0) and (S1) are reliable in terms
of stability, though (S1) is subject to oscillations.

In Table 1 we compare the approaches in terms of the
relative cost difference.

’ Approach ‘ (Jo=J")/J*
(S0) 0.1843
(S1) 0.0366
(S2) 37.1981
(Sec)=0pen loop 1.5x10*
Table 1 .
Comparison of the objective values with metric 0 J_*J

Again, (S0) performs slightly worse than (S1), that in
this case is always able to stabilize the system.

5.4 Test on Leslie model: scenario setup

We now test approaches (S0), (S1), (S2) and (So) with
the scenario approach on the following Leslie model of
dimension n = 5 presenting parametric uncertainty:

vy =1.11

B

=1. 2= 2 25
Vs & R3 = 0.37 + (53 ( )
va =237 K4 =0.09+06
vs = 1.10 1T 4

where §; is distributed as a uniform random variable over
[—0.4, 0.4]. This system turns out to be always unstable:
we aim at finding a stabilizing feedback fixing parameter
B = 0.05 and having N = 50 scenarios available from
past measurements.

The objective matrices (), R and S in (7) are chosen as in



Section 5.2, i.e. Q = diag(5,4,3,2,1), R=>5I5 and S =
Q, while the considered time horizon is set to T' = 8. As
initial value, we consider Z as in the previous experiment.
We run all the four approaches on these data and test
the resulting feedback matrices on 100 new samples of
the system, and all approaches yield stabilizing solutions.
For robustness guarantees, the min-max structure of the
problem yields a support constraint set of cardinality
one: hence, according to (24),
€(sy o) = €(1) = 0.1981 for0=0,1,2, 0.
Objective value comparisons and running times are con-
sistent with the experiment of Section 5.2 and are there-
fore omitted.

6 Conclusions

In this paper, we have proposed a new perspective on
the concept of stability in the finite-horizon LQR sce-
nario. Our grand strategy consists of formulating an op-
timization problem that balances performance (in terms
of cost value) and closed-loop stability. The stability-
constrained problem has been also treated in a robust
framework via the scenario approach.

First, we stated the classical LQR problem in four equiv-
alent ways denoted by (P1), (P2), (P3) and (P4). Then,
generalizing (P1), the solution of the unconstrained ro-
bust LQR problem has been found. The resulting prob-
lem is convex and, hence, it provides a priori guaran-
tees on robustness. The other three formulations (P2),
(P3) and (P4) are exploited to deal with the stability
constraint, first in the deterministic and then in the ro-
bust case. Their generalizations lead to the following ap-
proaches:

e (S0) uses the formulation (P2) and includes addi-
tional variables in order to include the stability con-
straint as a LMI inspired by Lyapunov’s Theorem.
The overall problem is solved by alternating mini-
mization over two structured convex subproblems.
It yields a good trade-off between cost, stability and
computational time.

e (S.) relies on the theory concerning the Algebraic
Riccati Equation, which yields the optimal solu-
tion of the infinite-horizon LQR problem. This ap-
proach performs best w.r.t. cost, stability and com-
putational time, but fails whenever the detectabil-
ity condition in Theorem 5 is not satisfied.

e (S1) and (S2) derive from (P4) and (P3) re-
spectively. Both require solving nonconvex un-
constrained optimization problems that minimize
the 2-norm of the state. Moreover, in view of the
structure assigned to the input, their output can
be regarded as the approximator of the stabilizing
solution of the ARE. From this point of view, (S1)
is very effective but its drawback is the computa-
tional time due to its nonlinearity. On the other
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hand, (S2) is solved faster but is less reliable in
terms of stability and cost. Both can be used when
(Seo) cannot be applied due to non-detectability.

All of these methods involve nonconvex programs. Nev-
ertheless, convergence analyses and numerical results
show that they can be efficiently implemented, obtain-
ing a good trade-off between cost, stability and compu-
tational time. When uncertainty is treated using the sce-
nario approach, the robustness of the solution can be ef-
fectively quantified a posteriori with a suitable support
constraint selection.

In the past control, system identification and statistical
literature, the use of nonconvex procedures and mod-
els was looked upon with suspicion. More recently, the
utility of such techniques has become evident e.g. in the
machine learning field with the adoption of deep net-
works [22]. Along this line, this paper shows that non-
convex approaches can be effective and computation-
ally efficient also in the optimal control field. To make
them even more effective, further research developments
may concern (S1) and (S2). For instance, by exploring
gradient-based methods and Algorithmic Differentiation
[5] it could be possible to control also more complex
large-scale and interconnected systems.
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A On the derivation of expression (21)
A.1  Catalogue of useful properties

Before performing the computation for our case, we
first recall some wuseful properties of differentials,
vec/Kronecker /trace operators and commutation ma-
trices [39] . We will denote with X, Y, W and Z general
matrices of suitable dimensions.



o) vec(YXZ) (ZT @ Y)vec(X);

r) (XeY)T=XTeYT;

ry) (X@Y)(WRZ)=(XW)® (YZ);

r3) vec(dX) = dvec(X);

ry) (dXT)=(dX)T;

rs) tr(X+Y) = tr(X) +tr(Y);

re) tr(XY) =tr(YX);

r7) tr(X ) = tr(X);

rg) tr(Z7dX) = (vec(Z) fuecng

r9) if X € R41*42 then vec(X %ldzvec(X). No-

tice that %fdld2 does not depend on X, but only on

its dimension;
TIO) '%/d;}z = Ji/d—:dz;
r11) considering X € R%1*92 and Y € R% >4 then their
Kronecker product is a dydz X dod4 matrix such that
Haas(XQY) = (Y @ X) Haya,;
r2) K = Hp .

1

The computation of the gradient of a certain function
¢ : REixdz o Rdsxda ¢ X € RU*92 consists in the
following steps:

vg) compute the differential d¢ and use properties
(rg))...(r12)) to express it in terms of wvec(dX),
possibly isolating it as the rightmost factor;

v1) exploiting (r3)), compute d¢/dvec(X);

vg) use properties (rg))...(r12)) to obtain an expression
that depends on X and not vec(X).

A.2  Computations

We recall that the objective is

- 1
E(I,)\,K) + ﬂ”KO*D”%’ = Q(K)v

where L(x, A, K) is defined as in (16). The variable of
interest will be K only, as discussed in Section 4.1.

Step (vl) We first aim at finding dQ2: we consider its
two terms separately. As regards dL(x, \, K), we first
write the quadratic terms by means of 2-norms and get

dL(z,\, K) = 3 1|\R1/2(dK)xt||2 A1G(dEK )z,
. =0

= > @ © R vec(dK)|*~
t:(ow? ® Ay G)vec(dK)  (by (ro))

= g(vec(dK))T(xt ® RY?)(z] @ RY?)vec(dK)—
- — (& @ M1 G vec(dK)  (by (r1))
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5
L

= (vec(dK)) " (zx] @ R)vec(dK)—

~+
Il
o

= (2] ® A1 GJvec(dK)  (by (r2))-

Asregards || KC—D||%, we first recall that for any matrix
Y it holds that |Y]|% = tr(Y TY). Then, the differential

reads
dir(KC — D)"(KC — D)) =
tr(CT(dK")KC) +tr(CTK T (dK)C) —

(a)
—tr(D"(dK)C) —tr(C T (dK T)D)

(b) (c)

From simple computations it follows that

(a) =2tr(CCTKT(dK))  (by (ro), (r7))

= 2(vec(KCC ) Tvec(dK) (by (rs))
(b) = tr(CDT(dK))  (by (r5))
= vec(CD")) Twec(dK) (by (rs))
(c) =tr(DCT(AK ")) (by (ro))
= (vec(CD ")) Tvec(dK ) (by (rs))
= ((D ® C)vec(I,)) " Hppvec(dK)  (by (ro) and (r9))

(1}6 ( )) (DT 02y CT)%MUBC(dK) (by (Tl))
= (vee(In)) " A2 (CT @ DT Jvec(dK)  (by (r11))

= [H2vec(I,)]T (CT @ DT vec(dK)
[(C ® D)vec(I,)] " vec(dK)

— (vec(DCT))Tvec(dK (b (ro))
= (b).

Step (v2) Using the expression for d€2 above com-
puted, we get

dn -1
- = T _ T
dvec(K) ~ £ 2x3) ® R)vec(dK) — (2, ® G A1)
+ 5(2(U€C(KC’CT))T _ 2('U€C(DCT))T)'

Step (v3) We finally get (21) by exploiting (ro) and
(rg). The values from z; and A; can be recovered from

(by (7’11) and (7’12))



their matrix form of (19). If we call F+GK =: Fi, then
the expressions for z; and \; are x; = F}.z and

Ae=—2 (F;)T*fSF}?JFZiT;”(F;)i(KTRKJrQ)F;(“} i

respectively.

14



	1 Introduction
	2 Preliminaries
	2.1 Review on Linear Systems Theory
	2.2 On the scenario approach

	3 LQR and its solution in the scenario approach
	3.1 General theory for LQR
	3.2 Extension to the scenario case

	4 Adding the stability constraint
	4.1 First strategy: Lyapunov stability included as constraint - approach (S0)
	4.2 Second strategy: ARE theory - approaches (S), (S1) and (S2)
	4.3 Extension with the scenario approach

	5 Numerical experiments
	5.1 Introduction to Leslie population growth model
	5.2 Tests on Leslie model: deterministic setup
	5.3 Test with a simple non-detectable system
	5.4 Test on Leslie model: scenario setup

	6 Conclusions
	References
	A On the derivation of expression (??)
	A.1 Catalogue of useful properties
	A.2 Computations


