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Abstract

This paper investigates the consensus problem for nonlinear heterogeneous multi-agent systems with limited communication
data rate. Each agent is modeled by a higher-order strict-feedback continuous-time system with unknown nonlinearities and
external disturbance, and only the first state variable being measurable. Extended state observers (ESOs) are used to estimate
the unmeasurable agent states and the unknown nonlinear dynamics. An ESO-based distributed output feedback protocol
with dynamic encoding and decoding is then presented. It is shown that, for a connected undirected network, the proposed
protocol guarantees practical output consensus, in which the steady-state consensus error can be made arbitrarily small. The
ESO-based protocol also shapes the transient consensus performance, as it is capable of recovering the consensus performance
of a linear counterpart with fully measurable states. Furthermore, we prove that for higher-order uncertain nonlinear multi-
agent systems, consensus can be achieved with merely one bit information exchange between each pair of adjacent agents at
each time step. Finally, simulations on third-order pendulum systems are given, which verify the theoretical results.

Key words: Multi-agent systems; consensus; uncertain nonlinear systems; data rate; quantization; extended state observer.

1 Introduction

Multi-agent systems have attracted great attention in
recent years owing to their potential applications in a
wide variety of tasks, such as exploration, surveillance,
and cooperative manipulation. Consensus, which aims
at all agents autonomously achieving an agreement of
common interest by using local information available at
the node and received from neighboring agents, is one of
the most fundamental problems in multi-agent systems.

In most cases, the agents communicate with their
neighbours through digital networks. For a multi-agent
system with a digital communication network, the infor-
mation to be exchanged between each pair of adjacent
agents will be first quantized by the sender and then
sent out to its neighbours. When the neighbours receive
the quantized information through the digital commu-
nication channels, they use a decoding algorithm to
reconstruct the information. That is to say, only quan-
tized information can be exchanged between agents.
Quantized consensus for first-order multi-agent sys-
tems was investigated in Kashyap, Basar, and Srikant
(2007), Carli, Bullo, and Zampieri (2010), Li, Fu, Xie,
and Zhang (2011), and Mu and Liu (2015). Specifically,
Li et al. (2011) studied the average consensus problem
for undirected networks of first-order discrete-time inte-
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grator systems under finite bit-rate communication. A
static uniform quantizer with an exponentially decay-
ing scaling function was proposed, and it was shown in
Li et al. (2011) that no matter how many agents there
are, the consensus can be achieved with as few as one
bit information exchange between each pair of adjacent
agents at each time step.

For higher-order multi-agent systems, the limited
data rate problem becomes more challenging. Li and Xie
(2012) developed a quantized-observer based encoding-
decoding scheme for second-order integrator systems
with partially measurable states. It was shown in Li and
Xie (2012) that for a connected network, two bits infor-
mation exchange between each pair of adjacent agents
at each time step suffices to guarantee the consensus of
the agents. For multi-agent systems with rth-order in-
tegrator dynamics, Qiu, Xie, and Hong (2017a) showed
that r bits of information exchange between each pair
of adjacent agents at each time step are necessary to
guarantee consensus. Qiu, Xie, and Hong (2017b) fur-
ther investigated the data rate problem for 2rth-order
multi-agent systems with oscillator dynamics, and the
sufficient number of communication bits to guarantee
consensus was proved to be an integer between r and
2r, depending on the location of the poles of the agent
state matrix. You and Xie (2011) and Meng, Li, and
Zhang (2017) considered the limited data rate problem
for general linear multi-agent systems with fully and
partially measurable states, respectively. However, the
minimum data rate required in You and Xie (2011) and
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Meng et al. (2017) remains an open problem.
The works mentioned above mainly focused on linear

multi-agent systems. In a recent work, Dong (2019) first
visited the limited data rate problem for a class of non-
linear multi-agent systems with fully measurable states.
In the case that there exist a known model of the agent
nonlinearity and a known upper bound of the model-
ing error, a multi-loop control structure was proposed
in Dong (2019) to guarantee consensus. In Ran and Xie
(2019), the limited data rate problem was considered for
a class of simple nonlinear multi-agent systems without
external disturbances.

Based on the above observations, there are several im-
portant and interesting problems that remain unsolved.
Firstly, it still lacks a practical solution to handle the lim-
ited data rate problem for general multi-agent systems
with nonlinearities, uncertainties, and external distur-
bances. It should be pointed out that the nonlinearities,
uncertainties, and external disturbances exist in almost
all practical control systems (Khalil, 2002; Isidori, 1989).
Secondly, whether the data rates required in Li and Xie
(2012) and Qiu et al. (2017a; 2017b) are conservative,
and how many bits are sufficient for general higher-order
uncertain nonlinear multi-agent systems with partially
measurable states? Thirdly, for the limited data rate
problem, can a comparable transient consensus perfor-
mance for a multi-agent system with nonlinearities, un-
certainties, and external disturbances, to its simple lin-
ear counterpart be achieved?

In this paper, we investigate the limited data rate
problem for nonlinear heterogeneous multi-agent sys-
tems with partially measurable states. Each agent is
described by a strict-feedback system with unknown
nonlinear dynamics and external disturbance. Extended
state observer (ESO) (Han, 2009; Khalil, 2017) is the
main tool used in this paper. The unknown dynamics
is first regarded as an extended state of the agent, and
then the agent state and the defined extended state are
estimated simultaneously by the ESO. An ESO-based
protocol with dynamic encoding and decoding is then
presented. Comparing with the existing literature, the
main contributions of this paper are threefold:

i) We provide a more practical solution to the limited
data rate problem for multi-agent systems. The pro-
posed protocol is output-feedback-based and is ca-
pable of handling nonlinearities, uncertainties, and
external disturbances. In practical applications, the
agent states may be not fully available for feed-
back; and its dynamics is very likely to be perturbed
by uncertainties and external disturbances (Khalil,
2002; Isidori, 1989).

ii) We show that, with the application of the proposed
ESO-based protocol, merely one bit information
exchange between each pair of adjacent agents at
each time step suffices to guarantee the output
consensus of general higher-order uncertain nonlin-
ear multi-agent systems with partially measurable
states. This indicates that the data rates required in
Li and Xie (2012) and Qiu et al. (2017a; 2017b) are

still conservative, and from a theoretical viewpoint,
the approach developed in this paper achieves the
lowest data rate required at each time step via
output feedback.

iii) The proposed ESO-based protocol is capable of
shaping the transient consensus performance of the
uncertain nonlinear multi-agent systems with lim-
ited data rate. More specifically, the agent trajec-
tories of an uncertain nonlinear multi-agent system
under the ESO-based output feedback protocol can
be made arbitrarily close to the trajectories of its
linear counterpart with fully measurable states.

2 Problem Formulation

2.1 Notation

Let R and Rn denote the sets of real numbers and
n-dimension real vectors, respectively. In and 0n repre-
sent the identity matrix and the vector of zeros of di-
mension n, respectively. Let 1N be the N -dimensional
column vector with all components being 1, and define
JN = (1/N)1N1T

N . diag{a1, . . . , an} is the diagonal ma-
trix with the i-th diagonal component equal to ai. For
a given vector or matrix A, AT, ‖A‖, and ‖A‖∞ rep-
resent its transpose, Euclidean norm, and ∞-norm, re-
spectively. For a given positive number a, bac and dae
represent the largest integer not greater than a and the
smallest integer not less than a, respectively. Big O-
notation in terms of ν is denoted as O(ν) and it is as-
sumed to hold for a sufficiently small positive ν. Let
sat(·) represent the unity saturation function defined by
sat(ν) = sign(ν) · min{1, |ν|}. Throughout this paper,
for clear presentation, the time variable t of a signal will
be omitted except when the dependence of the signal on
t is crucial.

2.2 Communication Graph

The communications between agents are modeled as
a graph G = {V, E ,A}, where V = {1, 2, . . . , N} is
the index set of N agents with i representing the ith
agent, E ⊂ V × V is the edge set of paired agents, and
A = [aij ] ∈ RN×N is the weighted adjacency matrix
with aij = 1 or 0 indicating whether or not there is a
communication channel from agent j to i. If aij = aji
for any pair of neighbouring agents, the associated com-
munication graph is called an undirected graph. The
neighborhood of the ith agent is represented by Ni =
{j ∈ V|(i, j) ∈ E}. The in-degree of agent i is denoted

as degi =
∑N
j=1 aij , and d∗ = max1≤i≤N degi is the

degree of G. The Laplacian matrix of G is defined as
L = D − A, where D = diag{deg1, . . . ,degN}. A se-
quence of edges (i1, i2), (i2, i3), . . ., (ik−1, ik) is called a
path from agent i1 to agent ik. The graph G is a con-
nected graph if for any two agents i, j ∈ V, there exists
a path from i to j. For a connected graph, its Laplacian
matrix L is a symmetric positive semidefinite matrix
and its eigenvalues in an ascending order are denoted by
0 = λ1(L) < λ2(L) ≤ · · · ≤ λN (L) (Fiedler, 1973).
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2.3 Problem Statement

We consider a multi-agent system consisting ofN non-
linear agents described by
ẋim =fim(xi1, . . . , xim) + xi,m+1, 1 ≤ m ≤ r − 1,

ẋir =fir(xi, zi, ωi) + ui,

żi =fi0(xi, zi, ωi),

yi =xi1, i = 1, . . . , N,

(1)

where xi = [xi1, xi2, . . . , xir]
T ∈ Rr is the agent

state, zi ∈ Rni−r is the state of the zero dynam-
ics, ni is the dimension of each agent, r is the rela-
tive degree, yi ∈ R is the measured output, ui ∈ R
is the control input, ωi ∈ Rnωi is the external
disturbance, fi0 ∈ C1 (Rr × Rni−r × Rnωi ,Rni−r),
fim ∈ Cr+1−m (Rm,R), 1 ≤ m ≤ r−1, and fir ∈ C1 (Rr
×Rni−r × Rnωi ,R) are locally Lipschitz functions.

Remark 1. System (1) covers the plants considered in
the existing data rate literature as special cases. Specif-
ically, the first-order integrator considered in Li et al.
(2011) and Mu and Liu (2015), the second-order integra-
tor considered in Li and Xie (2012), and the higher-order
dynamics considered in You and Xie (2011), Ment et al.
(2017), Qiu et al. (2017a; 2017b), Dong (2019), and Ran
and Xie (2019), directly or under a well-defined state
transformation, fall into the form of system (1). What
is more, since the functions fi0(·), fi1(·), . . . , fir(·) can
be different for different agents, the multi-agent system
described by (1) is heterogeneous.

For system (1), we have the following assumptions:

Assumption A1. The external disturbance ωi and its
derivative ω̇i are bounded.

AssumptionA2.The zero dynamics żi = fi0(xi, zi, ωi),
with input (xi, ωi), is bounded-input-bounded-state
(BIBS) stable.

Assumption A3. The communication graph G among
the N agents is undirected and connected.

In this paper, we will investigate the consensus of the
multi-agent system (1) with a digital network. Signals
to be transmitted between each pair of adjacent agents
are first quantized and encoded at the transmitters, and
then decoded at the receivers. The finite-level uniform
quantizer employed in this paper is given by

q(ν) =



0, − 1/2 < ν < 1/2,

i,
2i− 1

2
≤ ν < 2i+ 1

2
,

i = 1, 2, . . . ,K − 1,

K, ν ≥ 2K − 1

2
,

− q(−ν), ν ≤ −1/2,

(2)

where K ∈ {1, 2, . . . , }, and 2K + 1 is the quantization
level. Similar to Li et al. (2011), it is assumed that the
agent sends out no signal if the output of the quantizer

is 0. Therefore, for a (2K + 1)-level quantizer q(·), it
suffices to use dlog2(2K)e bits to represent its output.
In particular, letting K = 1 yields a one-bit quantizer.

In this paper, we aim to solve the output consen-
sus problem for the nonlinear heterogeneous multi-agent
system (1) with limited data rate. For simplicity and to
illustrate our design scheme, we first consider the simple
case that each agent has full knowledge of its dynamics
(i.e., xi, zi, ωi, and fim(·), 0 ≤ m ≤ r) in Section 3.
Then, in Section 4, we move forward to the general case
that ωi and fim(·), 0 ≤ m ≤ r, are uncertain, and each
agent only has access to its first state variable.

3 Consensus Under Full Information

In this section, based on the full information
of the agent dynamics, new state variables %i =
[%i1, . . . , %ir]

T ∈ Rr, 1 ≤ i ≤ N , are first intro-
duced for subsequent consensus protocol design.
Let %i1 = yi = xi1 , φi1(xi1), %im = %̇i,m−1 =∑m−2
j=1 (xi,j+1 + fij(xi1, . . . , xij))

∂φi,m−1

∂xij
+ xim +

fi,m−1(xi1, . . . , xi,m−1) , φim(xi1, . . . , xim), 2 ≤ m ≤
r, and %̇ir = fir(xi, zi, ωi) + ui +

∑r−1
j=1(xi,j+1 +

fij(xi1, . . . , xij))
∂φir
∂xij

, Fi(%i, zi, ωi) + ui, where

Fi ∈ C1(Rr×Rni−r×Rnωi ,R). As a result, the original
system (1) is transformed into the following canonical
form (Isidori, 1989):
%̇i =A%i +B[Fi(%i, zi, ωi) + ui],

żi =Zi(%i, zi, ωi),

yi =%i1, i = 1, . . . , N,

(3)

where Zi ∈ C1(Rr × Rni−r × Rnωi ,Rni−r) represents
the zero dynamics with respect to the new state variable

%i, and matrices A =

[
0r−1 Ir−1

0 0T
r−1

]
and B =

[
0r−1

1

]
.

Since %i1 = xi1, the output consensus of system (3) is
equivalent to the output consensus of system (1).

Lemma 1. Let

si = k1%i1 + k2%i2 + · · ·+ kr−1%i,r−1 + %ir, (4)

where k1, k2, . . . , kr−1 are chosen such that the polyno-
mial k1 + k2λ+ · · ·+ kr−1λ

r−2 + λr−1 is Hurwitz.
• If si is bounded and limt→∞ si = Λ for some constant

Λ, then the multi-agent system (1) achieves the follow-
ing output consensus:

lim
t→∞

(yi − yj) = 0, 1 ≤ i 6= j ≤ N. (5)

Furthermore, if the convergence of si is exponential,
the convergence of (5) is also exponential.

• If si is bounded and limt→∞ |si − Λ| = O(ε) for some
constant Λ and small positive constant ε, then the
multi-agent system (1) achieves the following practical
output consensus:

lim
t→∞

|yi − yj | = O(ε), 1 ≤ i 6= j ≤ N. (6)
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Proof. The proof is straightforward from Lemma 1 in
Dong (2019) and the linear control theory (Chen, 1998).
�

Lemma 1 indicates that the consensus of si, 1 ≤ i ≤
N , guarantees the output consensus of the multi-agent
system (1). Thus, in the sequel, the protocol ui will be
designed to handle the consensus of si. Specifically, the
information of si will be transmitted between each pair
of agents. The dynamics of si can be written as

ṡi = k1%i2+k2%i3+ · · ·+kr−1%ir+Fi(%i, zi, ωi)+ui. (7)

Since the communication network is a digital network,
si can only be exchanged in discrete-time. Let T be the
sampling period and k = 0, 1, . . . the sampling index.
Data to be transmitted at time t = kT is then denoted
by si(kT ). What is more, we mention that the sampling
period T is also a design parameter in this paper. We
have the following lemma.

Lemma 2. (Li et al. (2011)) If Assumption A3 holds
and T ∈ (0, 2/λN (L)), then ρh < 1, where

ρh = max
2≤i≤N

|1− Tλi(L)| .

Furthermore, if T ∈ (0, 2/(λ2(L) + λN (L))), then ρh =
1− Tλ2(L).

For agent j, the encoder Υj to encode the signal sj(t)
is given by

ξj(0) = 0,

ξj((k + 1)T ) = β(kT )∆j((k + 1)T ) + ξj(kT ),

∆j((k + 1)T ) = q

(
sj((k + 1)T )− ξj(kT )

β(kT )

)
,

k = 0, 1, . . .

(8)

where ξj is the internal state of Υj , ∆j is the output of
Υj , and β(·) is a scaling function to be specified latter.
The agent j broadcasts ∆j to its neighbors through the
digital network. Let agent i be a neighbor of agent j.
Then agent i receives ∆j and uses the following decoder
Ψji to decode ∆j (i.e., to reconstruct sj):

ŝji(0) = 0,

ŝji((k + 1)T ) = β(kT )∆j((k + 1)T ) + ŝji(kT ),

k = 0, 1, . . .

(9)

where ŝji is the output of Ψji.
Then for every agent, based on the full-information

assumption and the outputs of its own encoder and de-
coders, the control protocol is given by

ui(t) =− θi(t) +
∑
j∈Ni

aij (ŝji(kT )− ξi(kT )) ,

t ∈ [kT, (k + 1)T ), k = 0, 1, . . . , (10)

where θi(t) = k1%i2+k2%i3+· · ·+kr−1%ir+Fi(%i, zi, ωi).
In the sequel, we will investigate the convergence of

the closed-loop system under the full-information-based

protocol. Define a compact set X ⊆ Rr and let Cs ≥
max%i∈X ,1≤i≤N |si|. Recall that the state transformation
from xi to %i doesn’t change the BIBS property of the
zero dynamics żi = Zi(%i, zi, ωi). Let zi(0) ∈ Zi for
some compact setZi ⊆ Rni−r. By Assumption A2, there
exists a positive constant czi such that supt∈[0,∞) ‖zi‖ ≤
czi for all %i ∈ X . Note that any compact subset of
Rr × Rni−r can be put in the interior of X × Zi.
Theorem 1. Consider the closed-loop system composed
of the multi-agent system (1), the encoder (8), the decoder
(9), and the protocol (10). Suppose Assumptions A1 to
A3 are satisfied, and the initial conditions of the agents
(%i(0), zi(0)) ∈ X × Zi, 1 ≤ i ≤ N . Let

T ∈ (0, 2/λN (L)) , (11)

γ ∈(ρh, 1), (12)

K ≥
⌊
K1(T, γ)− 1

2

⌋
+ 1, (13)

β(kT ) =β0γ
k, (14)

where

K1(T, γ) =

√
NT 2λ2N (L)

2γ(γ − ρh)
+

1 + 2Td∗

2γ
, (15)

β0 > max

{
2TλN (L)Cs

γ(K + 1
2 )

,
Cs

K + 1
2

,

2Cs(γ − ρh)(2γ + TλN (L))

TλN (L)

}
. (16)

Then the multi-agent system (1) achieves the output con-
sensus (5) exponentially.

Proof. Under the full-information-based protocol (10),
one has

si((k + 1)T ) = si(kT ) + T
∑
j∈Ni

aij (ŝji(kT )− ξi(kT )) .

The system above falls into the same form of the first-
order integrator system considered in Li et al. (2011).
Then according to Theorem 3.1 in Li et al. (2011) and
the first statement in Lemma 1, one can readily conclude
that the multi-agent system (1) achieves the output con-
sensus (5) exponentially. �

Note that the protocol (10) is an “ideal” one since it
relies on system full-information, which is unavailable in
the general case. However, it provides some insights on
the “ideal” consensus performance the protocol could
achieve. We will show in the next section that we can
recover the “ideal” consensus performance by using the
device ESO. Towards that end, let the ideal trajectories
generated by the full-information-based protocol be su-
perscripted by the symbol ?. Then, the dynamics of s?i

4



can be specified by

s?i ((k + 1)T ) = s?i (kT ) + T
∑
j∈Ni

aij
(
ŝ?ji(kT )− ŝ?ij(kT )

)
,

k = 0, 1, . . . ,

s?i (t) = s?i (kT ) + (t− kT )
∑
j∈Ni

aij
(
ŝ?ji(kT )− ŝ?ij(kT )

)
,

kT < t < (k + 1)T.

(17)

The ideal trajectory of y?i can be regarded as the output
of the rth-order linear system{
%̇?i =A?%?i +B?u?i ,

y?i =%?i1, i = 1, . . . , N,
(18)

where A? =

 0r−1 Ir−1

[0,−k1, . . . ,−kr−1]

, B? = B, with full-

state-feedback based input

u?i (t) =
∑
j∈Ni

aij
(
ŝ?ji(kT )− ξ?i (kT )

)
,

t ∈ [kT, (k + 1)T ), k = 0, 1, . . . (19)

The system (18) is referred to as the linear counterpart
of the uncertain nonlinear multi-agent system (1).

4 Consensus Under Output Feedback

The control design in the previous section is gener-
ally not realizable. In this section, we consider the case
that ωi and fim(·), 0 ≤ m ≤ r, are uncertain, i.e., the
external disturbance and agent dynamics are unknown
to the designer. In addition, each agent only has ac-
cess to its first state variable. We propose to use ESOs
to estimate the unmeasurable states, and the unknown
external disturbance and agent dynamics. The ESO is
built for each agent locally, and then ESO-based local
encoder, decoder, and protocol are designed to guaran-
tee the output consensus of the multi-agent system (1)
with limited data rate.
4.1 ESO-Based Protocol Design

Let %i,r+1 , Fi(%i, zi, ωi) be the extended state of
agent i. The ESO for agent i is then designed as

˙̂%im = %̂i,m+1 +
lim
εm

(yi − %̂i1), 1 ≤ m ≤ r − 1,

˙̂%ir = %̂i,r+1 +
lir
εr

(yi − %̂i1) + ui,

˙̂%i,r+1 =
li,r+1

εr+1
(yi − %̂i1),

(20)

where %̂i = [%̂i1, . . . , %̂ir]
T and %̂i,r+1 are the estimates of

the agent state %i and the extended state %i,r+1, respec-
tively, %̂i1(0) to %̂i,r+1(0) are set as 0, ε < 1 is a small
positive constant, and Li = [li1, li2, . . . , li,r+1]T ∈ Rr+1

is selected such that the matrix Ei =

[
−Li

Ir−1

0T
r−1

]

is Hurwitz. Since ε is a small positive constant, the ob-
server (20) exhibits peaking phenomenon during the ini-
tial period. To prevent the peaking from destabilizing
the closed-loop system, we employ the well-known sat-
uration technique (Khalil, 2017; Ran, Wang, & Dong,
2017; Ran, Wang, Dong, & Xie, 2020) to saturate the
outputs of the observer. Recall that we aim to recover the
consensus performance under the full-information-based
protocol. Let Mm ≥ sup1≤i≤N |%?im|, 1 ≤ m ≤ r + 1.
Then the outputs of the ESO are bounded by

%im = Mmsat

(
%̂im
Mm

)
, 1 ≤ m ≤ r + 1. (21)

Let %i = [%i1, . . . , %ir]
T, and the information to be trans-

mitted between each pair of agents be

si = k1%i1 + k2%i2 + · · ·+ kr−1%i,r−1 + %ir. (22)

Similar to the previous section, the encoder Υj for
agent j is designed as

ξj(0) = 0,

ξj((k + 1)T ) = β(kT )∆j((k + 1)T ) + ξj(kT ),

∆j((k + 1)T ) = q

(
sj((k + 1)T )− ξj(kT )

β(kT )

)
,

k = 0, 1, . . .

(23)

The decoder Ψji for agent i is as follows:
ŝji(0) = 0,

ŝji((k + 1)T ) = β(kT )∆j((k + 1)T ) + ŝji(kT ),

k = 0, 1, . . .

(24)

The ESO-based protocol is then given byui(t) =− θi(t) +
∑
j∈Ni

aij

(
ŝji(kT )− ξi(kT )

)
,

t ∈ [kT, (k + 1)T ), k = 0, 1, . . .

(25)

where θi(t) = k1%i2 + k2%i3 + · · ·+ kr−1%ir + %i,r+1.

4.2 Convergence Analysis

For subsequent use, some notations are defined as
S(kT ) = [s1(kT ), s2(kT ), . . . , sN (kT )]T, S(kT ) =

[s1(kT ), s2(kT ), . . . , sN (kT )]T, Ŝ(kT ) = [ξ1(kT ), ξ2(kT ),

. . . , ξN (kT )]T, e(kT ) = S(kT ) − Ŝ(kT ), δ(kT ) =
S(kT )− JNS(kT ).

By (7) and (25), the evolution of si(kT ) can be given
by

si((k + 1)T ) = si(kT ) + T
∑
j∈Ni

aij

(
ŝji(kT )− ξi(kT )

)
+

∫ (k+1)T

kT

(
r∑

m=1

km
(
%i,m+1(t)− %i,m+1(t)

))
dt.

(26)
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By the structures of the encoder Υj and decoder Ψji,

one has ŝji(kT ) = ξj(kT ), i ∈ Nj , 1 ≤ j ≤ N . It follows
from (26) that

S((k + 1)T ) =S(kT )− TLŜ(kT ) + Π1(kT )

=(I − TL)S(kT ) + TLe(kT )

+ S(kT )− S(kT ) + Π1(kT ), (27)

where Π1(kT ) = [π11(kT ), . . . , π1N (kT )]T, with

π1i(kT ) =

∫ (k+1)T

kT

(
r∑

m=1

km
(
%i,m+1(t)− %i,m+1(t)

))
dt.

Bearing in mind that LJN = JNL = 0, one has

S((k + 1)T )− Ŝ(kT )

=S((k + 1)T )− Ŝ(kT ) + S((k + 1)T )− S((k + 1)T )

=(I + TL)e(kT )− TLδ(kT )

+ (I + TL)(S(kT )− S(kT ))

+ Π1(kT ) + S((k + 1)T )− S((k + 1)T ). (28)

It then follows from (27) and (28) that

δ((k + 1)T ) =(I − TL)δ(kT ) + TLe(kT )

+ (I − JN )
[
TL
(
S(kT )− S(kT )

)
+Π1(kT )] , (29)

e((k + 1)T ) =
[
S((k + 1)T )− Ŝ(kT )

]
− β(kT )Q

(
S((k + 1)T )− Ŝ(kT )

β(kT )

)
,

(30)

where Q([ν1, . . . , νN ]T) = [q(ν1), . . . , q(νN )]T. Note
that in the consensus error dynamics (29), the second
term, TLe(kT ), is caused by the quantization process;
the third term, (I − JN )

[
S(kT )− S(kT ) + Π1(kT )

]
, is

caused by the ESO estimation process. Denote

α(kT ) =
1

β(kT )
δ(kT ), ζ(kT ) =

1

β(kT )
e(kT ). (31)

Before presenting the convergence results of the
closed-loop system, we first state the following lemma,
which shows the boundedness of α(kT ).

Lemma 3. Consider the closed-loop system composed
of the multi-agent system (1), the ESO (20), the encoder
(23), the decoder (24), and the protocol (25). Suppose
Assumptions A1 to A3 are satisfied, and the initial con-
ditions of the agents (%i(0), zi(0)) ∈ X ×Zi, 1 ≤ i ≤ N .
Let the sampling period T , the parameter γ, and the
quantization parameter K be selected according to (11),
(12), and (13), respectively; let the scaling function be
selected as

β(kT ) = max{β0γk,
√
ε}, (32)

where β0 is given by (16). Then there exists ε† > 0 such
that for all 0 < ε < ε† and k = 0, 1, . . ., ‖α(kT )‖ < α,

where α = max
{

2
√
NCs
β0

, T
√
NλN (L)

2γ(γ−ρh)

}
. Furthermore, the

quantizer will never be saturated.

Proof. Lemma 3 will be proved recursively. First, con-
sider the case t = 0. By the fact that ‖ν‖∞ ≤ ‖ν‖ ≤√
N‖ν‖∞ for any N dimensional vector ν, one has

‖α(0)‖ =
‖δ(0)‖
β0

≤
√
N‖δ(0)‖∞

β0
≤ 2
√
NCs
β0

< α. (33)

What is more, for ζ(0), one has

‖ζ(0)‖∞ =
‖S(0)− Ŝ(0)‖∞

β0
= 0. (34)

In the sequel, we consider the case t = (κ+1)T , κ ≥ 0,
with the assumption that ‖α(kT )‖ < α and the quan-
tizer is not saturated for all 0 ≤ k ≤ κ. It follows from
the definitions ofα(kT ) andS(kT ), and the boundedness
of the control signal ui in the time interval [0, (κ+ 1)T ]
that ‖%i‖ is bounded by some ε-independent positive
constant in the time interval [0, (κ+ 1)T ].

We define the scaled ESO estimation error ηi =
[ηi1, . . . , ηi,r+1]T ∈ Rr+1 with ηim = 1

εr+1−m (xim−x̂im),
1 ≤ m ≤ r + 1. According to (3) and (20), the error
dynamics can be written as{

εη̇im = ηi,m+1 − limηi1, 1 ≤ m ≤ r,
εη̇i,r+1 = εḞi(%i, zi, ωi)− li,r+1ηi1.

(35)

By Assumptions A1 and A2, and the boundedness of
‖%i‖, one can conclude that in the time interval [0, (κ+

1)T ], |Ḟi(%i, zi, ωi)| ≤ N1i for some ε-independent pos-
itive constant N1i. Recall that the matrix Ei is Hur-
witz by design. Let Pi ∈ R(r+1)×(r+1) be the unique
positive definite matrix solution to the matrix equation
PiEi + ET

i Pi = −Ir+1, and define the Lyapunov func-
tion candidate Vi : Rr+1 → R as Vi(ηi) = ηTi Piηi. Then

one has σi1‖ηi‖2 ≤ Vi(ηi) ≤ σi2‖ηi‖2 and
∣∣∣ ∂Vi(ηi)∂ηi,r+1

∣∣∣ ≤
2σi2‖ηi‖, where σi1 and σi2 are the minimal and maxi-
mal eigenvalues of the matrix Pi, respectively. Then by
(35), the time derivative of Vi(ηi) satisfies

dVi(ηi)

dt
=

1

ε

 r∑
j=1

(ηi,j+1 − lijηi1)
∂Vi(ηi)

∂ηij

−li,r+1ηi1
∂Vi(ηi)

∂ηi,r+1

)
+ Ḟi(%i, zi, ωi)

∂Vi(ηi)

∂ηi,r+1

≤− 1

ε
‖ηi‖2 + 2σi2N1i‖ηi‖

≤ − 1

σi2ε
Vi(ηi) +

2σi2N1i√
σi1

√
Vi(ηi). (36)
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It follows that

d
√
Vi(ηi)

dt
≤ − 1

2σi2ε

√
Vi(ηi) +

σi2N1i√
σi1

. (37)

Solving the inequality above and using σi1‖ηi‖2 ≤
Vi(ηi) ≤ σi2‖ηi‖2 again, one has

‖ηi(t)‖ ≤
√
σi2
σi1
‖ηi(0)‖e−

1
2σi2ε

t
+

2σ2
i2N1iε

σi1
. (38)

Note that the right hand side of the inequality above
converges to 0 as ε → 0 uniformly for any t ∈ (0, (κ +
1)T ]. Therefore, there exists ε0 > 0 such that for any
t0 > 0 and ε ∈ (0, ε0), ‖ηi(t)‖ = O(ε), ∀t ∈ [t0, (κ+1)T ].
What is more, one can select Mm ≥ sup1≤i≤N |%?im|,
1 ≤ m ≤ r+1, such that the saturations for the outputs
of the observer will not be invoked in the time interval
[t0, (κ+ 1)T ], i.e., %im = %̂im, 1 ≤ m ≤ r + 1.

With the convergence of the observers, and the as-
sumption that ‖α(kT )‖ < α and the quantizer is not
saturated for all 0 ≤ k ≤ κ, we are ready to investigate
the bound of α((κ+ 1)T ). Let positive integer k∗ satisfy
β0γ

k∗−1 >
√
ε and β0γ

k∗ ≤
√
ε, i.e., β(kT ) =

√
ε for all

k ≥ k∗. We consider three cases.
Case 1): κ+1 < k∗. In this case, by (28)-(31), one has

α((κ+ 1)T ) =γ−1(I − TL)α(κT ) + γ−1TLζ(κT )

+
Π2(κT )

β0γκ+1
, (39)

ζ((κ+ 1)T ) =γ−1 (∆(κT )−Q(∆(κT ))) , (40)

where

Π2(κT ) =(I − JN )
[
TL
(
S(κT )− S(κT )

)
+ Π1(κT )

]
,

∆(κT ) =(I + TL)ζ(κT )− TLα(κT ) +
Π3(κT )

β0γκ
,

Π3(κT ) =(I + TL)(S(κT )− S(κT ))

+ Π1(κT ) + S((κ+ 1)T )− S((κ+ 1)T ).

Let max0≤k≤κ ‖Π2(kT )‖/(β0γk+1) , N2(ε) and

‖Π3(κT )‖/(β0γκ) , N3(ε). Due to the convergence of
the observers and β(kT ) ≥

√
ε, one has N2(ε) → 0 and

N3(ε)→ 0, as ε→ 0.

Let J be a unitary matrix defined by J = [1/
√
N,

ψ2, . . . , ψN ], where ψT
i L = λi(L)ψT

i , 2 ≤ i ≤ N .
Let α̃(κT ) = J−1α(κT ) = JTα(κT ) and decompose
α̃(κT ) = [α̃1(κT ), α̃2(κT )]T with a scalar α̃1(κT ).
One can easily verify that α̃1(κT ) = 0. Denote

P̃γ,T = γ−1diag {1− Tλ2(L), . . . , 1− TλN (L)} and
ψ = [ψ2, . . . , ψN ]. It follows from the definition of
α̃2(κT ) and (39) that

α̃2((κ+ 1)T ) =P̃γ,T α̃2(κT ) + γ−1TψTLζ(κT )

+
ψTΠ2(κT )

β0γκ+1
. (41)

By (41), one can establish the evolution equation from
α̃2(0) to α̃2((κ + 1)T ). This together with α(κT ) =
ψα̃2(κT ) and α̃2(κT ) = ψTα(κT ) leads to

α((κ+ 1)T ) =ψ[P̃γ,T ]κ+1ψTα(0)

+ γ−1Tψ[P̃γ,T ]κψTLζ(0)

+ γ−1Tψ

κ−1∑
i=0

[P̃γ,T ]iψTLζ((κ− i)T )

+

κ∑
i=0

ψ[P̃γ,T ]iψTΠ2((κ− i)T )

β0γκ+1−i . (42)

Note that ‖ψ‖ = 1, γ ∈ (ρh, 1), ‖L‖ = λN (L),

‖P̃γ,T ‖ ≤ ρh/γ, and ‖ζ(0)‖∞ = 0 < Cs/β0 and
sup1≤t≤κT ‖ζ(t)‖∞ ≤ 1/(2γ) since the quantizer is un-
saturated before t = (κ+ 1)T . By some manipulations,
the Euclidean norm of α((κ+ 1)T ) is upper bounded by

2
√
NCs
β0

(
ρh
γ

)κ
+

√
NCsTλN (L)

β0γ

(
ρh
γ

)κ
+

√
NTλN (L)

2γ(γ − ρh)

(
1−

(
ρh
γ

)κ)
+

γN2(ε)

β0(γ − ρh)
. (43)

Considering that β0 >
2Cs(γ−ρh)(2γ+TλN (L))

TλN (L) , one has

‖α(κ+ 1)T‖ <
√
NTλN (L)

2γ(γ − ρh)
+

γN2(ε)

β0(γ − ρh)
. (44)

Hence for sufficiently small ε, ‖α((κ+ 1)T )‖ < α holds.
On the other hand,

‖∆(κT )‖∞

≤‖(I + TL)‖∞‖ζ(κT )‖∞ + T‖L‖‖α(κT )‖+
‖Π3(κT )‖
β0γκ

<
1 + 2Td∗

2γ
+

√
NT 2λ2N (L)

2γ(γ − ρh)
+N3(ε)

=K1(T, γ) +N3(ε). (45)

Similarly, one can select a sufficiently small ε such that

‖∆((κ+ 1)T )‖∞ ≤ K +
1

2
. (46)

Therefore, the quantizer is unsaturated when t = (κ +
1)T .

Case 2): κ+ 1 = k∗. In this case, one has

α((κ+ 1)T ) =
β0γ

κ

√
ε

(I − TL)α(κT ) +
β0γ

κ

√
ε
TLζ(κT )

+
Π2(κT )√

ε
, (47)

ζ((κ+ 1)T ) =
β0γ

κ

√
ε

(∆(κT )−Q(∆(κT ))) . (48)

Note that β0γ
κ

√
ε
≤ 1

γ . Then by conducting a similar analy-

sis as in (41)-(46), one can conclude that ‖α((κ+1)T )‖ <
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α and the quantizer is unsaturated for t = (κ + 1)T in
this case.

Case 3): κ+ 1 > k∗. In this case, one has

α((κ+ 1)T ) =(I − TL)α(κT ) + TLζ(κT ) +
Π2(κT )√

ε
,

(49)

ζ((κ+ 1)T ) =∆(κT )−Q(∆(κT )). (50)

Note that 1 < 1
γ . Again similar to case 1), one can obtain

that ‖α((κ+1)T )‖ < α and the quantizer is unsaturated
when t = (κ+ 1)T .

Therefore, combining Cases 1) to 3) leads to ‖α((κ+
1)T )‖ < α and the quantizer is unsaturated when t =
(κ+1)T if ‖α(kT )‖ < α and the quantizer is unsaturated
for all 0 ≤ k ≤ κ. Finally, we arrive at the conclusion
that ‖α(kt)‖ < α for all k ≥ 0 and quantizer will never
be saturated. The proof of Lemma 3 is completed. �

Now, with Lemma 3, we are in a position to state the
convergence results of the closed-loop system.

Theorem 2. Consider the closed-loop system composed
of the multi-agent system (1), the ESO (20), the encoder
(23), the decoder (24), and the protocol (25). Suppose
Assumptions A1 to A3 are satisfied, and the initial con-
ditions of the agents (%i(0), zi(0)) ∈ X ×Zi, 1 ≤ i ≤ N .
Let the sampling period T , the parameter γ, the quanti-
zation parameter K, and the scaling function β(kT ) be
selected according to (11), (12), (13), and (32), respec-
tively. Then for any σ > 0, there exists ε‡ > 0, which is
dependent on σ, such that for all 0 < ε < ε‡,
• the ESO (20) recovers the agent state and the un-

known dynamics, i.e., there exists τ1(ε) > 0 satisfying
limε→0 τ1(ε) = 0, such that ∀t ∈ [τ1(ε),∞),

|%im(t)− %̂im(t)| ≤ σ, 1 ≤ i ≤ N, 1 ≤ m ≤ r+1. (51)

• the multi-agent system (1) achieves practical output
consensus, i.e.,

lim
t→∞

|yi(t)− yj(t)| ≤ σ, 1 ≤ i 6= j ≤ N. (52)

• the ESO-based protocol (25) recovers the output con-
sensus performance under the full-information-based
protocol, i.e., with same initial conditions,

sup
t∈[0,∞)

|yi(t)− y?i (t)| ≤ σ, 1 ≤ i ≤ N. (53)

Proof.By Lemma 3, for any ε ∈ (0, ε†), ‖α(kT )‖ < α for
all k ≥ 0. Then following a similar line of the arguments
as in (35) to (38), one can conclude that there exists

ε‡1 ∈ (0, ε†] such that for all ε ∈ (0, ε‡1), the statement in
the first bullet holds.

By the definitions of α(kT ) and δ(kT ), and the
selection of β(kT ), for k ≥ k∗, one has ‖δ(kT )‖ =
β(kT )‖α(kT )‖ < α

√
ε = O(

√
ε). Thus |si(kT ) −

sj(kT )| = O(
√
ε), 1 ≤ i 6= j ≤ N , for k ≥ k∗. Further-

more, for any t ∈ [kT, (k + 1)T ), one has

si(t)− si(kT ) = (t− kT )
∑
j∈Ni

aij

(
ŝji(kT )− ξi(kT )

)
+

∫ t

kT

r∑
m=1

kmε
r+1−mηi,m+1(ν)dν. (54)

Note that the right hand side of the equation above con-
verges to O(ε). Thus one can conclude that limt→∞ |si−
Λ| = O(ε) for some constant Λ. By Lemma 1, the state-
ment in the second bullet holds.

For t ≥ τ1(ε), considering the convergence of the ob-
server, the trajectory of si(t) under the ESO-based pro-
tocol can be given by

si((k + 1)T ) = si(kT ) + T
∑
j∈Ni

aij (ŝji(kT )− ŝij(kT ))

+O(ε), k = 0, 1, . . . ,

si(t) = si(kT ) + (t− kT )
∑
j∈Ni

aij (ŝji(kT )− ŝij(kT ))

+O(ε), t ∈ [τ1(ε),∞) ∩ (kT, (k + 1)T ),

(55)

Since ṡi and ṡ?i are bounded uniformly in ε and si(0) =
s?i (0), one has

si(t)− s?i (t) = O(τ1(ε)), ∀t ∈ [0, τ1(ε)]. (56)

Hence si(τ1(ε)) − s?i (τ1(ε)) = O(τ1(ε)), this together
with (17) and (55), the continuous dependence of the so-
lutions of differential equations on initial conditions and
parameters (see Theorem 9.1 in Khalil (2002)), and the
exponential convergence of the equation si((k + 1)T ) =
si(kT ) + T

∑
j∈Ni aij (ŝji(kT )− ŝij(kT )) (i.e., the ex-

ponential convergence of s?i (t)), leads to

si(t)− s?i (t) = O(ε) +O(τ1(ε)), ∀t ≥ τ1(ε). (57)

Combining (56) and (57) gives

si(t)− s?i (t) = O(ε) +O(τ1(ε)), ∀t ≥ 0. (58)

Since yi is uniquely decided by si, (58) indicates (53).
Therefore the statement in the third bullet holds, and
this completes the proof of Theorem 2. �

Remark 2. The first bullet in Theorem 2 shows the con-
vergence of the ESO. For sufficiently small ε, the ESO
estimation error and the transient period τ1(ε) can be
both made arbitrarily small. The second bullet shows
that the proposed ESO-based protocol enables practical
output consensus for the multi-agent system (1). Also
note that similar to Li et al. (2011), the convergence rate
of the practical consensus in this paper is also decided
by the scaling function β(kT ). Since ‖δ(kT )‖ < β(kT )α
and β(kT ) = max{β0γk,

√
ε}, the practical convergence

needs at most k∗ steps. The third bullet shows the per-
formance recovery property of the proposed protocol as
the trajectories of yi, 1 ≤ i ≤ N , can be made arbitrarily
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close to y?i , which are generated by the full-information-
based protocol. Unlike the existing consensus protocol
for multi-agent systems which gives importance mainly
to the steady-state consensus error, the proposed proto-
col also shapes the transient performance. Also note that
y?i can be regarded as the output of the linear system
(18) with a full-state-feedback control protocol u?i . Thus
the proposed ESO-based protocol is capable of driving
the trajectories of the outputs of a higher-order multi-
agent system with unknown nonlinear dynamics, exter-
nal disturbances, and partially measurable states, arbi-
trarily close to the outputs of its linear counterpart with
fully measurable states.

Remark 3. In this section, since the external distur-
bance ωi and functions fim(·), 0 ≤ m ≤ r, are unknown,
and each agent only has access to its first state vari-
able xi1, an ESO is employed to estimate these infor-
mation. Then the quantizer uses the ESO estimated in-
formation, and consequently the ESO estimation error
will be injected into the quantization process (see (28)-
(30)). In this case, the scaling function cannot decrease
to 0. If β(kT )→ 0 as in (14), the ESO estimation error
will be enlarged to infinity during the quantization pro-
cess, which makes the quantizer saturated. To handle
this problem, in Theorem 2, we let the scaling function
converge to

√
ε. Recall that the ESO estimation error

is of the order of O(ε), letting β(kT ) →
√
ε guarantees

that the ESO estimation error will not make the quan-
tizer saturated.

From Theorem 2, it can be observed that the num-
ber of the quantization levels, 2K + 1, increases when
the number of the agents N increases. In particular,
limN→∞(2K + 1) =∞. However, for a practical digital
network, the number of the quantization levels is lim-
ited. Our next theorem shows that no matter how many
agents there are, the proposed ESO-based protocol guar-
antees consensus with a fixed number of quantization
levels. The lowest number of the quantization levels we
achieve is 3 (i.e., K = 1, a one-bit quantizer).

Theorem 3. Consider the closed-loop system composed
of the multi-agent system (1), the ESO (20), the encoder
(23), the decoder (24), and the protocol (25). Suppose
Assumptions A1 to A3 are satisfied, and the initial con-
ditions of the agents (%i(0), zi(0)) ∈ X ×Zi, 1 ≤ i ≤ N .
For any given K ≥ 1, let the scaling function β(kT ) be
selected according to (32), and

T ∈(0,min{2/(λ2(L) + λN (L)), Tm}), (59)

γ =1− (1− ε0)Tλ2(L), (60)

where ε0 ∈ (0, 1) and

Tm =2Kε0λ2(L)
[√

Nλ2N (L) + 2ε0λ2(L)d∗

+ (2K + 1)(1− ε0)ε0λ
2
2(L)

]−1
.

Then the three statements in Theorem 2 hold.

Proof. Note that (59) and (60) are sufficient conditions

for (11) and (12), respectively. What is more, it can be
verified from the definition of Tm that

1

2
< K1(T, γ) < K +

1

2
, (61)

which indicates that the condition (13) is also satisfied.
Therefore, following a similar line of the proof of Theo-
rem 2, one can conclude that the statements in Theorem
3 hold. �

Remark 4. Theorem 3 shows that for a connected undi-
rected network of rth-order uncertain nonlinear agents
with partially measurable states, no matter how many
agents there are, one can always design an ESO-based
protocol to guarantee consensus with only one bit infor-
mation exchange between each pair of adjacent agents at
each time step. From a theoretical perspective, the pro-
posed approach achieves the lowest data rate via output
feedback. For comparison, in the literature, first-order
integrator multi-agent systems require at least one-bit
data rate (Li et al., 2011); second-order integrator multi-
agent systems require at least two-bit data rate (Li &
Xie, 2012); rth-order integrator multi-agent systems re-
quire at least r-bit data rate (Qiu et al., 2017a); and
2rth-order multi-agent systems with oscillator dynamics
require at least r to 2r-bit data rate (Qiu et al., 2017b).

Finally, we provide some explanations on the param-
eters selection of the proposed ESO-based protocol to
end this section.

Remark 5. The saturation bounds Mm satisfying
Mm ≥ sup1≤i≤N |%?im|, 1 ≤ m ≤ r+ 1, are selected such
that the saturations will not be invoked in the steady
state of the observer. The values of M1 to Mr can be
obtained by simulating the linear system (18) with ini-
tial condition %?i (0) ∈ X and the control protocol u?i (t).
The calculation of Mr+1 might end up with a conser-
vative value since Fi(·) is unknown. The parameter Cs
satisfying Cs ≥ max%i∈X ,1≤i≤N |si| is chosen to prevent
the saturation of the quantizer in the initial stage (Li et
al., 2011).

Remark 6. The parameter ε is important for the suc-
cessful implementation of the proposed ESO-based pro-
tocol. From (38) and the fact that ‖ηi(0)‖ ∝ 1

εr , one has

‖ηi(t)‖ ≤
√
σi2
σi1
‖ηi(0)‖εr+1 +

2σ2
i2N1iε

σi1
= O(ε), (62)

for all t ≥ tε, where tε , −2σi2(r+ 1)ε ln ε. Since N1i is
unknown due to the unknown external disturbance and
agent dynamics, it is difficult to accurately establish the
bound of the ESO estimation error. Therefore, inherent
from the previous ESO results (Khalil, 2017), the calcu-
lation of the upper bound of ε (i.e., ε‡) is not straightfor-
ward. What is more, for practical control systems, the
lower bound of ε is also limited by some implementation
issues, such as noises. In practice, the value of ε can be
selected by a simple trial and error procedure. Our expe-
riences and many ESO application examples in the lit-
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Fig. 1. The digital communication network.

erature (see Chen, Yang, Guo, and Li (2016) and Sariy-
ildiz, Oboe, and Ohnishi (2020), and references therein)
indicate that it is generally not difficult to select a sat-
isfactory value of ε.

5 Example

In this section, an application example with five pen-
dulum systems is investigated to illustrate the effective-
ness of the proposed design scheme. Each pendulum with
the inclusion of motor dynamics is described by (Kwan,
1995)
ẋi1 =xi2,

ẋi2 =xi3 − pi sin(xi1)− qi cos(xi1),

ẋi3 =− xi3 + ui + ωi, 1 ≤ i ≤ 5,

(63)

where xi1 and xi2 denote the angular position and rate
of the ith pendulum, respectively; xi3 denotes the mo-
tor shaft angle; ui is the input motor torque; pi and
qi are system parameters; and ωi is the external dis-
turbance. By defining %i1 = xi1, %i2 = xi2, and %i3 =
xi3−pi sin(xi1)− qi cos(xi1), the pendulum systems can
be rewritten as
%̇i1 =%i2,

%̇i2 =%i3,

%̇i3 =− %i3 − pi sin(%i1)− qi cos(%i1)− pi%i2 cos(%i1)

+ qi%i2 sin(%i1) + ωi + ui, 1 ≤ i ≤ 5.

To make the pendulum systems heterogeneous, we let
pi = 10 + i and qi = 2 + 0.2i, 1 ≤ i ≤ 5. The external
disturbances are numerically taken as ωi = sin(2t).

Fig. 1 depicts the communication network among the
five pendulums. Let k1 = k2 = 4. The gains Li, 1 ≤ i ≤
5, for the observers are set as Li = [4 6 4 1]T, which
places the eigenvalues of the matrix Ei at−1. The initial
conditions of the pendulum systems xim(0), 1 ≤ i ≤ 5,
1 ≤ m ≤ 3, are assumed to be randomly distributed in
[−4.5, 4.5], while the initial conditions of the observers
are set as 0. The bounds are set as M1 = 5, M2 = 5,
M3 = 15, M4 = 25, and Cs = 40.

First, we simulate the higher quantization level case.
Select T = 0.05, γ = 0.93, K = 10, and β0 = 10, which
satisfy all the conditions in Theorem 2. Fig. 2 shows the
response of yi, 1 ≤ i ≤ 5, with different values of ε. One
can see that the five agents achieve practical output con-
sensus, and smaller value of ε leads to smaller steady-
state consensus error. Fig. 3 depicts the performance of
the ESO for agent 1 with ε = 0.01. It can be observed
that both the agent state %1 and the unknown nonlin-
ear dynamics %14 , −%13 − p1 sin(%11) − q1 cos(%11) −

(a) ε = 0.1. (b) ε = 0.05.

(c) ε = 0.01. (d) ε = 0.001.

Fig. 2. Simulation results of the ESO-based protocol with
different values of ε.

Fig. 3. Response of the ESO for agent 1 with ε = 0.01.

p1%12 cos(%11)+q1%12 sin(%11)+ω1 are well-estimated by
the ESO. Also note that the observer exhibits peaking
phenomenon during the short transient period.

Then, we investigate the performance of the proposed
protocol with one-bit quantizers (i.e., K = 1). Let ε0 =
0.5, and by (59), the sampling period needs to satisfy
0 < T < 0.0233. According to Theorem 3, we select
T = 0.015, γ = 0.9881, and β0 = 30. The trajectories
of yi, 1 ≤ i ≤ 5, with ε = 0.01, are shown in Fig. 4,
which illustrates the practical output consensus of the
five agents.

6 Conclusion

In this paper, we explored the output feedback quan-
tized consensus problem for uncertain nonlinear hetero-
geneous multi-agent systems. An ESO-based protocol
with dynamic encoding and decoding was proposed. The
proposed protocol shapes the transient consensus per-
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Fig. 4. Simulation results of the ESO-based protocol with
one-bit quantizers.

formance, and guarantees a steady-state consensus error
that can be made arbitrarily small by tuning the observer
parameter. It was also shown that, for a connected undi-
rected network, merely one bit information exchange be-
tween each pair of adjacent agents at each time step suf-
fices to guarantee consensus. The approach developed
in this paper provides a practical solution with some in-
triguing properties to the consensus problem of multi-
agent systems with limited data rate. Future research
works will be directed at the communication-constrained
control problems for multi-agent systems in the presence
of network attacks (Feng et al., 2020).
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