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Abstract

We study a distributed Kalman filtering problem in which a number of nodes cooperate without central coordination to
estimate a common state based on local measurements and data received from neighbors. This is typically done by running a
local filter at each node using information obtained through some procedure for fusing data across the network. A common
problem with existing methods is that the outcome of local filters at each time step depends on the data fused at the previous
step. We propose an alternative approach to eliminate this error propagation. The proposed local filters are guaranteed to be
stable under some mild conditions on certain global structural data, and their fusion yields the centralized Kalman estimate.
The main feature of the new approach is that fusion errors introduced at a given time step do not carry over to subsequent
steps. This offers advantages in many situations including when a global estimate in only needed at a rate slower than that of
measurements or when there are network interruptions. If the global structural data can be fused correctly asymptotically, the
stability of local filters is equivalent to that of the centralized Kalman filter. Otherwise, we provide conditions to guarantee
stability and bound the resulting estimation error. Numerical experiments are given to show the advantage of our method over
other existing alternatives.

Key words: Kalman filters, networked control systems, sensor networks, estimation theory, statistical analysis, stability
analysis.

1 Introduction

A networked system consists in a collection of nodes (or
sub-systems), connected via a communication network,
executing certain processing task [1]. The processing is
called distributed if it is carried out by a cooperative
strategy among nodes without central coordination [2].
The design of distributed methods aims at minimizing
the amount of computation and communication required
by each node, as well as making these requirements scal-
able in the number of nodes. Distributed methods are
available for parameter estimation [3,4], Kalman filter-
ing [5], control [6,7], optimization [8], etc.
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and by the National Natural Science Foundation of China
(Grant Nos. 61633014, 61803101 and U1701264).

A Kalman filter gives the optimal maximum a posteriori
estimation of the state for linear systems with Gaussian
noises. This is done by alternating two steps called pre-
diction and update. A major division among distributed
Kalman filtering methods is based on whether all nodes
estimate the full system state [9], or each node only esti-
mates a subset of the state variables [10,11,12,13,14,15].
This work concerns with methods of the first type. Gen-
erally speaking, all methods of this type assume that
nodes know the state transition equation. This permits
that the prediction step is locally executed at each node.
The challenge then consists in how to distributedly ex-
ecute the update step. Most available methods do so by
making use of the information form of the Kalman filter.
This requires computing two quantities called the infor-
mation vector and information matrix, the former in-
volving the fusion of measured signals at different nodes
and the latter involving the fusion of structural data of
the sub-systems.We broadly classify the available meth-
ods in two categories.
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In the first category the information vector and matrix
are formed by adding, using different communication
schemes, partial components from all nodes of the net-
work. An early method was proposed in [16], which re-
quires full connectivity among all nodes. This restriction
was overcome in [17] by using dynamic consensus [18] to
fuse information across the network. The same method
was refined in [19] by using different consensus stages
for fusing information vectors and matrices. In [20] ac-
curacy was improved, at the expense of extra communi-
cation, by adding consensus sub-iterations between ev-
ery two sample times. A variant of this method was pro-
posed [21] and analyzed in [22], where two parallel con-
sensus stages are run for each, information vectors and
matrices. A different variant was proposed in [23], where
a particular kind of dynamic consensus was used guar-
anteeing convergence on the time-varying information
vectors if certain assumptions are met. In [24,25], fusion
of information vectors was done by representing them
using a state-space model and estimated them using a
distributed Kalman filter of the second category. In [26]
and [27] the fusion scheme was complemented by using
the covariance intersection method [28] to fuse the out-
comes of the prediction steps from each node. Finally,
in [29] fusion was done by using a message passing algo-
rithm, rather than a form of consensus, with the advan-
tage of finite-time convergence in the case of an acyclic
communication network graph.

In the second category, the fusion of information vec-
tors and matrices used in methods of the first category is
complemented by fusion of Kalman estimates. This ap-
proachwas proposed in [30]. Its optimal design was stud-
ied in [31] and its performance analyzed in [32]. A recent
improvement of this method was proposed in [33], by us-
ing dynamic consensus to fuse information vectors and
matrices. In [34] the design was approached by propos-
ing a particular structure, with free parameters, which
are optimized to minimize the estimation error. A sim-
ilar approach was later considered in [35] using a more
general structure and setup. Finally, in [36], fusion of
information vectors is eliminated and only Kalman esti-
mates are fused.

Broadly speaking, all methods from the two categories
described above require carrying out two kinds of data
fusion. The first one aims to fuse information associated
with the parameters of the measurement equation, typi-
cally to form the global information/covariance matrix.
We refer to this as structural data fusion. The second
one aims to fuse information associated to the measure-
ments locally acquired at each node, typically to form
the global information vector. We refer to this as sig-
nal fusion. In the case of time-invariant measurement
equations, structural data fusion needs to be done once,
possibly during initialization. Also, even in the time-
varying case, the rate of change of this data is typically
slow, and can be easily tracked using dynamic consen-
sus with limited communications. In these cases, struc-

tural data fusion can be done with negligible error. On
the other hand, the change of measurements across time
steps is typically much faster than that of the measure-
ment equation. This requires a signal fusion stage with
more communications.

A common property of the all the available methods de-
scribed above is that information fusion needs to be car-
ried out at every Kalman update step, because its re-
sult is needed for the subsequent Kalman prediction and
update steps. Due to the large communication demands
associated to this stage, it is often done approximately.
The resulting approximation error then propagates, in
the sense that it affects subsequent steps. This signal fu-
sion error propagation leads to deviations between the
estimates produced by the centralized Kalman filter and
those of their distributed counterparts, which accumu-
late across time steps.

To overcome signal fusion error propagation, in this work
we propose an alternative method which avoids this
drawback. In the proposed method, each node runs a lo-
cal estimator which does not require signal fusion. Ob-
viously, none of these local estimators can produce the
global Kalman estimate, since they only use local mea-
surement information. However, they have the property
that the global Kalman estimate is obtained by fusing
their local estimates. In this way, the proposed scheme
avoids the aforementioned signal fusion error propaga-
tion problem. For this reason, it is in our view a proper
generalization of a Kalman filter to a distributed set-
ting. Apart from avoiding the accuracy problems result-
ing from signal fusion error propagation, the proposed
scheme is advantageous in applications where a global
estimate is required at a rate slower than the one at
which measurements are acquired. This is because in-
formation fusion needs only be done at the slower rate.
Also, in the case of unreliable communications, where
fusion cannot be done during certain periods, the pro-
posed scheme immediately recovers without errors after
communications resume.

An additional property of the proposed method is that,
provided that structural data fusion is accurately done,
the stability of each local estimator is equivalent to that
of the centralized Kalman filter. However, stability can
be lost if the structural data fusion is done with signifi-
cant errors. We do a stability analysis in which we pro-
vide a bound on the structural data fusion error that
guarantees stability. We also bound the difference be-
tween the distributed state estimate and the centralized
Kalman estimate due to both, structural data and signal
fusion errors.

The rest of the paper is organized as follows. In Sec-
tion 2 we describe the research problem. In Section 3
we give an overview of the available approaches for dis-
tributed Kalman filtering and point out their common

2



drawback that motivates our work. In Section 4 we intro-
duce the proposed distributed Kalman filtering scheme
addressing the aforementioned drawback. In Section 5
we present our stability and accuracy analysis results
and in Section 6 we derive their proofs. In Section 8 we
give experimental evidence of our claims. Concluding re-
marks are given in Section 9. For ease of readability, the
proofs of some auxiliary results appear in the Appendix.

2 Problem description

Notation 1 For a vector x, ‖x‖ denotes its 2-norm
and for a matrix X, ‖X‖ denotes its operator norm.
We use SN (R) ⊂ RN×N to denote the set of real sym-
metric N × N matrices, and PN (R) ⊂ RN×N to de-
note the set of real positive definite N × N matrices.
Also, col (x1, · · · , xI) denotes the column vector formed
by stacking the symbols (either vectors or matrices) xi,
i = 1, · · · , I, and diag (x1, · · · , xI) denotes the diago-
nal matrix with the same symbols on its main diagonal.
We use 1N to denote the N -dimensional column vector
filled with ones, IN to denote the N -dimensional iden-
tity matrix and ⊗ to denote the Kronecker product. For a

symbol Ξi we use the handy notation Ξ−i ,
(

Ξi
)−1

and

Ξi⊤ ,
(

Ξi
)⊤

.

Consider a random vector sequence described by the fol-
lowing recursions

xt = Axt−1 + wt, (1)

where RN ∋ x0 ∼ N (µ, P ) and wt ∼ N (0, Q), with
P,Q ∈ PN (R). We assume that we have I nodes ac-
quiring measurements from xt. In order to model mov-
ing nodes, we assume that their associated measurement
equations are time-varying, i.e., at time step t, node i
measures

yit = Citxt + vit, (2)

with vit ∼ N
(

0, Rit
)

, Rit ∈ PM (R). We assume that the

set
{

x0, wt, v
i
t : t ∈ N, i = 1, · · · , I

}

is statistically mu-
tually independent.

Nodes are communicated via a consensus network. We
assume that between every two consecutive time steps t
and t+1, there areK communication cycles. In order to
model a time-varying connection topology, at time t ∈ N

and cycle k ∈ {1, · · · ,K}, node i can sendmessages to its
neighbors N i

t,k ⊆ {1, · · · , I}. The communication link

from node i to node j ∈ N i
t,k has gainw

j,i
t,k. The gains are

such that the communication graph is undirected, i.e.,
w
i,j
t,k = w

j,i
t,k. We also assume that the adjacency matrix

Wt,k =
[

w
i,j
t,k

]I

i,j=1
satisfies

lim
K→∞

λ2 (Wt,K × · · · ×Wt,1) = 0,

where λ2 (X) denotes the algebraic connectivity of ma-
trix X , i.e., the second largest eigenvalue. This guaran-

tees that, for any xt,0 =
[

xit,1, · · · , xIt,1
]⊤ ∈ RI , the se-

quence generated by xt,k =Wt,kxt,k−1 satisfies

lim
k→∞

xt,k = 1I ⊗
1

I

I
∑

i=1

xi0.

Writing (2) in block form we obtain

yt = Ctxt + vt, (3)

where vt ∼ N (0, Rt) and

yt = col
(

y1t , · · · , yIt
)

,

vt = col
(

v1t , · · · , vIt
)

,

Ct = col
(

C1
t , · · · , CIt

)

,

Rt = diag
(

R1
t , · · · , RIt

)

.

A research challenge consists in deriving a distributed
method for running a Kalman filter on the system (1)-
(3). As mentioned in Section 1, a number of method are
available for doing so. In Section 3 we give an overview of
these methods and point out their common drawback. In
Section 4 we propose a method which avoids this draw-
back.

3 Overview of available distributed methods

In this sectionwe briefly summarize available approaches
for distributed Kalman filtering. Let

xit+1|t = Axit|t, (4)

Σit+1|t = AΣit|tA
⊤ +Q, (5)

xt|t = Σt|t

(

Σ−1
t|t−1xt|t−1 + C⊤

t R
−1
t yt

)

, (6)

Σt|t =
(

Σ−1
t|t−1 + C⊤

t R
−1
t Ct

)−1

, (7)

denote the centralized Kalman filter equations, where
the update step is expressed in information form, and
xit|s and Σit|s denote the approximations obtained at

node i. All methods assume that the number I of nodes is
known at each node. Notice that it is possible to compute
I in a distributed manner using the method proposed
in [37]. They also assume that all nodes know A and Q
and the initial values x0|0 = µ and Σ0|0 = P . Then, at
time step t, given an update estimate/covariance pair
xit|t, Σ

i
t|t, the Kalman prediction step can be carried out

at each node using (4)-(6). The different methods differ
in how the Kalman update step is carried out. In Sec-
tion 3.1 we describe how this is done in the two method
categoriesmentioned in Section 1. Carrying out this step
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requires some form of data fusion across nodes. In Sec-
tion 3.2 we describe the most common options used for
doing so. Finally, in Section 3.3 we comment on a com-
mon limitation of all available approaches.

3.1 Distributed Kalman update step

Let

Ψt = C⊤
t R

−1
t Ct =

I
∑

i=1

Ci⊤t R−i
t Cit , (8)

ψt = C⊤
t R

−1
t yt =

I
∑

i=1

Ci⊤t R−i
t yit. (9)

We refer to ψt and Ψt as the (global) signal and struc-
tural data, respectively. In view of (9) and (8), the signal
ψt and structural data Ψt can be made available at each
node using some kind of data fusion. The fusion stage
yields, at each node i, estimates ψit and Ψit of ψt and Ψt,
respectively. The different available methods depend on
how, using ψit and Ψit, the update step (6)-(7) is com-
puted at each node. We describe below how this is done
in the aforementioned two categories:

3.1.1 Consensus on global signal data

Using again any form of data fusion, an approximation
ψit of ψt can be obtained at each node i. Using this ap-
proximation, in [20,21,22,23,26,27] xit|t is obtained us-

ing (6), i.e.,

xit|t = Σit|t

(

Σ−i
t|t−1x

i
t|t−1 + ψit

)

. (10)

Alternatively, the Kalman gain

Kt = Σt|tC
⊤
t R

−1
t ,

is used in [17,19] to compute

xit|t = xit|t−1 +Kt

(

yt − Ctx
i
t|t−1

)

= xit|t−1 +Σt|t

(

C⊤
t R

−1
t yt − C⊤

t R
−1
t Ctx

i
t|t−1

)

= xit|t−1 +Σt|t

(

ψt −Ψtx
i
t|t−1

)

≃ xit|t−1 +Σit|t

(

ψit −Ψitx
i
t|t−1

)

. (11)

3.1.2 Consensus on global signal data and estimates

In order to help the estimates in (11) to converge to a
common value, in [30,31,32,33], an extra term penalizing

inter-node mismatches is added. This leads to

xit|t = xit|t−1 +Σit|t

(

ψit −Ψitx
i
t|t−1

)

+Dt

∑

j∈Ni

(

x
j
t|t−1 − xit|t−1

)

, (12)

where matrix Dt is a free parameter that needs to be
designed. In particular, the choice Dt = I − Σit|tΨ

i
t is

implicitly made in [33].

3.2 Information fusion using consensus

In this sectionwe describe the different data fusionmeth-
ods used in the distributed Kalman filtering literature.
These methods apply to the fusion of both, global sig-
nal data ψt and global structural data Ψt. We describe
then for fusing signal data. Its application to the fusion
of structural data is straightforward.

3.2.1 Local fusion of neighbor data

In [24,25,30,31,32,35,36], ψit is built by using only data
from neighbor nodes. More precisely, they assume that
K = 1, i.e., there is a single communication cycle be-
tween consecutive time steps. Let

ψ̊it =
(

Cit
)⊤ (

Rit
)−1

yit. (13)

Then

ψit = I

I
∑

j=1

w
i,j
t,1ψ̊

i
t.

3.2.2 Global fusion using consensus

In [20,21,22,34], the fusion is done using K > 1 consen-
sus iterations, i.e., they run the following recursions

ψit,k =

I
∑

j=1

w
i,j
t,kψ

j
t,k−1, (14)

initialized byψjt,0 = Iψ̊it. The fused data is then ψit =

ψit,K , i.e., the one yield after K cycles.

3.2.3 Local fusion using dynamic consensus

In [17,19,23,33], fusion is done using dynamic consensus.
More precisely, they assume K = 1 and the fused local
dataψit is computed bymodifying its previous valueψit−1
with an update term, i.e.,

ψit =
I
∑

j=1

w
i,j
t,1

[

ψ
j
t−1 + Iψ̊

j
t − Iψ̊

j
t−1

]

.

4



3.2.4 Global fusion using dynamic consensus

The advantage of dynamic consensus is that it leads to an
approximation error ψt−ψit that decreases as so does the
rate of change of ψt. Also, the advantage of using K > 1
consensus iterations is that it also permits reducing this
error, at the expense of extra communications. These two
advantages can be readily combined to increase accuracy
as follows

ψit,k =

I
∑

j=1

w
i,j
t,kψ

j
t,k−1, (15)

initialized by

ψ
j
t,0 = ψ

j
t−1,K + Iψ̊

j
t − Iψ̊

j
t−1, (16)

The fused data is then ψit = ψit,K . This is the fusion
method that we use in this work.

3.3 Common drawback of all available methods

The methods described above require running two fu-
sion stages for computing (8) and (9). The first one com-
putes the global structural data Ψt. Since Ψt is struc-
tural data, it is often time-invariant or its change from
one time step to the next one in typically slow. In the
former case, it can be readily computed during initial-
ization using some fusion mechanism. Otherwise, we can
track its slow evolution using dynamic consensus with a
relatively small number K of consensus iterations. On
the other hand, the second consensus stage computes ψt.
Since this quantity depends on the measurements yt, its
change across time steps is typically much faster than
that of Ψt. This requires using consensus with a larger
value of K to make an accurate estimate ψit of ψt avail-
able at each node. A common feature of the available
methods described above is that the signal fusion error
incurred in the estimation ψit is carried over to the next
time step. This requires that the estimation of ψt is ac-
curately done at each time step, using a large number
of consensus iterations K, even if an estimate xt|t is not
required at that step. In the next section we propose an
alternative distributed method which avoids this draw-
back.

4 Proposed distributed method

In this section we describe the proposed distributed
Kalman filtering method. The covariance prediction and
update steps are carried out using (5) and (7), as in the
methods described in Section 3. For the state estimate,
suppose that

xt−1|t−1 =

I
∑

i=1

ξit−1|t−1,

for some ξit−1|t−1, i = 1, · · · , I, which are only known at

node i. We then have

xt|t = Axt−1|t−1 +Kt

(

yt − CtAxt−1|t−1

)

= (I −KtCt)Axt−1|t−1 +Ktyt

=

I
∑

i=1

[

(I − Φt)Aξ
i
t−1|t−1 +Ki

ty
i
t

]

,

where
Φt = KtCt.

Letting K⊤
t =

[

(

K1
t

)⊤
, · · · ,

(

KI
t

)⊤
]

, where for each

i = 1, · · · , I, the number of columns of Ki
t equals the

dimension of yit, and

ξit|t = (I − Φt)Aξ
i
t|t−1 +Ki

ty
i
t, (17)

we obtain

xt|t =

I
∑

i=1

ξit|t. (18)

The above means that if we could distributedly compute
the structural data Φt andK

i
t , then each node could run

the local filter (17) without needing to exchange infor-
mation with its neighbors unless an estimate of xt|t is
needed at time step t. We address the distributed com-
putation of Φt and K

i
t below.

From the information form of the Kalman filter, we have

Kt = Σt|tC
⊤
t R

−1
t .

Hence, Ki
t can be readily computed at each node using

Ki
t = Σt|t

(

Cit
)⊤ (

Rit
)−1

. (19)

Also,
Σt|t = (I − Φt)Σt|t−1,

leading to

Φt = I − Σt|tΣ
−1
t|t−1

= I − Σt|t

(

Σ−1
t|t −Ψt

)

= Σt|tΨt. (20)

Hence, Φt can be locally computed at each node provided
an estimate of Ψt is available.

The resulting method then requires a fusion stage to
compute an estimate of Ψt at each node, and another one
for computing xt|t using (18). As we mentioned, we do
fusion using the dynamic consensus procedure (15)-(16).
We use KΨ and Kx to denote the number of consensus
iterations used to compute Ψt and xt|t, respectively. The
resulting method is summarized in Algorithm 1.
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Algorithm 1 Proposed distributed Kalman filtering al-
gorithm.

Initialization:We assume that, for each i ∈ {1, · · · , I},
node i knows I, A, Q and P . Set

ξi0|0 = µ, Σ0|0 = P and Ψi0 = 0.

Main iterations: At each t ∈ N, we assume that node i
knows Cit , R

i
t and y

i
t.

(1) Prediction:

Σit|t−1 = AΣit−1|t−1A
⊤ +Q, (21)

ξit|t−1 = Aξit−1|t−1. (22)

(2) Structural data fusion: For k = 1, · · · ,KΨ, run

Ψit,k =

I
∑

j=1

w
i,j
t,kΨ

j
t,k−1, (23)

initialized by

Ψjt,0 = Ψjt−1 + IΨ̊jt − IΨ̊jt−1,

where
Ψ̊jt = C

j⊤
t R

−j
t C

j
t . (24)

Upon completion set Ψit = Ψit,KΨ
. In the time-

invariant case, run this step only at t = 1.
(3) Update:

Σit|t =
(

Σ−i
t|t−1 +Ψit

)−1

, (25)

Ki
t = Σit|tC

i⊤
t R−i

t , (26)

Φit = Σit|tΨ
i
t, (27)

ξit|t =
(

I − Φit
)

ξit|t−1 +Ki
ty
i
t. (28)

(4) Signal fusion: If an estimate is required at t, then
for k = 1, · · · ,Kx, run

xit|t,k =
I
∑

j=1

w
i,j
t,kx

j
t|t,k−1, (29)

initialized by

x
j
t|t,0 = x

j
s|s + Iξ

j
t|t − Iξ

j
s|s,

where s is the previous time an estimate was re-
quired. Upon completion set ξit|t = xit|t = xit|t,Kx

.

Remark 2 In many applications, the structural data Ψt
is typically either time-invariant or changes slowly with
time in comparison with xt|t. We then typically use KΨ

much smaller than Kx. A smaller KΨ reduces the com-
plexity of the algorithm while allowing us to keep track of
slow changes of the structural data.

Remark 3 Let Mi denote dimension of the measure-
ment vector yit at node i and Li = max {Mi, N}. The
complexity of Algorithm 1 is as follows: Each predic-
tion/update step requires O

(

L2
iN
)

multiplications, each

structural data fusion stage requires O
(

L2
iMi

)

and each

signal fusion stage O
(

N2
)

.

Clearly, if structural data and signal fusions are done
without errors, every time t signal fusion occurs, the esti-
mate xit|t produced at each node i equals the centralized

Kalman estimate xt|t. The question then naturally arises

as to whether the linear maps (yt)t∈N
7→
(

dit
)

t∈N
, where

dit = ξit|t −
∑I

j=1 ξ
j
t|t, are stable for each i = 1, · · · , I.

This is guaranteed by setting ξit|t=x
i
t|t at the end of ev-

ery signal fusion step. This requires running signal fu-
sion steps on a regular basis. However, if the dynamics
of local filters (22), (28) (equivalently (17)) are stable,
this requirements can be dropped. The following result
gives conditions guaranteeing this.

Theorem 4 If Ψit = Ψt, for all i = 1, · · · , I and t ∈
N (i.e., structural data fusion is done without errors),
and the centralized Kalman filter (yt)t∈N

7→
(

xt|t
)

t∈N

is stable, then the local filters
(

yit
)

t∈N
7→
(

ξit|t

)

t∈N

are

stable.

PROOF. Since Ψit = Ψt, it follows from (25), (27)
and (21) that Φit = Φt. Therefore, from (26), (28)
and (22), that

ξit|t = (I − Φt)Aξ
i
t−1|t−1 +Σt|tC

i⊤
t R−i

t yit.

Hence, the dynamics of each local filter are determined
by the matrix (I − Φt)A. The result then follows since
this is also the matrix that determines the dynamics of
the centralized Kalman filter. ✷

On the other hand, if errors are introduced at the struc-
tural data fusion stage, they will affect local filter dy-
namics by introducing errors in the recursions (21)-
(28). This in turn raises a question about which error
tolerance can be allowed at the structural data fusion
stage so as to preserve the stability of the local filters
(

yit
)

t∈N
7→
(

ξit|t

)

t∈N

, as well as that of the mismatch

map (yt)t∈N
7→
(

xit|t − xt|t

)

t∈N

between the estimates
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produced at each node and the centralized Kalman one.
We address these two questions in the next section.

5 Stability and accuracy analysis

In this section we study the accuracy requirements in the
structural data fusion stage to guarantee the stability
of local filters. We also derive a bound on the mismatch
between the estimates xit|t produced at each node and

the centralized Kalman estimate xt|t, caused by errors
introduced at both fusion stages.

Notation 5 We use Ψ̃it = Ψit − Ψt to denote the er-
ror introduced at each node by the structural data fusion
stage. We use the same notation, e.g., Σ̃it|s = Σit|s−Σt|s

and Φ̃it = Φit − Φt for the resulting errors introduced in

the values of Σit|s and Φit, respectively. We also use ξ̆it|s
to denote the value of ξit|s that would result if no errors

were introduced at the structural data fusion stage, and

define ξ̃it|s = ξ̆it|s − ξit|s.

Let
¯̃
ψ = sup

t∈N

1≤i≤I

∥

∥

∥
Ψ̃it

∥

∥

∥
,

be a bound on the error introduced at all structural data
fusion stages. Our first result states a sufficient condition

on
¯̃
ψ to guarantee the stability of all local filters.

Theorem 6 Let σ̄ = supt∈N

∥

∥Σt|t
∥

∥ and

γ̄ = sup
t∈N

t
∑

s=1

‖(I − Φt−1)A× · · · × (I − Φs)A‖ ,

β = solb

{

b+ log σ̄ ‖A‖2
∥

∥Q−1
∥

∥ b = 0
}

.

If the centralized Kalman filter (yt)t∈N
7→
(

xt|t
)

t∈N
is

stable, and

¯̃
ψ ≤ min

{

σ̄−1

[

1− exp

(

− β√
N

)]

, γ̄−1 ‖A‖−1

}

,

(30)

then, the local filters
(

yit
)

t∈N
7→
(

ξit|t

)

t∈N

are stable.

Remark 7 Theorem 6 states that, if the error tolerance
¯̃
ψ of structural data fusion is smaller than the threshold
given in (30), the stability of local filters is equivalent to
that of the centralized Kalman filter. Notice that, if mea-
surement equations are time-invariant, so is the struc-
tural data, i.e., Ψt = Ψ, for all t ∈ N. Hence, arbitrarily
accurate structural data fusion can be guaranteed, either
during an initialization phase, or asymptotically at run-
ning time. In this case, stability of local filters is simply

equivalent to that of the centralized Kalman filter. Also
notice that the required boundness of γ̄t is equivalent to
the stability of the centralized Kalman filter.

Let xt|t = 1I ⊗ xt|t denote a vector with I copies
of the centralized Kalman estimate xt|t, and x̂t|t =

col
(

x1t|t, · · · , xIt|t
)

denote the vector of estimates pro-

duced by each node. Let also x̌t|t = 1I ⊗ x̌t|t, where

x̌t|t =

I
∑

i=1

ξit|t,

denotes the estimate that would be obtained at all nodes
if no error were introduced a the signal fusion stage.
Our second result bounds the covariance of the error
x̃t|t , xt|t − x̂t|t. This bound depends on two terms.

The first one depends on the error ¯̃
ψ introduced at the

structural data fusion stage and the second one depends
on the error

∥

∥x̌t|t − x̂t|t
∥

∥ introduced at the signal fusion
stage.

Lemma 8 Let ῡ
(

¯̃
ψ
)

=
√
N
∣

∣

∣
log
(

1− σ̄
¯̃
ψ
)
∣

∣

∣
. If (30)

holds, then the following equation has at least one solu-
tion

x =
σ̄ ‖A‖2 x

σ̄ ‖A‖2 + ‖Q−1‖−1
e−x

+ ῡ
(

¯̃
ψ
)

. (31)

Theorem 9 Let yit = col
(

ξ̆it|t−1, ψ̊
i
t

)

with ψ̊it given

by (13) and

ȳ = sup
t∈N

1≤i≤I

∥

∥E
{

y
i
ty
i⊤
t

}
∥

∥

1/2
. (32)

Suppose that (30) holds, and let δ̄
(

¯̃
ψ
)

denote the smallest

solution of (31). Then

∥

∥

∥
E
{

x̃t|tx̃
⊤
t|t

}
∥

∥

∥

1/2

≤ E

(

¯̃
ψ
)

+ E
{

∥

∥x̌t|t − x̂t|t
∥

∥

2
}1/2

,

(33)
where

E

(

¯̃
ψ
)

= NI

(

γ̄ȳ

1− γ̄
¯̃
ψ

)2
(

φ̄2
(

¯̃
ψ
)

+ ¯̃σ2
(

¯̃
ψ
))

,

with

φ̄
(

¯̃
ψ
)

=

[(

e
δ̄
(

¯̃ψ
)

− 1

)

ψ̄ + e
δ̄
(

¯̃ψ
)

¯̃
ψ

]

σ̄,

¯̃σ
(

¯̃
ψ
)

=

(

e
δ̄
(

¯̃
ψ
)

− 1

)

σ̄,

and ψ̄ = supt∈N ‖Ψt‖.
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Remark 10 The above result is stated in terms of the
bound ȳ. We give in Section 7 details on how to compute
this bound.

Remark 11 Notice that the first term E

(

¯̃
ψ
)

in (33)

depends only on the bound
¯̃
ψ of the structural data fusion

error, and the second term is the signal fusion error at
each sample time t. These two errors are determined by
the numbers KΨ and Kx of consensus iterations used

on each fusion stage. Notice also that, for E

(

¯̃
ψ
)

to be

bounded, so need to be ȳ and ψ̄.

6 Proofs of the main results

The proofs of Theorems 6 and 9 are given in Section 6.4.
Deriving these results requires certain mathematical
background, which is introduced in three preceding sec-
tions. In Section 6.1 we introduce a Riemannian metric
on the differentiable manifold PN (R) of positive-definite
matrices and state its properties. In Section 6.2 we in-
troduce a convenient algebraic structure on random vec-
tors, namely, a Hibert C⋆-module. Finally, in Section 6.3
we use this structure to characterize the output covari-
ance of a perturbed linear time-varying (LTV) system.

6.1 A Riemannian metric on PN (R)

For a given N ∈ N, the set PN (R) of positive-definite
matrices can be considered as a differentiable manifold
inside RN×N . We define the following map δ : PN (R)×
PN (R) → [0,∞):

Definition 12 [38, Chapter 6] For P,Q ∈ PN (R) we
define

δ (P,Q) =
∥

∥

∥
logQ−1/2PQ−1/2

∥

∥

∥

F
.

It is shown in [38, Chapter 6] that the map δ is a Rieman-
nian metric on PN (R). This metric enjoys the properties
given in the following proposition, whose proof appears
in the appendix.

Proposition 13 For P,Q ∈ PN (R) and R ∈ SN (R):

(1) δ
(

P−1, Q−1
)

= δ (P,Q);

(2) for anyW ∈ PM (R) andM×N matrix B, we have

δ
(

W +BPB⊤,W +BQB⊤
)

≤ α

α+ β
δ (P,Q) ,

where α = max
{∥

∥BPB⊤
∥

∥ ,
∥

∥BQB⊤
∥

∥

}

and β =
∥

∥W−1
∥

∥

−1
;

(3) ‖P −Q‖ ≤
(

eδ(P,Q) − 1
)

min {‖P‖ , ‖Q‖}.
(4) If

∥

∥P−1
∥

∥ ‖R‖ < 1, then

δ (P, P +R) ≤
√
N
∣

∣log
(

1−
∥

∥P−1
∥

∥ ‖R‖
)
∣

∣ .

6.2 A Hilbert C⋆-module of random vectors

A Hilbert C⋆-module is an algebraic structure that of-
fers an elegant and compact way to work with random
vectors and their covariance matrices. In this section we
very briefly introduce the concepts needed for our anal-
ysis. A general treatment of Hilbert C⋆-modules can be
found in [39], and its application to covariance matrices
in [40, Section 3.3.1].

Let x and y be N -dimensional real random vectors. We
define the following RN×N -valued inner product

〈x, y〉⋆ = E
{

xy⊤
}

.

This inner product induces the following norm on N -
dimensional random vectors

‖x‖⋆ = ‖〈x, x〉⋆‖
1/2

.

It is shown in [39, Chapter 1] that ‖x‖⋆ is indeed a
norm. This norm enjoys the following additional prop-
erty, whose proof appears in the appendix:

Lemma 14 Let x and y be random vectors of the same
dimension. Then

‖〈x, y〉⋆‖ ≤ ‖x‖⋆ ‖y‖⋆ .

6.3 Output covariance of perturbed LTV systems

In this section we use the Hilbert C⋆-module structure
described in Section 6.2 to bound the output covariance
of a perturbed LTV system. Consider the following LTV
system

xt = At−1xt−1 + ut, (34)

x0 = 0, (35)

with ut being a possibly colored and non-stationary vec-
tor random process. Suppose we have a perturbed ver-
sion Ât = At + Ãt of the sequence At and let x̂t de-
note the sequence generated by (34)-(35) when At is re-

placed Ât. The following lemma gives a bound on the
norm ‖x̂t‖⋆, in terms of the the non perturbed sequence

At and a measure of the perturbation Ãt = Ât −At. Its
proof appears in the appendix.

Lemma 15 Let A = (At)t∈Z
and Â =

(

Ât

)

t∈Z

be two

sequences of square matrices of the same dimension and
Ãt = Ât −At. Let

x̂t = Ât−1x̂t−1 + ut,

x̂0 = 0.

8



Let also µ = supt∈N

∥

∥

∥
Ãt

∥

∥

∥
, ū = max1≤s≤t ‖us‖⋆ and

γ = sup
t∈Z

t
∑

s=1

‖At−1 × · · · ×As‖ .

If µγ < 1, then

‖x̂t‖⋆ ≤
γ

1− γµ
ū.

6.4 Proofs of the main results

In this section we give the proofs of Theorems 6 and 9.
We arrive to them through a sequence of lemmas, whose
proofs appear in the appendix. The first lemma gives
a bound of the difference between the ideal predicted
covarianceΣt|t and its approximationΣit|t at node i. This

difference is measured using the Riemannian metric δ
introduced in Section 6.1.

Lemma 16 If
∥

∥

∥
Ψ̃it

∥

∥

∥
<
∥

∥Σt|t
∥

∥

−1
, for all t ∈ N and i ∈

{1, · · · , I}, then

δ
(

Σit|t,Σt|t

)

≤
‖A‖2

∥

∥Σt−1|t−1

∥

∥ δ
(

Σit−1|t−1,Σt−1|t−1

)

‖A‖2
∥

∥Σt−1|t−1

∥

∥+ ‖Q−1‖−1
e
−δ
(

Σt−1|t−1,Σ
i

t−1|t−1

)

+
√
N
∣

∣

∣
log
(

1−
∥

∥Σt|t
∥

∥

∥

∥

∥
Ψ̃it

∥

∥

∥

)
∣

∣

∣
.

The next lemma characterizes the approximation error
ξ̃it|t as the output of a perturbed LTV system.

Lemma 17 For all t ∈ N and i ∈ {1, · · · , I},

ξ̃it|t =
(

I − Φt − Φ̃it

)

Aξ̃it−1|t−1 +
[

Φ̃it, Σ̃
i
t|t

]

y
i
t, (36)

where yit is defined as in Theorem 9 and

∥

∥

∥
Φ̃it

∥

∥

∥
≤
[(

e
δ(Σi

t|t,Σt|t) − 1
)

‖Ψt‖

+eδ(Σ
i

t|t,Σt|t)
∥

∥

∥
Ψ̃it

∥

∥

∥

]

∥

∥Σt|t
∥

∥ ,
∥

∥

∥
Σ̃it|t

∥

∥

∥
≤
(

e
δ(Σi

t|t,Σt|t) − 1
)

∥

∥Σt|t
∥

∥ .

The following lemma gives a bound on the norm
∥

∥

∥
ξ̃it|t

∥

∥

∥

⋆

of the approximation error ξ̃it|t at each node.

Lemma 18 If (30) holds, then

∥

∥

∥
ξ̃it|t

∥

∥

∥

⋆
≤ γ̄ȳ

1− γ̄
¯̃
ψ

√

φ̄2
(

¯̃
ψ
)

+ ¯̃σ2
(

¯̃
ψ
)

. (37)

We can now give the proofs of our main results.

PROOF. [of Theorem 6] This is an immediate conse-
quence of Lemma 18. ✷

PROOF. [of Lemma 8] Let

a =

∥

∥Q−1
∥

∥

−1

σ̄ ‖A‖2
, b = ῡ

(

¯̃
ψ
)

,

and

f(x) =
a

b
(x− b) , g(x) = ex.

Equation (31) can then be rewritten as

f(x) = g(x). (38)

Since f is affine and g convex, (38) has either zero, one
or two solutions. In order for it to have a single solution,
we must have

a

b
= f ′(x) = g′(x) = ex.

Replacing the above into (38) we obtain

log
a

b
= b

or equivalently, b = β. It then follows that (31) has
at least one solution if b ≤ β. It is straightforward to
verify that the latter is implied by (30) and the result
follows. ✷
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PROOF. [of Theorem 9] We have

∥

∥

∥
E
{

x̃t|tx̃
⊤
t|t

}
∥

∥

∥

1/2

=
∥

∥

∥
E
{

(

xt|t − x̂t|t
) (

xt|t − x̂t|t
)⊤
}∥

∥

∥

1/2

≤E
{

Tr
{

(

xt|t − x̂t|t
) (

xt|t − x̂t|t
)⊤
}}1/2

=E
{

I
∑

i=1

∥

∥

∥
xt|t − x̂it|t

∥

∥

∥

2
}1/2

=E
{

I
∑

i=1

∥

∥

∥
xt|t − x̌t|t + x̌t|t − x̂it|t

∥

∥

∥

2
}1/2

≤
√
IE
{

∥

∥xt|t − x̌t|t
∥

∥

2
}1/2

+ E
{

I
∑

i=1

∥

∥

∥
x̌t|t − x̂it|t

∥

∥

∥

2
}1/2

.

(39)

Now, using Lemma 18,

E
{

∥

∥xt|t − x̌t|t
∥

∥

2
}

= E







∥

∥

∥

∥

∥

I
∑

i=1

ξt|t − ξ̂it|t

∥

∥

∥

∥

∥

2






≤
I
∑

i=1

E
{

∥

∥

∥
ξ̃it|t

∥

∥

∥

2
}

=

I
∑

i=1

E
{

Tr
{

ξ̃it|tξ̃
i⊤
t|t

}}

≤ N

I
∑

i=1

∥

∥

∥
E
{

ξ̃it|tξ̃
i⊤
t|t

}
∥

∥

∥
= N

I
∑

i=1

∥

∥

∥
ξ̃it|t

∥

∥

∥

2

⋆

≤ NI

(

γ̄ȳ

1− γ̄
¯̃
ψ

)2
(

φ̄2
(

¯̃
ψ
)

+ ¯̃σ2
(

¯̃
ψ
))

. (40)

The result then follows by putting (40) into (39), and
noticing that

E
{

I
∑

i=1

∥

∥

∥
x̌t|t − x̂it|t

∥

∥

∥

2
}

= E
{

∥

∥x̌t|t − x̂t|t
∥

∥

2
}

.

✷

7 About computing ȳ

Our first step consists in characterizing yit as the output
of a state-space model. This is done by defining

x
i
t =

[

xt

ξ̆it|t

]

and e
i
t =

[

wt

vit

]

.

We can then write

x
i
t = F it x

i
t−1 +Gite

i
t, (41)

y
i
t = Hi

t x
i
t + Eite

i
t, (42)

with

F it =

[

A 0

Ki
tC

i
tA (I − Φt)A

]

,

Git =

[

I 0

Ki
tC

i
t K

i
t

]

, Hi
t =

[

0 A

Ψ̊it 0

]

, Eit =

[

0 0

0 Ci⊤t R−i
t

]

,

and Ψ̊it given by (24).

Using the model (41)-(42) we obtain the covariance of
yit as follows

E
{

x
i
tx
i⊤
t

}

= Πi0,t

[

P0 0

0 0

]

Πi⊤0,t

+

t
∑

s=1

Πis,tG
i
s

[

Q 0

0 Rit

]

Gi⊤s Πi⊤s,t,

E
{

y
i
ty
i⊤
t

}

= Hi
tE
{

x
i
tx
i⊤
t

}

Hi⊤
t + Eit

[

Q 0

0 Rit

]

Ei⊤t ,

where Πis,t = Ft × · · · ×Fs+1. We can then readily com-
pute the bound ȳ by putting the above into (32).

8 Numerical experiments

In this section we evaluate the performance of our
method. For comparison we use one method form each
of the two categories described in Section 1. For the first
category we consider the method proposed in [20]. We
refer to it as Algorithm A. For the second category we
consider the method recently proposed in [33], which we
refer to as Algorithm B.

For evaluation we use a randomly generated time-
invariant system of order N = 10. Matrices A and Q
have spectral radii ρ(A) = 0.999 and ρ(Q) = 1, re-
spectively. Also, measurements are one-dimensional, i.e.,
M = 1, with Ci ∼ N (0, IN ) and Ri = 10r2 + 0.1, with
r ∼ N (0, 1). Nodes are connected via a time-invariant
network with ring topology, whose gains are given by

w
i,j
t,k =







0.5, i = j,

0.25, | mod (i− j + 1, I)− 1| = 1,

0, otherwise.

This results in an algebraic connectivity of λ2 = 0.9891.

As performance index we use the estimation mismatch
error defined as

e2 =
1

T

T
∑

t=1

e2t with e2t =
1

I

I
∑

i=1

∥

∥

∥
xit|t − xt|t

∥

∥

∥

2

,
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Fig. 1. Error vs number of consensus iterations for structural
data fusion.
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Fig. 2. Error vs number of consensus iterations for signal
fusion.

where xt|t denotes the centralized Kalman estimate.

In the first experiment we evaluate the performance
when errors appear in the structural and signal fusion
stages. In Figure 1 we show the effect produced by an
approximation error in fusing structural data. To this
end we use Kx = 100 consensus iterations for signal fu-
sion and show the mismatch error as a function of the
number KΨ of consensus cycles used for structural fu-
sion. We see that Algorithm B and the proposed one
performs similarly, with a noticeable advantage over Al-
gorithm A. In Figure 2 we use KΨ = 100 iterations for
structural fusion and show the mismatch error as a func-
tion of the number Kx of consensus iterations used for
signal fusion. We again see that Algorithm B and the
proposed one performs similarly, with certain advantage
over Algorithm A for large values of Kx. We conclude
that, when there are no network interruptions, the pro-
posed algorithm performs similarly to the best available
ones.

As mentioned, the advantage of the proposed method is
that errors in signal fusion do not carry over across time
steps. This can be seen in Figure 3, where we simulate
a network interruption from sample times t = 20 to
t = 25. We use Kx = KΨ = 100. We see that, while the
proposed algorithm gives an accurate estimate as soon
as connectivity is restored, Algorithms A and B require
several time steps to do so. In Figure 4 we show the
performance of the algorithms when network availability
follows a symmetric Gilbert-Elliott model [41,42] with
transition probability p = 0.05. We see how, while the
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proposed algorithm is always able to produce an accurate
estimate as soon as network connectivity is available,
Algorithms A and B are not able to produce accurate
estimates during certain long time periods.

In Figure 5 we show the mismatch error, as a function
of the transition probability p. We see that, in this case,
the proposed algorithm has a significant advantage over
its rivals.

9 Conclusion

We proposed a novel approach for distributed Kalman
filtering. The essential difference with existing ap-
proaches is that, provided certain global structural data
is available at each node, local filters do not require data
fusion across the network. The latter is only needed when
a global estimation is required. Hence, errors produced
by inaccurate fusion do not carry over across time steps.
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This is advantageous in a number of situations where fu-
sion is not needed or cannot be made at each time step.
If global structural data is exactly known at each node,
the stability of local filters is equivalent to that of the
centralized Kalman filter. Otherwise, we give conditions
to guarantee stability and bound the estimation error
induced by inaccurate global structural data fusion. We
also present numerical experiments showing the advan-
tage of our method over other available alternatives.

A Proofs

PROOF. [of Proposition 13] Let σn(X) and λn(X) de-
note the singular values and eigenvalues of matrix X ,
respectively. We have

δ (P,Q) =
∥

∥

∥
logQ−1/2PQ−1/2

∥

∥

∥

F

=

√

√

√

√

N
∑

n=1

σ2
n

(

logQ−1/2PQ−1/2
)

=

√

√

√

√

N
∑

n=1

λ2n
(

logQ−1/2PQ−1/2
)

=

√

√

√

√

N
∑

n=1

log2 λn
(

Q−1/2PQ−1/2
)

=

√

√

√

√

N
∑

n=1

log2 λn (PQ−1).

Then, δ (P,Q) equals the distance defined in [43, Defi-
nition 1.4]. Hence, Properties 1 and 3 follow from [43],
and Property 2 follows from [44, Proposition 6].

For Property 4 we have

δ (P +R,P ) =

√

√

√

√

N
∑

n=1

log2 λn
(

P−1/2(P +R)P−1/2
)

=

√

√

√

√

N
∑

n=1

log2 λn
(

I + P−1/2RP−1/2
)

=

√

√

√

√

N
∑

n=1

log2
(

1 + λn
(

P−1/2RP−1/2
))

Then

δ (P +R,P )

≤

√

√

√

√

N
∑

n=1

log2
(

1−
∣

∣λn
(

P−1/2RP−1/2
)∣

∣

)

≤
√
N max

n

∣

∣

∣
log
(

1−
∣

∣

∣
λn

(

P−1/2RP−1/2
)
∣

∣

∣

)
∣

∣

∣

=
√
N
∣

∣

∣
log
(

1−max
n

∣

∣

∣
λn

(

P−1/2RP−1/2
)∣

∣

∣

)∣

∣

∣

≤
√
N
∣

∣

∣
log
(

1−
∥

∥

∥
P−1/2RP−1/2

∥

∥

∥

)
∣

∣

∣

≤
√
N
∣

∣log
(

1−
∥

∥P−1
∥

∥ ‖R‖
)
∣

∣ .

✷

PROOF. [of Lemma 14] From [39, Proposition 1.1],

E
{

xy⊤
}

E
{

yx⊤
}

≤
∥

∥E
{

yy⊤
}∥

∥ E
{

xx⊤
}

.

Then

∥

∥E
{

xy⊤
}
∥

∥

2
=
∥

∥E
{

xy⊤
}

E
{

yx⊤
}
∥

∥

≤
∥

∥E
{

xx⊤
}∥

∥

∥

∥E
{

yy⊤
}∥

∥ ,

and the result follows. ✷

PROOF. [of Lemma 15] We have

x̂t = Ât−1x̂t−1 + ut

= At−1x̂t−1 +
(

Ât−1 −At−1

)

x̂t−1 + ut

=
t
∑

s=1

Πt,s

[

Ãs−1x̂s−1 + us

]

,

where Πt,s = At−1 × · · · ×As. Then

E
{

xtx
⊤
t

}

= R
(1)
t +R

(2)
t +R

(3)
t +R

(4)
t ,

with

R
(1)
t =

t
∑

s,r=1

Πt,sÃs−1E
{

x̂s−1x̂
⊤
r−1

}

Ã⊤
r−1Π

⊤
t,r,

R
(2)
t =

t
∑

s,r=1

Πt,sÃs−1E
{

x̂s−1u
⊤
r

}

Π⊤
t,r,

R
(3)
t =

(

R
(2)
t

)⊤

,

R
(4)
t =

t
∑

s,r=1

Πt,sE
{

usu
⊤
r

}

Π⊤
t,r.
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Let νt−1 = max1≤s≤t−1 ‖x̂t‖⋆. Then
∥

∥

∥
R

(1)
t

∥

∥

∥

≤
t
∑

s,r=1

‖Πt,s‖
∥

∥

∥
Ãs−1

∥

∥

∥

∥

∥

〈

x⊤r−1, xs−1

〉

⋆

∥

∥

∥

∥

∥
Ã⊤
r−1

∥

∥

∥

∥

∥Π⊤
t,r

∥

∥

≤µ2
t
∑

s,r=1

‖Πt,s‖
∥

∥Π⊤
t,r

∥

∥ ‖xs−1‖⋆ ‖xr−1‖⋆

≤µ2

(

t
∑

s=1

‖Πt,s‖
)2

ν2t−1 ≤ µ2γ2ν2t−1.

Also

∥

∥

∥
R

(2)
t

∥

∥

∥
=
∥

∥

∥
R

(3)
t

∥

∥

∥

≤
t
∑

s,r=1

‖Πt,s‖
∥

∥

∥
Ãs−1

∥

∥

∥

∥

∥

〈

u⊤r , xs−1

〉

⋆

∥

∥

∥

∥Π⊤
t,r

∥

∥

≤ µ

t
∑

s,r=1

‖ΠB (t, s)‖ ‖xs−1‖⋆ ‖us‖⋆
∥

∥Π⊤
B (t, r)

∥

∥

≤ µγ2ūνt−1,

and

∥

∥

∥
R

(4)
t

∥

∥

∥
≤

t
∑

s,r=1

‖Πt,s‖ ‖us‖2⋆
∥

∥Π⊤
t,r

∥

∥ ≤ γ2ū2.

We then obtain

‖xt‖⋆ =
∥

∥E
{

xtx
⊤
t

}∥

∥

1/2

≤
√

∥

∥

∥
R

(1)
t

∥

∥

∥
+ 2

∥

∥

∥
R

(2)
t

∥

∥

∥
+
∥

∥

∥
R

(4)
t

∥

∥

∥
= γµνt−1 + γū.

Since x0 = 0, it follows that νt ≤ γµνt−1 + γū. Hence,

νt ≤
γū

1− γµ
,

and the result follows. ✷

PROOF. [of Lemma 16] We have

δ
(

Σit|t,Σt|t

)

= δ
(

Σ−i
t|t−1 +Ψit,Σ

−1
t|t−1 +Ψt

)

= δ
(

Σ−i
t|t−1 +Ψit,Σ

−1
t|t−1 +Ψit

)

+ δ
(

Σ−1
t|t−1 +Ψit,Σ

−1
t|t−1 +Ψt

)

. (A.1)

Since
∥

∥

∥
Ψ̃it

∥

∥

∥
≤
∥

∥Σt|t
∥

∥

−1
, we have from Proposition 13 4

that

δ
(

Σ−1
t|t−1 +Ψit,Σ

−1
t|t−1 +Ψt

)

=δ
(

Σ−1
t|t−1 +Ψt + Ψ̃it,Σ

−1
t|t−1 +Ψt

)

=δ
(

Σ−1
t|t + Ψ̃it,Σ

−1
t|t

)

≤
√
N
∣

∣

∣
log
(

1−
∥

∥Σt|t
∥

∥

∥

∥

∥
Ψ̃it

∥

∥

∥

)
∣

∣

∣
. (A.2)

Also

δ
(

Σ−i
t|t−1 +Ψit,Σ

−1
t|t−1 +Ψit

)

≤δ
(

Σ−i
t|t−1,Σ

−1
t|t−1

)

=δ
(

Σit|t−1,Σt|t−1

)

=δ
(

AΣit−1|t−1A
⊤ +Q,AΣt−1|t−1A

⊤ +Q
)

≤λtδ
(

Σit−1|t−1,Σt−1|t−1

)

, (A.3)

with

λt =
αt

αt + βt
,

αt = max
{
∥

∥

∥
AΣit−1|t−1A

⊤
∥

∥

∥
,
∥

∥AΣt−1|t−1A
⊤
∥

∥

}

,

βt =
∥

∥Q−1
∥

∥

−1
.

Now

αt ≤ ‖A‖2 max
{∥

∥

∥
Σit−1|t−1

∥

∥

∥
,
∥

∥Σt−1|t−1

∥

∥

}

≤ ‖A‖2
(

∥

∥Σt−1|t−1

∥

∥+
∥

∥

∥
Σt−1|t−1 − Σit−1|t−1

∥

∥

∥

)

≤ ‖A‖2
∥

∥Σt−1|t−1

∥

∥ eδ(Σt−1|t−1,Σ
i

t−1|t−1)

We then have

λt ≤
‖A‖2

∥

∥Σt−1|t−1

∥

∥

‖A‖2
∥

∥Σt−1|t−1

∥

∥+ ‖Q−1‖−1
e
−δ
(

Σt−1|t−1,Σ
i

t−1|t−1

) .

(A.4)
The result then follows by putting (A.4) into (A.3)
and the resulting equation, together with (A.2)
into (A.1). ✷

PROOF. [of Lemma 17] From (28)-(22), we have

ξ̆it|t = (I − Φt)Aξ̆
i
t−1|t−1 +Σt|tC

i⊤
t R−i

t yit,

ξit|t =
(

I − Φit
)

Aξit−1|t−1 +Σit|tC
i⊤
t R−i

t yit.
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Then

ξ̃it|t =
(

I − Φit
)

Aξit−1|t−1 − (I − Φt)Aξ̆
i
t−1|t−1

+
[

Σit|t − Σt|t

]

Ci⊤t R−i
t yit

=
(

I − Φt − Φ̃it

)

Aξ̃it−1|t−1 − Φ̃tξ̆
i
t|t−1 + Σ̃it|tψ̊

i
t

=
(

I − Φt − Φ̃it

)

Aξ̃it−1|t−1 +
[

Φ̃it, Σ̃
i
t|t

]

y
i
t,

where

Φ̃it = Σit|tΨ
i
t − Σt|tΨt = Σ̃it|tΨt +Σt|tΨ̃

i
t + Σ̃it|tΨ̃

i
t.

Now
∥

∥

∥
Σ̃it|t

∥

∥

∥
≤
(

e
δ(Σi

t|t,Σt|t) − 1
)

∥

∥Σt|t
∥

∥ .

Hence

∥

∥

∥
Φ̃it

∥

∥

∥
≤
∥

∥

∥
Σ̃it|t

∥

∥

∥
‖Ψt‖+

∥

∥Σt|t
∥

∥

∥

∥

∥
Ψ̃it

∥

∥

∥
+
∥

∥

∥
Σ̃it|t

∥

∥

∥

∥

∥

∥
Ψ̃it

∥

∥

∥

≤
[(

e
δ(Σi

t|t,Σt|t) − 1
)

‖Ψt‖+

+ eδ(Σ
i

t|t,Σt|t)
∥

∥

∥
Ψ̃it

∥

∥

∥

]

∥

∥Σt|t
∥

∥ .

✷

PROOF. [of Lemma 18] It follows from (30) that
¯̃
ψ <

σ̄−1, which in turn implies the condition of Lemma 16.
From the latter we then obtain

δ
(

Σit|t,Σt|t

)

≤

δ
(

Σit−1|t−1,Σt−1|t−1

)

1 + ‖Q−1‖−1

σ̄‖A‖2 e
−δ
(

Σi

t−1|t−1
,Σt−1|t−1

) + ῡ
(

¯̃
ψ
)

. (A.5)

Since δ
(

Σi1|1,Σ1|1

)

= 0, we have from Lemma 8 that

the iterations (A.5) converge to δ̄
(

¯̃
ψ
)

, and

δ
(

Σit|t,Σt|t

)

≤ δ̄
(

¯̃
ψ
)

. (A.6)

Using (A.6) in Lemma 17 we obtain

∥

∥

∥
Φ̃it

∥

∥

∥
≤
[(

e
δ̄
(

¯̃
ψ
)

− 1

)

ψ̄ + e
δ̄
(

¯̃
ψ
)

¯̃
ψ

]

σ̄ = φ̄
(

¯̃
ψ
)

,

∥

∥

∥
Σ̃it|t

∥

∥

∥
≤
(

e
δ̄
(

¯̃
ψ
)

− 1

)

σ̄ = ¯̃σ
(

¯̃
ψ
)

.

Let uit =
[

Φ̃it, Σ̃
i
t|t

]

yit. We have

E
{

u
i
tu
i⊤
t

}

=
[

Φ̃it, Σ̃
i
t|t

]

E
{

y
i
ty
i⊤
t

}

[

Φ̃it

Σ̃it|t

]

.

It then follows that

∥

∥E
{

u
i
tu
i⊤
t

}∥

∥ ≤
∥

∥E
{

y
i
ty
i⊤
t

}∥

∥

(

∥

∥

∥
Φ̃it

∥

∥

∥

2

+
∥

∥

∥
Σ̃it|t

∥

∥

∥

2
)

≤ ȳ
2
(

φ̄2
(

¯̃
ψ
)

+ ¯̃σ2
(

¯̃
ψ
))

,

or
∥

∥uit

∥

∥

⋆
≤ ȳ

√

φ̄2
(

¯̃
ψ
)

+ ¯̃σ2
(

¯̃
ψ
)

.

Equation (36) defines a perturbed linear system with

−Φ̃itA being the perturbation of the nominal state-
transition matrix (I − Φt)A and uit being the input.

Since
¯̃
ψγ̄ ‖A‖ < 1, we can apply Lemma 15 to this per-

turbed system to obtain (37). ✷
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