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Abstract

We consider a multi-agent setting with agents exchanging information over a possibly time-varying network, aiming at
minimising a separable objective function subject to constraints. To achieve this objective we propose a novel subgradient
averaging algorithm that allows for non-differentiable objective functions and different constraint sets per agent. Allowing
different constraints per agent simultaneously with a time-varying communication network constitutes a distinctive feature
of our approach, extending existing results on distributed subgradient methods. To highlight the necessity of dealing with a
different constraint set within a distributed optimisation context, we analyse a problem instance where an existing algorithm
does not exhibit a convergent behaviour if adapted to account for different constraint sets. For our proposed iterative scheme
we show asymptotic convergence of the iterates to a minimum of the underlying optimisation problem for step sizes of the
form η

k+1
, η > 0. We also analyse this scheme under a step size choice of η√

k+1
, η > 0, and establish a convergence rate of

O( ln k√
k
) in objective value. To demonstrate the efficacy of the proposed method, we investigate a robust regression problem

and an ℓ2 regression problem with regularisation.
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1 Introduction
Distributed optimisation deals with multiple agents
interacting over a network and has found numerous
applications in different domains, such as wireless sen-
sor networks [1, 2], robotics [3], and power systems [4],
due to its ability to parallelize computation and pre-
vent agents from sharing information considered as
private. Typically, distributed algorithms are based on
an iterative process in which agents maintain some
estimate about the decision vector in an optimisation
context, exchange this information with neighbouring
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agents according to an underlying communication pro-
tocol/network, and update their estimate on the basis
of the received information.

Despite the intense research activity in this area, only
a few algorithms can simultaneously deal with time-
varying networks, non-differentiable objective functions
and account for the presence of constraints [5–9], fea-
tures that are often treated separately in the literature.
Several of the commonly employed methods are based
on a projected subgradient or a proximal step and their
analysis consists of selecting the step size underlying
these algorithms, establishing a convergence rate analy-
sis, and quantifying practical convergence for (near-)real
time applications.

In this paper, we study a class of optimisation problems
that involves a separable objective function, while the
feasible set can be decomposed as an intersection of dif-
ferent compact convex sets. A centralised version of this
class of problems has been studied under a stochastic
setting in [10, 11]. Distributed algorithms for this class
have been proposed in [5, 8, 12–17]. References [12–14]
rely on [18, 19] to propose a distributed strategy based
on projected sub-gradient methods. These results con-
sist of an averaging step followed by a local sub-gradient
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projection update. In [8] a distributed scheme based on
a proximal update is proposed, thus extending [12,14] to
the case where different local constraint sets and an ar-
bitrarily time-varying network are considered. The au-
thors in [5] provide asymptotic convergence for a primal-
dual algorithm that allows coupling between agents’ lo-
cal estimates. We discuss additional related results in
Section 4, after the proposed algorithm is presented and
some notation introduced.

We motivate our approach by constructing an example
showing that extending available algorithms to the case
of different constraint sets might not exhibit a conver-
gent behaviour for all problem instances. Hence, a di-
rect adaptation of existing schemes is not always pos-
sible when dealing with different constraint sets. No-
tice also that distributed algorithms developed for the
unconstrained case cannot be trivially adapted to our
setting, as lifting the constraints in the objective (e.g.,
via characteristic functions) would violate boundedness
of the subgradient, a typical requirement for such algo-
rithms [6, 8, 14, 20].

The main contribution of this paper is the introduc-
tion and the characterization of the convergence rate for
a new subgradient averaging algorithm. The proposed
scheme allows us to account for time-varying networks,
non-differentiable objective functions and different con-
straint sets per agent as in [8], while achieving faster
practical convergence as it is based on subgradient aver-
aging as in [12,17,20]. Note that allowing simultaneously
for different constraint sets per agent and time-varying
communication network by means of a subgradient av-
eraging scheme is a distinct feature of the algorithm in
this paper. Preliminary results related to this paper ap-
peared in [21], where several proofs have been omitted.
Moreover, the construction of Section 2.2 that motivates
the analysis of algorithms with different constraint sets
is novel, and offers insight on the limitations of existing
algorithms. We also provide detailed numerical exam-
ples, not included in the conference version.

The paper is organised as follows. In Section 2 we present
the problem statement, the network communication
structure, and the main assumptions adopted in this
paper, followed by a numerical construction that moti-
vates the algorithm of this paper. In Section 3 we present
the proposed scheme and the main convergence results,
namely, asymptotic convergence in iterates and a con-
vergence rate as far as the optimal value is concerned.
Section 4 provides detailed discussion and comparison
of our scheme with other results in the literature. In
Section 5 we study the robust linear regression problem
and ℓ2 regression with regularisation to demonstrate
the main algorithmic features of our scheme and to
compare our strategy against existing methods. Finally,
some concluding remarks and future research directions
are provided in Section 6. To ease the reader all proofs
have been deferred to the Appendix (Section 7).

Notation: We denote by R the set of real numbers and N

the set of natural numbers (excluding zero). The symbol
R

n stands for the Cartesian product R × . . . × R with
n terms. A sequence of elements in R

n is denoted by
(x(k))k∈N. For any set X ⊂ R

n, we denote its interior,
relative interior and convex hull by int(X), ri(X), and

conv(X), respectively. We also denote by f(X) as the
image of the setX over a function f . The subdifferential
of f at a point x ∈ domf is denoted by ∂f(x). For any
point x ∈ R

n, ‖x‖2 stands for the Euclidean norm of x
and ‖x‖1 for the ℓ1 norm of x ∈ R

n, which are reduced
to |x| if x is scalar.

2 Problem statement and amotivating example
2.1 Problem set-up and network communication
Consider the optimisation problem

minimise
x

f(x) =

m
∑

i=1

fi(x)

subject to x ∈ ∩m
i=1Xi,

(1)

where x ∈ R
n is the vector of decision variables, and

fi : Rn → R and Xi ⊂ R
n constitute the local objec-

tive function and constraint set, respectively, for agent
i, i = 1, . . . ,m. We suppose that each agent i possesses
as private information the pair (fi, Xi) and maintains a
local estimate xi of the common decision vector x.

The goal is for all agents to agree on the local variables,
that is, xi = x⋆, for all i = 1, . . . ,m, where x⋆ is an opti-
miser of (1), i.e., a feasible point such that f(x⋆) ≤ f(x)
for all x ∈ ∩m

i=1Xi. We impose the following assumption.

Assumption 1 We assume that:

i) For all i = 1, . . . ,m, the function fi is convex.

ii) The set Xi ⊂ R
n is compact and convex for all i =

1, . . . ,m, and ∩m
i=1Xi has a non-empty interior.

iii) The subgradient of the function f(x) is bounded on
∪m
i=1Xi, that is, L = max ξ∈∂f(x),

x∈∪m
i=1Xj

‖ξ‖2 < ∞.

Assumption 1 imposes standard restriction for con-
strained non-smooth optimisation. Item ii) implies in-
formally that ∪m

i=1Xi has volume in R
n, i.e., that the

affine hull of ∪i=1Xi has dimension n. Moreover, the
compactness assumption of item ii) guarantees that
the optimal set of problem (1) is non-empty. Item iii)
is an assumption that is needed to prove convergence
of sub-gradient methods applied to problem (1). Un-
der item iii), the sub-gradient of the function f can be
evaluated at points that belong to ∪m

i=1Xi. We provide
in Appendix 7.2 a technical condition on the domain of
the functions fi that is sufficient to guarantee that As-
sumption 1, item iii), holds. An important consequence
of Assumption 1 is given in the following lemma.

Lemma 1 Under Assumption 1, we have that:

i) The set conv(∪m
i=1Xi) is compact.

ii) The function f is Lipschitz continuous over ∩m
i=1Xi,

i.e., the following inequality hods

|f(x)− f(y)| ≤ L‖x− y‖2, ∀ x, y ∈ ∩m
i=1 Xi,

where L is the constant defined in Assumption 1.

Typical choices of functions that satisfy Assumption 1
are piecewise-linear functions, quadratic convex func-
tions and the logistic regression function.

2



In this paper, we aim to solve problem (1) through a
network of agents that use only the available local infor-
mation, namely, the pair (fi, Xi) and the current esti-
mate for the optimal solution, xi(k), i = 1, . . . ,m, main-
tained by agent i at a given instance k. We will show
how xi(k), i = 1, . . . ,m, can be constructed and up-
dated in Section 3, with k playing the role of iteration
index. To this end, we now characterise the underlying
communication network. Let G(k) = (N , E(k)) be an
undirected graph, where N = {1, . . . ,m} is the number
of agents and E(k) ⊂ N × N is the set of edges at it-
eration k, that is, only if node (j, i) ∈ E(k) then node
j sends information to node i at iteration k. We asso-
ciate the time-varying matrix A(k) to the edge set E(k),
with [A(k)]ij > 0 only if (j, i) ∈ E(k) at time k. As the
graph is undirected, the matrix A(k) can be chosen to
be symmetric. We also define the graph G∞ = (N , E∞),
in which (j, i) ∈ E∞ if agent j communicates with agent
i infinitely often. We impose the following assumption
on the matrix A(k).

Assumption 2 We assume that:

i) The graph (N , E∞) is strongly connected. Moreover,
there exits a uniform upper bound on the communica-
tion time for all (j, i) ∈ E∞.

ii) There exists η ∈ (0, 1) such that for all k ∈ N and for
all i, j = 1, . . . ,m, [A(k)]ii ≥ η, and if [A(k)]ij > 0

then we have that [A(k)]ij ≥ η.

iii) Matrix A(k) is doubly stochastic.

These are standard requirements in the distributed op-
timisation literature. We refer the reader to [8,14,20,22]
for more details.

2.2 Dealing with different constraint sets
In this section, we highlight the necessity of developing
a new algorithmic scheme to deal with the presence of a
different constraint sets per agent. To this end, consider
the iterative scheme 1

zi(k + 1) =

m
∑

j=1

[A]ijzj(k) + gi(k) (2a)

xi(k + 1) = argmin
ξ∈Xi

zi(k + 1)T ξ +
1

c(k)
‖ξ‖22, (2b)

which consists of a modified version of the algorithm
considered in [20], adapted to account for different con-
straint sets in each agent’s local optimisation problem.
In the setting of the previous section, notice that ma-
trix A in (2a) corresponds to a time-invariant network
G(k) = (N , E), for all k ∈ N. Assumption 2 is satisfied
if the graph (N , E) is strongly connected and matrix A
is doubly-stochastic.

1 It should be noted that zi, i = 1, . . . ,m, in (2a) should not
be confused with that of Step 2 in Algorithm 1 presented in
the sequel; we use the same symbol to match the notation
in [20] and ease the reader.

Observe that (2a) constitutes a subgradient update
step, with neighbouring local variables zj(k) being
“mixed” according to the matrix A and added to
gi(k) ∈ ∂fi(xi(k)), i.e., a subgradient of fi evaluated
at xi(k), i = 1, . . . ,m. Step (2b) is an optimisation
program with the objective function being the sum
(weighted via c(k)) of

zi(k + 1)T ξ: linear “proxy” of fi,

and a regularization term ‖ξ‖22. To comply with [20], we
set c(k) = 1√

k+1
. Recall that the algorithm in [20] in-

volves the same constraint set in the update rule of (2b),
that isXi = X for all i = 1, . . . ,m, and possesses a guar-
anteed convergence rate of O( ln k√

k
) for the running aver-

ages of the iterates xi(k); here, we introduce a different
set Xi per agent and show that this (natural) modifica-
tion may lead to erroneous results.

Fig. 1. Geometric representation of problem instance en-
coded by (3). The red ellipsoids (dashed lines) correspond
to the level curves of f1, the blue ellipsoids (double-dashed
lines) represent the function f2, while the black (solid lines)
ellipsoids to the ones of f = f1 + f2. The shaded red box
illustrates the constraint set X1, while the shaded blue box
illustrates X2. Vectors x̂⋆

1 = [−1, 1]T and x̂⋆
2 = [0.5, 2.5]T

are the optimal solutions of f1(x) and f2(x) under the con-
straints X1 and X2, respectively. The global optimal solu-
tion of f = f1 + f2 with matrices given by (3) subject to
x ∈ X1 ∩X2 is denoted by x⋆. This construction shows that
x̂⋆
1 and x̂⋆

2 constitute fixed-points of (2) thus preventing the
iteration from reaching x⋆ if initialised at those points.

Consider a two-agent instance of (1), i.e., m = 2 with
x ∈ R

2, fi = xTQx+ qTi x+ ri, for i = 1, 2 and

Q =

[

1.2 0.4

0.4 1.8

]

, q1 =

[

8

−4

]

, q2 =

[

2.93

−11.46

]

,

r1 = 20, r2 = 25. (3)

The local constraint sets are given by X1 = [−1, 1] ×
[−1, 1] and X2 = [0.5, 2.5] × [0.5, 2.5]. The feasible set
X1 ∩X2 is the box [0.5, 1]× [0.5, 1]. Figure 1 depicts the
level curves of the quadratic functions f1(x) (dashed-red
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lines), f2 (double-dashed lines), and f = f1 + f2 (solid-
black lines). The red and blue boxes represent the sets
X1 and X2 respectively, with the feasible set, X1 ∩X2,
being also indicated in the figure in black.

By inspection the optimal solution of f1 under the con-

straint x ∈ X1 is x̂⋆
1 = [−1, 1]

T
. Similarly, the optimal

solution for f2 under x ∈ X2 is x̂
⋆
2 = [0.5, 2.5]

T
. We then

have the following proposition.

Proposition 1 Let (zi(k))k∈N, (xi(k))k∈N, i = 1, 2, be
the sequences generated by algorithm (2) when applied to
problem (3) with initial conditions xi(0) = x̂⋆

i , i = 1, 2,
and with A = 1

211
T and c(k) = 1√

k+1
. We have that

x1(k) = x̂⋆
1, x2(k) = x̂⋆

2, ∀k ∈ N.

Proposition 1 shows that x̂⋆
1 and x̂⋆

2 constitute fixed
points of (2), hence the iteration cannot reach x⋆ if ini-
tialised from these points. This highlights the necessity
of devising a new algorithm to deal with the presence of
a different constraint set per agent.

3 Distributed Methodology
3.1 Proposed algorithm
The main steps of the proposed scheme are summarized
in Algorithm 1. We initialise each agents’ local variable
with an arbitrary xi(0) ∈ Xi, i = 1, . . . ,m; such points
are not required to belong to ∩m

i=1Xi.

At iteration k, agent i receives xj from the neighbour-
ing agents and averages them through A(k), which cap-
tures the communication network, to obtain zi(k). Re-
call that we denote the element of the j-th row and i-
th column of matrix A(k) by [A(k)]ij . Agent i then cal-
culates a subgradient, gi, of its own objective function
evaluated at zi(k) and broadcasts this information back
to its neighbours. In the sequel, agent i averages the re-
ceived gj(zj(k)) in order to compose a proxy for a sub-
gradient of f(x), namely, di(k). Finally, agents minimise
a linear proxy di(k)

T ξ of f(ξ) plus a regularization term
weighted by 1

c(k) . An alternative interpretation of this

last computation is that agents update their local esti-
mates by performing a subgradient step with step size
c(k) and projecting zi(k)−c(k)di(k) onto their local set.
Indeed, this local update can be rewritten as

xi(k + 1) = PXi
[zi(k)− c(k)di(k)]

where PXi
[·] denotes projection onto the set Xi.

3.2 Algorithm Analysis
3.2.1 Convergence in iterates
In this subsection, we impose the following assumption
on the step size c(k).

Assumption 3 Let (c(k))k∈N be the sequence adopted
in Algorithm 1. We require that:

i) c(k) is non-negative and non-increasing;

ii)
∑∞

k=1 c(k) = ∞ and
∑∞

k=1 c(k)
2 < ∞.

Algorithm 1 Proposed distributed algorithm

Require: : xi(0), i = 1, . . . , m

For i = 1, . . . , m, repeat until convergence

1: Compute zi(k) =
∑m

j=1[A(k)]ijxj(k),

2: Pick gi(zi(k)) ∈ ∂fi(zi(k)),

3: Compute di(k) =
∑m

j=1[A(k)]ijgj(zj(k)),

4: Compute xi(k+1) = argminξ∈Xi
di(k)

T ξ+ 1
2c(k)
‖zi(k)−

ξ‖22,
5: Set k ← k + 1

end

A sequence satisfying Assumption 3 is c(k) = η
k+1 , for

η > 0.

Theorem 1 Let (xi(k))k∈N be the sequences generated
by Algorithm 1, for all i = 1, . . . ,m. Under Assump-
tions 1- 3, we have that for some minimizer x⋆ of (1),

lim
k→∞

‖xi(k)− x⋆‖2 = 0, ∀ i = 1, . . . ,m.

The proof of Theorem 1, as well as of Theorem 2 pre-
sented in the sequel, is based on some auxiliary technical
results presented in Appendix 7.4.

Theorem 1 extends the result in [8] by allowing an agent
to communicate subgradient information to neighbour-
ing agents, a feature that, as illustrated in Section 5, can
speed up practical convergence.

3.2.2 Convergence in objective value and convergence
rate

Throughout this section, we impose the following as-
sumption on the step size c(k).

Assumption 4 The sequence (c(k))k∈N used in Algo-
rithm (1) is c(k) = η√

k+1
, for some η > 0.

Our convergence rate results build on the following re-
lated sequence generated by Algorithm 1,

x̂i(k + 1) =
c(k + 1)xi(k + 1) + S(k)x̂i(k)

S(k + 1)
, (4)

where S(k) =
∑k

r=1 c(r), and (xi(k))k∈N, for all i =
1, . . . ,m, are the sequences generated by Algorithm 1,
with initial condition x̂i(0) = xi(0). By rewriting (4) as

x̂i(k) = 1
S(k)

∑k
r=1 c(r)xi(r), we can interpret (4) as a

convex combination of past iterates.

Theorem 2 Consider the running average defined
in (4). Under Assumptions 1, 2, and 4, we have that:

i) For all i, j = 1, . . . ,m, the sequence (‖x̂i(k) −
x̂j(k)‖)k∈N converges to zero at a rate O( ln k√

k
).

ii) All accumulation points of the sequence (x̂i(k))k∈N are
feasible.
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Table 1
Summary of distributed schemes for smooth and non-smooth optimisation.

Smooth + Constant step-size Non-smooth + Diminishing step-size

Common sets Different sets Common sets Different sets

Convex Strongly Convex Strongly Convex Strongly Convex Strongly

Convex Convex Convex Convex

No (sub)grad. avg. [13, 23, 24] [24] [25] - [6, 26] [27, 28] [5, 8, 15, 16] -

(Sub)grad. avg. [26, 29–31] [26, 29, 30] - - [7, 9, 20, 26] - our work, [17] -

iii) There exist B1, B2 > 0 such that

∣

∣

∣

∣

∣

m
∑

i=1

fi(x̂i(k))− f(x⋆)

∣

∣

∣

∣

∣

≤ B1
1√
k
+B2

ln k√
k
. (5)

Note that Theorem 2 asserts convergence of the func-
tion value along the running average x̂i(k), i.e., all limit
point of (x̂i(k))k∈N are optimal, however, the iterates
might exhibit an oscillatory behaviour. For the exact
expression of B1 and B2, we refer the reader to Ap-
pendix 7.6. The absolute value in Theorem 2 is due to
the fact that x̂i(k) may not be necessarily feasible; how-
ever, item ii) in Theorem 2 implies that all accumulation
points of (x̂i(k))k∈N, i = 1, . . . ,m, are feasible. Item i)
states the rate at which consensus is achieved for the se-
quences (x̂i(k))k∈N, i = 1, . . . ,m. Similar rates can be
obtained with more general choices for the step size, e.g.,
c(k) = 1

ka , for a ∈ [0.5, 1).

It should be noted that the result of Theorem 2 fur-
ther extends the work presented in [8] not only by allow-
ing agents to communicate their (sub-) gradients, but
by also unveiling how to (non trivially) adapt the proof
line in that paper to come up with convergence results
that recover traditional rates for distributed subgradient
methods. This is the first convergence rate result under
the scenario considered in this paper.

4 Comparison with related algorithms
In this section we provide a detailed comparison of the
proposed algorithm with other results in the literature.
To this end, note that in [12] a similar distributed sub-
gradient scheme is mentioned, but no analysis of such
a scheme is presented. References [15, 16] characterize
the convergence rate of a sub-gradient algorithm under
different constraint sets per agent that does not possess
subgradient averaging. References [5,8] show asymptotic
convergence of distributed algorithmswith different con-
straint sets and time-varying communication network.
Hence, by combining (sub)-gradient averaging and pro-
viding an analysis that yields convergence rates under
time-varying communication networks and different con-
straint sets per agent, the results in this paper are dis-
tinct from all the above literature.

A closely related algorithm to the one presented here
is the one in [17]. This provides convergence rates as-
suming a regularity condition on the local sets (weaker
than compactness) and requiring the network to be row-
stochastic; however, it does not analyse the case where

the communication network is time-varying. This re-
quires different analysis arguments, thus complement-
ing the results in [17], extending them to allow for time-
varying networks. Moreover, the example of Section 2.2
highlights the need for developing a different analysis
when agents possess different constraints sets.

Although only marginally related to the results of this
paper, it is worthmentioning distributed algorithms that
deal with similar optimization problems [26,29,30]. Pa-
per [26] proposes an algorithm whose convergence is
valid for non-convex objectives and directed communi-
cation network, while [29, 30] use a constant step size
to establish linear convergence rates for strongly con-
vex functions. Moreover, distributed algorithms based
on proximal methods with constant step sizes have been
proposed in [32]. In this setting, the objective function
is assumed to be differentiable to obtain convergence to
the optimal solution of problem (1), and the size of the
allowable step-size is upper bounded by a quantity re-
lated to the Lipschitz constant of the objective function.
Unlike these results, we allow for non-differentiable ob-
jective functions.

To better position this paper within the recent literature,
we summarise the main distributed algorithms that are
amenable to smooth and non-smooth constrained opti-
misation in Table 1. We highlight both scenarios of com-
mon and different local constraint sets, which are indi-
cated in the table by common sets and different sets, re-
spectively. In this brief summary, we restrict our atten-
tion to algorithms that use constant step size for smooth
optimisation, and to those that use diminishing step sizes
for the non-smooth case. We also present a categoriza-
tion of these schemes between those that have results for
general convex functions and strongly convex functions.
In row entitled “No (sub)grad. avg.”, we include dis-
tributed algorithms based on projected (sub)gradient,
proximal minimisation, and primal-dual update that do
not leverage on averaging first-order information from
neighbouring agents. In contrast, row “(Sub)grad. avg.”
includes algorithms that exploit (sub) gradient averag-
ing. Among the few papers that are suitable for different
local sets, this is the first result to establish a conver-
gence rate that matches that of the common local sets
case, and simultaneously allows agents to use first-order
information of their neighbours under time-varying com-
munication networks, thus speeding up practical conver-
gence.
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5 Numerical Examples
5.1 Problem instance of Section 2.2 – revisited
We revisit the two-agent problem in (3), for which the
iterative scheme in (2) is not guaranteed to converge,
and apply this time our algorithm. Note that the optimal
solution of (3) is given by

x⋆ = P[0.5,1]2

[

−1

8
Q−1(q1 + q2)

]

=

[

0.5

1

]

where P[0.5,1]2 [·] represents the projection onto the feasi-
ble set of problem (3). Pictorially x⋆ is shown in Figure 1.
To illustrate the convergence properties of Algorithm 1

we monitor the evolution of
√

∑2
i=1 ‖xi(k)− x⋆‖22,

where (xi(k))k∈N, i = 1, 2, are the iterates generated
by Algorithm 1. We use c(k) = 1√

k+1
similarly to [20],

A = 1
211

T and xi(0) = x̂⋆
i , where x̂⋆

i , i = 1, 2, are de-
fined in Section 2.2. Observe that our initial condition
is the same as in Proposition 1. In contrast, as shown in
Figure 2, the iterates generated by Algorithm 1 converge
to the optimal solution of (3).

0 5000 10000 15000

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
2

Fig. 2. Evolution of
√

∑2
i=1 ‖xi(k)− x⋆‖22 for (3), where

(xi(k))k∈N, i = 1, 2, are the iterates generated by Algo-
rithm 1.

5.2 Example 2: robust linear regression
We consider the problem of estimating an unknown (but
deterministic) vector x ∈ R

n from m noisy measure-
ments yi by means of the linear model

yi = bTi x+ vi, i = 1, . . . ,m,

with bi ∈ R
n, and vi are independent random variables

drawn from a Laplacian distribution, that is, for each
i the density of vi is given by hvi(z) = 1

2a exp−|z|/a,
for all z ∈ R. A common strategy is to impose a norm
constraint of the form ‖x‖2 ≤ c, for some c > 0, to
reflect some prior knowledge on the unknown vector x,
and solve the second order conic program

x̂ ∈ argmin
‖x‖2≤c

‖y − Bx‖1. (6)

Typically, (6) is referred to as robust regression in the
literature, as the ℓ1-norm penalises relatively less out-
liers than other convex metrics (e.g., quadratic penal-
ties). In our set-up, we consider the case where data are

collected locally and agents are not willing to share their
measurements with a central processing unit.

Observe that (6) has the format of (1) by setting Xi =
X = {x ∈ R

n : ‖x‖2 ≤ 5} and fi(x) = |yi − bTi x|,
i = 1, . . . ,m. Moreover, the constraint sets Xi and the
objective functions fi, i = 1, . . . ,m, trivially satisfy As-
sumption 1. Hence, we can apply the proposed scheme to
obtain a solution to (6). We consider m = 30 and n = 4
and generate y independently from a standard Gaussian
distribution, and matrix B from a uniform distribution
with support [0, 1].

We solve (6) in a distributed manner, and compare Al-
gorithm 1 with the one proposed in [20] under four dif-
ferent network connectivity structures: i) complete net-
work graph (which corresponds to the centralised ver-
sion of the problem); ii) line network graph; iii) sparse
network graph with sparsity degree d = 0.3; iv) sparse
network graph with sparsity degree d = 0.8. We say that
a network with m agents has a sparsity degree d ∈ (0, 1)
if the number of connections among the network nodes
is given by dm2, where m2 indicates the number of con-
nections of a complete graph.

We assess the performance of Algorithm 1 for each of the
aforementioned networks in Figure 3. Solid lines corre-
spond to Algorithm 1, whereas dashed lines correspond
to the algorithm proposed in [20]. Different colours cor-
respond to the different network connectivities. For each

case, we monitor the evolution of
|
∑

30

i=1
fi(xi(k))−f⋆|
f⋆ ,

where f⋆ is the optimal value of (6). The proposed
scheme exhibits similar and often favourable perfor-
mance with the one in [20], in particular for cases
where the underlying graph is not sparse. It should be
noted, however, that Algorithm 1 possesses more gen-
eral convergence properties, i.e., the proposed scheme is
guaranteed to converge under non-identical local sets.

Note that due to the fact that Algorithm 1 requires two
rounds of communication per iteration, the results pre-
sented in Figure 3 should be rescaled by a factor of two
if we use communication rounds instead of the iteration
index.

0 50 100 150 200 250 300 350 400
10-5

10-4

10-3

10-2

10-1

100

PSfrag replacements

Iterations

Fig. 3. Evolution of
|∑30

i=1 fi(xi(k))−f⋆|
f⋆ for Algorithm 1 (solid

lines) and the one in [20] (dashed lines) when applied to the
robust regression problem given by (6). The different colours
correspond the different network connectivities.
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5.3 Example 3: ℓ2 linear regression with regularisation
In this example, we consider a variation of the regression
problem where we assume vi, i = 1, . . . ,m, to be inde-
pendent and Gaussian, i.e., the density function is given

by hvi(z) =
1√
2π
e−

z2

2 , for all z ∈ R, for all i = 1, . . . ,m,

and we assume that x is sparse. A common relaxation
of this problem is to choose the maximum likelihood es-
timator x̂ such that

x̂ = argmin
x∈X

‖y −Bx‖22 + λ‖x‖1, (7)

where X can be interpreted as a set including prior be-
liefs, e.g., ‖x‖2 ≤ c or x ≤ x ≤ x̄ for some vectors
x, x̄ ∈ R

n. The estimator x̂ obtained by solving (7) de-
pends on the value of the parameter λ. In fact, the larger
the value of λ, the worse the performance is in terms of
the error and the sparser the obtained solution is.

In this example, we aim to verify the performance of Al-
gorithm 1 under step size choices c(k) ∝ 1

k+1 and a time-
varying communication network. Similar to the previous
example, the vector y is generated according to a stan-
dard normal distribution and matrix B from a uniform
distribution on the interval [0, 1]. We assumem > n and
consider the case where agents possess private, local in-
formation, encoded by Xi = [xi, x̄i] i = 1, . . . ,m, such
that X = ∩m

i=1Xi = [x, x̄].

The algorithm presented in [20] does not necessarily con-
verge in the set-up of problem (7), as we have different
constraint sets per agent. We thus compare our algo-
rithm against the one proposed in [8], which converges
under similar conditions but does not leverage on sub-
gradient averaging. This allows us to assess the impact
of averaging subgradients on practical convergence.

100 101 102 103
10-4

10-3

10-2

10-1

Fig. 4. Evolution of the average distance to the optimal so-

lution given by

√∑300
i=1 ‖xi(k)−x⋆‖22

300
for Algorithm 1 (solid-red

line) and that of [8] (dashed-blue line).

We now investigate the behaviour of the proposed al-
gorithm in the presence of time-varying communication
networks. To this end, we set m = 300 and n = 10, and
generate four network configurations with different spar-
sity patterns, alternating cyclically among these.We also
set c(k) = 0.2

k+1 for both Algorithm 1 and the one in [8].
Figure 4 shows the evolution for the average distance
to the optimal solution for Algorithm 1 (solid-red line)
and the one in [8] (dashed-blue line). We observe that

Algorithm 1 consistently outperforms the one proposed
in [8]; this is mainly due to the sub-gradient averaging
step of Algorithm 1.

6 Conclusion
In this paper we proposed a subgradient averaging al-
gorithm for multi-agent optimisation problems involv-
ing non-differentiable objective functions and different
constraint sets per agent. For this set-up we showed
by means of a geometric construction that available
schemes involving subgradient averaging cannot be
used. For the proposed scheme we showed convergence
of the algorithm iterates to some minimiser of a cen-
tralised problem counterpart. Moreover, we have also
established a convergence rate under a particular choice
for the underlying step size. The performance of our
approach was illustrated by means of several numerical
examples, quantifying also the improvement in terms of
practical convergence with respect to other algorithms
that are not based on (sub)gradient exchange.

Future work will concentrate towards replacing the di-
minishing step size employed by our approach with a
constant one, showing convergence rates to a neighbour-
hood of the set of optimal solutions. A more detailed
study on the communication requirements, and an in-
vestigation on how we could reduce the two rounds of
communication required by the proposed algorithm is
also a topic of current work.

7 Appendix
7.1 Proof of Lemma 1
We start by proving item i). Consider the continu-
ous mapping φ : R

m × ∏m
i=1 R

n → R
n, defined as

φ(γ, x1, . . . , xm) =
∑m

i=1 γixi, where γ = (γ1, . . . , γm)
belongs to the simplex in R

m, denoted by Γ. Consider
K = φ(Γ,

∏m
i=1 Xi), and note that K is compact, as it

is the image of the compact set Γ ×∏m
i=1 Xi under the

continuous map φ. Moreover, note that by definition we
have K ⊆ conv(∪m

i=1Xi), as any element in K is a con-
vex combination of elements in ∪m

i=1Xi. To conclude the
argument, we need to show that conv(∪m

i=1Xi) ⊆ K. To
this end, it suffices to show that K is a convex set, due
to the fact that the convex hull is the smallest convex set
containing a given set. Let z, w ∈ K, i.e., z =

∑m
i=1 γizi

and w =
∑m

i=1 βiwi, with zi, wi ∈ Xi, and γ =
(γ1, . . . , γm), β = (β1, . . . , βm) ∈ Γ. Fix an α ∈ (0, 1),
and note that αz+(1−α)w =

∑m
i=1(αγi+(1−α)βi)xi,

where xi = cizi+(1−ci)wi ∈ Ai, with ci =
αγi

αγi+(1−α)βi
.

Since xi ∈ Ai due to convexity of Ai and αγ+(1−α)β ∈
Γ, we conclude that αz+(1−α)w ∈ K for any α ∈ (0, 1),
thus showing that K is a convex set. This implies then
that K = conv(∪m

i=1Xi) as we have established that
K ⊆ conv(∪m

i=1Xi) and conv(∪m
i=1Xi) ⊆ K. Since K

was shown to be compact, we have that conv(∪m
i=1Xi)

is also compact. This concludes the proof of item i). An
alternative proof can be found at [33, Prop. 1.2.2]. The
proof of item ii) follows from Proposition 5.4.2, p. 186,
in [33], and is omitted for brevity. This concludes the
proof of the lemma.
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7.2 Sufficient condition for Assumption 1, item iii).
The goal of this subsection is to provide a sufficient con-
dition for Assumption 1, item iii). The subsequent ar-
guments can be found in standard optimisation books,
such as [34, Theorem 24.7]; however we present here a
more direct proof.

Assumption 5 LetXi, i = 1, . . . ,m, be the level sets of
problem (1) and domf the domain of f . We suppose that:

i) The distance between the set ∪m
i=1Xi and the comple-

ment of the interior of the domain of f (which is closed
and convex) is strictly greater than zero, i.e.,

dist( ∪m
i=1 Xi,

(

int(domf)
)c
)

= inf
x∈∪m

i=1Xi,

y∈
(

int(domf)
)c

‖x− y‖22 > 0.

ii) Xi ⊂ ∩m
i=1int(domfi) for each i = 1, . . . ,m.

As a consequence of Assumption 5, and since domf =
∩m
i=1domfi, ri(domf) = ∩m

i=1ri(domfi) and ri(domfi) ⊂
domfi we have that the subdifferential ∂f(x) is non
empty for each x ∈ ∩m

i=1Xi, as by item ii) of Assump-
tion 5 every feasible solution of (1) belongs to the in-
terior of the domain of f . Furthermore, ∂f(x) is com-
pact by [33, Proposition 5.4.1] since the affine hull of
domf has dimension n due to Assumption 1, item ii).
We use this fact to show that ∪x∈conv(∪Xi)∂f(x) is a
bounded set, that is, ‖g‖2 ≤ L, where g ∈ ∂f(x) for any
x ∈ ∪m

i=1Xi. This result is formally stated in the next
lemma.

Lemma 2 Under Assumptions 1, items i) and ii) ,
and 5, we have that the set ∪x∈conv(∪Xi)∂f(x) is non-
empty and bounded.

PROOF.

The proof of the lemma relies on Assumption 5, item
ii), that is, Xi ⊂ ∩m

j=1ri(domfj), for all i = 1, . . . ,m.
This implies that conv(∪m

i=1Xi) ⊂ ∩m
j=1ri(domfj), as

∩m
j=1ri(domfj) is convex and contains ∪m

i=1Xi. Suppose,
by contradiction, that ∪x∈conv(∪Xi)∂f(x) is unbounded.
Then there exists a sequence (xk)k∈N ⊂ conv(∪m

i=1Xi)
such that (gk)k∈N, with gk ∈ ∂f(xk), satisfies ‖gk‖2 <
‖gk+1‖2, ∀ k ∈ N.

Notice that xk ∈ ∩m
i=1int(domfi) by Assumption 5, item

ii). By item i) of Assumption 5, we can construct a se-
quence (βk)k∈N such that xk + βkdk ∈ ∩m

i=1domfi. with
dk = gk/‖gk‖2. Let β = infk∈N βk and notice that β > 0
(i.e., it is bounded away from zero) due to Assumption 5,
item i). By the definition of gk we have that

f(xk + βdk)− f(xk)

β
≥ ‖gk‖2, ∀ k ∈ N. (8)

As inequality (8) is valid for all k ∈ N, we take the limit
superior on both sides to obtain

lim sup
k→∞

‖gk‖2 ≤ lim sup
k→∞

f(xi + γdk)− f(xk)

γ
<∞, (9)

where the right-hand side of (9) is finite as the sequences
(xk)k∈N and (dk)k∈N are bounded (notice that dk is a
normalised subgradient), and since f is continuous on its
domain (f is convex). This establishes a contradiction,
as we assumed (gk)k∈N were unbounded, thus concluding
the proof of item ii).

7.3 Proof of Proposition 1
The proof is based on an induction argument.

Base case
We show that zi(1)

T (ξ − x̂⋆
j ) ≥ 0, for all ξ ∈ Xj , for

all i, j = 1, 2, and also that xi(1) = x̂⋆, for all i = 1, 2.
Consider the inequalities

∇f1(x̂
⋆
1)

T (ξ − x̂⋆
i ) ≥ 0,

∇f2(x̂
⋆
2)

T (ξ − x̂⋆
i ) ≥ 0, ∀ξ ∈ Xi, i = 1, 2. (10)

Fix i = 1. The first inequality in (10) holds due to op-
timality of x̂⋆

1 [33]. To show the second inequality ob-

serve that∇f2(x̂
⋆
2) = [13.68,−3.94]T , and that ξ− x̂⋆

1 =
[a1, a2]

T with a1 ≥ 0 and a2 ≤ 0, for all ξ ∈ X1.

Since∇f1(x̂
⋆
1) = [12,−4]T , using a symmetric argument

we show that

∇f2(x̂
⋆
2)

T (ξ − x̂⋆
2) ≥ 0,

∇f1(x̂
⋆
1)

T (ξ − x̂⋆
2) ≥ 0, ∀ξ ∈ X2. (11)

By (2a), and under our choice for A,

zi(1) =
1

2

(

∇f1(x̂
⋆
1) +∇f2(x̂

⋆
2)
)

+∇fi(x̂
⋆
i ), (12)

for i = 1, 2, hence inequalities (10) and (11) imply that
zi(1)

T (ξ − x̂⋆
j ) ≥ 0, ∀ξ ∈ Xj , for all i, j = 1, 2.

We will now prove that xi(1) = x̂⋆
i , for i = 1, 2. Fix

i = 1. Since z1(1)
T ξ + 2

c(k)‖ξ‖22 is strictly convex, there

is a unique point satisfying

(

z1(1) + 2x1(1)
)T

(ξ − x1(1)) ≥ 0, ∀ξ ∈ X1, (13)

where (z1(1) + 2x1(1)) is the gradient of the objective
function in (2b) evaluated at x1(1), with c(1) = 1. There-
fore, it suffices to show that

(

z1(1) + 2x̂⋆
1

)T

(ξ − x̂⋆
1) ≥ 0, ∀ξ ∈ X1. (14)
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By substituting (3) into (12), we observe that z1(1) +

2x̂⋆
1 = [22.8414,−5.9708]

T
, and due to the structure of

ξ − x̂⋆
1, (14) holds, thus proving that x1(1) = x̂⋆

1. A
symmetric argument yields that x2(1) = x⋆

2.

Induction hypothesis
Assume that zi(k)

T (ξ − x̂⋆
j ) ≥ 0 for all ξ ∈ Xj , for

i, j = 1, 2, and that xi(k) = x⋆
i for i = 1, 2. We aim to

show that the aforementioned relations remain true for
the step k + 1.

Proof for iteration k + 1
Fix i = 1. Following a similar reasoning with the base
case, observe that x1(k + 1) = x⋆

1 if

[

z1(k + 1) +
2

c(k)
x̂⋆
1

]T

(ξ − x̂⋆
1) ≥ 0, ∀ξ ∈ X1. (15)

As the sequence (zi(k))k∈N is generated by (2a), we prop-
agate the dynamical system in (2a) by k + 1 steps to
obtain

zi(k + 1) =
1

2

(

∇f1(x̂
⋆
1) +∇f2(x̂

⋆
2)
)

(k + 1) +∇f1(x̂
⋆
1),

where we have used the fact that A = 1
m11T and c(k) =

1√
k+1

. A sufficient condition for equation (15) to hold is

that

[

1

2

(

∇f1(x̂
⋆
1) +∇f2(x̂

⋆
2)
)

(k + 1)

+ 2x̂⋆
1

√
k + 1

]T

(ξ − x̂⋆
1) ≥ 0, ∀ξ ∈ X1, (16)

since ∇f1(x̂
⋆
1)

T (ξ − x̂⋆
1) ≥ 0 by optimality of x̂⋆

1. Recall
that (ξ − x̂⋆

1) = [a1, a2] with a1 ≥ 0 and a2 ≤ 0 for all
ξ ∈ X1. To prove (16) we will show that the left-most
vector in the same equation can be written as [b1, b2] for
some b1 ≥ 0 and b2 ≤ 0. To achieve this, notice that
k + 1 ≥

√
2
√
k + 1, for all k ≥ 1, and let ei denote the

unit vector with 1 in the i-th position, i = 1, 2. We then
have that

eT1

[

1

2

(

∇f1(x̂
⋆
1) +∇f2(x̂

⋆
2)
)

]

(k + 1)

≥ eT1

[√
2

2

(

∇f1(x̂
⋆
1) +∇f2(x̂

⋆
2)
)

]

√
k + 1, (17)

and
2eT2 x̂

⋆
1

√
k + 1 ≤

√
2eT2 x̂

⋆
1(k + 1), (18)

since the first component of the averaged gradient and
the second component of x̂⋆

1 are both positive. Therefore,
for all k ∈ N,

b1 ≥ 16.1604
√
k + 1 > 0, b2 ≤ −2.5566(k + 1) < 0. (19)

Inequalities (17), (18) and (19), together with the struc-
ture of ξ− x̂∗

1, imply that (16) holds, so we can conclude
that x1(k+ 1) = x̂⋆

1. A symmetric argument shows that
x2(k + 1) = x̂⋆

2.

To complete the proof it remains to show that zi(k +
1)T (ξ − x̂⋆

j ) ≥ 0 for all ξ ∈ Xj, for all i, j = 1, 2,

where zi(k + 1) = 1
2

(

z1(k) + z2(k)
)

+∇fi(xi(k)), due

to (2a) and our choice for A. By our induction hypothe-
sis, zi(k)(ξ−x̂⋆

j ) ≥ 0, for all i, j = 1, 2, hence it suffices to

show that ∇fi(xi(k))
T (ξ− x̂⋆

j ) ≥ 0, ∀ξ ∈ Xj , ∀i = 1, 2.
Since xi(k) = x̂⋆

i for i = 1, 2, due to our induction hy-
pothesis, the claim follows from (10) and (11), thus con-
cluding the proof.

7.4 Auxiliary Lemmas for the proofs of Theorem 1
and 2.

Let

v(k) =
1

m

m
∑

i=1

xi(k), (20)

be the average of the agents’ estimates at time k. Since
this quantity might not necessarily belong to the feasible
set ∩m

i=1Xi, we define

v̄(k) =
ρ

ǫ(k) + ρ
v(k) +

ǫ(k)

ǫ(k) + ρ
x̄, (21)

where x̄ is a point in the interior of the feasible set (which
is non-empty by Assumption 1, item ii)), ρ > 0 is such
that the 2-norm ball of centre x̄ and radius ρ is contained
in ∩m

i=1Xi, and ǫ(k) =
∑m

i=1 dist(v(k), Xi). As shown
in [14], v̄(k) ∈ ∩m

i=1Xi, for all k ∈ N. We also define
ei(k+1) = xi(k+1)−zi(k), and note that the zi-update
in Algorithm 1 can be written as

xi(k + 1) =

m
∑

j=1

[A(k)]ijxj(k) + ei(k + 1). (22)

Lemma 3 The following relations hold.

i) Let (xi(k))k∈N, i = 1, . . . ,m, be the sequences gener-
ated by Algorithm 1, and (v(k))k∈N and (v̄(k))k∈N de-
fined by (20) and (21), respectively. Under Assump-
tion 1, we have that for all k ≥ 0,

m
∑

i=1

‖xi(k + 1)− v̄(k)‖2 ≤ µ

m
∑

i=1

‖xi(k)− v(k)‖2,

where µ = 2
ρmD+ 1, and D is the diameter of the set

∪m
i=1Xi (which is well-defined by Lemma 1, item i)).

ii) Let (xi(k))k∈N, i = 1, . . . ,m, and (v(k))k∈N be as in
item i). Under Assumption 2, we have that for all i =
1, . . . ,m, for all k ≥ 0,
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‖xi(k + 1) − v(k + 1)‖2 ≤ λqk
m
∑

j=1

‖xj(0)‖2

+ ‖ei(k + 1)‖2 +
k−1
∑

r=0

λqk−r−1
m
∑

j=1

‖ej(r + 1)‖2

+
1

m

m
∑

j=1

‖ej(k + 1)‖2,

where λ = 2(1 + η−(m−1)T )/(1 − η(m−1)T ) ∈ R+ and

q = (1 − η(m−1)T )
1

(m−1)T ∈ (0, 1).

iii) Given a non-increasing and non-negative sequence
(c(k))k∈N, and a scalar L̄ > 0, we have that

2L̄
N
∑

k=0

c(k)
m
∑

i=1

‖xi(k + 1)− v̄(k + 1)‖2

< β1

N
∑

k=0

m
∑

i=1

‖ei(k + 1)‖22 + β2

N
∑

k=0

c(k)2 + β3,

where β1 ∈ (0, 1), and β2 and β3 are positive constants.

PROOF. The proof of item i) is presented in [8,
Lemma 1]. For item ii), see [8, Lemma 2]. Finally, the
proof of item iii) follows the line of [8, Lemma 3].

Observe that the values of λ and q in Lemma 3, item
ii), depend on the parameter T that characterises the
uniform bound in Assumption 2, item i); and on η, the
lower bound for the elements of A(k), Assumption 2,
item ii). The following lemma is instrumental for the
proof of Theorem 2. In particular, Lemma 4, item ii),
constitutes a non-trivial extension of the result in [8],
allowing some sequences to be iteration-varying.

Lemma 4 Let (xi(k))k∈N, (zi(k))k∈N and (di(k))k∈N,
i = 1, . . . ,m, be the sequences generated by Algorithm 1,
and x⋆ by any optimal solution of (1). Under Assump-
tions 1 and 2, we have that:

i) For all k ∈ N,

2c(k)
m
∑

i=1

di(k)
T (xi(k + 1) − x⋆) +

m
∑

i=1

‖ei(k + 1)‖22

+

m
∑

i=1

‖xi(k + 1)− x⋆‖22 ≤
m
∑

i=1

‖xi(k)− x⋆‖22. (23)

ii) For any β1 ∈ (0, 1), there exist sequences (α1(k))k∈N

and (α2(k))k∈N such that, for all k ∈ N, α1(k) ∈ (0, 1),
α2(k) ∈ (0, 1), 1− β1 − α1(k)− α2(k) ≥ 0 and

2

N
∑

k=0

c(k)

m
∑

i=1

(fi(v̄(k + 1))− fi(x
⋆))

+

N
∑

k=0

(1− α1(k)− α2(k)− β1)

m
∑

i=1

‖ei(k + 1)‖22

+

N
∑

k=0

m
∑

i=1

‖xi(k + 1)− x⋆‖22 ≤
N
∑

k=0

m
∑

i=1

‖xi(k)− x⋆‖22

+
N
∑

k=0

(

mL2α1(k) + α2(k)

α1(k)α2(k)
+ β2

)

c(k)2 + β3. (24)

PROOF. Item i): Fix any i ∈ {1, . . . ,m} and consider
the sequence (xi(k))k∈N. By optimality of xi(k+1) (see
Algorithm 1), for any ξ ∈ Xi,

di(k)
Txi(k + 1) − 1

c(k)
(zi(k)− xi(k + 1))Txi(k + 1)

≤ di(k)
T ξ − 1

c(k)
(zi(k)− xi(k + 1))T ξ, (25)

where di(k)− 1
c(k) (zi(k)−xi(k+1)) constitutes the gra-

dient of the objective function in the xi−update of Algo-
rithm 1, evaluated at xi(k+1). Fix any optimal solution
of (1), x⋆ ∈ ∩m

i=1Xi, and consider the following identity

− 1

c(k)
(zi(k)− xi(k + 1))T (xi(k + 1)− x⋆)

=
1

2c(k)
‖xi(k + 1) − zi(k)‖22 +

1

2c(k)
‖xi(k + 1)− x⋆‖22

− 1

2c(k)
‖zi(k)− x⋆‖22. (26)

Combining (26) and (25) with ξ = x⋆, we obtain

di(k)
Txi(k + 1) +

1

2c(k)
‖xi(k + 1)− zi(k)‖22

+
1

2c(k)
‖xi(k + 1) − x⋆‖22

≤ di(k)
Tx⋆ +

1

2c(k)
‖zi(k)− x⋆‖22

≤ di(k)
Tx⋆ +

1

2c(k)

m
∑

j=1

[A(k)]ij‖xj(k)− x⋆‖22, (27)

where the last inequality follows from double stochastic-
ity of A(k) and convexity of ‖ · ‖2.
We now multiply both sides of (27) by 2c(k) and sum
the result for all i = 1, . . . ,m, to obtain

2c(k)
m
∑

i=1

di(k)
Txi(k + 1) +

m
∑

i=1

‖xi(k + 1)− zi(k)‖22

10



+
m
∑

i=1

‖xi(k + 1) − x⋆‖22 ≤ 2c(k)
m
∑

i=1

di(k)
Tx⋆

+
m
∑

i=1

‖xi(k)− x⋆‖22, (28)

where
∑m

i=1

∑m
j=1[A(k)]

i
j‖xj(k)−x⋆‖22 =

∑m
i=1 ‖xi(k)−

x⋆‖22 by exchanging the order of summation, and due to
double stochasticity ofA(k). The result follows from (28)
by recalling that e(k+1) = xi(k+1)−zi(k) and moving
the first term in the right-hand side of (28) to the left
one. This concludes the proof of item i).

Item ii): Consider the first term in the left-hand side
of (23), and rewrite it as

2c(k)
m
∑

i=1

di(k)
T (xi(k + 1) − x⋆) =

2c(k)

m
∑

i=1

di(k)
T (xi(k + 1)− v̄(k + 1))

+2c(k)

m
∑

i=1

di(k)
T (v̄(k + 1)− x⋆) (29)

by adding and subtracting v̄(k + 1). We next consider
the terms in the right hand-side of (29) separately. First,
observe that

2c(k)

m
∑

i=1

di(k)
T (xi(k + 1) − v̄(k + 1))

≥− 2c(k)L

m
∑

i=1

‖xi(k + 1)− v̄(k + 1)‖2, (30)

by the Cauchy-Schwartz inequality, where L =
maxξ∈∪m

i=1
Xj

‖gj(ξ)‖2, which is well-defined due to

Lemma 1. Using the definition of di(k) – see Algorithm 1
– into the second term in the right-hand side of (29),
we then have that (via double stochasticity of A)

2c(k)
m
∑

i=1

di(k)
T (v̄(k + 1) − x⋆)

= 2c(k)
m
∑

i=1

gi(zi(k))
T (v̄(k + 1)− x⋆). (31)

Moreover, by adding and subtracting xi(k+1) and zi(k)
for all i = 1, . . . ,m, into the right-hand side of (31) we
obtain

2c(k)
m
∑

i=1

gi(zi(k))
T (v̄(k + 1)− x⋆)

=2c(k)
m
∑

i=1

gi(zi(k))
T (v̄(k + 1) − xi(k + 1))

+2c(k)
m
∑

i=1

gi(zi(k))
T (xi(k + 1) − zi(k))

+2c(k)
m
∑

i=1

gi(zi(k))
T (zi(k)− x⋆). (32)

Consider now the right-hand side of (32). The left-most
term can be lower-bounded as

2c(k)

m
∑

i=1

gi(zi(k))
T (v̄(k + 1) − xi(k + 1))

≥ −2c(k)L
m
∑

i=1

‖v̄(k + 1))− xi(k + 1)‖2, (33)

by the Cauchy-Schwartz inequality. As for the middle
term, we have that

2c(k)

m
∑

i=1

gi(zi(k))
T (xi(k + 1) − zi(k))

≥ −2c(k)L
m
∑

i=1

‖ei(k + 1)‖2

≥ −α1(k)

m
∑

i=1

‖ei(k + 1)‖22 −m
L2

α1(k)
c(k)2 (34)

where the first inequality follows from the Cauchy-
Schwartz inequality and the definition ei(k) in (22).
For the second inequality, we employed the rela-
tion 2xy ≤ x2 + y2 with x = L√

α1(k)
c(k) and

y =
√

α1(k)‖ei(k + 1)‖2 for some α1(k) ∈ (0, 1), k ∈ N.

Similarly, the right-most term of (32) can be manipu-
lated to yield

2c(k)
m
∑

i=1

gi(zi(k))
T (zi(k)− x⋆)

≥ 2c(k)
m
∑

i=1

(

fi(zi(k))− fi(x
⋆)
)

= 2c(k)
m
∑

i=1

(

fi(zi(k))− fi(v̄(k + 1))
)

+ 2c(k)

m
∑

i=1

(

fi(v̄(k + 1)) − fi(x
⋆)
)

(35)

where the inequality follows from the definition of the
subgradient for a convex function, and the equality by
adding and subtracting fi(v̄(k + 1)). The first term in
the right-hand side of (35) can be lower bounded as

2c(k)
m
∑

i=1

(

fi(zi(k))− fi(v̄(k + 1))
)

≥ −2c(k)L
m
∑

i=1

‖zi(k)− v̄(k + 1)‖2
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≥ −2c(k)L
(

m
∑

i=1

(‖ei(k + 1)‖2 + ‖xi(k + 1) − v̄(k + 1)‖2)
)

≥ −α2(k)

m
∑

i=1

‖ei(k + 1)‖22 −m
L2

α2(k)
c(k)2

− 2c(k)L

m
∑

i=1

‖xi(k + 1)− v̄(k + 1)‖2 (36)

where the first inequality follows from the relation x ≥
−|x|, for all x ∈ R, and from item iii) of Lemma 1,
and the second inequality by adding and subtracting
xi(k + 1), for all i = 1, . . . ,m, and then using triangle
inequality. The last inequality follows from 2xy ≤ x2+y2

with x = L√
α2(k)

c(k) and y =
√

α2(k)‖ei(k + 1)‖2 for

some α2(k) ∈ (0, 1), k ∈ N. Substituting (36) into (35)

2c(k)
m
∑

i=1

gi(zi(k))
T (zi(k)− x⋆)

≥ −α2(k)
m
∑

i=1

‖ei(k + 1)‖22 −m
L2

α2(k)
c(k)2

− 2c(k)L
m
∑

i=1

‖xi(k + 1)− v̄(k + 1)‖2

+ 2c(k)
m
∑

i=1

(

fi(v̄(k + 1))− fi(x
⋆)
)

. (37)

Substituting (29), (30), (33), (34), (37) into (23)

2c(k)
m
∑

i=1

(fi(v̄(k + 1))− fi(x
⋆)) +

m
∑

i=1

‖xi(k + 1) − x⋆‖22

+
(

1− α1(k)− α2(k)
)

m
∑

i=1

‖ei(k + 1)‖22

≤
m
∑

i=1

‖xi(k)− x⋆‖22 +mL2
(α1(k) + α2(k)

α1(k)α2(k)

)

c(k)2

+ 6c(k)L
m
∑

i=1

‖xi(k + 1)− v̄(k + 1)‖2. (38)

Summing (38) from k = 0 to k = N , and using Lemma 4,
item iii), with L̄ = 3L, the desired inequality (24) fol-
lows. This concludes the proof of item ii).

Note that for any β1 ∈ (0, 1), the sequences (α1(k))k∈N

and (α2(k))k∈N can be chosen to guarantee that 1 −
α1(k) − α2(k) − β1 ≥ 0 for all k ∈ N. For instance, one
particular choice is α1(k) = α2(k) = α with 1 − β1 −
2α > 0. Three immediate consequences of Lemma 4 are
presented in the following proposition.

Proposition 2 Consider Assumptions 1–3. The follow-
ing statements hold

i) We have that
∑∞

k=0

∑m
i=1 ‖ei(k)‖22 < ∞;

ii) For all i = 1, . . . ,m, we have that limk→∞ ‖ei(k)‖2 =
0;

iii) For all i = 1, . . . ,m, limk→∞ ‖xi(k)− v(k)‖2 = 0.

PROOF. Item i): Consider Lemma 4, item ii). Note

that
∑N

k=0

∑m
i=1 ‖xi(k+1)−x⋆‖2 and

∑N
k=0

∑m
i=1 ‖xi(k)−

x⋆‖2 form a telescopic series, so they can be replaced
by

∑m
i=1 ‖xi(N +1)− x⋆‖2 and

∑m
i=1 ‖xi(0)− x⋆‖2, re-

spectively. Let β1 ∈ (0, 1), choose α1(k) = α2(k) = α so
that 1− 2α−β1 > 0. Observe that

∑m
i=1(fi(v̄(k+1))−

fi(x
⋆)) ≥ 0 for all k ∈ N, due to optimality of x⋆, so this

term can be dropped from (24). Besides, we can also
drop the term

∑m
i=1 ‖xi(N + 1) − x⋆‖22 ≥ 0 since it is

non-negative and appears in the left-hand side of (24).
This yields

(1− 2α− β1)
N
∑

k=0

m
∑

i=1

‖ei(k + 1)‖22 ≤
m
∑

i=1

‖xi(0) − x⋆‖22

+

(

mL2 2

α
+ β2

)

N
∑

k=0

c(k)2 + β3.

Letting N → ∞, we conclude that
∑∞

k=0

∑m
i=1 ‖ei(k)‖22

is finite since the sequence (c(k))k∈N is square-summable
under Assumption 3 and the feasible set is compact. This
concludes the proof of item i).

Item ii): Follows directly from item i).

Item iii): This proof follows directly from the arguments
presented in [8, Proposition 3], and is omitted for brevity.

7.5 Proof of Theorem 1
We are now in a position to prove Theorem 1. To this
end, we use the inequality (38) and leverage on Lemma
3.4 in [35] to establish convergence of the sequences
(‖xi(k) − x⋆‖2)k∈N, i = 1, . . . ,m, to zero for some min-
imiser x⋆ of (1). We first present Lemma 3.4 in [35].

Lemma 5 ( [35]) Consider non-negative scalar se-
quences (ℓ(k))k∈N, (u(k))k∈N and (ζ(k))k∈N that sat-
isfy the recursion ℓ(k + 1) ≤ ℓ(k) − u(k) + ζ(k). If
∑∞

k=0 ζ(k) < ∞, then the sequence (ℓ(k))k∈N converges
and the sequence (u(k))k∈N is summable.

Consider inequality (38), and choose α1(k), α2(k) and
β1 as in the proof of Proposition 2 item i). We now
drop the term involving (1 − 2α)

∑m
i=1 ‖ei(k + 1)‖22 as

it appears on the left-hand side of the inequality and is
non-negative so that we obtain

m
∑

i=1

‖xi(k + 1)− x⋆‖22 ≤
m
∑

i=1

‖xi(k)− x⋆‖22

− 2c(k)
m
∑

i=1

(fi(v̄(k + 1)) − fi(x
⋆)) +

2mL2

α
c(k)2

+ 6c(k)L
m
∑

i=1

‖xi(k + 1) − v̄(k + 1)‖2. (39)
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With reference to Lemma 5 and considering inequal-
ity (39), we set ℓ(k) =

∑m
i=1 ‖xi(k)− x⋆‖22, and

ζ(k) =
2mL2

α
c(k)2 + 6c(k)L

m
∑

i=1

‖xi(k + 1)− v̄(k + 1)‖2,

u(k) = 2c(k)
(

f(v̄(k + 1))− f(x⋆)
)

. (40)

By Lemma 3, item iii), with L̄ = 3L, and by Proposi-
tion 2, item i), it follows that 6L

∑∞
k=1 c(k)

∑m
i=1 ‖xi(k+

1) − v̄(k + 1)‖ < ∞, hence,
∑∞

k=1 ζ(k) < ∞, as c(k) is
square-summable due to Assumption 3, which implies
that the assumptions of Lemma 5 hold.

Therefore, we have that the sequence (
∑m

i=1 ‖xi(k) −
x⋆‖22)k∈N converges, which implies that (

∑

i ‖xi(k) −
x⋆‖2)k∈N also converges. To see this, note that, by
continuity of the square-root function, (

∑m
i=1 ‖xi(k) −

x⋆‖22)k∈N being a convergent sequence implies that
(‖X(k) − x⋆ ⊗ 1T ‖F )k∈N also converges, where, for a
fixed k ∈ N, X(k) is a n × m matrix whose i-th col-
umn is given by xi(k), and ⊗ represents the Kronecker
product. Moreover, note that the set of n × m matri-
ces can be equipped with the norm

∑m
i=1 ‖xi‖2, where

xi, i = 1, . . . ,m, is the i-th column of a generic ele-
ment X ∈ R

n×m. Since all norms in finite-dimensional
spaces are equivalent, we conclude that the sequence
(
∑m

i=1 ‖xi(k)− x⋆‖2)k∈N also converges. An alternative
but more tedious justification of this argument can be
found in [8].

By Lemma 5, we also have that
∑∞

k=1 c(k)
(

f(v̄(k+1))−
f(x⋆)

)

< ∞.The latter implies that lim infk→∞(f(v̄(k+
1)) − f(x⋆)) = 0. Therefore, there exists a subse-
quence of (f(v̄(k + 1)) − f(x⋆))k∈N that converges
to zero. Since the function f(x) is continuous (by
convexity) there exists some minimizer x⋆ such that
a subsequence of (‖v̄(k) − x⋆‖2)k∈N converges to
zero. Moreover, we obtain

∑m
i=1 ‖xi(k) − x⋆‖2 ≤

∑m
i=1 ‖v̄(k)− x⋆‖2 + µ

∑m
i=1 ‖xi(k)− v(k)‖2. by adding

and subtracting v̄(k), then applying triangle inequality
and invoking Lemma 3, item i).

Note that (‖v̄(k) − x⋆‖2)k∈N converges to zero across a
subsequence and (

∑m
i=1 ‖xi(k)−v(k)‖2)k∈N converges to

zero (due to Proposition 2, item iii)) hence we can find a
subsequence of (

∑m
i=1 ‖xi(k)− x⋆‖2)k∈N that converges

to zero. However, we have shown by means of Lemma 5
that the sequence (

∑m
i=1 ‖xi(k) − x⋆‖2)k∈N converges;

as a result it should converge to zero since every Cauchy
sequence has a unique limit point. To conclude the proof,
note that, for all k ∈ N and for all j = 1, . . . ,m, ‖xj(k)−
x⋆‖2 ≤ ∑m

i=1 ‖xi(k) − x⋆‖2, so we conclude that the
sequences (‖xj(k)−x⋆‖2)k∈N, j = 1, . . . ,m, converge to
zero. This concludes the proof.

7.6 Proof of Theorem 2
Consider Assumption 4. We drop the constant η for sim-
plicity of exposition, but general choices η√

k+1
, η > 0,

are also applicable. Let (v̂(k))k∈N be the running average
sequence associated with (v̄(k))k∈N (definition is analo-
gous to (x̂i(k))k∈N in (4)). Note that since ∩m

i=1Xi is as-
sumed to be convex, we have that v̂(k) is feasible for all
k ∈ N (see also the discussion below (21)). We have that

∣

∣

∣

∣

∣

m
∑

i=1

fi(x̂i(k + 1)) − f(x⋆)

∣

∣

∣

∣

∣

≤ f(v̂(k + 1))− f(x⋆)

+ L

m
∑

i=1

‖x̂i(k + 1)− v̂(k + 1)‖2, (41)

which follows from triangle inequality and Lemma 1,
item iii). Note that the first term in the right-hand side
of (41) does not involve an absolute value due to feasi-
bility of the sequence (v̂(k))k∈N, which in turn implies
that f(v̂(k + 1)) ≥ f(x⋆).

To facilitate subsequent statements, we change the no-
tation in Lemma 4, item ii), by replacing k by r, and N
by k. The inequality with this modified notation is re-
peated here for clarity. Indeed, we have that for all k ∈ N

2

k
∑

r=0

c(r)

m
∑

i=1

(fi(v̄(r + 1))− fi(x
⋆))

+

k
∑

r=0

(1− α1(r)− α2(r)− β1)

m
∑

i=1

‖ei(r + 1)‖22

+

k
∑

r=0

m
∑

i=1

‖xi(r + 1)− x⋆‖22 ≤
k
∑

r=0

m
∑

i=1

‖xi(r)− x⋆‖22

+
k
∑

r=0

(

mL2α1(r) + α2(r)

α1(r)α2(r)
+ β2

)

c(r)2 + β3, (42)

where (α1(r))r∈N and (α2(r))r∈N are sequences such that
1− β1 − α1(r)− α2(r) ≥ 0 for all r ∈ N.

The proofs of items i), ii) and iii) of Theorem 2 are
intertwined and will be composed into two parts: we first
assume that there exist constants d1, d2, d3, d4 > 0 such
that (43) and (44) bellow are satisfied, and on this basis
prove the claims of the theorem; we then return to (43)
and (44), and prove the existence of such constants. To
this end, consider

f(v̂(k + 1)) − f(x⋆) ≤ d1
1

S(k + 1)
+ d2

∑k

r=0 c(r)
2

S(k + 1)
(43)

L
m
∑

i=1

‖x̂i(k + 1)− v̂(k + 1)‖2 ≤ d3
S(k + 1)

+ d4

∑k

r=0 c(r)
2

S(k + 1)
.

(44)

Note that S(k + 1) can be lower-bounded as

S(k + 1) =

k+1
∑

r=1

1√
r + 1

≥
∫ k+3

2

1√
x
dx

= 2(
√
k + 3−

√
2) ≥ ν

√
k + 3 ≥ ν

√
k + 1, (45)
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with ν = 2−
√
2, and where we employed monotonicity

of
√
x+3−

√
2√

x+1
for x ≥ 1. Moreover, we have that

k
∑

r=0

c(r)2 =

k
∑

r=0

1

r + 1
=

k+1
∑

r=1

1

r

≤
∫ k+1

1

1

x
dx+ 1 ≤ ln(k + 1) + 1. (46)

The result of the Theorem 2, item iii), follows then
from (41) by substituting (43)–(46), and setting B1 =
∑4

i=1
di

ν and B2 = d2

ν + d4

ν . Since (44) is valid for all
i = 1, . . . ,m, we have that (via a direct application of
triangle inequality) ‖x̂i(k) − x̂j(k)‖2 ≤ ∑m

i=1 ‖x̂i(k) −
v̂(k)‖+∑m

i=1 ‖x̂j(k)− v̂(k)‖, which due to (45) and (46)
then implies that the sequence (‖x̂i(k) − x̂j(k)‖2)k∈N

converges to zero at a rate O( ln k√
k
). This concludes the

proof of item i).

Moreover, these relations also imply that the set of accu-
mulation points of the sequence (v̂(k))k∈N coincides to
that of the sequences (x̂i(k))k∈N, i = 1, . . . ,m. Hence,
we conclude that all accumulation points of (x̂i(k))k∈N

are feasible due to the fact that all accumulation points
of (v̂(k))k∈N are in ∩m

i=1Xi and the latter is a closed set,
thus concluding the proof of item ii). This concludes the
proof of Theorem 2.
Derivation of (43)

We first construct an upper-bound for the term on the
left-hand side of (43). In fact, observe that

f(v̂(k + 1))− f(x⋆) = f

(

1

S(k + 1)

k+1
∑

r=1

c(r)v̄(r)

)

− f(x⋆)

≤
k+1
∑

r=1

c(r)

S(k + 1)
f(v̄(r))− f(x⋆)

=

k
∑

r=0

c(r + 1)

S(k + 1)

m
∑

i=1

(fi(v̄(r + 1))− fi(x
⋆))

≤
k
∑

r=0

c(r)

S(k + 1)

m
∑

i=1

(fi(v̄(r + 1))− fi(x
⋆)), (47)

where the first equality follows by definition of v̂(k+1),
the first inequality by convexity of f , the second equality
by using the fact that f =

∑m
i=1 fi and changing the

summation index, and the second inequality by using
the fact that c(r+1) = 1√

r+1
≤ 1√

r
= c(r) for all r ∈ N.

In light of (42), for any β1 ∈ (0, 1), a valid choice for
the sequences (α1(k))k∈N and (α2(k))k∈N is α1(k) =

α2(k) = α(k), where α(k) = a
(

1 − 1√
k+1

)

; to ensure

that 1−β1−α1(k)−α2(k) ≥ 0 as required by Lemma 4,
item ii), it suffices to set a = (1 − β1)/2. Under these
choices we have that

1− β1 − 2α(k) =
1− β1√
k + 1

= (1− β1)c(k). (48)

Consider now (42) with the above choices for α1(k) and

α2(k). Note that the series
∑k

r=0

∑m
i=1 ‖xi(r+1)−x⋆‖2

and
∑k

r=0

∑m
i=1 ‖xi(r)−x⋆‖2 are telescopic, thus all in-

termediate terms cancel. We now drop the terms involv-
ing ‖ei(r + 1)‖22 and ‖xi(k + 1)− x⋆‖2 as they are non-
negative, and then divide the resulting expression by

2S(k+1) = 2
∑k+1

r=1
1√
r+1

to obtain the following upper

bound on the right-hand side of (47)

k
∑

r=0

c(r)

S(k + 1)

m
∑

i=1

(fi(v̄(r + 1)) − fi(x
⋆))

≤
∑m

i=1 ‖xi(0)− x⋆‖22
2S(k + 1)

+
β3

2S(k + 1)

+
β2

2

k
∑

r=0

c(r)2

S(k + 1)
+mL2 1

S(k + 1)

k
∑

r=0

c(r)2

α(r)
. (49)

By the right-hand side of (49), we obtain (43) with

d1 = 4mD2+β3

2 , d2 = β2

2 + 4mL2

a . where, by Assump-

tion 1,
∑m

i=1 ‖xi(0)− x⋆‖22 ≤ 4mD2, with D defined as
in Lemma 3, item i). Moreover, we used the fact that
c(r)2

α(r) = 1
a

√
r+1√

r+1−1
1

r+1 ≤ 4
ac(r)

2, due to monotonicity of
√
x+1√

x+1−1
.

Derivation of (44)

Similarly to the derivation of (43), we apply the defi-
nition of both x̂i(k), i = 1, . . . ,m, and v̂(k) to upper-
bound the left-hand side of (44) as

L

m
∑

i=1

‖x̂i(k + 1)− v̂(k + 1)‖2

= L
m
∑

i=1

∥

∥

∥

∥

∥

1

S(k + 1)

k+1
∑

r=1

c(r)
(

xi(r)− v̄(r)
)

∥

∥

∥

∥

∥

2

≤ Lµ

S(k + 1)

k+1
∑

r=1

c(r)
m
∑

i=1

‖xi(r)− v(r)‖2, (50)

where the inequality follows from convexity of the norm.
Wewill now construct an upper-bound on the right-hand
side of (50). To this end, note that

Lµ

S(k + 1)

k+1
∑

r=1

c(r)
m
∑

i=1

‖xi(r)− v(r)‖2

=
Lµc(1)

S(k + 1)

m
∑

i=1

‖xi(1)− v(1)‖2

+
Lµ

S(k + 1)

k+1
∑

r=2

c(r)
m
∑

i=1

‖xi(r)− v(r)‖2. (51)

We now invoke Lemma 3, item ii) – with r in the place
of k, and t in the place of r – for the last term on the
right-hand side of (51) so that
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k+1
∑

r=2

c(r)

m
∑

i=1

‖xi(r)− v(r)‖2

=

k
∑

r=1

c(r + 1)

m
∑

i=1

‖xi(r + 1)− v(r + 1)‖2

≤ 2
k
∑

r=0

c(r)
m
∑

i=1

‖ei(r + 1)‖2 +mλ
m
∑

i=1

‖xi(0)‖2
k
∑

r=0

c(r)qr

+mλ
k
∑

r=1

c(r + 1)

r−1
∑

t=0

qr−t−1
m
∑

i=1

‖ei(t+ 1)‖2 (52)

where we added the term corresponding to r = 0 and
used the fact that c(r + 1) ≤ c(r) for all r ∈ N, in first
two terms on the right-hand side of (52). We analyse
each term in the right-hand side of (52) separately. First,
observe that

2

k
∑

r=0

c(r)

m
∑

i=1

‖ei(r + 1)‖2 ≤
k
∑

r=0

c(r)2 +

m
∑

i=1

‖ei(r + 1)‖22,

(53)

using the identity 2xy ≤ x2+y2. The intermediate term
in the right-hand side of (52) can bemanipulated to yield

mλ

m
∑

i=1

‖xi(0)‖2
k
∑

r=0

c(r)qr ≤ m2λD

1− q
, (54)

since c(r) ≤ 1 for all r ∈ N ∪ {0}, ‖xi(0)‖2 ≤ D
(Lemma 1) for all i = 1, . . . ,m, and using the closed-
form expression for the sum of geometric series as
q ∈ (0, 1). We deal with the last term in (52) in several
steps. We start by expanding the terms to obtain

k
∑

r=1

c(r + 1)
r−1
∑

t=0

qr−t−1
m
∑

i=1

‖ei(t+ 1)‖2

= c(2)

m
∑

i=1

‖ei(1)‖2 + c(3)

(

q

m
∑

i=1

‖ei(1)‖2
m
∑

i=1

‖ei(2)‖2
)

+ . . .+ c(k + 1)

(

k
∑

t=1

qk−t

m
∑

i=1

‖ei(t)‖2
)

. (55)

We now collect the terms containing the error vector
ei(r), r = 1, . . . , k, to obtain

mλ
k
∑

r=1

c(r + 1)

r−1
∑

t=0

qr−t−1
m
∑

i=1

‖ei(t+ 1)‖2

= mλ
m
∑

i=1

‖ei(1)‖2
(

c(2) + qc(3) + . . .

+ qk−1c(k + 1)
)

+ . . .+
m
∑

i=1

‖ei(k)‖2c(k + 1)

≤ mλ

1− q

k
∑

r=1

c(r + 1)
m
∑

i=1

‖ei(r)‖2

≤ mλ

1− q

k
∑

r=1

c(r)
m
∑

i=1

‖ei(r)‖2 ≤ mλ

2(1− q)

k
∑

r=0

c(r)2

+
mλ

2(1− q)

k
∑

r=0

m
∑

i=1

‖ei(r + 1)‖22 (56)

where in the first inequality we used the fact that q ≤
1

1−q and 1 ≤ 1
1−q for any q ∈ (0, 1), while in the second

inequality we used the fact that c(r+1) ≤ c(r). To obtain
the last inequality we applied the relation 2xy ≤ x2+y2

with x = c(r) and y = ‖ei(r + 1)‖2, and then added
the non-negative terms involving c(0)2 and

∑m
i=1 ‖ei(k+

1)‖22. Substituting (51)–(54) and (56) into (50) we have
that

L
m
∑

i=1

‖x̂i(k + 1) − v̂(k + 1)‖2

≤ Lµ

(

1 +
mλ

2(1− q)

) ∑k

r=0 c(r)
2

S(k + 1)

+

(

mλ+ 2c(1)

)

LµmD

S(k + 1)

+
Lµ

S(k + 1)

(

1 +
mλ

2(1− q)

) k
∑

r=0

m
∑

i=1

‖ei(r + 1)‖22. (57)

To obtain the result, we need to manipulate the last term
in the right-hand side of (57). To this end, we invoke (42)
with the same β1 as in (48), but with (α1(k))k∈N and
(α2(k))k∈N such that α1(k) = α2(k) = α, for all k ∈ N,
following the same rationale as in Proposition 2 to obtain

k
∑

r=0

m
∑

i=1

‖ei(r + 1)‖22 ≤
∑m

i=1 ‖x(0) − x⋆‖22 + β3

1− β1 − 2α

+
1

1− β1 − 2α

(

mL2 2

α
+ β2

)

k
∑

r=0

c(r)2

≤ 4mD2 + β3

1− β1 − 2α

+
1

1− β1 − 2α

(

mL2 2

α
+ β2

)

k
∑

r=0

c(r)2. (58)

Substituting (58) into (57) we obtain (44) with constants

d3 = Lµ

[(

1 +
mλ

2(1− q)

)

4mD2 + β3

1− β1 − 2α
+mD

(

mλ+ 2c(1)

)]

,

d4 = Lµ

(

1 +
mλ

2(1− q)

)(

1 +
1

1− β1 − 2α

(

mL2 2

α
+ β2

)

)

,

thus concluding the proof of Theorem 2.
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