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Abstract

Exact discrete-time models of nonlinear systems are difficult or impossible to obtain, and hence approximate models may be
employed for control design. Most existing results provide conditions under which the stability of the approximate model in
closed-loop carries over to the stability of the (unknown) exact model but only in a practical sense, i.e. the trajectories of the
closed-loop system are ensured to converge to a bounded region whose size can be made as small as desired by limiting the
maximum sampling period. In addition, some very stringent conditions exist for the exact model to exhibit exactly the same
type of asymptotic stability as the approximate model. In this context, our main contribution consists in providing less stringent
conditions by considering semiglobal exponential input-to-state stability (SE-ISS), where the inputs can successfully represent
state-measurement and actuation errors. These conditions are based on establishing SE-ISS for an adequate approximate model
and are applicable both under uniform and nonuniform sampling. As a second contribution, we show that explicit Runge-Kutta
models satisfy our conditions and can hence be employed. An example of control design for stabilization based on approximate
discrete-time models is also given.

Keywords: Sampled-data systems, nonlinear systems, nonuniform sampling, input-to-state stability (ISS), discrete-time models.

1. Introduction

Modern digital control applications involve measuring the
available signals of the continuous-time plant via a sampling
mechanism and then applying the computed control action via
zero-order hold (ZOH). One of the existing approaches for con-
trol design consists in designing a discrete-time control law
based on a discrete-time model of the plant. For nonlinear sys-
tems the exact discrete-time model, i.e. the model that exactly
matches the state of the continuous-time system at sampling
instants, may be difficult (or impossible) to derive due to the
complexity (or non-existence) of the closed form solutions of
the equations that describe the plant dynamics. Thus, the usual
approach is to design the control law based on a (sufficiently
good) approximate discrete-time model.

In this context, several results have been derived in order
to establish different kinds of stability properties of the exact
model or generate adequate approximate models (Nešić et al.,
1999; Nešić and Laila, 2002; Nešić and Teel, 2004; Karafyllis
and Kravaris, 2009; Nešić et al., 2009; Monaco and Normand-
Cyrot, 2007; Yuz and Goodwin, 2014; van de Wouw et al.,
2012; Zeng et al., 2017). These results usually provide condi-
tions that ensure certain kind of stability property for the ap-
proximate closed-loop model and, if the exact and approxi-
mate models satisfy some consistency property, also ensure that
the stability property or a practical version of it is also ful-
filled by the exact model for sufficiently small sampling pe-
riods. These stability properties contemplate a wide range of
situations with respect to the uniformity of the sampling (peri-

odic or aperiodic), the nature of the convergence to an equili-
brium point (asymptotic or practical), the consideration of dis-
turbances (input-to-state stability properties) and the nature of
the maximum allowable sampling period (semiglobal or global).
Several works address problems such as the presence of time
delays (Di Ferdinando and Pepe, 2017, 2019; Di Ferdinando
et al., 2019), observer design (Arcak and Nešić, 2004; Postoyan
and Nešić, 2012; Beikzadeh and Marquez, 2016), and control
schemes involving dual-rate (Liu et al., 2008; Üstüntürk, 2012)
or multirate (Beikzadeh and Marquez, 2015; Polushin and Mar-
quez, 2004) sampling. Other approaches for sampled-data sta-
bilization only contemplate emulated controllers (Nešić et al.,
2009) or require Lyapunov-like assumptions on the continuous-
time plant (Nešić et al., 2009; Abdelrahim et al., 2017). A re-
cent publication (Lin, 2020) shows that global asymptotic and
local exponential stabilizability of the continuous-time plant by
state feedback imply semiglobal asymptotic stabilizability by
digital state feedback; these results hold under uniform sam-
pling. In Vallarella and Haimovich (2018), we derived nec-
essary and sufficient conditions for (i) semiglobal asymptotic
stability, robustly with respect to bounded disturbances, and
(ii) semiglobal ISS, where the (disturbance) input may success-
fully represent state-measurement or actuation errors, both for
discrete-time models of nonuniformly sampled (i.e. periodic
or aperiodic) nonlinear systems. These properties are semiglo-
bal only in the sampling period, meaning that a bound on the
state exists such that for every bound on the initial condition
(and input), a maximum sampling period exists for which the

Preprint submitted to Automatica April 30, 2021

ar
X

iv
:2

00
7.

14
01

1v
2 

 [
ee

ss
.S

Y
] 

 2
9 

A
pr

 2
02

1



state bound holds. In Vallarella and Haimovich (2019), we have
shown that if a consistency property (MSEC) holds between
the approximate and exact closed-loop models then the smaller
the maximum admissible sampling period is, the lower the er-
ror between their solutions over a fixed time period becomes.
Moreover, if the control law renders the approximate model
semiglobal practical ISS under nonuniform sampling (SP-ISS-
VSR), then the same controller ensures SP-ISS-VSR of the ex-
act closed-loop model. In all of these existing results, stability
of the exact model is either semiglobal and practical or global
and asymptotic. The conditions for ensuring global stability are
stringent. To the best of the authors’ knowledge, results based
on approximate discrete-time models, ensuring semiglobal and
asymptotic stability under conditions that may hence be much
weaker than those required for a global result, without requir-
ing Lyapunov-like assumptions on the continuous-time plant,
and admitting nonuniform sampling and control laws not nec-
essarily based on emulation (which may use the knowledge of
the current sampling period to compute the control action), have
not been previously derived.

The main purpose of this paper is thus to provide results that
ensure semiglobal asymptotic ISS under nonuniform sampling
and in the presence of disturbances that successfully cover the
case of state-measurement and actuation errors. Specifically,
we give sufficient conditions for semiglobal exponential ISS
under nonuniform sampling (SE-ISS-VSR) of the exact closed-
loop model, based on the fact that the same property holds for
an approximate model. To do that, we introduce two novel
consistency properties that take disturbances into account: Ro-
bust Equilibrium-Preserving Consistency (REPC) and Multi-
step Consistency (REPMC). REPC bounds the mismatch after
only one sampling period and REPMC bounds the mismatch
between the models’ trajectories over finite time intervals, irre-
spective of how many sampling periods fall within the interval.
As a second contribution, we show that any explicit and consis-
tent Runge-Kutta model is REPC with the exact model under
very mild conditions not requiring high-order differentiability
of the function that defines the continuous-time plant.

The organization of this paper is as follows. In Section 2
we present a brief summary of the notation employed, we state
the problem and the required definitions and properties. Our
main results are given in Section 3. An illustrative example of
stabilization of a plant via discrete-time design is provided in
Section 4. Concluding remarks are presented in Section 5. The
Appendix contains the proofs of the presented results and some
of the intermediate technical points.

2. Preliminaries

2.1. Notation

R, R≥0, N and N0 denote the sets of real, nonnegative real,
natural and nonnegative integer numbers, respectively. We write
α ∈ K if α : R≥0 → R≥0 is strictly increasing, continuous and
α(0) = 0. We write α ∈ K∞ if α ∈ K and α is unbounded. We
write β ∈ KL if β : R≥0 × R≥0 → R≥0, β(·, t) ∈ K for all t ≥ 0,
and β(s, ·) is strictly decreasing asymptotically to 0 for every

s. We denote the Euclidean norm of a vector x ∈ Rn by |x|.
We denote an infinite sequence as {Ti} := {Ti}

∞
i=0. For any se-

quences {Ti} ⊂ R≥0 and {ei} ⊂ Rm, and any γ ∈ K , we take the
following conventions:

∑−1
i=0 Ti = 0 and γ(sup0≤i≤−1 |ei|) = 0.

Given a real number T > 0 we denote by Φ(T ) := {{Ti} :
{Ti} is such that Ti ∈ (0,T ) for all i ∈ N0} the set of all se-
quences of real numbers in the open interval (0,T ). For a given
sequence we denote the norm ‖{xi}‖ := supi≥0 |xi|.

2.2. Discrete-time models
We consider discrete-time models for sampled continuous-

time nonlinear systems of the form

ẋ = f (x, u), x(0) = x0, (1)

under zero-order hold, where x(t) ∈ Rn, u(t) ∈ Rm are the state
and control vectors respectively. We consider that the sam-
pling instants tk, k ∈ N0, satisfy t0 = 0 and tk+1 = tk + Tk,
where {Tk}

∞
k=0 is the sequence of corresponding sampling pe-

riods. We consider that sampling periods may vary; we refer
to this scheme as Varying Sampling Rate (VSR). We also as-
sume that the next sampling instant tk+1, and hence the current
sampling period Tk, is known at the current sampling instant
tk. This situation is typical of schemes where the controller sets
the next sampling instant according to a specific control strat-
egy as in self-triggered control (Anta and Tabuada, 2010). Due
to zero-order hold, the continuous-time control signal is piece-
wise constant such that u(t) = u(tk) =: uk for all t ∈ [tk, tk+1).
The class of discrete-time systems that arise when modelling
(1) under this scheme is thus of the form

xk+1 = F♦(xk, uk,Tk), (2)

meaning that the state at the next sampling instant depends on
the current state and input values, as well as on the current sam-
pling period. We will set ♦ = e to symbolize that the discrete-
time model is exact (i.e. its state coincides with that of the
continuous-time plant state at sampling instants). We will set
♦ = a, b, c, etc., for other in principle arbitrary discrete-time
models, and ♦ = Euler or ♦ = RK for the Euler or a Runge-
Kutta model, respectively. Using our notation and the definition
of the Euler model, then FEuler(x, u,T ) := x + T f (x, u).

Given that the current sampling period Tk is known or de-
termined at the current sampling instant tk, the current control
action uk may depend not only on the current state sample xk

but also on Tk. If state-measurement or actuation errors exist we
will denote them by ek ∈ Rq, where the dimension q depends
on the type of error (i.e., q = n for state-measurement additive
error or q = m for actuation additive error). In this case, the true
control action applied will also be affected by such errors

uk = U(xk, ek,Tk). (3)

This scheme also covers the case of static output feedback. For
a system’s output y = h(x) ∈ Rp and a control law W(y, e,T )
we can simply define the function U(x, e,T ) := W(h(x), e,T ) to
obtain (3). Under (3), the closed-loop model given by the pair
(U, F♦) becomes

xk+1 = F♦(xk,U(xk, ek,Tk),Tk) =: F̄♦(xk, ek,Tk) (4)
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which is once again of the form (2). For the sake of notation,
we may refer to the discrete-time model (4) simply as F̄♦.

2.3. Definitions and stability properties

We consider that the continuous-time model of the plant (1)
and the control law (3) fulfill the following assumptions.

Assumption 2.1. The function f : Rn × Rm → Rn is locally
Lipschitz in x uniformly in u, i.e. for every compact setsX ⊂ Rn

U ⊂ Rm there exists L = L(X,U) > 0 such that for all x, y ∈ X
and u ∈ U we have | f (x, u) − f (y, u)| ≤ L|x − y|.

Assumption 2.2. The function f is locally bounded, i.e. for
every M,Cu ≥ 0 there exists C f = C f (M,Cu) > 0, with C f (·, ·)
nondecreasing in each variable, such that | f (x, u)| ≤ C f for
every |x| ≤ M and |u| ≤ Cu.

Assumption 2.3. The control law U(x, e,T ) is small-time lo-
cally uniformly bounded, i.e. for every M, E ≥ 0 there exist
T u = T u(M, E) > 0 and Cu = Cu(M, E) > 0, with T u(·, ·) non-
increasing in each variable and Cu(·, ·) nondecreasing in each
variable, such that |U(x, e,T )| ≤ Cu for all |x| ≤ M, |e| ≤ E,
and T ∈ (0,T u).

Remark 2.4. Assumption 2.3 ensures that there exists a maxi-
mum sampling period such that the control law remains bounded
for all states and disturbances whose norms are bounded by
M, E ≥ 0, respectively. For example, the control law U(x, e,T ) =

−x/(1−T |x|) is small-time locally uniformly bounded with T u =

1/(2M) but U(x, e,T ) = −x/(T (1 − |x|)) is not, as it grows un-
bounded for every T > 0 when |x| → 1.

The following stability definitions are used throughout the
paper.

Definition 2.5. The system (4) is said to be

i) Semiglobally ISS-VSR (S-ISS-VSR) if there exist β ∈ KL
and γ ∈ K∞ such that for all M, E ≥ 0 there exists T? =

T?(M, E) > 0 such that for all k ∈ N0, {Ti} ∈ Φ(T?),
|x0| ≤ M and ‖{ei}‖ ≤ E the solutions of (4) satisfy

|xk | ≤ β

|x0|,

k−1∑
i=0

Ti

 + γ

(
sup

0≤i≤k−1
|ei|

)
. (5)

ii) Semiglobally Exponentially ISS-VSR (SE-ISS-VSR) if it is
S-ISS-VSR and additionally β ∈ KL can be chosen as
β(r, t) := Kr exp(−λt) with K ≥ 1 and λ > 0.

The S-ISS-VSR property was introduced in Vallarella and
Haimovich (2018). Since the maximum admisible sampling pe-
riod T? depends on the bound of the initial condition and error
input it constitutes a natural semiglobal version of the ISS prop-
erty for discrete-time models under nonuniform sampling. The
fact that it holds for all posible sequences of sampling periods
that are bounded by T? makes it useful in linking the stability
of the sampled-data system with that of its discrete-time model.

3. Main results

3.1. SE-ISS-VSR via approximate discrete-time models
In this section, we give novel sufficient conditions for SE-

ISS-VSR of the exact discrete-time model based on an approxi-
mate model. For this, we introduce two novel consistency prop-
erties: Robust Equilibrium-Preserving Consistency (REPC), which
is a one-step property, and Robust Equilibrium-Preserving Mul-
tistep Consistency (REPMC). Specifically, we will prove that
if the approximate closed-loop model is SE-ISS-VSR and if
the exact and approximate models are REPMC, then the exact
closed-loop model is also SE-ISS-VSR.

Definition 3.1. The discrete-time model F̄a is said to be Ro-
bustly Equilibrium-Preserving Consistent (REPC) with F̄b if
there exists φ ∈ K∞ such that for each M, E ≥ 0 there exist
constants K := K(M, E) > 0, T ∗ := T ∗(M, E) > 0 and a func-
tion ρ ∈ K∞ such that∣∣∣F̄a(xa, e,T ) − F̄b(xb, e,T )

∣∣∣
≤ (1 + KT )

∣∣∣xa − xb
∣∣∣ + Tρ(T )

(
max{|xa|, |xb|} + φ(|e|)

)
(6)

for all |xa|, |xb| ≤ M, |e| ≤ E and T ∈ (0,T ∗). The pair (F̄a, F̄b)
is said to be REPC if F̄a is REPC with F̄b.

The REPC condition is robust in the sense that it admits
the presence of discrete-time bounded disturbances and ensures
that their effect on the mismatch between models in one step
is bounded by a quantity that can be reduced by decreasing
the sampling period. REPC additionally requires F̄a(0, 0,T ) =

F̄b(0, 0,T ), and thus forces the mismatch between models to
approach 0 as the equilibrium is approached in the absence of
disturbances. The latter feature is key in allowing any type of
asymptotic stability to be mirrored from one model to the other.

It is evident that REPC is symmetric (if F̄a is REPC with F̄b,
then F̄b is REPC with F̄a). REPC is also transitive, as stated in
Proposition 3.2 and proven in Appendix A.

Proposition 3.2. Suppose that the pairs (F̄a, F̄b) and (F̄b, F̄c)
are REPC. Then (F̄a, F̄c) is REPC.

We next introduce the REPMC property, which extends the
linear gain multistep upper consistency property in (Nešić et al.,
2009, Definition 5) by the facts that: (i) it is a perturbation-
admitting condition, and (ii) it is semiglobal with respect to the
magnitude of the initial condition and disturbance input.

Definition 3.3. The discrete-time model F̄a is said to be Ro-
bustly Equilibrium-Preserving Multistep Consistent (REPMC)
with F̄b if there exists φ ∈ K∞ such that for each M, E ≥ 0 and
T , η > 0 there exist a constant T ∗ = T ∗(M, E,T , η) > 0 and a
function α : R≥0×R≥0 → R≥0∪{∞} with α(·,T ) non-decreasing
for all T ∈ [0,T ∗) such that

|xa − xb| ≤ δ⇒ |F̄a(xa, e,T ) − F̄b(xb, e,T )| ≤ α(δ,T ) (7)

for all |xa|, |xb| ≤ M, |e| ≤ E and T ∈ (0,T ∗), and
∑k−1

i=0 Ti ≤ T

implies

αk(0, {Ti}) :=

k︷    ︸︸    ︷
α(· · ·α(α(0,T0),T1) · · · ,Tk−1) ≤ ηM+φ(E). (8)

3



In Vallarella and Haimovich (2019, Definition 2.6), we in-
troduced a perturbation-admitting consistency property called
MSEC. The main difference between MSEC and REPMC is
that the latter requires the difference between model solutions
to become smaller as the equilibrium is approached, and forces
such a difference to be 0 at the equilibrium (case M = E = 0).
At the same time, REPMC does not require the effect of the
disturbances on the difference between solutions to decrease as
the sampling period is decreased. Lemma 3.4 makes these facts
more explicit; its proof is given in Appendix B.

Lemma 3.4. Suppose that F̄a is REPMC with F̄b as per Def-
inition 3.3 with function φ ∈ K∞. Let xa(k, ξ, {ei}, {Ti}) and
xb(k, ξ, {ei}, {Ti}) be the solutions with initial condition ξ ∈ Rn,
input sequence {ei} and sampling period sequence {Ti} for the
models F̄a and F̄b, respectively. Then for each Ma, E ≥ 0 and
T , η > 0, there exists T L = T L(Ma, E,T , η) > 0 such that, if
ξ ∈ Rn satisfies

|xa(k, ξ, {ei}, {Ti})| ≤ Ma (9)

for all {Ti} ∈ Φ(T L), ‖{ei}‖ ≤ E and k ∈ N0 for which
∑k−1

i=0 Ti ∈

[0,T ], then

|xb(k, ξ, {ei}, {Ti}) − xa(k, ξ, {ei}, {Ti})| ≤ η|ξ| + φ

(
sup

0≤i≤k−1
|ei|

)
.

for all {Ti} ∈ Φ(T L), ‖{ei}‖ ≤ E and k ∈ N0 for which
∑k−1

i=0 Ti ∈

[0,T ].

Our main result is the following.

Theorem 3.5. Consider that

i) (F̄a, F̄b) is REPMC with φ ∈ K∞.

ii) xa
k+1 = F̄a(xa

k , ek,Tk) is SE-ISS-VSR with Ka ≥ 1, λa > 0
and γa ∈ K∞.

Then xb
k+1 = F̄b(xb

k , ek,Tk) is SE-ISS-VSR with Kb ≥ 1, λb > 0
and γb ∈ K∞ given by

Kb :=
Ka + η

δ
, λb := −

ln(δ)
1
λa

ln( Ka
δ−η

) + 1
,

γb :=
(Ka + η

1 − δ
+ 1

)
(γa + φ),

with 0 < η < δ < 1 quantities that can be chosen arbitrarily.

The proof of Theorem 3.5 is given in Appendix C. The-
orem 3.5 provides a sufficient condition, namely the REPMC
property, for the SE-ISS-VSR of a (closed-loop) model F̄a to
carry over to another model F̄b (and viceversa). Therefore, to
establish SE-ISS-VSR of the exact model it suffices to ensure
that some approximate model is SE-ISS-VSR on the one hand
and REPMC with the exact model on the other. In the next sub-
sections, we will give sufficient conditions for an approximate
model to be REPMC with the exact model and show that these
conditions are not restrictive.

Sufficient Lyapunov-type checkable conditions for SE-ISS-
VSR of a discrete-time model are presented in Theorem 3.6.

The proof is obtained by performing minor changes to the proof
of the S-ISS-VSR characterization in (Vallarella and Haimovich,
2018, Theorem 3.2) and is given in Appendix D.

Theorem 3.6 (Adapted from Theorem 3.2 of Vallarella and
Haimovich (2018)). Suppose that

i) There exists T̊ > 0 so that F̄(0, 0,T ) = 0 for all T ∈ (0, T̊ ).

ii) There exists T̂ > 0 such that for every ε > 0 there exists
δ = δ(ε) > 0 such that |F̄(x, e,T )| < ε whenever |x| ≤ δ,
|e| ≤ δ and T ∈ (0, T̂ ).

iii) For every M, E ≥ 0, there exist C = C(M, E) > 0 and
Ť = Ť (M, E) > 0, with C(·, ·) nondecreasing in each vari-
able and Ť (·, ·) nonincreasing in each variable, such that
|F̄(x, e,T )| ≤ C for all |x| < M, |e| < E and Ť ∈ (0,T ).

iv) There exist α1, α2, α3 ∈ K∞ defined as α1(s) := K1sN ,
α2(s) := K2sN and α3(s) := K3sN with N > 0 and Ki ≥ 1
for all i ∈ {1, 2, 3} and ρ ∈ K such that for every M, E ≥ 0
there exist T̃ = T̃ (M, E) > 0 and V = VM,E : Rn →

R≥0
⋃
{∞} such that

α1(|x|) ≤ V(x), ∀x ∈ Rn, (10a)
V(x) ≤ α2(|x|), ∀|x| ≤ M, (10b)

and
V(F̄(x, e,T )) − V(x) ≤ −Tα3(|x|) (11)

for all ρ(|e|) ≤ |x| ≤ M, |e| ≤ E and T ∈ (0, T̃ ).

then the system (4) is SE-ISS-VSR.

3.2. Sufficient conditions for REPMC
In Lemma 3.7, we prove that REPC is a sufficient condition

for REPMC. Whether REPC is also necessary for REPMC re-
mains as an open problem. We additionaly show that REPC is
not a restrictive condition by proving in Theorem 3.9 that any
explicit and consistent Runge-Kutta model is REPC with the
exact discrete-time model.

Lemma 3.7. Suppose that the pair (F̄a, F̄b) is REPC, then the
pair is REPMC.

Proof. Let M, E ≥ 0 and T , η > 0 be given. Let |xa|, |xb| ≤ M
be such that |xa − xb| ≤ δ. Let M, E ≥ 0 generate K,T i > 0 and
ρ ∈ K∞ according to Definition 3.1. Define

T ∗ := min
{

T i, ρ−1
(

η

eKTT

)
, ρ−1

(
1

eKTT

)}
and α(δ,T ) := (1+KT )δ+Tρ(T )(M+φ(E)), then (7) is satisfied.
For all k ∈ N such that

∑k−1
i=0 Ti ≤ T with {Ti} ∈ Φ(T ∗) we have

αk(0, {Ti}) =

=

 k−2∑
j=0

T jρ(T j)
k−1∏

i= j+1

(1 + KTi) + Tk−1ρ(Tk−1)

 (M + φ(E))

≤

 k−2∑
j=0

T jρ(T j)eK
∑k−1

i= j+1 Ti + Tk−1ρ(Tk−1)

 (M + φ(E))
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≤ ρ(T ∗)eKT

 k−2∑
j=0

T j + Tk−1

 (M + φ(E))

≤ ρ(T ∗)eKTTM + ρ(T ∗)eKTTφ(E) ≤ ηM + φ(E). (12)

This concludes the proof. �

Next, we derive a bound for the mismatch between the exact
model and the Euler approximate model. Lemma 3.8 is used in
the proof of Theorem 3.9 and its proof is given in Appendix E.

Lemma 3.8. Suppose that Assumptions 2.1 and 2.2 hold. Then,
for every compact sets X ⊂ Rn and U ⊂ Rm there exist con-
stants T̄ = T̄ (X,U) > 0 and L̄ = L̄(X,U) > 0 such that∣∣∣Fe(ξ, u,T ) − FEuler(ξ, u,T )

∣∣∣ ≤ L̄T 2 | f (ξ, u)| (13)

for all ξ ∈ X, u ∈ U and T ∈ (0, T̄ ).

An s-stage explicit Runge-Kutta model for (1) is given by

y1 = x, yi = x + T
i−1∑
j=1

ai j f (y j, u), i = 2, . . . , s, (14)

FRK(x, u,T ) := x + T
s∑

i=1

bi f (yi, u),

with ai j, bi ∈ R for all required values of i and j. The Runge-
Kutta model is said to be consistent if

∑s
i=1 bi = 1 (Stuart and

Humphries, 1996, Sec 3.2).

Theorem 3.9. Consider that system (1) is fed back, under ZOH
and possible nonuniform sampling, with the control law U(x, e,T ),
yielding the exact discrete-time model F̄e(x, e,T ) = Fe(x,U(x, e,T ),T ).
Let Assumptions 2.1, 2.2 and 2.3 hold and suppose that

i) there exists φ ∈ K∞ such that for every E ≥ 0 there exists
T i := T i(E) > 0 such that for all |e| ≤ E and T ∈ (0,T i) we
have

| f (0,U(0, e,T ))| ≤ φ(|e|); (15)

ii) for every M, E ≥ 0 there exist K := K(M, E) > 0 and
T ii := T ii(M, E) > 0, with K(·, ·) nondecreasing in each
variable and T v(·, ·) nonincreasing in each variable, such
that for all |xa|, |xb| ≤ M, |e| ≤ E and T ∈ (0,T ii) we have

| f (xa,U(xa, e,T )) − f (xb,U(xb, e,T ))| ≤ K|xa − xb|. (16)

Let FRK denote any explicit Runge-Kutta model for (1) and
F̄RK the corresponding closed-loop model involving U(x, e,T ).
Then, (F̄RK, F̄e) is REPC.

The proof of Theorem 3.9 is given in Appendix F. Theo-
rem 3.9 gives sufficient conditions for REPC (and, via Lemma 3.7,
also for REPMC) between any explicit and consistent Runge-
Kutta model and the exact model, based on conditions on the
continuous-time plant and on the control law. Assumptions 2.1
to 2.3 and condition i) consist in mild boundedness and conti-
nuity requirements. Condition ii) is also a type of continuity
requirement and allows to ensure uniqueness of solutions of the

closed-loop continuous-time model. Given that REPC is transi-
tive it is evident that under the assumptions of Theorem 3.9 all
explicit and consistent Runge-Kutta models are also REPC with
each other. In particular, since the Euler model is the simplest
explicit Runge-Kutta model, we have that (F̄Euler, F̄e) is REPC.

Remark 3.10. Theorem 3.9 does not explicitly require differen-
tiability of the function f that defines the continuous-time plant
but only Lipschitz-type conditions. The latter conditions may
imply almost-everywhere differentiability but only of first order.
Therefore, the requirements imposed by Theorem 3.9 on f are
weaker than the high-order differentiability required to ensure
convergence of a high-order Runge-Kutta model.

3.3. Intersample bound

Once any type of S-ISS-VSR property (e.g. SE-ISS-VSR)
is established for the exact discrete-time closed-loop model we
can then derive a bound for the intersample behaviour for the
sampled-data system.

Lemma 3.11. Consider that xk+1 = Fe(xk,U(xk, ek,Tk),Tk) is
S-ISS-VSR with functions β ∈ KL and γ ∈ K∞. Then, for the
closed-loop sampled-data system given by (1) and U(xk, ek,Tk)
under ZOH we have

|x(tk + t)| ≤ β

|x0|,

k−1∑
i=0

Ti

 + γ

(
sup

0≤i≤k−1
|ei|

)
+ C(R, E)t. (17)

for all t ∈ [0,Tk], {Ti} ∈ Φ(T?), |x0| ≤ M and ‖{ei}‖ ≤ E.
If additionally, the control law is independent of the current
sampling period, i.e. U(xk, ek), we have

|x(t)| ≤ β (|x0|, t) + γ

(
sup

0≤i≤k−1
|ei|

)
(18)

for all t ≥ 0, {Ti} ∈ Φ(T?), |x0| ≤ M and ‖{ei}‖ ≤ E.

For the particular case where the control action is indepen-
dent of the current sampling period, such as in the emulation
case, the evolution between consecutive samples xk and xk+1 is
determined by x(tk + t) = Fe(xk,U(xk, ek), t) for all t ∈ [0,Tk].
The values that x(t) takes in the interval [tk, tk+1] are given by
the open-loop exact discrete-time model under the constant in-
put U(xk, ek), regardless of the value of tk+1 = tk+Tk. Given that
the bound (5) holds for every possible sequence of sampling
periods, it then straightforwardly follows that the bound that
is ensured for the exact discrete-time model also holds for the
sampled-data system with the same functions β ∈ KL, γ ∈ K∞
and maximum admissible sampling period T?. An intersam-
ple bound (17) leads to a bound of the form (18) with different
functions β and γ by repeating the bound (18) and considering
each sampling instant as a new initial time. However, the pre-
cise way in which the maximum admissible sampling period
depends on such a decreasing intersample bound is not at all
straightforward and the derivation of the functions for the gen-
eral case is thus left for future work. The proof of Lemma 3.11
is in Appendix G.
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4. Example

Consider the continuous-time plant ẋ = f (x, u) = x3 + u
in Example A of Vallarella and Haimovich (2019). Note that
the solution of the open-loop continuous-time plant may not
exist for all times due to finite escape time. We next perform
discrete-time design based on the use of Runge-Kutta models.
We consider the Euler model of the open-loop plant

FEuler(x, u,T ) := x + T (x3 + u). (19)

We also consider a desired closed-loop continuous-time stable
system, e.g. ẋ = fd(x) = −x3 − 2x, which we approximate by
means of a second-order Runge-Kutta model, namely the Heun
model:

F̄Heun(x,T ) := x +
T
2

( fd(x) + fd(x + T fd(x)))

=
1
2

(x3 + 2x)3T 4 −
3
2

x(x3 + 2x)2T 3 (20)

+ (2x + (3x2(x3 + 2x))/2 + x3)T 2 − (x3 + 2x)T + x.

Matching equations (19) and (20) and solving for u we obtain
the following control law for the disturbance-free case

u = U(x, 0,T ) :=
F̄Heun(x,T ) − x

T
− x3. (21)

Thus, we ensure that the behaviour of the Euler closed-loop
model xk+1 = F̄Euler(xk, 0,Tk) = FEuler(xk,U(xk, 0,Tk),Tk) is
described by (20). If we consider additive state-measurement
errors, this yields

F̄Euler(x, e,T ) := x + T (x3 + U(x, e,T )) (22a)

U(x, e,T ) =
F̄Heun(x + e,T ) − x − e

T
− (x + e)3. (22b)

We will prove that (22) is SE-ISS-VSR via Theorem 3.6. The
continuity and boundedness assumptions i), ii) and iii) of The-
orem 3.6 are easy to verify for (22). Now we will prove as-
sumption iv). Define α1, α2, α3 ∈ K∞ via α1(s) = α2(s) = s2,
α3(s) = s2/2 and ρ(s) = s/K with K > 0 to be selected. Let
M ≥ 0 and E ≥ 0 be given and define V(x) = x2. We have

V(F̄(x, e,T )) − V(x) =

8∑
i=1

ai(x, e)T i

=

a1(x, e) + T
8∑

i=2

ai(x, e)T i−2

 T ≤

a1(x, e) + T
8∑

i=2

|ai(x, e)|

 T

for all T ∈ (0, 1), where each ai(x, e) is a multivariate polyno-
mial in the indeterminates x, e, and a1(x, e) = −4e3x− 12e2x2 −

12ex3 − 4ex− 2x4 − 4x2. Selecting K = 0.01, noting that when-
ever ρ(|e|) ≤ |x| we have |e| ≤ K|x| and taking absolute values
on sign-indefinite terms of a1(x, e) we can bound it as

a1(x, e) ≤ 4K3x4 + 12K2x4 + 12Kx4 + 4Kx2 − 2x4 − 4x2

≤ (−4 + 4K)x2 + (−2 + 28K)x4 ≤ −1.5(x2 + x4).

Defining C = 670, replacing the negative definite terms of
each ai(x, e) by zero, taking absolute values on sign-indefinite
terms and bounding each e according to |e| ≤ K|x| we obtain∑8

i=2 |ai(x, e)| ≤ C
∑9

i=1 x2i for all ρ(|e|) ≤ |x| ≤ M, |e| ≤ E and

T ∈ (0, 1). Select T̃ = min
{

1
C(1+

∑8
i=1 M2i) , 1

}
, then

a1(x, e) + T
8∑

i=2

|ai(x, e)| ≤ −1.5(x2 + x4) + TC
9∑

i=1

x2i

≤ −0.5x2 +

TC

1 +

8∑
i=1

M2i

 − 1

 x2 ≤ −0.5x2 = −α3(|x|).

for all ρ(|e|) ≤ |x| ≤ M, |e| ≤ E and T ∈ (0, T̃ ).
Next, we will prove that (22) is not globally stable. Sup-

pose that there exists T ∗ ∈ (0, 1) such that the system xk+1 =

F̄Euler(xk, 0,Tk) is globally exponentially stable under VSR for
all {Ti} ∈ Φ(T ∗). Define T̄ := T ∗/2 and consider the con-
stant sequence {Ti} ∈ Φ(T ∗), with Ti = T̄ for all i. For all
|x| >

√
(3 − T̄ )/(2T̄ ) we have

|F̄Euler(x, 0, T̄ )| = |x + T̄ (x3 + U(x, 0, T̄ ))|

=

∣∣∣∣∣∣ T̄2 [
2x2 + 1

] [
T̄ (2x2 + 1) − 2

] [
2T̄ x2(2T̄ x2 + T − 1)

]
+ 1

∣∣∣∣∣∣ |x|
>

∣∣∣∣∣∣ T̄2 [
2x2 + 1

] [
4T̄ x2

]
+ 1

∣∣∣∣∣∣ |x| > |x|.
The solution thus diverges for large values of the state.

Next, by means of Theorem 3.5 we will prove that F̄e ex-
hibits the stronger SE-ISS-VSR property that could not be en-
sured by the existing results. Theorem 2 of Nešić et al. (2009)
cannot be applied to prove asymptotic stability of F̄e even in
the absence of errors due to the fact that the Euler model (22)
is not globally stable. Theorem 1 of Vallarella and Haimovich
(2019) can be applied but only to ensure semiglobal practical
(not asymptotic) ISS-VSR.

First, we prove that (F̄Euler, F̄e) is REPMC via Theorem 3.9.
Assumptions 2.1 to 2.3 are easy to verify for the plant ẋ =

f (x, u) and control law U(x, e,T ). To prove conditions i) and
ii), define φ ∈ K∞ via φ(s) := s9 + 3s7 + 3s5, then

| f (0,U(0, e,T ))| =
1
2

∣∣∣e9 + 3e7 + 3e5
∣∣∣ ≤ |e|9+3|e|7+3|e|5 = φ(|e|)

for all T ∈ (0, 1), thus i) holds. The function f (x,U(x, e,T ))
is easily seen to be a multivariate polynomial in the variables
x, e,T . Therefore, this function is locally Lipschitz in x, uni-
formly with respect to the other variables in compact sets and ii)
holds. By Theorem 3.9, (F̄Euler, F̄e) is REPC and by Lemma 3.7
also REPMC. By Theorem 3.5 then F̄e is SE-ISS-VSR.

In order to illustrate the results we simulated the approx-
imate Euler closed-loop model (used for control design) and
the original sampled-data model (both with and without distur-
bances) from initial condition x(0) = 5 for the same sequence
of random sampling periods on a given interval. We considered
the case where random continuous uniformly distributed state-
measurment disturbances e ∈ [−1, 1] are present. The simula-
tions in Figure 1 show the expected behaviour.
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Figure 1: Evolution of the sampled-data system for the disturbance-free case
(red solid line) and in the presence of state-measurement disturbances (blue
dashed line) for a given sequence of sampling periods. The state of the approx-
imate and exact discrete-time models is represented with stems in both cases.

5. Conclusions

We have presented novel results that guarantee the semiglo-
bal exponential input-to-state stability (SE-ISS-VSR) for discrete-
time models of nonlinear nonuniformly sampled plants under
state-measurement or actuation-error disturbances based on ap-
proximate discrete-time models. We have proved that under a
multistep consistency property (REPMC) between two discrete-
time models the SE-ISS-VSR property is carried over between
models. We have shown that a much easier-to-verify one-step
condition (REPC) is a transitive property and that it consti-
tutes a sufficient condition for REPMC. Furthermore, we have
proved that under mild boundedness and continuity conditions
on the continuous-time model and the control law, any explicit
and consistent Runge-Kutta (approximate) model is REPC with
the exact discrete-time model and thus can be used for con-
trol design. We have provided an example of semiglobal expo-
nential stabilization discrete-time design based on Runge-Kutta
models.

Very recently, we proved that the simplest implicit Runge-
Kutta model (backward Euler), is also REPC with the exact
model (Vallarella et al., 2020). We conjecture that this holds
also for all implicit Runge-Kutta models and also for other types
of well-known models. This is a topic for future work, as well
as extending Theorem 3.9 to the case of dynamic controllers.

Appendix A. Proof of Proposition 3.2

Let the REPC property define φ1 ∈ K∞ and φ2 ∈ K∞
for the the pairs (F̄a, F̄b) and (F̄b, F̄c), respectively. Suppose
M, E ≥ 0 given and let them generate K1,T ∗,1 > 0, ρ1 ∈ K∞
and K2,T ∗,2 > 0, ρ2 ∈ K∞ according to Definition 3.1 for the
pairs (F̄a, F̄b) and (F̄b, F̄c), respectively. Consider |xa|, |xc| ≤ M
and |e| ≤ E given. Define K := K1, T ∗ := min{T ∗,1,T ∗,2} and
ρ, φ ∈ K∞ via ρ := ρ1 + ρ2 and φ := φ1 + φ2. Thus we have∣∣∣F̄a(xa, e,T ) − F̄c(xc, e,T )

∣∣∣
≤

∣∣∣F̄a(xa, e,T ) − F̄b(xc, e,T )
∣∣∣ +

∣∣∣F̄b(xc, e,T ) − F̄c(xc, e,T )
∣∣∣

≤ (1 + K1T )|xa − xc| + Tρ1(T ) (max{|xa|, |xc|} + φ1(|e|))

+ (1 + K2T )|xc − xc| + Tρ2(T ) (max{|xc|, |xc|} + φ2(|e|))

≤ (1 + KT )|xa − xc| + Tρ1(T ) (max{|xa|, |xc|} + φ(|e|))

+ Tρ2(T ) (max{|xa|, |xc|} + φ(|e|))

≤ (1 + KT )(|xa − xc|) + Tρ(T )(max{|xa|, |xc|} + φ(|e|)). (A.1)

for all |xa|, |xc| ≤ M, |e| ≤ E and T ∈ (0,T ∗) and the pair
(F̄a, F̄c) is REPC.

�

Appendix B. Proof of Lemma 3.4

Consider Ma, E ≥ 0 and T , η > 0 given. Since F̄a is
REPMC with F̄e define Me := (1 + η)Ma + φ(E) and generate
T ∗ := T ∗(Me, E,T , η) > 0 and function α : R≥0×R≥0 → R≥0∪

{∞} according to Definition 3.3. Define T L := T ∗ and consider
{Ti} ∈ Φ(T L) and ‖{ei}‖ ≤ E. Define ∆xk := xe(k, ξ, {ei}, {Ti}) −
xa(k, ξ, {ei}, {Ti}). For k = 0 we have

|∆x0| := |ξ − ξ| = 0 ≤ η|ξ| + φ(E). (B.1)

We proceed by induction on k. Let k ∈ N0 be such that
∑k−1

i=0 Ti ∈

[0,T ]. Suppose that |xa( j, ξ, {ei}, {Ti})| ≤ Ma and |∆x j| ≤ η|ξ| +
φ(sup0≤i≤ j−1 |ei|) for all 0 ≤ j ≤ k. Thus |xe( j, ξ, {ei}, {Ti})| ≤
Ma + η|ξ| + φ(sup0≤i≤ j−1 |ei|) ≤ Me for all 0 ≤ j ≤ k. From
(7) and (8) and noting that by causality ∆xk+1 cannot depend on
future values of ei we have

|∆xk+1| = |F̄e(xe
k, ek,Tk) − F̄a(xa

k , ek,Tk)| ≤ α(|∆xk |, {Ti})

≤ αk+1(|∆x0|, {Ti}) = αk+1(0, {Ti}) ≤ η|ξ| + φ

(
sup

0≤i≤k
|ei|

)
. �

Appendix C. Proof of Theorem 3.5

Let Ka, λa > 0, γa ∈ K∞ and T?(·, ·) characterize the SE-
ISS-VSR property of xa

k = F̄a(xa, ek,Tk). Consider M ≥ 0 and
E ≥ 0 given. Consider φ ∈ K∞ from i) and define γ̂ ∈ K∞
via γ̂ := γa + φ. Let δ ∈ (0, 1) and η ∈ (0, δ). Define Ma :=
KaM + 1

1−δ γ̂(E). Let T := 1
λa

ln Ka
δ−η

. Define T1 := T + 1 and
generate T L := T L(Ma, E,T1, η) according to Lemma 3.4. We
have

|xa
k | ≤ Ka|ξ| exp

−λa

k−1∑
i=0

Ti

 + γa

(
sup

0≤i≤k−1
|ei|

)
(C.1)
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for all k ∈ N0, |ξ| ≤ Ma, {Ti} ∈ Φ(T?(Ma, E)) and ‖{ei}‖ ≤ E.
Define T̄ < min

{
1,T?(Ma, E),T L

}
. Consider {Ti} ∈ Φ(T̄ ). For

every k ∈ N0 and j ∈ N, define

s(k) := sup

r ∈ N0 : r ≥ k + 1,
r−1∑
i=k

Ti ≤ T1

 and (C.2)

s j(k) :=

j︷   ︸︸   ︷
s(. . . s(s(k))) (C.3)

Note that s1(k) ≥ k +1 for all k ∈ N0 because T1 > 1 and Ti < 1
for all i ∈ N0. Also,

∑s1(k)−1
i=k Ti > T1− T̄ > T1−1 = T holds for

all k ∈ N0. For every k, ` ∈ N0 with k ≥ ` and |ξ| ≤ Ma define
∆xξk,` := |xb(k − `, ξ, {ei+`}, {Ti+`}) − xa(k − `, ξ, {ei+`}, {Ti+`})|.
Consider that |ξ| ≤ M. Then |xa

k | ≤ Ma for all k ∈ N0, {Ti} ∈

Φ(T̄ ) and ‖{ei}‖ ≤ E. From i), according to Lemma 3.4, for all
k ∈ N0 for which

∑k−1
i=0 ≤ T1 and {Ti} ∈ Φ(T̄ ) we have

|xb(k, ξ, x{ei}, {Ti})| ≤ |xa(k, ξ, {ei}, {Ti})| +
∣∣∣∣∆xξk,0

∣∣∣∣
≤ Ka|ξ| exp

−λa

k−1∑
i=0

Ti

 + γa

(
sup

0≤i≤k−1
|ei|

)
+

∣∣∣∣∆xξk,0
∣∣∣∣

≤ Ka|ξ| exp

−λa

k−1∑
i=0

Ti

 + γa

(
sup

0≤i≤k−1
|ei|

)
+ η|ξ| + φ

(
sup

0≤i≤k−1
|ei|

)

≤ Ka|ξ|

exp

−λa

k−1∑
i=0

Ti

 +
η

Ka

 + γ̂

(
sup

0≤i≤k−1
|ei|

)
.

For the sake of notation define xb
s j(0) := xb(s j(0), ξ, {ei}, {Ti}).

For instant s1(0) we have

|xb
s1(0)| ≤ Ka|ξ|

exp

−λa

s1(0)−1∑
i=0

Ti

 +
η

Ka

 + γ̂

 sup
0≤i≤s1(0)−1

|ei|


≤ Ka|ξ|

(
exp (−λaT ) +

η

Ka

)
+ γ̂

 sup
0≤i≤s1(0)−1

|ei|


≤ Ka|ξ|

(
δ − η

Ka
+

η

Ka

)
+ γ̂

 sup
0≤i≤s1(0)−1

|ei|


≤ δ|ξ| + γ̂

 sup
0≤i≤s1(0)−1

|ei|

 (C.4)

≤ δM + γ̂ (E) ≤ Ma

Note that for an initial condition such that |xb
s j(0)| ≤ Ma for some

j ∈ N0 then, following the same reasoning that leads to (C.4),
we can bound |xb

s j+1(0)| as

|xb
s j+1(0)| ≤ δ|x

b
s j(0)| + γ̂ (E) . (C.5)

Thus, we have |xb
s j+1(0)| ≤ δMa + γ̂(E) = δ(KaM + 1

1−δ γ̂(E)) +

γ̂(E) = δKaM + ( δ
1−δ + 1)γ̂(E)) = δKaM + 1

1−δ γ̂(E) < Ma. Thus∣∣∣∣xb
s j(0)

∣∣∣∣ ≤ Ma for all j ∈ N0. Then we can apply (C.4) iteratively
to obtain∣∣∣∣xb

s j(0)

∣∣∣∣ ≤ δ j|ξ| + γ̂

 sup
0≤i≤s j(0)−1

|ei|

 j−1∑
i=0

δi

= exp (−λ1 j)|ξ| +
1 − δ j

1 − δ
γ̂

 sup
0≤i≤s j(0)−1

|ei|

 (C.6)

where λ1 := ln 1
δ
> 0. Using the definition of s j(0) we have

− λ1 j = −λ1 j
T1

T1
≤ −λ1

∑s j(0)−1
i=0 Ti

T1
= −λ̄

s j(0)−1∑
i=0

Ti (C.7)

where λ̄ := λ1/T1. Using (C.7) on (C.6) and the fact that for
δ ∈ (0, 1) it holds that 1−δ j

1−δ ≤
1

1−δ for all j ∈ N0, we have

∣∣∣∣xe
s j(0)

∣∣∣∣ ≤ exp

−λ̄ s j(0)−1∑
i=0

Ti

|ξ| + 1
1 − δ

γ̂

 sup
0≤i≤s j(0)−1

|ei|

 . (C.8)

Define xb
k(ξ) := xb(k, ξ, {ei}, {Ti}). From ii) and Lemma 3.4, for

all k ∈ [s j(0), s j+1(0)], we have that∣∣∣xb
k(ξ)

∣∣∣ =
∣∣∣∣xb(k − s j(0), xb

s j(0), {ei+s j(0)}, {Ti+s j(0)})
∣∣∣∣

≤

∣∣∣∣xa(k − s j(0), xb
s j(0), {ei+s j(0)}, {Ti+s j(0)})

∣∣∣∣
+

∣∣∣xb(k − s j(0), xb
s j(0), {ei+s j(0)}, {Ti+s j(0)})

− xa(k − s j(0), xb
s j(0), {ei+s j(0)}, {Ti+s j(0)})

∣∣∣
≤ Ka

∣∣∣∣xb
s j(0)

∣∣∣∣ + γa

 sup
s j(0)≤i≤k−1

|ei|

 + η
∣∣∣∣xb

s j(0)

∣∣∣∣ + φ

 sup
s j(0)≤i≤k−1

|ei|


≤ (Ka + η)

∣∣∣∣xb
s j(0)

∣∣∣∣ + γ̂

 sup
s j(0)≤i≤k−1

|ei|

 . (C.9)

Using (C.8) and (C.9), for all k ∈ [s j(0), s j+1(0)], we have

|xb
k(ξ)| ≤ (Ka + η)

∣∣∣∣xb
s j(0)

∣∣∣∣ + γ̂

 sup
s j(0)≤i≤k−1

|ei|


≤ (Ka + η)

exp

−λ̄ s j(0)−1∑
i=0

Ti

|ξ| + 1
1 − δ

γ̂

 sup
0≤i≤s j(0)−1

|ei|




+ γ̂

 sup
s j(0)≤i≤k−1

|ei|


≤ (Ka + η) exp

−λ̄ s j(0)−1∑
i=0

Ti

|ξ|
+

(
(Ka + η)

1 − δ
+ 1

)
γ̂

 sup
0≤i≤s j(0)−1

|ei|


≤ (Ka + η) exp

−λ̄
 k−1∑

i=0

Ti − T1


|ξ| + γb

 sup
0≤i≤s j(0)−1

|ei|


≤ (Ka + η) exp

(
λ̄T1

)
exp

−λ̄ k−1∑
i=0

Ti

|ξ| + γb

 sup
0≤i≤s j(0)−1

|ei|


≤ Kb exp

−λ̄ k−1∑
i=0

Ti

|ξ| + γb

 sup
0≤i≤s j(0)−1

|ei|


for all k ∈ N0, |ξ| ≤ M and {Ti} ∈ Φ(T̄ (M, E)), where Kb :=
(Ka + η) exp

(
λ̄T1

)
= (Ka + η)/δ and γb ∈ K∞ is defined via

γb :=
(

Ka+η
1−δ + 1

)
γ̂. �
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Appendix D. Proof of Theorem 3.6

The proof copies the proof of 2. ⇒ 1. of (Vallarella and
Haimovich, 2018, Theorem 3.2) but keeps track of the changes
introduced by the fact that αi(s) = KisN with N > 0 and Ki ≥ 1
for all i ∈ {1, 2, 3}.

Since the assumptions of condition 2. of (Vallarella and
Haimovich, 2018, Theorem 3.2) are satisfied, then by the latter
theorem we know that system (4) is S-ISS-VSR. The function
α ∈ K∞ in (Vallarella and Haimovich, 2018, eq.(28)) results
α(s) := α3 ◦ α

−1
2 (s) = λ̃s where λ̃ := K3

K1/N
2

. Therefore, the

right-hand side of inequality (Vallarella and Haimovich, 2018,
eq.(32)) is linear in y. It then follows that the function β1 ∈

KL in (Vallarella and Haimovich, 2018, eq.(33)) is given by
β1(s, t) = s exp

(
−λ̃t

)
. Then, the function β ∈ KL in (Val-

larella and Haimovich, 2018, eq.(35)) defined via β(s, t) :=
α−1

1 (2β1(α2(s), t)) becomes β(s, t) = Ks exp (−λt) where K :=
2K2

K1/N
1

and λ := λ̃
N . Since this function β characterizes the S-ISS-

VSR property, it follows from Definition 2.5 that system (4) is
SE-ISS-VSR. �

Appendix E. Proof of Lemma 3.8

Consider X̃ ⊂ Rn and U ⊂ Rm given and let φu(t, ξ) :=
Fe(ξ, u, t) be the unique solution of (1) that begins from initial
condition ξ ∈ X̃ at t0 = 0 and has a constant input u ∈ U. Then

φu(t, ξ) = ξ +

∫ t

0
f (φu(τ, ξ), u)dτ. (E.1)

Define Cu := maxu∈U{|u|}, R := max{1,maxx∈X̃ |x|} and X̂ :=
{x ∈ Rn : |x| ≤ 2R} and generate C f = C f (2R,Cu) from As-
sumption 2.2. Then

|φu(t, ξ)| ≤ |ξ| +
∫ t

0
| f (φu(τ, ξ), u)|dτ ≤ R + C f t.

for all t ∈ (0, T̄ ) with T̄ := R/C f . Define X := {x : |x| ≤
R + C f T̄ } and L̃ := L̃(X,U) from Assumption 2.1. The error
between the solutions of the exact model and the Euler approx-
imate model after one step of duration T ∈ (0, T̄ ) from initial
condition xe

0 = xa
0 = ξ with ξ ∈ X̃ and input u ∈ U results

ϑ(T ) : = Fe(ξ, u,T ) − FEuler(ξ, u,T )

= ξ +

(∫ T

0
f (φu(τ, ξ), u)dτ

)
− ξ − T f (ξ, u)

=

∫ T

0
f (φu(τ, ξ), u)dτ − T f (ξ, u)

=

∫ T

0
f (φu(τ, ξ), u) − f (ξ, u)dτ. (E.2)

Taking the norm on both sides of (E.2) we have

|ϑ(T )| =

∣∣∣∣∣∣
∫ T

0
f (φu(τ, ξ), u) − f (ξ, u)dτ

∣∣∣∣∣∣
≤

∫ T

0
| f (φu(τ, ξ), u) − f (ξ, u)| dτ ≤ L̃

∫ T

0
|φu(τ, ξ) − ξ|dτ

= L̃
∫ T

0

∣∣∣Fe(ξ, u, τ) − FEuler(ξ, u, τ) + τ f (ξ, u)
∣∣∣ dτ

≤ L̃
∫ T

0
|ϑ(τ)|dτ + L̃

∫ T

0
τ| f (ξ, u)|dτ

≤ L̃
∫ T

0
|ϑ(τ)|dτ + L̃

T 2

2
| f (ξ, u)| (E.3)

From (E.3), by Gronwall’s inequality, we can bound the error as
|ϑ(T )| ≤ L̃ T 2

2 | f (ξ, u)|eL̃T for all T ∈ [0, T̄ ). Defining L̄ := 1
2 L̃eL̃T̄

we have that

|Fe(ξ, u,T ) − FEuler(ξ, u,T )| ≤ L̄T 2| f (ξ, u)| (E.4)

for all ξ ∈ X, u ∈ U and T ∈ (0, T̄ ). �

Appendix F. Proof of Theorem 3.9

We will establish that (F̄RK , F̄e) is REPC by showing that
both (F̄Euler, F̄e) and (F̄RK , F̄Euler) are REPC and using the fact
that REPC is transitive.

Consider M, E ≥ 0 given and let them generate K,T ii > 0
from ii) and T i > 0 from i). Let M, E generate Cu,T u > 0
from Assumption 2.3. Define X := {x ∈ Rn : |x| ≤ M} and
U := {u ∈ Rm : |u| ≤ Cu}.

Claim 1. (F̄Euler, F̄e) is REPC.

Proof of Claim 1: From Assumptions 2.1 and 2.2, the condi-
tions of Lemma 3.8 hold. Let X andU generate L̄, T̄ > 0 from
Lemma 3.8, so that the open-loop condition (13) holds for all
x ∈ X, u ∈ U and T ∈ (0, T̄ ). Define T o := min{T̄ ,T u,T i,T ii},
K̄ := max{K, 1} and ρ ∈ K∞ via ρ(s) := K̄L̄s. For all |xe|, |xa| ≤

M, |e| ≤ E and T ∈ (0,T o) we have

|F̄e(xe, e,T ) − F̄Euler(xa, e,T )|

≤ |Fe(xe,U(xe, e,T ),T ) − FEuler(xe,U(xe, e,T ),T )|

+ |FEuler(xe,U(xe, e,T ),T ) − FEuler(xa,U(xa, e,T ),T )|

≤ |Fe(xe,U(xe, e,T ),T ) − FEuler(xe,U(xe, e,T ),T )|
+ |xe − xa| + T | f (xe,U(xe, e,T )) − f (xa,U(xa, e,T ))| (F.1)

≤ (1 + KT )|xe − xa| + L̄T 2| f (xe,U(xe, e,T ))| (F.2)
≤ (1 + KT )|xe − xa|

+ L̄T 2(| f (xe,U(xe, e,T )) − f (0,U(0, e,T ))| + | f (0,U(0, e,T ))|)

≤ (1 + KT )|xe − xa| + L̄T 2 (K|xe| + φ(|e|)) (F.3)
≤ (1 + KT )|xe − xa| + Tρ(T )(|xe| + φ(|e|)). (F.4)

In (F.1) we have used the definition of the Euler approximation.
In (F.2) we have used (16) from ii) and (13) from Lemma 3.8.
In (F.3) we have used (15) from i) and (16) from ii). Note that
φ ∈ K∞ is given by i) and hence does not depend on M or E.
Thus, (6) holds and (F̄Euler, F̄e) is REPC. ◦

Claim 2. (F̄RK , F̄Euler) is REPC.

Proof of Claim 2: For the sake of notation, define f̄ (x, e,T ) :=
f (x,U(x, e,T )). Employing the definitions of the Euler and
Runge-Kutta models, we have∣∣∣F̄Euler(x, e,T ) − F̄RK(z, e,T )

∣∣∣
9



≤ |x − z| + T

∣∣∣∣∣∣∣ f̄ (x, e,T ) −
s∑

i=1

bi f̄ (yi, e,T )

∣∣∣∣∣∣∣
Adding and subtracting

(∑s
i= j bi

)
f̄ (y j−1, e,T ), for j = 2, . . . , s,

and operating, we reach∣∣∣F̄Euler(x, e,T ) − F̄RK(z, e,T )
∣∣∣ ≤ |x − z|

+ T

∣∣∣∣∣∣ f̄ (x, e,T ) −

 s∑
j=2

 s∑
i= j

bi

 [ f̄ (y j, e,T ) − f̄ (y j−1, e,T )


+

 s∑
i=1

bi

 f̄ (y1, e,T )
]∣∣∣∣∣∣.

Taking into account that
∑s

i=1 bi = 1 and that y1 = z, then∣∣∣F̄Euler(x, e,T ) − F̄RK(z, e,T )
∣∣∣ ≤ |x − z| (F.5)

+ T
∣∣∣ f̄ (x, e,T ) − f̄ (z, e,T )

∣∣∣ + T B
s∑

j=2

∣∣∣ f̄ (y j, e,T ) − f̄ (y j−1, e,T )
∣∣∣

with B :=
∑s

i=2 |bi|. Define T # := min{1,T u,T iv,T v} > 0 and
A := 2 maxi=2,...,s, j=1,...,i−1 |ai j|. Consider |x| ≤ M, |e| ≤ E, and
T ∈ (0,T #). From (14) we have

|yi| ≤ |y1| + T #
i−1∑
j=1

|ai j|
∣∣∣ f̄ (y j, e,T )

∣∣∣
≤ |x| + T #A

s−1∑
j=1

∣∣∣ f (y j,U(y j, e,T ))
∣∣∣ , for i = 2, . . . , s. (F.6)

Define M1 := M and recursively for i = 2, . . . , s,

Mi := Mi−1 + (s − 1)T #AC f (Mi−1,Cu(Mi−1, E)) ,

where C f (·, ·) and Cu(·, ·) are given by Assumptions 2.2 and 2.3.
With these definitions, it follows that |yi| ≤ Ms for all 1 ≤ i ≤
s. Define T ∗ := min{1,T #,T u(Ms, E),T iv(E),T v(Ms, E)}. and
Ks := max{K(Ms, E), 1}. For T ∈ (0,T ∗), it follows that∣∣∣ f̄ (y1, e,T )

∣∣∣ ≤ ∣∣∣ f̄ (y1, e,T ) − f̄ (0, e,T )
∣∣∣ +

∣∣∣ f̄ (0, e,T )
∣∣∣

≤ Ks|y1| + φ(|e|)

and for i = 2, . . . , s∣∣∣ f̄ (yi, e,T )
∣∣∣

≤ | f (yi,U(yi, e,T )) − f (0,U(0, e,T )| + | f (0,U(0, e,T ))|

≤ Ks|yi| + φ(|e|) ≤ Ks

∣∣∣∣∣∣∣∣y1 + T
i−1∑
j=1

ai j f̄ (y j, e,T )

∣∣∣∣∣∣∣∣ + φ(|e|)

≤ Ks|y1| + KsT

∣∣∣∣∣∣∣∣
i−1∑
j=1

ai j f̄ (y j, e,T )

∣∣∣∣∣∣∣∣ + φ(|e|)

≤ Ks|y1| + φ(|e|) + KsAT
i−1∑
j=1

∣∣∣ f̄ (y j, e,T )
∣∣∣ . (F.7)

Using (F.7) recursively yields

∣∣∣ f̄ (yi, e,T )
∣∣∣ ≤ [

Ks|y1| + φ(|e|)
] i−1∑

j=0

(KsAT ) j

≤ C (|y1| + φ(|e|)) , for i = 1, . . . , s, (F.8)

where we have used the fact that Ks ≥ 1 and defined C :=
Ks

∑s−1
j=0(KsAT ∗) j. From (F.5) and ii), then provided T ∈ (0,T ∗),

we have ∣∣∣F̄Euler(x, e,T ) − F̄RK(z, e,T )
∣∣∣

≤ (1 + KT )|x − z| + T BKs

s∑
j=2

∣∣∣y j − y j−1
∣∣∣ . (F.9)

Using (14) and defining ai j := 0 for j ≥ i, we have

|yi − yi+1| =

∣∣∣∣∣∣∣∣T
s∑

j=1

(ai j − a(i+1) j) f̄ (y j, e,T )

∣∣∣∣∣∣∣∣
≤ T A

s∑
j=1

| f̄ (y j, e,T )| for i = 1, . . . , s − 1. (F.10)

Combining (F.10) and (F.9), then

|F̄Euler(x, e,T ) − F̄RK(z, e,T )|

≤ (1 + KT )|x − z| + (s − 1)ABKsT 2
s∑

j=1

∣∣∣ f̄ (y j, e,T )
∣∣∣ (F.11)

Using (F.8) in (F.11) we obtain, for all |x|, |z| ≤ M, |e| ≤ E and
T ∈ (0,T ∗)

|F̄Euler(x, e,T ) − F̄RK(z, e,T )|

≤ (1 + KT )|x − z| + (s − 1)ABKsT 2C
s∑

j=1

(|y1| + φ(|e|))

≤ (1 + KT )|x − z| + Tρ(T ) (|z| + φ(|e|))

where ρ ∈ K∞ is defined via ρ(T ) := (s − 1)sABCKsT . Note
that φ ∈ K∞ is given by i) and hence does not depend on M or
E. Thus, (6) holds and (F̄Euler, F̄RK) is REPC. ◦

According with Claim 1 and Claim 2, by Proposition 3.2
then the pair (F̄RK , F̄e) is REPC. �

Appendix G. Proof of Lemma 3.11

Consider M, E ≥ 0 given and let the S-ISS-VSR property
generate the bound (5) and T?(M, E). Given some k ∈ N0, the
evolution of the sampled-data system between any consecutive
samples xk and xk+1 of the continuous-time solution that begins
from initial condition |x0| ≤ M with ‖{ei}‖ ≤ E and {Ti} ∈

Φ(T?) is given by x(tk + t) = F̄e(xk, ek, t), thus

x(tk + t) = xk +

∫ t

0
f
(
F̄e(xk, ek, s),U(xk, ek,Tk)

)
ds (G.1)

for all t ∈ [0,Tk]. Define R := β(M, 0) + γ(E) from Defini-
tion 2.5, then |xk | ≤ R for all k ∈ N0. From Assumption 2.3 we
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have that |U(x, e,T )| ≤ Cu(|x|, |e|) for all |x| ≤ R, |e| ≤ E and
T ∈ (0,T u(R, E)). Define C(|x|, |e|) := C f (2|x|,Cu(|x|, |e|)) with
C f from Assumption 2.2, and T̄ (M, E) := min

{
T?,T u, R

C(R,E)

}
.

Next, we will prove that |x(tk + t)| ≤ 2R for all t ∈ [0, T̄ ]. Let
|xk | ≤ R, |ek | ≤ E and define

τ := inf {t > 0 : |Fe(xk,U(xk, ek,Tk), t)| ≥ 2R} . (G.2)

Due to Fe(xk,U(xk, ek,Tk), 0) = xk and the continuity of
Fe(xk,U(xk, ek,Tk), ·) we have τ > 0 for all Tk ∈ [0, T̄ ]. For a
contradiction, suppose that τ < T̄ for some Tk ∈ [0, T̄ ]. From
continuity and (G.2), it follows that |Fe(xk,U(xk, ek,Tk), τ)| =

2R and |Fe(xk,U(xk, ek,Tk), t)| < 2R for all t ∈ [0, τ). Thus,

|Fe(xk,U(xk, ek,Tk), τ)|

≤ |xk | +

∫ τ

0
| f (Fe(xk,U(xk, ek,Tk), s),U(xk, ek,Tk))| ds

< R + C(R, E)T̄ ≤ 2R (G.3)

The strict inequality in (G.3) contradicts |Fe(xk,U(xk, ek,Tk), τ)| =
2R. Therefore, τ ≥ T̄ . From (G.1), (G.3) and (5), then for all
k ∈ N0, {Ti} ∈ Φ(T̄ ), |x0| ≤ M and ‖{ei}‖ ≤ E, we have

|x(tk + t)| ≤ β

|x0|,

k−1∑
i=0

Ti

 + γ

(
sup

0≤i≤k−1
|ei|

)
+ C(R, E)t (G.4)

for all t ∈ [0,Tk].
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Nešić, D., Teel, A.R., Carnevale, D., 2009. Explicit computation of the sam-
pling period in emulation of controllers for nonlinear sampled-data systems.
IEEE Transactions on Automatic Control 54, 619–624.

Polushin, I.G., Marquez, H.J., 2004. Multirate versions of sampled-data stabi-
lization of nonlinear systems. Automatica 40, 1035 – 1041.
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