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Abstract

Cyber-physical systems usually have complex dynamics and are required to fulfill complex tasks. In recent years, formal
methods from Computer Science have been used by control theorists for both describing the required tasks and ensuring
that they are fulfilled by the systems. The crucial drawback of formal methods is that a complete model of the system
often needs to be available. The main goal of this paper is to study formal verification of linear time-invariant systems
with respect to a fragment of temporal logic specifications when only a partial knowledge of the model is available,
i.e., a parameterized model of the system is known but the exact values of the parameters are unknown. We provide
a probabilistic measure for the satisfaction of the specification by trajectories of the system under the influence of
uncertainty. We assume these specifications are expressed as signal temporal logic formulae and provide an approach
that relies on gathering input-output data from the system and employs Bayesian inference on the collected data to
associate a notion of confidence to the satisfaction of the specification. The main novelty of our approach is to combine
both data-driven and model-based techniques in order to have a two-layer probabilistic reasoning over the behavior of
the system. The inner layer is with respect to the uncertainties in dynamics and observed data while the outer layer
is with respect to the distribution over the parameter space. The latter is updated using Bayesian inference on the
collected data. The proposed approach is demonstrated in two case studies.

Keywords: Bayesian Inference, Data-Driven Methods, Verification, Synthesis, Signal Temporal Logic, Parameterized
Models.

1. Introduction

Nowadays, data-driven methods are being used exten-
sively in many engineering applications. However, they
suffer from several limitations in terms of accuracy and
confidence. Due to the complexity of safety-critical cyber-
physical systems (CPS), e.g., self-driving cars and traffic
networks, there is a huge demand towards formal guar-
antees for the correctness of existing data-driven meth-
ods [2, 11]. On the other hand, formal methods can pro-
vide such guarantees when a model of the system is avail-
able. However, the main challenge which most model-
based techniques face is the lack of a precise model of
the system. This motivates the need for combining data-
driven methods with formal techniques that will lead to
more efficient formal method algorithms [1].

Formal methods have been vastly used in the realm of
Computer Science to provide correctness guarantees on
the expected behavior of a program. Most of these for-
mal techniques have been developed for finite-state mod-
els [4, 5]. In order to fully utilize the advantages of formal
techniques in real physical applications, one needs to first
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construct a sufficiently precise model of the system. Usu-
ally, it is hard to model a system accurately. Besides,
the dynamics of a system may vary in the course of time.
In such cases, statistical model checking can be beneficial
if all states of the system can be measured [10, 33, 34].
However, statistical model checking usually needs a large
number of experiments and is not able to handle synthesis
problems directly [34].

In this work, we aim at putting together Bayesian infer-
ence and formal verification technique and subsequently
provide a probabilistic confidence on satisfying a desired
specification by trajectories of a stochastic system. We
study formal verification of linear time-invariant (LTI) sys-
tems with respect to a fragment of temporal logic specifica-
tions when only a partial knowledge of the model is avail-
able, i.e., a parameterized model of the system is known
but the exact values of the parameters are unknown. We
provide a probabilistic measure for the satisfaction of the
temporal logic specification by trajectories of the system
under the influence of uncertainty. We assume these speci-
fications are expressed by signal temporal logic (STL) for-
mulae [26] and provide an approach that relies on col-
lecting input-output data from the system. We employ
Bayesian inference to associate a notion of confidence to
the satisfaction of the specification. Our main objective is
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to combine both data-driven and model-based techniques
for stochastic LTI systems in order to verify the system
against STL specifications.

Our approach considers probability thresholds as the
lower bounds for the satisfaction of STL specifications
by the stochastic trajectories of the system. We under-
approximate the feasible parameter sets of the probabilis-
tic constraints by transforming them into algebraic in-
equalities. Then, confidence values are computed using
the obtained feasible sets and distributions of parame-
ters which are updated based on collected data from the
systems. We also propose relaxation of the algebraic in-
equalities in order to reduce the conservativeness of under-
approximations.

Related work. A comparison between statistical model
checking and probabilistic numerical model checking meth-
ods is provided in [38]. A multi-level statistical model
checking approach is proposed in [36] for hybrid systems.
A novel method is introduced in [29] for learning control
Lyapunov-like functions in order to synthesize controllers
for nonlinear dynamical systems for stability, safety, and
reachability specifications. A data-driven approach was
developed in [31] for control of piecewise affine systems
with additive disturbances against STL specifications. In
[3], concepts from formal modeling and machine learn-
ing are exploited to develop methodologies that can iden-
tify temporal logic formulae that discriminate different
stochastic processes based on observations. In [9], authors
propose an approach to approximate the posterior distri-
butions of unknown parameters for nonlinear deterministic
systems.

Properties expressed as STL formuale are introduced
and used in the literature including the works in [28] and
[12]. A new definition for probabilistic STL formulae is
introduced in [30] that assigns probabilities to the atomic
propositions and then combines them through Boolean op-
erators. A robust treatment of uncertainties under STL
constraints is performed in [14] in the framework of model
predictive control. An under-approximation of constraints
described as probabilistic STL formulae is proposed in [13]
and applied to design control strategies for the Barcelona
wastewater system [15].

In recent years, researchers also investigated data-driven
techniques for formal policy synthesis of dynamical sys-
tems due to their applicability to high dimensional spaces.
A data-driven approach is proposed in [35] for synthe-
sis of safe digital controllers for sampled-data stochastic
nonlinear systems. The learning approach proposed in [8]
finds Lyapunov functions for dynamical systems ensuring
their stability. The work in [20] applies model-free rein-
forcement learning for policy synthesis of finite-state mod-
els. This method is extended in [25] for continuous-space
dynamical systems and finite-horizon specifications under
continuity assumptions on the dynamics of the system.
The authors in [21] propose a reinforcement learning for
the synthesis of continuous-state dynamical systems but

the convergence is only demonstrated empirically. The
recent approach in [24] applies reinforcement learning for
satisfying linear temporal logic (LTL) specifications with
convergence guarantees and without requiring any conti-
nuity assumption on the system dynamics.

A data-driven and model-based formal verification ap-
proach for partially unknown LTI systems is recently de-
veloped in [18], [17]. In these works, authors proposed a
new method based on Bayesian inference and reachability
analysis to provide a confidence based on which a physi-
cal system affected by noisy measurements verifies a given
bounded-time LTL specification. In [19], a method based
on Bayesian inference and model checking is developed for
Markov decision processes. The recent results in [32] ex-
tend those of [18] and [17] to verification of stochastic LTI
systems under specifications expressed as STL formulae.
In this work, we extended the results in [32] to verifica-
tion of fully parameterized LTI systems affected by both
process and measurement noises. Furthermore, a more ef-
ficient method is proposed in order to under-approximate
the feasible region of a special category of stochastic dy-
namical systems affected by bounded support noise.

Outline of the paper. The structure of the paper is as
follows. Section 2 gives definitions, assumptions, and the
problem statement. Bayesian inference is introduced in
Section 3 for systems affected by both measurement and
process noises. Section 4 demonstrates a technique in or-
der to under-approximate the feasible domain of proba-
bilistic STL constraints. Section 5 shows how to compute
the feasible set of parameters for stochastic LTI systems.
Section 6 gives an approximation of the feasible set as a
linear program by substituting a bounded support distri-
bution of the noise for the unbounded Gaussian one. The
proposed approach is illustrated on two case studies in Sec-
tion 7. Finally, we conclude the paper in Section 8. Due
to lack of space, only the intuitions behind the proofs of
statements are provided.

2. Preliminaries and Problem Formulation

In this section, we give the system definition and the
problem statement.

2.1. Parametric LTI Systems
Consider the set of parameterized stochastic linear time-

invariant (LTI) models Ω := {M(θ) | θ ∈ Θ} such that

M(θ) :=
{

x(t + 1) = A(θ)x(t) + B(θ)u(t) +Gw(t),
ŷ(t) = C(θ)x(t) + D(θ)u(t), (1)

where x(t) ∈ Rn is the state, ŷ(t) ∈ Rm is the output, u(t) ∈
U ⊂ Rr is the input, and θ ∈ Θ ⊂ Rp is the parameter of
the model M(θ). Here, U is the set of valid inputs and is
assumed to be bounded. The process noise w : R≥0 → Rn

is selected to be a zero-mean Gaussian distribution, which
has a covariance matrix Σw.
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Figure 1: Data collection from the system S.

Assumption 1. we assume that our target model S is
picked from the class of stochastic dynamical systems and
its behavior can be characterized by the model M(θtrue)
for some true parameter θtrue ∈ Θ. This true parameter is
unknown in general. Further, we assume having access to
the output of system S , that is,

y(t) = ŷ(t) + e(t), (2)

in which e : R≥0 → Rm represents the measurement noise
with a zero-mean Gaussian distribution and a covariance
matrix Σe. Both process and measurement noises are as-
sumed to be uncorrelated to the input.

Consider a specification ψ defined over trajectories of the
system S. We assume ψ belongs to the class of STL speci-
fications which will be defined formally in Subsection 4.1.
We denote the satisfaction relation by S |= ψ which is true
when the trajectory of the system S satisfies ψ. We plan
to provide a confidence value for the satisfaction of ψ by
trajectories of S. Our approach relies on collecting data
from the system and using Bayesian inference to provide
the confidence value.

2.2. Data Collection
The process of data collection is depicted in Fig. 1. Let

us denote the set of data collected from the system by
D = {ũexp(t), ỹexp(t)}Nexpt=0 , in which ũexp(t) and ỹexp(t) are
input-output pairs within the time horizon {0, . . . ,Nexp}.
In general, it is assumed that we can excite the system
with any desirable input signal but within the acceptable
range of inputs.

Assumption 2. Process noise {w(t), t = 0, 1, 2, . . .} and mea-
surement noise {e(t), t = 0, 1, 2, . . .} are independent and
identically distributed over time, and are independent
from each other. In addition, the initial state x(0) is
known, and the input u(t) is deterministic.

The assumption on the initial state x(0) can be general-
ized by allowing it to have a Gaussian distribution inde-
pendent of w(·) and e(·). Our approach is still applicable
to this more general case.

2.3. Stochastic Bayesian Confidence
When the model M(θ) is deterministic, the satisfaction

relation M(θ) |= ψ is a binary relation over the parameter

space Θ. This is due to having a unique state trajectory
for a given input trajectory. If Ω is the set of parameter-
ized deterministic models, we can define the satisfaction
function for the deterministic system as gψ : Θ → {0, 1}
in which gψ(θ) ≡ (M(θ) |= ψ). This function can only take
values that are zero or one. If the system is affected by
the process noise, satisfaction relation becomes a random
variable over {0,1}. We are interested in computing the
probability with which the satisfaction relation holds. In
this case, we define a threshold on the satisfaction proba-
bility of ψ as

P(M(θ) |= ψ) ≥ 1 − δ, (3)
where δ ∈ (0, 1). Now we can assign a satisfaction function
f δψ to the above chance constraint which is again a binary
function on the parameter space Θ.
Definition 1. Consider Ω = {M(θ) | θ ∈ Θ} with M(θ) defined
as in (1), and the specification ψ. The satisfaction function
f δψ : Θ→ {0, 1} is defined as

f δψ(θ) =

1 if P (M(θ) |= ψ) ≥ 1 − δ,
0 otherwise,

(4)

for any δ ∈ (0, 1).
The set of parameters for which f δψ(θ) = 1 is called the

feasible set of parameters which can be represented as

Θψ := {θ ∈ Θ| f δψ(θ) = 1}. (5)

Let us denote by P(.) and p(.) the probability of an event
and the probability density function of a random variable,
respectively. We define a probabilistic confidence on sat-
isfaction of the specification using Bayesian inference as
follows.
Definition 2. Given a specification ψ and a set of data D,
the confidence on satisfaction of ψ by trajectories of the
system is

P(S |= ψ | D) :=
∫
Θ

f δψ(θ) p(θ | D) dθ, (6)

where p(· | D) is the posteriori distribution on the param-
eter space conditioned on the input-output data set, and
f δψ(θ) is the satisfaction function defined in (4).

Assume that we have a prior knowledge of parameter-
ized models for S in the form of some distribution over Θ.
This prior knowledge can be used in order to improve the
posterior distribution function over Θ after collecting data
from the system.
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Figure 2: An overview of our proposed approach.



2.4. Problem Statement
Note that the satisfaction function in (4), the feasible set

in (5), and the confidence in (6) all depend on the input
trajectory of the system. If we require the inequality in (4)
to hold for all possible input trajectories, these quantities
become independent of the input trajectory. This is indeed
a verification problem stated next.
Problem 1 (Verification). Given a parameterized LTI sys-
tem in (1) together with the noisy output in (2), data set
D, and specification ψ, we aim at computing the confi-
dence (6) when f δψ(θ) = 1 or equivalently when

P (M(θ) |= ψ) ≥ 1 − δ ∀u(t) ∈ U,∀t ≥ 0. (7)

A schematic of our proposed approach, which allows us
to incorporate any prior information regarding appropriate
parameters θ in order to achieve a more precise confidence,
is depicted in Fig. 2.

3. Bayesian inference

We use Bayesian inference in order to provide confi-
dences of satisfaction for the given specifications for para-
metric LTI systems. Given a prior density function over
the set of parameters, denoted by p(θ) and an input-output
data setD, a posterior distribution p(θ | D) can be inferred
for θ by

p(θ | D) =
p(D | θ) p(θ)∫

Θ
p(D | θ) p(θ)dθ

, (8)

where p(D | θ) is the likelihood distribution function. For
the dataset D = {ũexp(t), ỹexp(t)}Nexpt=0 , the likelihood distri-
bution is the joint distribution of all measured outputs in
the form of

p(ỹexp(0), ỹexp(1), . . . , ỹexp(Nexp) | θ). (9)

Proposition 1. Consider the LTI model (1)-(2). The joint
distribution p(D | θ) is multi-variate Gaussian with mean

ȳ(θ) = [ȳ(0); · · · ; ȳ(Nexp)], (10)

and covariance matrix Σỹ(θ), where

ȳ(t) := C(θ)A(θ)t x(0) + D(θ)u(t)

+

t−1∑
i=0

C(θ)A(θ)iB(θ)u(t − i − 1),

Σỹ(θ) :=M(θ) ΣW M(θ)T + ΣE ,

where ΣW := diag(Σw, . . . ,Σw) and ΣE := diag(Σe, . . . ,
Σe) are block diagonal with respectively Nexp and (Nexp+1)
blocks. Matrix M(θ) ∈ R(mNexp+m)×(nNexp) is represented as:

M(θ)=



0 0 0 · · · 0
C(θ)G 0 0 · · · 0

C(θ)A(θ)G C(θ)G 0 · · · 0
C(θ)A(θ)2G C(θ)A(θ)G C(θ)G · · · 0

...
...

...
...

...

C(θ)A(θ)Nexp−1G C(θ)A(θ)Nexp−2G · · · · · · C(θ)G


.

Based on the above Proposition, the joint Gaussian dis-
tribution for measured outputs can be characterized as

p(ỹexp(0), ỹexp(1), . . . , ỹexp(Nexp) | θ) =
1

|Σỹ(θ)| 12 (2π)
mNexp

2

exp
{
−1

2
(ỹ − ȳ(θ))T Σỹ(θ)−1(ỹ − ȳ(θ))

}
,

(11)
where, ỹ = [ỹexp(0); ỹexp(1); · · · ; ỹexp(Nexp)] is the vector of
noisy measured outputs and ȳ(θ) is defined in (10). |Σỹ(θ)|
is determinant of the covariance matrix. The density func-
tion (11) can be used to update the posterior distribution
using (8).

4. STL and Under-Approximation

4.1. Signal Temporal Logic (STL)
One of the main advantages of STL specifications is their

capability in quantifying temporal specifications for trajec-
tories of physical systems. We denote an infinite state tra-
jectory of the system in (1) by ξ = x(0), x(1), x(2), . . . where
x(t) is the state of the system at time t ∈ N0 := {0, 1, 2, . . .}.
Below, we define syntax and semantics of STL specifica-
tions using the standard notation employed in [2, 26].
Syntax: Signal temporal logic (STL) formulae are defined
recursively using the following syntax:

ψ ::= T | µ | ¬ψ1 | ψ1 ∧ ψ2 | ψ1 U[a,b] ψ2, (12)

where the separator sign | indicates that any specification ψ
in this logic can take one of the given five forms, separated
by | in (12), and is constructed by combining specifications
ψ1, ψ2 from this logic. T is the true predicate, and µ : Rn →
{T,F} is a predicate such that its truth value is determined
by the sign of a function of the state x, i.e., µ(x) = T if and
only if α(x) ≥ 0 with α : Rn → R being an affine function
of the state and is associated with µ. Notations ¬ and
∧ denote negation and conjunction of formulas. Notation
U[a,b] denotes the until operator where a, b ∈ R≥0 and a ≤ b.

Semantics: The satisfaction of an STL formula ψ by a
trajectory ξ at time t is denoted by (ξ, t) |= ψ which is
defined recursively as follows:

(ξ, t) |= µ⇔ µ(ξ, t) = T

(ξ, t) |= ¬µ⇔ ¬((ξ, t) |= µ)
(ξ, t) |= ψ ∧ ϕ⇔ (ξ, t) |= ψ ∧ (ξ, t) |= ϕ
(ξ, t) |= ψ U[a,b] ϕ⇔ ∃t′ ∈ [t + a, t + b] s.t. (ξ, t′) |= ϕ
∧ ∀t′′ ∈ [t, t′], (ξ, t′′) |= ψ.

A trajectory ξ satisfies a specification ψ, denoted by ξ |= ψ,
if (ξ, 0) |= ψ. We also write S |= ψ to indicate that ξ |= ψ
with ξ being the trajectory of the system S started from
the initial condition x(0).

Furthermore, other standard operators can be expressed
using the above defined ones. For disjunction, we can write



ψ ∨ ϕ := ¬(¬ψ ∧ ¬ϕ) and the eventually operator can be
defined as ♢[a,b]ψ := T U[a,b] ψ. Finally, the always operator
is defined as □[a,b]ψ := ¬♢[a,b]¬ψ. The horizon of an STL
formula, denoted by len(ψ), is the maximum over all upper
bounds of intervals on the temporal operators. Intuitively,
len(ψ), is the horizon in which satisfaction of (ξ, t) |= ψ
should be studied. Let us now denote a finite trajectory
by ξ(t : N) := x(t), x(t+1), ..., x(t+N). For checking (ξ, t) |= ψ,
it is sufficient to consider a finite trajectory ξ(t : N) with
N = len(ψ).

4.2. Under-approximation of STL Constraints

The stochastic satisfaction function defined in (4) re-
quires the exact feasible set of the chance constraint in (3).
This feasible set does not have a closed form in general.
Previous works tried to find under-approximations of the
feasible set. We leverage the proposed procedure in [13] to
get an under-approximation of the feasible set. This pro-
cedure transforms the chance constraints on the STL spec-
ification into similar constraints on the predicates of the
specification using the structure of the STL formula. We
discuss this procedure in this subsection and show how this
under-approximation can be improved in Subsection 4.3.

The next lemma, borrowed from [13], shows how one
can transform the chance constraints on the satisfaction of
STL formulae into similar constraints on the predicates of
formulae. Since STL formulae are defined on trajectories
of the system, we write ξ(t : N) |= ψ instead of M(θ) |= ψ to
indicate satisfaction of ψ by trajectories starting at time t.

Lemma 1. For any STL formula ψ and a value δ ∈ (0, 1),
probability constraints of the forms P(ξ(t : N) |= ψ) ≥ 1 − δ
and P(ξ(t : N) |= ψ) ≤ 1 − δ can be transformed into similar
constraints on the predicates of ψ based on the structure
of ψ.

In the following, we discuss how this transformation is
performed.
Case I Negation ψ = ¬ψ1

P(ξ(t : N) |= ψ) ≥ δ⇔ (13)
P(ξ(t : N) |= ψ1) ≤ 1 − δ.

Case II Conjunction ψ = ψ1 ∧ ψ2

P(ξ(t : N) |= ψ) ≥ δ⇐ (14)

P(ξ(t : N) ̸|= ψi) ≤
1 − δ

2
, i = 1, 2.

Case III ψ = ψ1 U[a,b] ψ2

P(ξ(t : N) |= ψ) ≥ δ⇐ (15)

P(Λ j) ≥
δ

(b − a + 1)
, j = 1, . . . ,N,

in which the events Λ j are defined as

Λ j :=
t+a−1∧

k=t

(ξ(k : N) |= ψ1)

j−1∧
k=a+t

(ξ(k : N) |= (ψ1 ∧ ¬ψ2))∧(ξ( j : N) |= ψ2). (16)

These transformations are based on multiple application of
Boole’s inequality [11]. Required transformations for the
complements of Cases II and III can be derived similarly.

Lemma 1 enables us to write down probabilistic inequal-
ities on the satisfaction of atomic predicates and use them
as under-approximations of the original probabilistic STL
constraints. These probabilistic inequalities can be equiva-
lently written as algebraic inequalities given that we know
the statistical properties of the state trajectories.

In the case of LTI systems under Assumption 2, x(t) is
also Gaussian with known mean and covariance. Let us
consider predicate µ(x) = {α(x) ≥ 0} with α(x) := θ̃0 + θ̃

T x,
for some θ̃ ∈ Rn and θ̃0 ∈ R. One can write E[α(x)] =
θ̃0 + θ̃

T E[x] and Var[α(x)] = θ̃T Cov(x)θ̃. Therefore,

P(α(x) ≥ 0) ≥ 1 − δ ⇔ P(α(x) < 0) ≤ δ
⇔ E[α(x)] +Var[α(x)]erf−1(δ) ≥ 0, (17)

where erf−1(·) is the error inverse function defined with
erf(x) = 1√

π

∫ x
−x exp(−t2)dt where exp(·) denotes the natu-

ral exponential function. In the following proposition, we
show that the algebraic inequalities of the form (17) are
linear with respect to the input.

Proposition 2. Chance constraint P(α(x(t)) ≥ 0) ≥ 1 − δ,
where α(x) = θ̃0+θ̃

T x and x(t) being the state of the stochas-
tic system (1) at time t, can be written as the following
constraint that is affine with respect to the input:

t−1∑
i=0

θ̃T A(θ)iB(θ) u(t − i − 1)

+ θ̃0 + θ̃
T A(θ)t x(0) + θ̃TΓ(θ, δ)θ̃ ≥ 0, (18)

where

Γ(θ, δ) := erf−1(δ)
t−1∑
i=0

A(θ)iG Σw GT (A(θ)T )i. (19)

Note that in general Γ(θ, δ) and the left-hand side of
(18) are nonlinear functions of θ. They become polynomial
functions of θ if A(θ) and B(θ) depend on θ linearly.

4.3. A Less Conservative Approximation
The proposed procedure in Lemma 1 for transforming

the chance constraints into similar inequalities on atomic
predicates can be very conservative. This is due to the
fact that constraints of type P(A1 ∪ A2) ≤ δ are conserva-
tively replaced by inequalities P(Ai) ≤ δ/2, i = 1, 2. This



replacement puts a uniform upper bound on the proba-
bility of events Ai and does not create any room for the
intersection of these events. In this subsection, we increase
the flexibility in the under-approximation and enlarge the
feasible set of the probabilistic STL constraint through in-
termediate weights.

This new under-approximation procedure results in new
constraints with a larger number of variables. It is based
on the structure of the STL formula similar to the discus-
sion in the previous subsection and has the following three
cases:
Case I: Disjunction

P(ξ(t : N) |= (ψ1 ∨ · · · ∨ ψι ∨ · · · ∨ ψN)) ≥ δ
⇐= P(ξ(t : N) |= ψι) ≥ αι δ, ι ∈ {1, . . . ,N},

0 ≤ αι ≤ 1, α1 + · · · + αN = 1. (20)

Case II: Conjunction

P(ξ(t : N) |= (ψ1 ∧ · · · ∧ ψι ∧ · · · ∧ ψN)) ≥ δ
⇐= P(ξ(t : N) ̸|= ψι) ≤ βι(1 − δ), ι ∈ {1, . . . ,N},

0 ≤ βι ≤ 1, β1 + · · · + βN = 1. (21)

Case III: Until

P(ξ(t : N) |= ψ1 U[a,b] ψ2) ≥ δ

⇐= P(Λ j) ≥ γι
δ

(b − a + 1)
, ι ∈ N,

0 ≤ γι ≤ 1, γ1 + · · · + γN = 1, (22)

in which, Λ j is defined as in (16).
In relations (20)-(22), αι, βι, and γι are intermediate

weights that regulate the effect of each probabilistic pred-
icate and contributes to a bigger feasible set. If any
knowledge about the likelihood of the satisfaction of sub-
formulas in the main formula is available, it can be ex-
ploited to select proper values for these parameters to get
a less conservative result.

5. Verification of Probabilistic STL Constraints

5.1. Feasible Set Computation
After transforming the probabilistic STL constraints

into the algebraic inequalities, as described in Section 4,
these inequalities are in the form of (18) which are linear
with respect to the input trajectory and must hold for the
whole input range. We use robust linear programming to
solve those inequalities. Here, the primary robust linear
programming problem is converted to another dual linear
programming without a universal quantifier over the input
based on Farkas’ lemma [16]. Assume the set of valid in-
puts U is a bounded polytope characterized by the linear
inequalities Du ≤ d for some matrix D and vector d with
appropriate dimensions. Define the set of valid input tra-
jectories within horizon {0, . . . , (t− 1)} with U := {Du ≤ d},
where u = [u(0); u(1); . . . ; u(t − 1)], d = [d; d; . . . ; d], and
D = diag(D, . . . ,D).

In the next theorem, we show that the feasible set of
the probabilistic predicates at each time step can be char-
acterized by a set of constraints at that time step. The
proof of this theorem leverages the dual linear program-
ming in its symmetric form, which requires all variables to
be non-negative. Therefore, we extract a lower bound ul

for the input trajectories and shift the input variables to
make them non-negative. This lower bound ul is readily
computable knowing the bounded polytope containing all
the input values.

Theorem 1. Assume that the set of valid input trajectories
U is a bounded polytope of the form Du ≤ d such that
u ≥ ul. The inequality (18) holds for all u ∈ U if the
following set of inequalities is feasible over z,(d − Dul)T z ≤ b(θ, δ) + f(θ)ul,

−DT z ≤ f(θ)T , z ≥ 0,
(23)

where

b(θ, δ) = θ̃0 + θ̃
T A(θ)t x(0) + θ̃TΓ(θ, δ)θ̃, (24)

f(θ) = θ̃T [B(θ), A(θ)B(θ), A(θ)2B(θ), . . . , A(θ)t−1B(θ)],

with Γ(θ, δ) defined in (19).

Solving constraints (23) simultaneously for all predicates
of the STL specification gives the feasible set of parameters
θ for the stochastic system S in (1). However, the main
challenge of using inequalities of the form (23) as under-
approximation of the feasible set is that these inequalities
are still nonlinear with respect to θ. In the following sub-
section we propose two numerical techniques to address
this challenge.

5.2. Confidence Computation Techniques
Monte Carlo Method. Considering that the constraints

(23) are in general nonlinear with respect to θ, computa-
tion of integral in (6) can be done efficiently using Monte
Carlo integration. The idea is to choose N random points
θi uniformly from the bounded region of the parameters
and use those values that satisfy all the constraints in (23)
associated with the predicates of the STL specification in
order to compute the integral in (6). The confidence value
Q N computed using Monte Carlo integration is a random
variable defined as

Q N :=
V
N

N∑
i=1

K(θi) with K(θi) := f δψ(θi) p(θi | D),

where V is the volume of the parameter space. Here, QN
is an unbiased estimator of the integral. Due to the law of
large numbers, QN converges to the true integral when N
goes to infinity. An unbiased estimation of the variance of
QN can be computed as Var[QN] = V2σ2

N
N with

σ2
N :=

1
N − 1

N∑
i=1

(K(θi) − K̄)2 and K̄ :=
1
N

N∑
i=1

K(θi).



Note that the Var[QN] decreases to zero asymptotically
with rate 1/N when N goes to infinity and as long as the
sequence {σ2

1, σ
2
2, σ

2
3, . . .} is bounded. This result does not

depend on the number of dimensions of the integral in (6),
which is the advantage of Monte Carlo integration.

According to Chebyshev’s inequality, one has

P(E[QN] ∈ [QN − ε,QN + ε]) ≥ 1 − Var[QN]
ε2 , (25)

for any given ε > 0. By choosing an appropriate num-
ber of samples N and computing QN, the exact value of
the integral lies within the interval [QN − ε,QN + ε] with
confidence 1 − V2σ2

N/Nε2.
Computing the under-approximation of the confidence

in (6) using the Monte Carlo integration requires sampling
from the domain Θ and rejecting those that render (23)
infeasible. It is also possible to find a sampling domain
Θ′ tighter than Θ by finding the extreme values of θ for
which the inequalities (23) are feasible. This will improve
the efficiency of the Monte Carlo integration by requiring
a smaller number of samples for a given accuracy.

Piecewise Affine Approximation of the Nonlinear Con-
straints. Another approach for computing the confidence
value in (6) is approximating the nonlinear terms b(θ, δ)
and f(θ) in (24) using piecewise affine (PWA) functions.
Then, linear programming can be used in order to approx-
imate the feasible set. PWA approximations have been
used recently in formal approaches in order to deal with
the nonlinearity in dynamical systems [6, 31].

Assuming that A(θ) and B(θ) are twice differentiable
with respect to θ, b(θ, δ) and f(θ) in (24) are also twice
differentiable. We can partition their domain into poly-
topic regions, select a nominal value (θ0, δ0) in each region,
and rewrite b(θ, δ) in each region as

b(θ, δ) ∈ (θ − θ0)T M + (δ − δ0)N + ϵB, (26)

where

M :=
∂b(θ, δ)
∂θ

∣∣∣∣
(θ0,δ0)

and N :=
∂b(θ, δ)
∂δ

∣∣∣∣
(θ0,δ0)

,

and ϵ is a bound where

ϵ ≥ 1
2

[(θ − θ0)T , (δ − δ0)] H [(θ − θ0); (δ − δ0)],

where H is the Hessian matrix of b(θ, δ). Here, B denotes
the unit interval [−1, 1]. A similar approximation holds for
f(θ). The region of parameters is divided into sufficiently
large numbers of regions and then inequalities and equa-
tions regarding the satisfaction of STL specifications in
(23) will be checked in these regions. In the next lemma,
we show that the real feasible set can be constructed in
the limit when the number of piecewise regions increases.

Lemma 2. The actual feasible set (23) for the STL speci-
fication in (6) can be recovered in the limit by increasing
the numbers of regions in PWA approximation of the non-
linear terms in (23).

6. Bounded Support Noise

In this section, we show that if the given matrices A
and B in (1) are independent of the parameters θ and
are known, the probabilistic inequalities can be under-
approximated by inequalities that are linear in terms of
inputs. These inequalities can be solved using linear pro-
gramming efficiently to compute the feasible region of pa-
rameters. The essential idea in this approach is to re-
place the Gaussian distributions with truncated ones while
quantifying the induced error. Having a bounded support
for the noise enables us to use Chernoff-Hoeffding inequal-
ity [13, 23] for the under-approximation. The Chernoff-
Hoeffding inequality provides a bound on the tail proba-
bility of sum of bounded random variables that depends
only on the support of these random variables regardless of
the shape of their distributions. First, we formally define
the support of a random variable.

Definition 3. For a given random variable ω with values
in Rn and probability distribution P, consider the set of
subsets of Rn as

A := {C ⊂ Rn | C is closed and P(ω ∈ C) = 1}.

The smallest element of A with respect to the inclusion
property is called the support of ω and is denoted by S ω.

The next proposition provides an upper bound on the
error of the probability of satisfying the specification when
the noise distributions are replaced by truncated Gaussian
distributions.

Proposition 3. Suppose we consider two distributions for
the process noise w(·): one which is Gaussian distribution
tw and the other one which is truncated normal t̄w with
support S w. We denote the probability measures induced
on the trajectories ξ of the system M(θ) by P and Pt,
respectively. Then we have

P(ξ |= ψ) − Pt(ξ |= ψ) ≤ Nα
1 − α, (27)

for any specification ψ with horizon N. Here, α is the
truncated probability α := 1 −

∫
S w

tw(v)dv.

Using inequality (27), we under-approximate the chance
constraint P(ξ |= ψ) ≥ 1 − δ with

Pt(ξ |= ψ) ≥ 1 − δ̄, δ̄ := δ +
Nα

1 − α. (28)

Assumption 3. For the rest of this section, we focus on
under-approximating (28) when the truncated support of
w(t) is S w and is contained in a hyper-rectangle [a, b]
(which is the Cartesian product of intervals with vectors
a, b indicating the end points of the intervals). We also
assume matrices A and B in (1) are non-parametric.

Next lemma, borrowed from [13], shows the relation
between supports of α(x(t)) and w(t) given the predicate
µ(x) = {α(x) ≥ 0} with α(x) := θ̃0 + θ̃

T x.



Lemma 3. The support of α(x(t)) is S α(x(t)) := [θ̃0 + ãt +

θ̃T C̃t, θ̃0 + b̃t + θ̃
T C̃t] where ãt and b̃t are weighted sum of a

and b obtained using interval arithmetics and C̃t := At x(0)+∑t−1
i=0 AiBu(t − i − 1).

We use Chernoff-Hoeffding inequality to replace (28)
with a condition on the expected value of the predicate.
The following proposition, used also in [13], describes this
approximation. Note that Chernoff-Hoeffding inequality
requires a particular constant from the dependency graph
of the random variables [23]. In such a graph, the nodes
represent random variables and two nodes are connected if
and only if their related random variables are dependent.

Proposition 4. The probabilistic inequality Pt(α(x(t)) >
0) ≥ 1 − δ̄ can be under-approximated by the inequality

Et(α(x(t))) ≥

√√√
−ν log(δ̄)

N∑
t=1

(b̃t − ãt)
2
, (29)

where ν = X(w)/2, and X(w) is the chromatic number of
the dependency graph of the noises w(0), . . . ,w(N − 1).

Note that the chromatic number of a graph Ĝ is the
minimum number of colors needed to color vertices of Ĝ
with no two adjacent vertices sharing the same color. This
number is equal to 1 for a graph with no edges (e.g., when
disturbances w(i) are independent). The interested authors
are referred to [27] and [7] for more information about
chromatic number of a graph.

Proposition 5. Under Assumption 3 and using Lemma 3,
we can under-approximate constraint (28) with

t−1∑
i=0

θ̃T AiB u(t − i − 1)

+ θ̃0 + θ̃
T At x(0) ≥ Γ(δ, ã, b̃), (30)

where

Γ(δ, ã, b̃) :=

√√√
−ν log(δ̄)

N∑
t=1

(b̃t − ãt)
2
. (31)

Note that since δ̄ ∈ (0, 1) and, hence, log(δ) < 0, the
right hand side of the inequality (30) becomes a real value
and one has a linear inequality in terms of input. Finally,
the next theorem shows that the feasible set of the chance-
constraints on the predicates can be approximated by a set
of linear constraints.

Theorem 2. Assume that the set of input trajectories U
is a bounded polytope of the form Du ≤ d, ∀u ∈ U. The
inequality (30) holds for all u ∈ U if the set of linear
inequalities (23) is feasible over z, where

b(θ, δ) = θ̃0 + θ̃
T At x(0) − Γ(δ, ã, b̃), (32)

f(θ) = θ̃T [B, AB, A2B, . . . , At−1B],

with Γ(δ, ã, b̃) defined in (31).

Remark 1. In presenting our approach in this section, we
assumed that parameters θ̃0 and θ̃ of the predicate α(x(t))
are known. We emphasize that our approach is still valid
if θ̃0 and θ̃ depend on the unknown parameters θ of the
model. This case can happen when the predicate is defined
on the output ŷ(t) instead of the state x(t) of the system.
The experimental results in the next section demonstrate
this case as well.

7. Experimental Results

7.1. Verification Case Study: Unbounded Support Noise
Consider a parameterized class of models M(θ) with the

state-space representation

x(t + 1) =
[

a 0
1 − a2 a

]
x(t) +

 √1 − a2

−a
√

1 − a2

 u(t) +
[
1 0
0 1

]
w(t),

ŷ(t, θ) = θT x(t).

Each model in M(θ) has a single input and a single output.
The coefficient a is 0.4 and the parameter set is selected
as θ ∈ Θ = [−10, 10] × [−10, 10]. The system S ∈ M(θ)
has the true parameter θtrue = [−0.5, 1]T . System S is
a member of models demonstrated by the Laguerre-basis
functions [18]. This is a special case of the orthonormal ba-
sis functions and can be translated to the aforementioned
parameterized state space format. The system is affected
by a process noise which is a Gaussian process with co-
variance matrix 0.5I2, where I2 is a 2 × 2 identity matrix.
There is also an additive measurement noise with zero-
mean and variance 0.5. The input range is considered to
be [−0.2, 0.2].

We want to verify with high probability if the output of
the system S remains in l1 = [−0.5, 0.5] until it reaches l2 =
[−0.1, 0.1] at some time in the interval [2, 4]. We denote
the atomic propositions µ1 = {y ≥ −0.5}, µ2 = {−y ≥ −0.5},
µ3 = {y ≥ −0.1}, µ4 = {−y ≥ −0.1}. Our desired property
can be written as

P(S |= (µ1 ∧ µ2) U[2,4] (µ3 ∧ µ4)) ≥ 1 − δ.

We select δ = 0.01. The system starts at the initial condi-
tion x(0) = 0.

We used the procedure in Section 4 to decompose this
STL specification to algebraic constraints on the atomic
propositions. Equation (21) is used to improve the con-
servativeness of the approximation. The feasible set is ap-
proximated either using the Monte Carlo method or the
piecewise affine approximation described in Section 5. The
initial set of parameters can be restricted by finding the
extreme values of θ over all constraints as described in
Subsection 5.2 which is considered [−3.5, 3.5] for this case
study. We select random points which are uniformly dis-
tributed in this restricted region in order to compute the
confidence value using the Monte Carlo method with the
precision 0.000001 in (25). Computed feasible set using
the Monte Carlo technique is demonstrated in Fig. 3 with



Figure 3: Contours of p(θ | D) for θtrue = [−0.5, 1]T after 50 mea-
surements over the feasible set computed by the Monte Carlo and
PWA techniques which are represented by red and blue points, re-
spectively.

red-face squares. The feasible set which is recovered with
the piecewise affine technique is illustrated in Fig. 3 with
blue-edge diamonds. We used linear programming in or-
der to find the feasible set of parameters (θ, z) for the lin-
earized form of (23) for all time steps. Then, this feasible
set is projected into θ space using MPT3 toolbox [22]. We
choose the total number of regions in the piecewise affine
approximation to be 25.

As we do not have any prior knowledge about the pa-
rameters, we choose a uniform distribution p(θ) on the
possible models. Based on the uniform prior, the confi-
dence is computed using (6) as 0.0279 and 0.0258 with
Monte Carlo and PWA approximations, respectively. Af-
terward, we designed an experiment on the system with
the true parameter and an input sequence with a uniform
distribution over [−2, 2] and measured output for 50 con-
secutive time instances. Using updated p(θ | D) coming
from the measurement data, confidence improved signifi-
cantly into 0.9099 and 0.8962 for Monte Carlo and PWA,
respectively. Contours of the posterior distribution are
illustrated in Fig. 3.

We repeated the same experiment 100 times for several
other true parameters θtrue. For all of these instances,
updated posteriori probability in (11), after 50 measure-
ments, is used in order to compute the confidence value ac-
cording to (6). Results of computing the confidence with
Monte Carlo and PWA approximation are shown in Ta-
ble 1. As it can be seen, for parameters that lie deep inside
the feasible set, the confidence value is high with a low vari-
ance for both techniques. Meanwhile, for the points near
the edges, the variance is higher and confidence value is
lower. For points far enough from the feasible set, confi-
dence tends to be very close to zero.

Table1. Means and variances of computed confidence
values for 5 different true parameters after 50 measur-
ements.

Monte Carlo PWA

θtrue Mean Variance Mean Variance

[−0.5, 1]T 0.9587 0.0023 0.9514 0.0042
[3,−1]T 0.4902 0.0061 0.5032 0.0062
[1, 0.5]T 0.7932 0.0025 0.7584 0.0053

[−2, 1.5]T 0.9018 0.0009 0.9156 0.0005
[2,−1]T 0.0278 0.0005 0.0480 0.0006

7.2. Verification Case Study: Bounded Support Noise
In this section, we consider the multi-zone model of

a building developed in [37]. The model gives the dy-

Figure 4: Schematic of the air-conditioned building [37].

namic response of indoor temperatures and humidity for
a building depicted in Fig. 4. The state vector is Xroom =

[∆ta,s,∆Wa,s,∆triw,s,∆ta,n,∆Wa,n,∆triw,n,∆trew,n,
∆ta,r,∆Wa,r,∆triw,r]T , where its elements are variations in
air-supply temperature, air-supply humidity, internal wall
temperature (air-supply zone), work zone temperature,
work zone humidity, internal wall temperature (work
zone), external wall temperature (work zone), air-return
temperature, air-return humidity, and internal wall tem-
perature (air-return zone), respectively. The input vector
is [∆ta,i,∆Wa,i,∆Ga,i,∆ta,out,∆Isol] which its elements corre-
spond to air-supply temperature set-point, air-supply hu-
midity set-point, air flow set-point, return temperature
set-point, and solar radiant intensity, respectively.

All states are affected by a Gaussian process noise with
variance of 0.001. We assume the input can change every
100 seconds. Then we discretize the dynamic by τ = 100s.
The comfort criterion is defined as a weighted combina-
tion of work zone temperature and humidity variations:
θ1∆ta,n + θ2∆Wa,n with weights θ1 and θ2. This comfort cri-
terion is the output of the system. The measurements of
this output is available but affected by a Gaussian noise
with variance 0.01. We consider the following STL speci-
fication:

P

 5∧
t=1

|θ1∆ta,n(t) + θ2∆Wa,n(t)| ≤ β
 ≥ 0.9, (33)

with β = 1 in our numerical implementation. We assume

Figure 5: Updated posterior function after 10 measurements over the
feasible polyhedron region computed using MPT3 toolbox.

that θ1 and θ2 are not known but have the true values 1 and
0.5, respectively (θtrue = [1, 0.5]T ). The initial parameter
space is considered to be (θ1, θ2) ∈ [−2.5, 2.5]2. Our goal
is to verify whether the above property is satisfied for all
inputs ∆ta,i,∆Wa,i ∈ [−1, 1]. Other inputs are considered to
be zero in this case study.

We utilize the approach of Section 6 and limit the sup-
ports of process noise to the bounded interval [−0.1, 0.1].
This amounts to having α = 0.0155 in Proposition 3 and



replacing the above chance constraint with

Pt

 5∧
t=1

|θ1∆ta,n(t) + θ2∆Wa,n(t)| ≤ β
 ≥ 0.9787.

The computed feasible region for this STL specification
which is a polyhedron and computed by MPT3 toolbox
[22], is demonstrated in Fig. 5 (green region). Since it is
assumed that we do not have any prior knowledge about
the parameters, a uniform distribution is chosen over the
parameter space. The posterior distribution is illustrated
in Fig. 5 after collecting 10 measurements and updating
the distribution. This approach computes the feasible re-
gion and the confidence value in only 55 seconds. We have
repeated this experiment 100 times and computed the con-
fidence values using (6). The mean and variance of the
confidence values are respectively 0.8607 and 0.0012.

If we directly apply the approach of Section 5 to the
constraint (33) and the unbounded support noise, we have
to use the methods in Subsection 5.2 in order to approx-
imately compute the confidence value, which is compu-
tationally more expensive. We computed the confidence
value using Monte Carlo integration with 6.25 × 106 sam-
ples from the parameter space, which gives the interval
[0.8505, 0.8705] for the confidence with probability 0.99
over the sampled parameters. This interval is close to the
confidence value obtained using truncation but the com-
putation time is 19 minutes on an iMac (3.5 GHz Intel
Core i7 processor) which is much larger than 55 seconds
taken based on truncation.

8. Conclusion and Future Works

In this work, we considered parametric linear time-
invariant (LTI) systems. We developed a scheme for pro-
viding a confidence value for the satisfaction of STL spec-
ifications for such systems by incorporating both model-
based and Bayesian inference techniques. Using our ap-
proach, one can transform the probabilistic STL specifica-
tion over the states of the system into a set of algebraic
inequalities. Solving these inequalities for the whole range
of inputs results in the feasible set of parameters. By lever-
aging the collected data from the system, the probability
density of the unknown parameters is updated and the con-
fidence value is computed over the feasible domain of the
parameters. While this paper is focused on verification of
parametric LTI systems, in the future we plan to address
synthesis problem using maximum likelihood methods to
find inputs that maximize the probability of satisfying a
given specification. Another interesting research direction
is to study robustness of the computations with respect
to uncertainties in the distribution of random variables
affecting the evolution of the system.
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