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aCorporate Research and Innovation, Process Industries Division, Festo AG & Co.KG, 73770 Denkendorf, Germany

bDepartment of Electrical and Electronic Engineering, The University of Manchester, Sackville St. Bldg., Manchester, UK, M13 9PL

cDepartment of Mathematics, The University of Manchester, Alan Turing Bldg., Manchester, UK, M13 9PL

Abstract

Optimal decision-making tools are essential in industry to achieve high performance. One of these tools is Model Predictive Control
(MPC), which is an advanced control technique that generates an action that affects the controlled variables, while satisfying the process’
operational constraints. At the core of the MPC algorithm lies an optimization problem that is solved by a numerical method at every sample
time. New demand for more self-contained modular processes has seen MPC embedded in small-scale platforms. This has prompted a need
for custom-made numerical methods that help to efficiently run the computationally demanding optimization algorithms. In this paper,
we propose two approaches that factorize the Newton system of the interior-point method (IPM) based on the two-point boundary-value
(TPBV) problem structure, rarely explored in MPC. Exploiting the Hamiltonian form of the augmented system, we derive an incomplete
LU factorization. A direct method is available to compute the solution of the system using a forward substitution of a series of matrices.
An iterative method is also available. We propose a preconditioned Krylov method that converges within a small number of iterations
only depending on the number of states.

Key words: Predictive control, Model based control, Optimal control, Iterative methods, Real-time systems.

1 Introduction

The history of MPC dates back to the 1970s, especially in
the petrochemical industry where MPC was applied to mul-
tivariable systems that required careful handling of physical
and operational restrictions. Some of the first research pub-
lished on MPC were Richalet et al. (1977) and Cutler and
Ramaker (1979), where MPC was called Model Algorith-
mic Control (MAC) and Dynamic Matrix Control (DMC),
respectively. During the last two decades, some of the ma-
jor control software vendors have adopted MPC and it can
now be found in a wide variety of industries, especially
in the process industry (Qin and Badgwell, 2003). There
is considerable interest in applying MPC in systems with
fast sampling times (Wills et al., 2008) and in small-scale
embedded platforms (Jerez et al., 2014).
From a mathematical viewpoint, an MPC controller com-
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putes the solution of an optimization problem at every
sample time. This can be expressed as a nonlinear system
of equations that has to be solved by a numerical method.
One of these techniques is the interior point method or
IPM (Wright, 1997), which is based on Newton’s method.
The IPM solves a fixed-size system of equations at every
sample time, distinguishing it from the active set method
whose structure size can change. It also ensures conver-
gence in polynomial time (Wright, 1997). The replacement
of inequality constraints with a barrier function within MPC
algorithms has been studied by Wills and Heath (2004).
This led to the development of fast optimal solvers, such as
the one presented in Wang and Boyd (2010) that applies a
Cholesky factorization to the main matrix (as it has a block
tridiagonal structure) of the normal equation. Likewise,
a fast suboptimal solver based on a barrier function can
be found in Feller and Ebenbauer (2018). Iterative meth-
ods (Gondzio, 2012) have also been used in interior-point
solvers for the MPC problem such as in Shahzad et al.
(2012) where the ill-conditioned problem is addressed by
splitting the inequality constraints into active and inactive
sets.
A different line of research initiated by Kalman (1960)
showed that the linear quadratic regulator (LQR) system, in
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the Hamiltonian form (two-point boundary-value (TPBV)
problem), can be solved by applying the Riccati equation
backwards in time. The relation between the MPC struc-
ture and the linear-quadratic problem was first highlighted
in a number of works by Sznaier and Damborg (1987),
Chmielewski and Manousiouthakis (1996) and Scokaert
and Rawlings (1998). Rao et al. (1998) show that the Ric-
cati equation can also be applied to factorize the linear
system of equations that appear within the algorithm to
solve the constrained MPC. Riccati recursion methods have
also been used to construct efficient interior-point solvers
such as by Frison et al. (2014) and by Nielsen and Axehill
(2018) for active-set solvers. The linear-quadratic problem
is also the natural structure that appears within the Sequen-
tial Quadratic Programming (SQP) algorithm, which is an
optimization method widely used for nonlinear MPC (Diehl
et al., 2009 and Diehl et al., 2002). An application using
SQP based on the Riccati recursion can be found in Katliar
et al. (2017).
This paper is part of a broader body of work that analyzes
the Hamiltonian form that arises naturally in optimal control
formulations and can be exploited to find fast solvers for
constrained MPC (Poupard and Heath, 2018 and Poupard
et al., 2019). Here we design two preconditioners (or fac-
tors) for an incomplete LU factorization of the Newton
system in Hamiltonian form. Their implementation allows
the solution of the system to be obtained by two methods,
a direct substitution of symplectic submatrices and an it-
erative Krylov method whose convergence is bounded and
quantifiable.
In Section 2 the fundamentals of MPC are presented. In
Section 3 we illustrate how the standard Riccati recursion
that is used in fast MPC solvers can be derived via sparse
factorization of the Newton system in Hamiltonian form. In
Section 4 we propose an alternative incomplete LU factor-
ization of the Hamiltonian form using two preconditioners
that leads to a companion-like matrix; this in turn leads to
two methods that are presented in Sections 5 and 6 respec-
tively. In Section 5 we propose a direct method that carries
out a forward substitution of symplectic submatrices. In
Section 6 we propose an iterative Krylov method based on
GMRES and provide bounds for its convergence rate. In
Section 7 we present results from numerical experiments
which validate the feasibility and convergence of the iter-
ative method in the presence of rounding errors. Finally
in Section 8 we illustrate how the method can easily be
modified to deal with singular systems.

2 MPC formulation

The fundamental structure of MPC is the two-point
boundary-value problem (TPBV) of optimal control theory
(Bryson and Ho, 1975, Sect. 2.2), in which the initial con-
dition of the states x0 is given and the final condition of the
Lagrange multiplier of the equality constraints is defined as

λN =

(
∂φ

∂xN

)
, (1)

where φ is a terminal cost that evaluates the final state xN
at the sample time k = N. For convex quadratic optimiza-
tion problems, where a linear dynamic system and linear
constraints are considered, the final condition (1) reduces to
λN = PxN , where P is a weighting matrix for the final state
vector.

2.1 Problem formulation

We define the free final state linear MPC problem as

min
xk∈X ,uk∈U

1
2

xᵀNPxN +
1
2

N−1

∑
k=0

(
xᵀk Qxk +uᵀk Ruk

)
s.t. xk+1 = Axk +Buk, k = 0, . . . ,N−1,

xk ∈X , uk ∈U , k = 0, . . . ,N−1,
xN ∈X f , x0 = x(0) (2)

where the linear equality constraints represent the system
dynamics, xk ∈X are the state variables, uk ∈ U are the
input variables and N is the prediction horizon. The con-
straint sets X ⊆ Rnx and U ⊆ Rnu are polyhedra, whereas
xN ∈X f⊆Rnx is a terminal polyhedral region. For simplic-
ity, we will consider a time-invariant system. The weighting
matrices Q, P ≥ 0 and R > 0 are symmetric. Problem (2)
can be expressed as a convex quadratic problem (Boyd and
Vandenberghe, 2004, Sect. 4.4)

min
θ

f (θ) =
1
2

θ
ᵀH θ +gᵀθ

s.t. Fθ = b
C θ ≤ d, (3)

where θ ∈Rn is the decision vector, the Hessian matrix H ∈
Rn×n is symmetric positive definite, F ∈ Rm×n and C ∈
Rp×n. The overall aim is to find a decision vector θ which
minimizes the quadratic performance index f (θ), subject to
both constraints. A nonlinear system of equations used to
solve (3) is

H θ +F ᵀ
λ +C ᵀµ +g = 0,

Fθ −b = 0,
C θ −d + t = 0,
MT e = σηe,

(µ, t)≥ 0. (4)

When σηe = 0, system (4) gives the necessary Karush-
Kuhn-Tucker (KKT) conditions for optimality, where λ and
µ are the so-called Lagrange multipliers of the equality and
inequality constraints respectively and t is a slack variable.
Then M = diag(µ1,µ2, ...,µp), T = diag(t1, t2, ..., tp) and
e = (1,1, ...,1)ᵀ. Additionally, σ ∈ [0,1] is the centering pa-
rameter and the duality gap is η = µᵀt/p. The term σηe
plays a stabilizing role to allow the algorithm to converge
steadily towards the solution of (3) (Wright, 1997, p. 36-40).
We will use an infeasible interior-point algorithm (IPM) to
solve system (4). Examples of this type of algorithm are: (i)
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Mehrotra’s Predictor-Corrector algorithm (Mehrotra, 1992)
and (ii) the Exact/Inexact Infeasible IPM algorithm pre-
sented in Shahzad et al. (2012). For iterative methods, the
latter is preferred since the factorization of the search direc-
tion system is computed only once. Both algorithms have
relatively low computational cost, mainly vector-vector op-
erations. The most computationally demanding part is the
augmented Newton system, which requires the solution of a
linear system of equations J(θ ,λ ,µ, t)∆p =−F(θ ,λ ,µ, t),
defined as [

H̄ F ᵀ

F 0

][
∆θ

∆λ

]
=−

[
r̄θ

rλ

]
, (5)

where ∆θ = [∆xᵀ,∆uᵀ]ᵀ and H̄ =H +C ᵀ
(
M−1T

)−1
C ,

and the residuals are rθ =
[
rᵀx ,r

ᵀ
u
]ᵀ

=H θ +F ᵀλ +C ᵀµ +

g, r̄θ = rθ +C ᵀ
(
M−1T

)−1 (rµ −M−1rt
)
, rλ = Fθ −b,

rµ = C θ −d+ t and rt = MT e−σηe. The final elements
of ∆p can be computed as

∆µ =
(
M−1T

)−1 (
C ∆θ + rµ −M−1rt

)
,

∆t =−M−1 (T ∆µ + rt) ,

where

C =


ω · · · 0 0 φ · · · 0
...

. . .
...

...
...

. . .
...

0 · · · ω 0 0 · · · φ

0 · · · 0 ω 0 · · · 0

 ,

and

ω =

[
−Inx

Inx

]
, φ =

[
−Inu

Inu

]
. (6)

Here Inx ∈Rnx×nx and Inu ∈Rnu×nu are identity matrices. For
the MPC problem (2), the augmented system (5) is in the
form of the two-point boundary-value problem as we will
demonstrate in the next section.

3 Hamiltonian system decomposition

The system (5) can be further reduced by eliminating the
elements ∆u, i.e.[

H̄Q F ᵀ
A

FA G

][
∆x

∆λ

]
=−

[
r̄x

r̄λ

]
, (7)

where H̄Q and G are block diagonal matrices defined as

H̄Q = diag(Qk, . . . ,QN−1,PN) ,

G = diag(0,−Gk, . . . ,−GN−1) ,

where Gi = BRi
−1Bᵀ and

FA =


−I

A
. . .
. . . −I

A −I

 .

The elements ∆ui are

∆ui =−R−1
i (Bᵀ∆λi+1 + r̄ui) ,

and the residual is r̄λi+1 =−rλi+1 +BR−1
i r̄ui . System (7) can

be rearranged as

Dmpczmpc = bmpc (8)

where

Dmpc =



−I

−A 0 I Gk

Qk −I 0 Aᵀ
. . .

. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .

. . . −A 0 I GN−1

QN−1 −I 0 Aᵀ

PN −I



,

zmpc =
[
∆xᵀk ∆λ

ᵀ
k ∆xᵀk+1 ∆λ

ᵀ
k+1 . . . . . . ∆xᵀN ∆λ

ᵀ
N

]ᵀ
,

bmpc =−
[
rᵀ

λk
r̄ᵀ

λk+1
r̄ᵀxk r̄ᵀ

λk+2
. . . . . . r̄ᵀxN−1 r̄ᵀxN

]ᵀ
.

The matrix Dmpc has dimension 2(N +1)nx×2(N +1)nx
and the vectors zmpc and bmpc are of dimension 2(N +1)nx.
System (8) is similar in form to the Linear Quadratic Reg-
ulator (LQR) system or the LQ tracking problem (Poupard
and Heath, 2018). The sole difference between these sys-
tems is the right-hand side vector bmpc, which in this case
represents the residuals of the Newton system of the interior-
point method. It is easy to recognize the subsystems from
iterations k to N−1 in the matrix Dmpc, i.e.[
−A 0

Qk −I

][
∆xk

∆λk

]
+

[
I Gk

0 Aᵀ

][
∆xk+1

∆λk+1

]
=−

[
r̄λk+1

r̄xk

]
. (9)

This is the Hamiltonian system of the two-point boundary-
value problem with the boundary conditions ∆x0 = rλ0 and

∆λN = PN∆xN + r̄xN . (10)
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It is standard to factorize system (5) using the Riccati recur-
sion method as it was shown in Rao et al. (1998). In Poupard
et al. (2019), the Riccati equation (and the vector sequence
computation) can also be derived from system (8). One of
the advantages of this approach is that the complexity of the
algorithm is reduced to O(Nn3

x), as opposed to the dense ap-
proach that is O

(
N3n3

x
)
. Therefore, this method is attractive

for state-of-the-art optimization solvers such as the one pre-
sented in Frison et al. (2014). In next section, we propose an
alternative method that decomposes the main matrix into an
incomplete LU factorization, which has recently proposed
for MPC (Poupard, 2018).

4 Incomplete LU factorization

In this section, we will present a method that takes advantage
of the special structure of the Hamiltonian system (9). This
approach consists of the formulation of two precondition-
ers (left and right), which resemble the two-point boundary-
value problem structure. Multiplying them onto system (8)
gives rise to a companion-like matrix, whose last column is
computed as a forward recursive sequence. This sequence is
in fact the factorization that allows to solve the linear system
directly. Furthermore, the application of the two precondi-
tioners allows to solve the system by an iterative method
like GMRES. An application of the GMRES method to non-
linear MPC can be found in Ohtsuka (2004). To derive the
preconditioners, system (8) is first slightly rearranged as

Dhqrzhqr = bhqr (11)

where

Dhqr =



I Gk 0

0 Aᵀ −I

−A 0 I Gk+1 0

Qk+1 −I 0 Aᵀ
. . . 0

. . . . . . . . . . . .
...

. . . −A 0 I GN−1 0

QN−1 −I 0 Aᵀ 0

PN −I 0



,

zhqr =
[
∆xᵀk+1 ∆λ

ᵀ
k+1 ∆xᵀk+2 ∆λ

ᵀ
k+2 . . . ∆xᵀN ∆λ

ᵀ
N ∆λ

ᵀ
k

]ᵀ
,

bhqr =−
[
r̄ᵀ

λk+1
r̄ᵀxk r̄ᵀ

λk+2
r̄ᵀxk+1 . . . r̄ᵀ

λN−1
r̄ᵀxN−1 r̄ᵀxN

]ᵀ
.

The matrix Dhqr has dimension (2N + 1)nx×(2N + 1)nx,
and the vectors zhqr and bhqr are of dimension (2N +1)nx.
System (11) is equivalent to (8), differing only in size for
two reasons: (i) ∆xk is eliminated since it is known that
∆xk = rλk

= 0; (ii) the column corresponding to ∆λk is
swapped to the last position.

4.1 Tailor-made preconditioners

Let Hhqr = HQHR be nonsingular and apply it as a precon-
ditioner for the system (11), namely

D̃hqr z̃hqr = b̃hqr, (12)

where

D̃hqr = H−1
Q DhqrH−1

R , b̃hqr = H−1
Q bhqr.

The matrices HQ and HR are called the left and right precon-
ditioners, respectively. The solution of the original system
(11) is obtained by solving HRzhqr = z̃hqr. We design the pre-
conditioners so that when (12) is solved iteratively with a
Krylov method, the convergence to the true solution is fast.
In order to achieve this, the preconditioner Hhqr should meet
the following criteria (Golub and Loan, 2013)

(1) The structure of matrix Hhqr should resemble the origi-
nal matrix Dhqr in some sense, e.g., Hhqr ≈Dhqr. Hence,
H−1

Q DhqrH−1
R should be somehow close to the identity

matrix I, D̃hqr ≈ I.
(2) Likewise, the matrices HQ and HR should be easy to

factor (e.g., block banded), and their application dom-
inated by matrix-vector operations.

We will demonstrate that our preconditioners fulfil the above
criteria with some additional advantages:

a) The matrix D̃hqr is a companion-like matrix, which emu-
lates the identity matrix in all its columns but the last one.

b) The GMRES method converges to the exact solution in a
small number of nx + 1 steps (it essentially behaves like
a direct solver).

c) The preconditioners HQ and HR are triangular matrices,
which makes their factorization trivial.

d) A matrix-free algorithm will be proposed that avoids
building the matrices explicitly.

We now state our proposed preconditioners. Let the right
preconditioner HR be the upper block-triangular matrix

HR =



I Gk

I
. . .
. . . . . .

. . . . . .

I GN−2

I

I GN−1

I

I



, (13)
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and the left preconditioner HQ be the lower block-triangular
matrix

HQ =



I

0 Aᵀ

−A AGk I

Qk+1 Fk+1 0 Aᵀ

. . . . . . . . . . . .
. . . . . . . . . . . .

. . . −A AGN−2 I

QN−1 FN−1 0 Aᵀ

PN FN I



, (14)

where Fk+1 = −(Qk+1Gk + I) for k = 0, . . . ,N − 1 and
FN = −(PNGN−1 + I) for k = N. For HQ to be nonsingu-
lar, we clearly require that the matrix A is nonsingular. To
show that the matrix Hhqr = HQHR has the same structure
as Dhqr, we solve the subsystems HQ(1:2nx ,1:2nx)

HR(1:2nx ,1:2nx)
=

Dhqr(1:2nx ,1:2nx)
and HQ(3nx :4nx ,1:2nx)

HR(1:2nx ,1:2nx)
=Dhqr(3nx :4nx ,1:2nx)

,
i.e.

HQ(1:2nx ,1:2nx)
=

[
I Gk

0 Aᵀ

][
I −Gk

0 I

]
=

[
I 0

0 Aᵀ

]
,

and

HQ(3nx :4nx ,1:2nx)
=

[
−A 0

Qk+1 −I

][
I −Gk

0 I

]
=

[
−A AGk

Qk+1 Fk+1

]
.

We can continue solving the subsequent systems in the same
fashion down to K = N−1. For k = N, the following sub-
system is solved

HQ(2Nnx+1:(2N+1)nx ,2(N−1)nx :2Nnx)
=
[
PN −I

][I −GN−1

0 I

]
=
[
PN FN

]
.

This can be summarized in the following lemma.

Lemma 4.1 The matrix Hhqr = HQHR with HR and HQ de-

fined in (13) and (14) respectively, is of the form

Hhqr =

I Gk 0

0 Aᵀ 0

−A 0 I Gk+1 0

Qk+1 −I 0 Aᵀ
. . . 0

. . .
. . .

. . .
. . .

. . .
...

. . .
. . .

. . .
. . .

. . .
...

. . . −A 0 I GN−1 0

QN−1 −I 0 Aᵀ 0

PN −I I



. (15)

Remark 4.2 Note that Hhqr coincides with Dhqr everywhere
but in the last nx−block column. The matrix Dhqr has a block
−I placed in the second nx−block row, whereas the matrix
Hhqr has a block I in the last nx−block row. Hence, HQ and
HR are in fact the L and U factors of an incomplete LU
factorization of matrix Dhqr whose residual matrix is R =
HQHR−Dhqr 6=0, as opposed to a standard LU factorization
in which R = 0 (Saad, 2003, sec. 10.3)

4.2 Companion-like matrix

Due to the upper block-triangular structure of HR in (13), it
is easy to see that the product of matrices Dhqr and H−1

R is

DhqrH−1
R =

I 0

0 Aᵀ −I

−A AGk I 0

Qk+1 Fk+1 0 Aᵀ 0
. . . . . . . . . . . .

...
. . . . . . . . . . . .

...
. . . −A AGN−2 I 0

QN−1 FN−1 0 Aᵀ 0

PN FN 0



, (16)

which is the same as the preconditioner HQ (14) in all its
columns except for the last one. The resulting matrix after
the multiplication of the preconditioners HQ (pre-multiplied)
and HR (post-multiplied) in matrix Dhqr is depicted in the
following result.
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Theorem 4.3 The matrix D̃hqr = H−1
Q DhqrH−1

R is given as

D̃hqr =



I Wk

I Yk

I Wk+1

I Yk+1

. . .
...

. . .
...

I WN−1

I YN−1

ZN



, (17)

a companion-like matrix 1 , with the entries in its
last nx−block column satisfying the recursion from
k = 1, . . . ,N−1.

[
Wk+1

Yk+1

]
=

[
−A AGk

A−ᵀQk+1 A−ᵀFk+1

]
︸ ︷︷ ︸

KHk

[
Wk

Yk

]
, (18)

and for k = N

ZN = PNWN−1 +FNYN−1, (19)

with initial conditions Wk = 0 and Yk =−A−ᵀ.

Proof. Since matrices (14) and (16) are equivalent except
for the last nx−block column, it is simple to demonstrate
the structure of (17), from the first nx−block column to
the second last nx−block column. In this sense, the prod-
uct H−1

Q DhqrH−1
R corresponding to such column produces

a diagonal of identity matrices I of size nx× nx. Regard-
ing the last nx−block column of the companion-like matrix,
it can be observed that the only elements of H−1

Q that will
be affected by the product are the ones located at the sec-
ond nx−block column, since the last nx−block column of
DhqrH−1

R is almost empty except for the identity matrix in

1 Matrices of the form (17) do not seem to have a special name.
Companion matrices have identities on the first subdiagonal and
nonzeros in the last column, while here we are dealing with
an upper-triangular matrix having identities on the diagonal and
nonzeros in the last column. This is also a special case of an arrow-
head matrix. We use the term companion-like mainly for brevity.

its second nx−block row. Namely



C(0,2)

C(1,2)

C(2,2)

C(3,2)
...
...

C(N−2,2)

C(N−1,2)

C(N,2)


︸ ︷︷ ︸

H−1
Q (:,2nx)

×
[
−I
]

︸ ︷︷ ︸
DhqrH−1

R (2nx,Nnx)

=



−C(0,N)

−C(1,N)

−C(2,N)

−C(3,N)

...

...

−C(N−2,N)

−C(N−1,N)

−C(N,N)


︸ ︷︷ ︸

D̃hqr (:,Nnx)

,

where i and j, from C(i, j), are the ithnx−block row and the
jthnx−block column respectively. The next step is to derive
the coefficients of H−1

Q (:,2nx), which can be done by solv-
ing the system HQX =B with respect to solely the columns
(:,2nx). If X = [X0, . . . ,XN ]

ᵀ and B = [B0, . . . ,BN ]
ᵀ, it de-

rives from (14) that the coefficients of B1 are described by
the following recursion

X0 = [0]︸︷︷︸
C(0,2)

B1,

X1 =
[
A−ᵀ

]︸ ︷︷ ︸
C(1,2)

B1,

X2 =
[
(A)C(0,2)− (AG0)C(1,2)

]︸ ︷︷ ︸
C(2,2)

B1,

X3 =
[
−
(
A−ᵀQ1

)
C(0,2)−

(
A−ᵀF1

)
C(1,2)

]︸ ︷︷ ︸
C(3,2)

B1,

...
...

XN =
[
−(PN)C(N−2,2)− (FN)C(N−1,2)

]︸ ︷︷ ︸
C(N,2)

B1,

which resembles precisely the recursive sequence of (18)
and the structure of the companion-like matrix (17) is now
verified. �

5 Hamiltonian recursion algorithm

The form of the companion-like matrix (17) allows the di-
rect factorization of system (11). This direct method, which
we call the Hamiltonian recursion method, is stated in Al-
gorithm 1.
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Algorithm 1 Factorization of system (11) via the
companion-like matrix D̃hqr

1: function ham-dire-mpc(Qi, Ri, PN , A, B, bhqr)
1) Computation of b̃hqr = H−1

Q bhqr:
2: b̃w

hqrk
=−r̄λk+1

, b̃y
hqrk

=−A−ᵀr̄xk

3: for k = 0 to N−1 do

4:

b̃w
hqrk+1

b̃w
hqrk+1

=−KHk

[
b̃w

hqrk

b̃y
hqrk

]
−

[
r̄λk+2

r̄xk+1

]
5: end for
6: b̃hqrN =−PN b̃w

hqrN−1
−FN b̃y

hqrN−1
− r̄xN

2) Recursive computation:
7: Wk = 0, Yk = A−ᵀ
8: for k = 0 to N−1 do

9:

[
Wk+1

Yk+1

]
= KHk

[
Wk

Yk

]
10: end for
11: ZN = PNWN−1 +FNYN−1
12: z̃hqrN = Z−1

N b̃hqrN

3) Solving system D̃hqr z̃hqr = b̃hqr:
13: for k = 0 to N−1 do

14:

[
z̃w

hqrk

z̃y
hqrk

]
=

[
b̃w

hqrk

b̃y
hqrk

]
−

[
Wk

Yk

]
z̃hqrN

15: end for
4) Compute zhqr = H−1

R z̃hqr:
16: *Initial conditions: ∆λ0 = z̃hqrN
17: for k = N to 1 do
18: ∆xk = z̃y

hqrk−1
19: ∆λk =−Gk−1∆xk + z̃w

hqrk−1
20: end for
21: return zhqr = [∆x,∆λ ]ᵀ . From system (11)
22: end function

To complete the step direction vector ∆p of the Newton
system (5), Algorithm 2 computes the remaining part, ∆̃p =
[∆u,∆µ,∆t]ᵀ.

Algorithm 2 Remaining step direction computation ∆̃p

1: ∆µx0 =
(
M−1

x0
Tx0

)−1 (
ω∆x0 + rx

µ0
−M−1

x0
rx

t0

)
2: ∆tx0 =−M−1

x0

(
Tx0∆µx0 + rx

t0

)
3: for k = 0 to N−1 do . Forward substitution
4: ∆uk =−R−1

k

(
Bᵀ∆λk+1 + r̄uk

)
5: fµ =

(
ω∆xk+1 + rx

µk+1
−M−1

xk+1
rx

tk+1

)
6: ∆µxk+1 =

(
M−1

xk+1
Txk+1

)−1
fµ

7: ∆µuk =
(
M−1

uk
Tuk

)−1 (
φ∆uk + ru

µk
−M−1

uk
ru

tk

)
8: ∆txk+1 =−M−1

xk+1

(
Txk+1∆µxk+1 + rx

tk+1

)
9: ∆tuk =−M−1

uk

(
Tuk ∆µuk + ru

tk

)
10: end for
11: ∆̃p = [∆u,∆µ,∆t]ᵀ

5.1 Recursive sequence structure

The matrix in system (18) has a symplectic structure, as the
Hamiltonian system (9). The invertibility of this matrix is
guaranteed (throughout the entire recursion k = 0, . . . ,N−1)
as the following lemma shows.

Lemma 5.1 Let A be nonsingular. Then the system matrix
(18)

KHk =

[
A

A−ᵀ

]
︸ ︷︷ ︸

KA

[
−I Gk

Qk+1 −(Qk+1Gk + I)

]
︸ ︷︷ ︸

KS

,

is nonsingular.

Proof. KA is invertible provided that A is nonsingular, i.e.

K −1
A =

[
A−1

Aᵀ

]
.

Regarding the case of KS, a more elaborated analysis is
required. As demonstrated in (Rao et al., 1998, sec. 3.2),
the matrices Qk are symmetric positive semidefinite for k =
1, . . . ,N − 1, and the matrices Rk are symmetric positive
definite, and so is Gk = BRk

−1Bᵀ. Likewise, the matrix KS
is symplectic (Fassbender, 2000) since it satisfies

K ᵀ
S J KS = J ,

where

J =

[
0 I

−I 0

]
.

The inverse of the symplectic matrices is easy to find

K ᵀ
S J = J K −1

S ,

J −1K ᵀ
S J = K −1

S ,

and since J −1 =−J we have K −1
S =−J K ᵀ

S J . After
multiplications

K −1
S =

[
−(Qk+1Gk + I) −Gk

−Qk+1 −I

]
.

Therefore, the matrix K −1
Hk

exists at every iteration k. �

Remark 5.2 Algorithm 1 is valid if and only if matrix ZN
of (19) is nonsingular. Given the matrix Dhqr of the Newton
system (11) is nonsingular, and the invertibility of precondi-
tioners HQ and HR is guaranteed, the product of these ma-
trices, i.e., D̃hqr (companion-like matrix (17)) is nonsingular
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(Meyer, 2004, p.121). Since D̃hqr is a block upper-triangular
matrix, its determinant is the product of the determinants
of the diagonal blocks (Horn and Johnson, 2012, p.25). All
this implies that these determinants are nonzero, including
the determinant of matrix ZN .

6 Hamiltonian/GMRES method

The factorization of the Newton system in the previous sec-
tion corresponds to using a direct solver with the interior-
point method. Another attractive possibility is to consider an
iterative method for such a task. We will show that the special
structure of the companion-like matrix ensures a fast con-
vergence of the GMRES method within a bounded number
of iterations. We call this the Hamiltonian/GMRES method.
GMRES stands for generalized minimal residual and it was
proposed in Saad and Schultz (1986). This Krylov method is
used for solving general (non-symmetric) systems of linear
equations such as in our case, as opposed to the MINRES
method which is used for symmetric matrices, for instance
the augmented system (5).

6.1 Convergence proof

The algorithmic complexity of direct solvers for linear sys-
tems is bounded. Namely, the factorization of a given system
is carried out by a predetermined recursive sequence (such
as LU, QR or Cholesky). Its computation directly gives rise
to the solution (only a for-loop needed). On the contrary,
for iterative methods (Golub and Loan, 2013) the solution
of the system is obtained after a sequence of approximate
solutions converges (a while-loop is needed).
From a practical viewpoint, ensuring fast convergence is im-
portant for efficient optimization solvers in MPC. Recently,
there have been several works that have addressed this topic
for different types of iterative methods. To name a few of
them:

(1) In Richter et al. (2009), the fast-gradient method is
used. This work also provided an a-priori upper bound
for the required number of iterations. A drawback of
this method is that it is only applicable for input-
constrained MPC.

(2) In Shahzad et al. (2010), the MINRES method is used.
By setting up a special structure of the system that
splits into two parts the active and inactive constraints,
the condition number of the matrix in (5) is improved.
In doing so, they numerically demonstrate that the rate
of convergence is faster.

(3) In Malyshev et al. (2018b), the conjugate gradient
method (CG) is used, where the matrix factors of the
augmented system (or the normal equations) are used
as preconditioners for the CG method. The authors in-
troduce a regularization parameter (which is a common
practice for iterative methods to improve the condition
number of the main matrix). The method appears to be
sensitive to the choice of the regularization parameter.

(4) In Malyshev et al. (2018a), different Krylov methods
are used, GMRES, QMR and BiCG. The authors com-
pare the convergence on systems with and without pre-
conditioners, using a method that intertwines the ap-
proach in Shahzad et al. (2010) with a condensing pro-
cedure in the main matrices.

None of the previous works related to interior-point solvers
give a theoretical proof for a bound on the number of itera-
tions in their corresponding methods. We will demonstrate
that that GMRES applied to the companion-like matrix con-
verges within a small number of iterations.
To characterize the convergence of the GMRES method ap-
plied to solve the linear system in (11) with our proposed
preconditioner Hhqr (15), we examine the degree of the min-
imal polynomial of the preconditioned system matrix D̃hqr,
defined in (17). Recall that the minimal polynomial pD̃ of
D̃hqr is defined as the monic (that is, with leading coefficient
1) polynomial of smallest degree such that pD̃

(
D̃hqr

)
= 0.

Saad and Schultz (1986) and Campbell et al. (1996) prove
that, in exact arithmetic, GMRES requires at most as many
iterations as the degree of pD̃.
It is easy to see that the degree of pD̃ is bounded by nx +1,
where nx is the number of states x and is also the di-
mension of matrix ZN defined in (19). Let pZN denote the
minimal polynomial of ZN , and consider the polynomial
p(z) = (z−1) pZN (z). Then

p
(
D̃hqr

)
=
(
D̃hqr− I

)
pZN

(
D̃hqr

)
= 0

where

(
D̃hqr− I

)
=



0 Wk

0 Yk

. . .
...

0 WN−1

0 YN−1

(ZN− I)


,

pZN

(
D̃hqr

)
=



pZN (I) ∗
pZN (I) ∗

. . .
...

pZN (I) ∗
pZN (I) ∗

0


.

Hence, p is a monic polynomial of at most nx + 1 degree
that satisfies p

(
D̃hqr

)
= 0. The minimal polynomial of D̃hqr

cannot be of higher degree, thus we conclude the following
result.
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Theorem 6.1 Assume that GMRES is applied to solve (11)
with a nonsingular system matrix having blocks of size nx×
nx, and that the left and right preconditioners HQ (14) and
HR (13) are used. Then, in exact arithmetic, GMRES will
compute the exact solution in at most nx +1 iterations.

The numerical experiments in Section 7 will confirm that
this termination property of GMRES is also observed in the
presence of rounding errors. Algorithm 3 replaces the steps
2 and 3 of Algorithm 1, which now requires only matrix-
vector operations.

Algorithm 3 Hamiltonian/GMRES solver for solution of
system (11) using D̃hqr

2) GMRES implementation:
1: function ham(@companion-iteration, b̃hqr)
2: *GMRES code: in−→ rgmres, out−→ qgmres
3: function companion-iteration(qgmres)
4: wi = 0, yi = A−ᵀqgmresN

5: rw
i = qw

i −wi, ry
i = qy

i − yi
6: for k = i to N−1 do

7:

[
wk+1

yk+1

]
=−KHk

[
wk

yk

]
8: rw

k+1 = qw
k+1−wk+1

9: ry
k+1 = qy

k+1− yk+1
10: end for
11: zN =−P5wN−1−FNyN−1
12: rgmresN = qgmresN − zN
13: return rgmres
14: end function
15: return z̃hqr . Solution of system (12)
16: end function

7 Numerical experiments

7.1 Feasibility

To test the Hamiltonian/GMRES solver, we use a well-
known testbench for MPC: the simulation of oscillating
masses that has been used in Wang and Boyd (2010) and
Malyshev et al. (2018c). This problem consists of a prede-
fined number of masses connected by springs to each other
in series, and to walls on either side. Actuators between the
masses exert tensions. The masses have value of 1 and all
spring constants are set at 1 with no damping. The state vec-
tor xk ∈Rnx encompasses the displacements and velocities of
the masses x =

[
q1,q2, . . . ,qnx/2, q̇1, q̇2, . . . , q̇nx/2

]ᵀ, and the
actuators as the control input uk ∈Rnu , uk = [ f1, f2, . . . , fnu ]

ᵀ,
where nu =

nx
2 −1. For the feasibility and convergence test,

Algorithm 1 (including Algorithm 3) is coded with a sam-
ple time of t = 0.5s; the number of masses is set at m = 20
(hence nx = 2m= 40), inputs nu = 19 and horizon N = 5. The
control inputs can exert a maximum force of ±0.5 and the
displacement of the states cannot exceed ±3.8. The weight-
ing matrices Q = I, R = I are set; and terminal cost P is the

solution to the infinite horizon LQR. The result is shown in
Figure 1.

time (s)
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Fig. 1. Evolution of the states (with initial conditions xk = 3.5 for
the displacements, and xk = 0 for the velocities) and the control
input profile of the oscillating-masses example with nx = 40 states.

7.2 Convergence under rounding errors

Theorem 6.1 establishes that for this specific example the
maximum number of iterations should not surpass the limit
nx + 1 = 41. Figure 2 shows that this is in fact the case
since one can observe that the number of GMRES iterations
(with a stopping criteria of 1×10−6) fluctuates between 20
to 41. The profile of the relative residual is shown in Figure
3. Figure 4 shows the profile of the GMRES iterations for
a simulation with the same setting as Figure 2, except with
nx = 160. Here, the number of iterations fluctuate between
100 to 150.
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Fig. 2. GMRES convergence for the system (12) with nx = 40
states throughout all the interior-point iterations over the complete
runtime.
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Fig. 3. Relative residual norms for system (12) with nx = 40
states throughout all the interior-point iterations over the complete
runtime.

80

time/t-sample

60
40

20
2

6

k-iteration

10

130

120

110

140

100

150

14

G
M

R
E

S
 i
te

ra
ti

o
n

s

Fig. 4. GMRES convergence for the system (12) with nx = 160
states (m = 80 masses) throughout all the interior-point iterations
over the complete runtime.

7.3 Convergence subject to different horizons

The convergence of the Hamiltonian/GMRES method is vi-
sualized in Figure 2 and 4. However, another interesting ex-
periment is to vary the value of the horizon N in order to see
how the number of GMRES iterations behaves with respect
to the total of IPM iterations. Figure 5 shows four simula-
tions of the oscillating-masses example with the same setup
of parameters (such as nx = 40) as previous experiments, ex-
cept for N = 5,10,20,40. Although all four tests reach the
maximum number of GMRES iterations at 41 (confirming
Theorem 6.1), their distributions are rather different. For in-
stance, regarding test N = 5 (Figure 5a), the iterations are
roughly equally distributed from iteration 21 to 41; but as the
horizon increases, for instance in tests N = 20 and N = 40
(Figures 5c and 5d respectively), their distributions are as-
sembled around the maximum number of iterations. There-
fore, from this specific example we can conclude that the
longer the horizon N, the closer the total number of iterations

(in the presence of rounding errors) will be to its theoretical
bound of nx +1 in each run of the interior-point algorithm.
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Fig. 5. Number of GMRES-iteration recurrences for different hori-
zons throughout all the interior-point iterations over the complete
runtime.

7.4 Comparison

It is necessary to carry out a comparison test in order to give
a reasonable perspective about the feasibility and potential
that the Hamiltonian/GMRES solver might have. Malyshev
et al. (2018a) report several experiments with heuristically
designed preconditioners applied to different configurations
of the Newton method, using different Krylov methods such
as GMRES, BiCG and QMR. Likewise, they also apply the
approach presented in Shahzad et al. (2012), which splits
the inequality constraints into two sets (active and inactive).
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(a) Iterations (blue) and the the-
oretical bound nx +1 (red).
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Fig. 6. Comparison between the Hamiltonian/GMRES solver (Fig-
ure 6a), and the GMRES preconditioned method proposed in Maly-
shev et al. (2018a), in Figure 6b.

By doing so the condition number of the relevant matrix (ei-
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ther with the augmented system or the normal equations) is
improved and the convergence of such iterative method is
sped up. The testbench used by Malyshev et al. (2018a) is
the same as the one we used in our previous experiments. To
match up this setup, the parameters of the oscillating-masses
example that need to be changed are the states nx = 12 (num-
ber of masses m = 6), the control inputs nu = 3 and the hori-
zon at N = 30. The simulation will be run for only one sam-
ple time. Although we know in advance that the maximum
convergence that this simulation will have is nx + 1 = 13
(due to Theorem 6.1), we replicate the same experiment so
as to show a fair comparison of both proposals.
It is interesting to notice from Figure 6 the following:

(1) In Figure 6a, the Hamiltonian/GMRES solver has a
maximum number of GMRES iterations of 13, going
down sometimes to 2 and 1. Whereas with the GM-
RES method from Malyshev et al. (2018a) in Figure
6b, the minimum number of iterations is considerably
above ours, around 19. It also varies greatly, reaching
a maximum limit of around 38.

(2) With the Hamiltonian/GMRES solver, the total number
of iterations is 15, whereas with the other GMRES
method it is 20.

8 The case of A being singular

In real-time applications, the systems are normally subject
to time delays. In this case, the matrix A of the state space
representation becomes singular. When this happens the in-
verse of the left preconditioner HQ (14) no longer exists and
hence the companion-like matrix (17) cannot be formed.
Therefore, we will propose a change on the left precondi-
tioner HQ in order to deal with matrix A being singular.

8.1 Formulation

Proposition 8.1 Let Dhqr and HR be the matrices defined
in (11) and (13) respectively. The left preconditioner HQ (a
lower block-triangular matrix) is

HQα
=

I

0 Aᵀα
−A AGk I

Qk+1 Fk+1 0 Aᵀα
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . . −A AGN−2 I

QN−1 FN−1 0 Aᵀα
PN FN I



, (20)

so that not only does its inverse exist but also D̃hqrα
=

H−1
Qα

DhqrH−1
R . The Matrix Aᵀα = (Aᵀ+αI) is nonsingular

provided that α > 0.

The direct method presented in Algorithm 1 can no longer
be used since it requires the explicit form of the companion-
like matrix D̃hqr (17), which is not available when the α

parameter is introduced into the diagonal of preconditioner
HQα

. It is simple to observe that the best selection of the α

parameter (ideally) should be such that matrix D̃hqrα
resem-

bles as close as possible to matrix D̃hqr, but without com-
promising the increase on its condition number κ .
We will present next some numerical experiments that pro-
pose some heuristic rules on how to set up (tuning) this α

parameter. Likewise, we explore the spectra properties of
the system matrix.

8.2 Numerical experiment

We use the following discrete-time state space model of
a citation aircraft with delay that appears in Maciejowski
(2002)

xk+1 = Axk +Buk, (21)

where

A =



0.85679 0 0.08312 0 −0.03109

−0.02438 1 0.09057 0 −0.02788

−0.46049 0 0.80976 0 −0.27938

−12.03761 12.82000 0.03680 1 0.05578

0 0 0 0 0


,

B =
[
−0.07163 −0.05156 −1.25304 0.11096 1

]ᵀ
.

The matrix A is evidently singular. We will first show the
variation of the condition number κ of matrix D̃hqrα

when
α parameter varies. It is necessary that α > 0, as κ = ∞

otherwise. Matrices HQα
(20), HR (13) and Dhqr (11) are built

with parameters: horizon N = 2, Q = I, R = I and P being
the solution of the Riccati equation on the infinite-horizon
LQR. Figure 7 shows a simulation where the α parameter
varies from 0.01 to 1. It is obvious that when α → 0, the
condition number κ → ∞. Conversely, when α increases, κ

decreases. Namely, the main objective is to emulate as much
as possible D̃hqrα

≈ D̃hqr, which means α → 0, so that we
can be close to the convergence established in Theorem 6.1.
However, a big condition number should be avoided as it is
a main factor for cancellations within the algorithm.

8.3 Eigenvalue trajectories

The eigenvalues of the companion-like matrix D̃hqr (17)
are divided in two sets. First, 2Nnx eigenvalues are exactly
1 and second, the eigenvalues of matrix ZN (19), which
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Fig. 7. Condition number κ of matrix D̃hqrα
= H−1

Qα
DhqrH−1

R sub-
ject to variations of the α parameter. Experiment set with horizon
N = 2.

appear to be arbitrary. Hence, the value of the α parameter
has to be such that the 2Nnx eigenvalues of matrix D̃hqrα

are clustered as close as possible to 1. Figure 8a shows the

α  parameter

0.2 0.4 0.6 0.8 1

e
ig

e
n

v
a
lu

e
 t

ra
je

c
to

ry

10
-1

10
0

10
1

10
2

10
3

10
4

(a) Eigenvalues of ZN -like ma-
trix. The number of these
eigenvalues is nx = 5.
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Fig. 8. Eigenvalue trajectories of matrix D̃hqrα
= H−1

Qα
DhqrH−1

R .
Each trajectory (y axis) is the absolute value |µ| of an eigenvalue
µ = a+bi. The x axis represents the variation of the α parameter.

nx eigenvalues corresponding to the ZN-like matrix. These
eigenvalues are arbitrary and depend on the parameters
of the problem shown in Algorithm 1. The important re-
sult is the one depicted in Figure 8b regarding the 2Nnx
eigenvalues of matrix D̃hqrα

. For small values of α → 0,
these eigenvalues are clearly clustered around 1 and as α

increases this cluster starts dispersing.
Figure 9 shows the locus of the eigenvalues lying
in the imaginary plane for four different values of
α = 0.01,0.10,0.50,1.00. It shows that for small values of
α , i.e. 0.01 and 0.10, the 2Nnx eigenvalues (in blue) are
clustered very close to one, as opposed to larger values
of α , i.e. 0.50 and 1.00, where these eigenvalues are now
dispersed.

8.4 Convergence

We now carry out an experiment that includes the solution of
the preconditioned system (12), with D̃hqrα

= H−1
Qα

DhqrH−1
R
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Fig. 9. The locus of 2Nnx eigenvalues (blue) and nx eigenvalues
(red). Imaginary plane for the eigenvalues µ = a+ bi of matrix
D̃hqrα

= H−1
Qα

DhqrH−1
R . Experiment set with horizon N = 2.

for the discrete-time system (21). The initial conditions x0
are set to zero, and bhqr = [Ax0,−Qx0,0, . . . ,0] ∈R(2N+1)nx .
Figure 10 shows the result of this experiment. The GMRES
convergence becomes slower as the horizon N and α param-
eter rise. Nonetheless, for small values of α convergence is
comparable to that of the companion-like matrix (17). For a
fifth-order system this would be convergence within at most
nx +1 = 6 iterations. Figure 11 shows the consequences of
using small values of α . Namely, the condition number κ

of D̃hqrα
increases significantly, which is likely to cause nu-

merical cancellations on the algorithm.

9 Conclusion

In this paper, new numerical algorithms for solving the New-
ton system of the interior-point method have been proposed.
When the system is transformed into the Hamiltonian form,
we define left and right preconditioners that happen to be the
L and U factors respectively, of an incomplete LU factoriza-
tion of the main matrix Dhqr. When the preconditioners are
applied to this matrix, the resulting matrix has a companion-
like form. The solution of this system can be carried out by
two methods. (i) In section 5, we showed a direct algorithm
(Hamiltonian recursion) that factorizes the companion-like
matrix by computing a forward substitution of a sequence
of symplectic submatrices, where we proved that the invert-
ibility of these submatrices is guaranteed. (ii) In section 6,
we proposed an iterative algorithm (Hamiltonian/GMRES)
based on a Krylov method and showed that this combina-
tion will compute the exact solution of the Newton system
in at most nx+1 iterations, where nx is the number of states.
With numerical experiments, we also demonstrated that this
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Fig. 10. GMRES iterations (y axis) for different values of the
horizon N. The x axis represents the α parameter.
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Fig. 11. GMRES experiment with different values of the horizon
N. The x axis represents the α parameter and the y axis is the
condition number κ of matrix D̃hqrα

= H−1
Qα

DhqrH−1
R .

termination property also holds in the presence of rounding
errors.
The companion-like structure is lost when the matrix A
is singular. For the Hamiltonian/GMRES method, we ad-
dressed this problem by introducing a parameter α that with
proper tuning can result in GMRES convergence close to the
bound nx+1 iterations. A tradeoff is that for small values of
α the condition number κ increases. Our methods presented

here are not immune to problems with ill-conditioning, sim-
ilarly to most other interior-point algorithms that are cur-
rently available. Such problems remain the subject of future
work.
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