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Robust Consumption Portfolio Optimization with

Stochastic Differential Utility∗

Jiangyan Pu † and Qi Zhang ‡§

Abstract. This paper examines a continuous time intertemporal consumption and portfolio
choice problem with a stochastic differential utility preference of Epstein-Zin type for a robust
investor, who worries about model misspecification and seeks robust decision rules. We provide
a verification theorem which formulates the Hamilton-Jacobi-Bellman-Isaacs equation under a
non-Lipschitz condition. Then, with the verification theorem, the explicit closed-form optimal
robust consumption and portfolio solutions to a Heston model are given. Also we compare our
robust solutions with the non-robust ones, and the comparisons shown in a few figures coincide
with our common sense.

Key words: stochastic differential utility, robust control, stochastic differential games,
HJB(I) equation, non-Lipschitz condition, Heston model.

1 Introduction

Over the past several decades, the optimal consumption and investment problems have been
one of hot topics in finance. Looking back in history, we can see that the research development
of this topic is based on the developments of the financial theory and tools, like martingale
theory, dynamic programming principe, utility, etc. The portfolio selection problem related
work can be traced back to Markowitz [29] in 1952. Later Merton [30], [31] first solved the
multiperiod expected utility model in continuous time by using dynamic programming in 1969
and 1971. Then, Cox and Huang [7], Karatzas [20] developed the general martingale approach
to consumption and portfolio selection. Stochastic differential utility (SDU), another mile stone,
was introduced in 1992 by Duffie and Epstein [9] as a continuous time limit of recursive utility
of Kreps and Porteus [24], Epstein and Zin [12]. Since the recursive utility can differentiate
between the coefficient of relative risk aversion and the elasticity of intertemporal substitution
(EIS), it receives more and more attentions.

Looking back on the literature, there are two main methods to solve the optimal consumption-
portfolio problem with SDU. One is called utility gradient approach (or martingale method).
Using this approach, Duffie and Skiadas [10], Schroder and Skiadas [34] generalized the time-
separable expected utility in [7] and [20], whose basic idea is to utilize market completeness
to separate the computation of an optimal consumption plan from the corresponding trading
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strategy. Then this approach was extended to the trading constrained case by Schroder and
Skiadas [35]. In 2001, El Karoui, Peng and Quenez [11] used the first-order condition (FOC)
in a complete market to include nonlinear wealth dynamics under the generalized stochastic
differential utility (GSDU), where FOC for the optimal consumption plan is the essence of the
gradient approach. The other method to deal with SDU is the dynamic programming approach
(or Hamilton-Jacobi-Bellman (HJB) equation approach). This approach turns out to be very
powerful as it provides an explicit characterization of optimal strategy in terms of the unique
solution of a PDE. With the help of HJB equation, lots of researchers solved the optimal con-
sumption and portfolio problems with SDU, see e.g. Kraft, Seifried and Steffensen [22], Kraft,
Seifeiling and Seifried [23] to name but a few. In 2017, Xing [37] put forward backward stochas-
tic differential equation (BSDE) method to characterize optimal consumption and investment
strategies. However, the bulk of literature, including [22], [23], [37] just mentioned, assumes that
the investors have complete confidence in their models.

In 2000, some significant progresses were made in Anderson, Hansen and Sargent [2], which
set up the so-called robust consumption and portfolio choice problems. In the model uncer-
tainty formulation, the decision maker has a probabilistic benchmark in the sense that he/she
“believes” that the probability distribution on the state space is a given distribution but is not
totally confident about this. Hence the priors for the decision maker are the combination of the
“probabilistic benchmark” on one hand and “anything can happen” on the other hand. In par-
ticular, the decision maker considers such a circumstance, in which he/she may use the relative
entropy to measure a distance between a reference model and a true model, and then choose the
“worst” model of underlying assets to find his optimal consumption and investment rules. Since
then, a growing body of literature, like Maenhout [27, 28], Daniel and Shied [8], Bo and Cap-
poni [4], Yang, Liang and Zhou [39] began to analyze implications of model uncertainty for asset
pricing and portfolio choices. Recently, several extensions about robustness were made in dif-
ferent aspects: (i) optimal investment under correlation, equicorrelation, variance-covariance or
volatility ambiguity, such as Fouque, Pun and Wong [14], Han and Wong [15], Ismail and Pham
[18], Pun [33]; (ii) an economy modelled by a multivariate stochastic volatility model, especially
the principle component stochastic volatility (PCSV) model, which nests Heston’s model as a
special case (in one dimension, i.e., one risky-asset case). PCSV was initiated in Escobar, Gotz,
Seco and Zagst [13] and investigated in Bergen, Escobar, Rubtsov and Zagst [3] and Yan, Han,
Pun and Wong [38]. However, aforementioned works about consumption-investment problems
were not investigated under SDU preference.

Other researchers considered intertemporal consumption and portfolio choice for an investor
with SDU preferences and took model uncertainty into account, such as Liu [25], in which the
author solved HJB equation by getting numerical solutions, and Ait-Sahalia and Matthys [1], in
which the coefficients of risky asset were determined. In this paper, we analyze that an investor
has a preference of Epstein-Zin type and the referred stock model follows an Heston model
whose volatility and extra return are driven by an external stochastic factor process. During the
period, the investor worries that the model depicting investment opportunities is misspecified
in the sense of Anderson, Hansen and Sargent [2], and thus the investor prefers to seek robust
consumption and portfolio.

As we know, the verification theorem is crucial to deduce the HJB equation which gives the
possibility to produce an explicit optimal solution to consumption-portfolio problem. To study
our model uncertainty control problem with non-Lipschitz SDU preferences, our first step is to
extend the verification theorem to the game problem with monotonic condition and two controls.
To realize above ideas, we find that the technique of the stochastic Gronwall-Bellman inequality
is an efficient tool. In the original SDU paper [9], this inequality had been used to prove the
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verification theorem under the assumption that the aggregator is Lipschitz with respect to the
variable. Then Kraft, Seifried and Steffensen [22] improved the method of stochastic Gronwall-
Bellman inequality and applied it to the verification theorem with non-Lipschitz but monotonic
aggregator. However, the verification theorem in [22] serving for stochastic control problem with
one control cannot be immediately applied to the stochastic game problem with two controls.
So the establishment of the verification theorem to the game problem with monotonic condition
is one contribution of our paper.

Needless to say, the explicit solution of control problem is one of the main concerned issues
in control problems. Another contribution of our paper is that we eventually get the explicit
closed-form solutions of optimal robust portfolio and consumption-wealth ratio in an Heston
model, by an application of Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation. Moreover, in
comparison between our explicit solutions of robust investors and those of non-robust investors,
it turns out that more robust investors are more cautious than the non-robust investors and
they put lower proportion of the wealth into the consumption and stock, which coincides with
our common sense.

This paper is organized as follows. In Section 2, we prove our verification theorem. In
Section 3, the financial market is set up and the optimization problems for both investors of
non-robustness and robustness are stated respectively, and the robust consumption and portfolio
decisions are given. Finally, we show the applications of our study to Heston model and the
comparison results between our robust solutions and non-robust ones in Section 4.

2 Verification theorem

In this section, we prove the verification theorem about two controls for the stochastic game
problem with non-Lipschitz aggregator, different from [22], in which the verification theorem for
stochastic control problem with one control was analyzed.

To begin with, we state our general settings. Given a complete probability space (Ω,F ,P)
and a fixed terminal time T < ∞, let {Bs}s∈[0,T ] be a d-dimensional Brownian motion on the
probability space. Denote by (Fs)0≤s≤T the nature filtration generated by {Bs}s∈[0,T ] with F0

containing all P-null sets of F .
We consider that the state process X = {Xs}s∈[t,T ] takes values in Ξ ⊆ Rn with the dynamics

dXs = b(s,Xs, us, vs)ds + σ(s,Xs, us, vs)dBs, Xt = x, (2.1)

where b : [0, T ] × Ξ × U × V → Rn, σ : [0, T ] × Ξ × U × V → Rn×d are measurable functions,
U ∈ Rm and V ∈ Rl, t ∈ [0, T ] is an initial time, x ∈ Ξ is an initial state, and u, v are controls
belonging to the admissible control sets defined below.

Definition 2.1. For t ∈ [0, T ], let Ut = Ut(x), x ∈ Ξ, be the t-admissible control set of
(Ft)0≤t≤T -adapted feedback strategies u = {us}s∈[t,T ] = {u(s,Xs)}s∈[t,T ] taking values in U ,
and Vt be the set of all (Ft)0≤t≤T -adapted processes v = {vs}s∈[t,T ] taking values in V .

A function u ∈ Ut (resp. v ∈ Vt) is a control of a maximizing player (resp. minimizing
player), and a game payoff functional for u and v is defined by

J(s, x;u, v) = Js = Es
[

∫ T

s
f(r,Xr, ur, vr, Jr)dr +Φ(XT )

]

, s ∈ [t, T ], (2.2)

where f : [0, T ]×Ξ×U × V ×R → R is the measurable intertemporal aggregator, Φ : Ξ → R is
the terminal cost, and Es is the conditional expectation with respect to Fs.
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The control problem we concern with is as below:

(P) sup
u∈Ut

inf
v∈Vt

E
[

∫ T

t
f(s,Xs, us, vs, Js)ds+Φ(XT )

]

. (2.3)

Then the value function is formally defined by

K(t, x) = sup
u∈Ut

inf
v∈Vt

J(t, x;u, v).

Here we allow the case that
(A1) for any u ∈ Ut and v ∈ Vt, (2.1)–(2.2) has a unique strong solution.
For w ∈ C1,2([0, T )× Ξ), define

Lu,v[w](s, x) = ws(s, x) + 〈b(s, x, u, v), wx(s, x)〉 +
1

2
tr(σ(s, x, u, v)⊤wxx(s, x)σ(s, x, u, v)).

We suppose that
(A2) for any (s, x) ∈ [t, T ] × Ξ and u ∈ U , v ∈ V , there exist measurable functions

v∗ : [t, T ]× Ξ× U → V and u∗ : [t, T ]× Ξ → U such that

v∗ ∈ argmin
v∈V

{Lu,v[w](s, x) + f(s, x, u, v, w(s, x))},

u∗ ∈ argmax
u∈U

{Lu,v∗ [w](s, x) + f(s, x, u, v∗, w(s, x))}.

From (A2), it is clear that

Lu∗,v∗ [w](s, x) + f(s, x, u∗, v∗, w(s, x)) = sup
u∈U

inf
v∈V

{Lu,v[w](s, x) + f(s, x, u, v, w(s, x))}.

Note that (A1) and (A2) guarantee that (2.1)–(2.2) has a unique strong solution in the cases
(i) us = u(s,Xt,x

s ) ∈ Ut, v∗s = v∗(s,Xt,x
s , u(s,Xt,x

s )) ∈ Vt and (ii) u∗s = u∗(s,Xt,x
s ) ∈ Ut,

vs = v(s,Xt,x
s , u∗(s,Xt,x

s )) ∈ Vt.
Similar to [22], we also assume that the monotonicity holds, i.e.
(A3) there exists C > 0 such that for any s, x, u, v ∈ [t, T ]× Ξ× U × V ,

f(s, x, u, v, j1)− f(s, x, u, v, j2) ≤ C(j1 − j2), if j1 ≥ j2.

Our verification theorem is based on the following generalized Skiadas’ lemma. See Theorem
A.2 in [22].

Theorem 2.2. Let Y = {Yt}t∈[0,T ] be a right-continuous adapted process with YT = 0 and

E[
∫ T
0 |Ys|ds] <∞. Assume that there exist a progressive process H = {Ht}t∈[0,T ] and a constant

k ∈ (0,∞) such that

Yt = Et[

∫ T

t
Hsds] a.s. and Ht ≥ kYt on {Yt ≤ 0} a.s. for t ∈ [0, T ].

Then Yt ≥ 0 for all t ∈ [0, T ] a.s.

To use the generalized Skiadas’ lemma, we further assume
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(A4) if w ∈ C1,2([0, T ) × Ξ) ∩ C0,0([0, T ] × Ξ) is a solution of the following dynamic pro-
gramming equation















wt(t, x) + sup
u∈U

inf
v∈V

{〈b(t, x;u, v), wx(t, x)〉+
1

2
tr(σ⊤(t, x, u, v)wxx(t, x)σ(t, x, u, v))

+f(t, x, u, v, w(t, x))} = 0 in [0, T ) × Ξ, (2.4)

w(T, x) = Φ(x), x ∈ Ξ,

the local martingale
∫ ·

t
wx(s,Xs)

⊤σ(s,Xs, us, vs)dBs

is a true martingale for any u ∈ Ut and v ∈ Vt;
(A5) for any u ∈ Ut and v ∈ Vt, if (Xs, Js)t≤s≤T is the solution of (2.1)–(2.2), we have

E[
∫ T
t |w(s,Xs)− Js|ds] <∞.

Then we have the following verification theorem:

Theorem 2.3. We assume (A1)–(A5). If the solution w of HJBI equation (2.4) exists, then
u∗ and v∗ are optimal in Ut and Vt, w coincides with the value function of the maxmin problem
(2.3), and minimax identity holds, i.e.

w(t, x) = J(t, x;u∗, v∗) = sup
u∈Ut

inf
v∈Vt

J(t, x;u, v) = inf
v∈Vt

sup
u∈Ut

J(t, x;u, v).

Proof. Step 1: For any u ∈ Ut, we prove J(t, x;u, v∗) ≤ w(t, x).
For any u ∈ Ut and v∗ ∈ Vt , let {(X̂s, Ĵs)}s∈[t,T ] be a solution of (2.1)–(2.2) with u and v∗.

By Itô formula, we have

w(s, X̂s)− Ĵs = −Es[

∫ T

s
wt(r, X̂r) + 〈b(r, X̂r , ur, v

∗
r ), wx(r, X̂r)〉

+
1

2
tr(σ⊤(r, X̂r , ur, v

∗
r )wxx(r, X̂r)σ(r, X̂r , ur, v

∗
r )) + f(r, X̂r, ur, v

∗
r , Ĵr)dr]

= −Es[

∫ T

s
Lur,v∗r [w](r, X̂r) + f(r, X̂r, ur, v

∗
r , Ĵr)dr].

Hence, it holds that

w(s, X̂s)− Ĵs = Es[

∫ T

s
ϕrdr], t ≤ s ≤ T,

where

ϕr = −{Lur ,v∗r [w](r, X̂r) + f(r, X̂r, ur, v
∗
r , w(r, X̂r))}

−{f(r, X̂r, ur, v
∗
r , Ĵr)− f(r, X̂r, ur, v

∗
r , w(r, X̂r))}.

Using (A2) and (2.4), we have

Lur,v∗r [w](r, X̂r) + f(r, X̂r, ur, v
∗
r , w(r, X̂r))

≤Lu∗r ,v∗r [w](r, X̂r) + f(r, X̂r, u
∗
r , v

∗
r , w(r, X̂r))

=0,

which implies
ϕr ≥ −{f(r, X̂r, ur, v

∗
r , Ĵr)− f(r, X̂r, ur, v

∗
r , w(r, X̂r))}.
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From (A3), if Ĵr ≥ w(r, X̂r) it turns out that

f(r, X̂r, ur, v
∗
r , Ĵr)− f(r, X̂r, ur, v

∗
r , w(r, X̂r)) ≤ C(Ĵr − w(r, X̂r)).

Thus if w(r, X̂r)− Ĵr ≤ 0 we have

ϕr ≥ −[f(r, X̂r, ur, v
∗
r , Ĵr)− f(r, X̂r, ur, v

∗
r , w(r, X̂r))]

≥ C(w(r, X̂r)− Ĵr).

Moreover, by (A5), E[
∫ T
t |w(s, X̂s)− Ĵs|ds] <∞. Therefore, by Theorem 2.2 it yields that

w(s, X̂s)− Ĵs ≥ 0, t ≤ s ≤ T.

In particular, taking s = t we have

w(t, x) ≥ Ĵt = J(t, x;u, v∗).

Step 2: For any v ∈ Vt, we prove w(t, x) ≤ J(t, x;u∗, v).
For u∗ ∈ Ut and any v ∈ Vt, let {(X̃s, J̃s)}s∈[t,T ] be a solution of (2.1) and (2.2) with u∗ and

v. In a similar way to the argument in Step 1, we have

J̃s −w(s, X̃s) = Es[

∫ T

s
ϕ̃rdr], t ≤ s ≤ T,

where

ϕ̃r = {Lu∗r ,vr [w](r, X̃r) + f(r, X̃r, u
∗
r , vr, w(r, X̃r))}

+{f(r, X̃r, u
∗
r, vr, J̃r)− f(r, X̃r, u

∗
r , vr, w(r, X̃r))}.

Using (A2) and (2.4) again, we have

Lu∗r ,vr [w](r, X̃r) + f(r, X̃r, u
∗
r , vr, w(r, X̃r))

≥Lu∗r ,v∗r [w](r, X̃r) + f(r, X̃r, u
∗
r , v

∗
r , w(r, X̃r))

=0,

which implies
ϕ̃r ≥ f(r, X̃r, u

∗
r , vr, J̃r)− f(r, X̃r, u

∗
r , vr, w(r, X̃r)).

From (A3), if w(r, X̃r) ≥ J̃r it turns out that

f(r, X̃r, u
∗
r , vr, w(r, X̃r))− f(r,Xr, u

∗
r , vr, J̃r) ≤ C(w(r, X̃r)− J̃r).

Thus if J̃r − w(r, X̃r) ≤ 0 we have

ϕ̃r ≥ f(r, X̃r, u
∗
r , vr, J̃r)− f(r, X̃r, u

∗
r , vr, w(r, X̃r))

≥ C(J̃r − w(r, X̃r)).

Moreover, by (A5), E[
∫ T
t |J̃s − w(s, X̃s)|ds] <∞. Therefore, by Theorem 2.2 it yields that

J̃s − w(s, X̃s) ≥ 0, t ≤ s ≤ T.

6



In particular, taking s = t we have

w(t, x) ≤ J̃t = J(t, x;u∗, v).

Step 3: u∗ ∈ Ut and v∗ ∈ Vt are optimal solutions.
From Steps 1 and 2, we get that (u∗, v∗) is a saddle point of the functional J(t, x;u, v). By

Step 1, for any u ∈ Ut, J(t, x;u, v∗) ≤ w(t, x). Hence for any u ∈ Ut,

inf
v∈Vt

J(t, x;u, v) ≤ w(t, x).

In other words, we have
sup
u∈Ut

inf
v∈Vt

J(t, x;u, v) ≤ w(t, x).

By Step 2, for any v ∈ Vt, w(t, x) ≤ J(t, x;u∗, v). Hence

w(t, x) ≤ inf
v∈Vt

J(t, x;u∗, v) ≤ sup
u∈Ut

inf
v∈Vt

J(t, x;u, v).

So

w(t, x) = inf
v∈Vt

J(t, x;u∗, v) = sup
u∈Ut

inf
v∈Vt

J(t, x;u, vu). (2.5)

On the other hand, by Step 1, we have

inf
v∈Vt

sup
u∈Ut

J(t, x;u, v) ≤ sup
u∈Ut

J(t, x;u, v∗) ≤ w(t, x). (2.6)

By Step 2, we have

w(t, x) ≤ sup
u∈Ut

J(t, x;u, v) ≤ inf
v∈Vt

sup
u∈Ut

J(t, x;u, v). (2.7)

Combing (2.6) and (2.7), we have

w(t, x) = inf
v∈Vt

sup
u∈Ut

J(t, x;u, v). (2.8)

Hence, by Step 1 and Step 2 again, it yields that

J(t, x;u∗, v∗) ≤ w(t, x) ≤ J(t, x;u∗, v∗).

So

w(t, x) = J(t, x;u∗, v∗). (2.9)

Combining (2.5), (2.8) with (2.9), we finally have

w(t, x) = J(t, x;u∗, v∗) = sup
u∈Ut

inf
v∈Vt

J(t, x;u, v) = inf
v∈Vt

sup
u∈Ut

J(t, x;u, v).

Thus, u∗ is the optimal response when the second player chooses v∗, and vice versa. Moreover,
w(t, x) coincides with the value function of the maxmin problem (2.3).

The verification theorem is the key result to solve the robust optimal portfolio and con-
sumption problem in next sections. Even if we leave out the robust settings and only consider
the non-robust problem, the proof of above verification is different from that in [37] where the
comparison theorem of BSDE is applied rather than the dynamic programming principle.
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3 The financial market and robust optimization problem

In this section, we will introduce the financial model and state our concerned robust optimization
problem.

3.1 The financial market model

We briefly introduce the financial market in this subsection. Our discussion is based on the
setting of a financial market, in which two assets (or securities) can be traded continuously. One
is non-risky asset bond, with its price {P0(s)}s∈[t,T ] given by

dP0(s) = rP0(s)ds, P0(t) = 1, (3.1)

where the constant r > 0. The other is risky asset stock, with its price {P (s)}s∈[t,T ] given by

dP (s) = P (s)[(r + λ(s, Y 1
s ))ds+ σ(s, Y 1

s )dBs]. (3.2)

Here the stock’s excess return and volatility λ, σ : [0, T ]×R −→ R are assumed to be measurable
functions depending on time and the state process {Y 1

s }s∈[t,T ] satisfies

dY 1
s = α(s, Y 1

s )ds+ β(s, Y 1
s )(ρdBs +

√

1− ρ2dB̂s), Y 1
t = y, (3.3)

where α, β : [0, T ]×R −→ R are measurable functions, the correlation |ρ| ≤ 1 is a constant, B̂s
and Bs are mutually independent Brownian motions.

We assume that the investor will start with an initial endowment x > 0 at the time t and
try to allocate his wealth into the bond and stock according to a certain strategy at each time
s ∈ [t, T ]. If we denote by {πs}s∈[t,T ] the proportion of the wealth invested into the stock, by
{cs}s∈[t,T ] the consumption decision and by {X1

s }s∈[t,T ] the wealth of the agent, the amount of
money invested in the bond at the time s is (1−πs)X1

s . In view of (3.1) and (3.2), the non-robust
investor’s wealth {X1

s }s∈[t,T ] satisfies the following equation:

dX1
s = X1

s [(r + πsλ(s, Y
1
s ))ds+ πsσs(s, Y

1
s )dBs]− csds, X1

t = x. (3.4)

We assume that the non-robust investor’s SDU is a continuous time Epstein-Zin utility as
illustrated in (2.2) which also can be depicted by BSDE

dVs = −f(cs, Vs)ds+ ZsdBs, VT = Φ(X1
T ), (3.5)

where
f(c, v) = δθv

[

(
c

((1 − γ)v)
1

1−γ

)
1− 1

ψ − 1
]

, (3.6)

δ > 0 is the rate of time preference, 0 < γ 6= 1 is the coefficient of relative risk aversion, 0 < ψ 6= 1
is the elasticity of intertemporal substitution (EIS), θ := 1−γ

1−φ , φ := 1
ψ , and Φ(x) := ǫ 1

1−γx
1−γ ,

ǫ ≥ 0.
As in Section 2, we only consider that (c, π) are the state (x, y) feedback controls. In the

absence of model uncertainty, the non-robust investor’s problem is

(P1) max
(c,π)∈U1

t (x,y)
E
[

∫ T

t
f(cs, Vs)ds +Φ(X1

T )
]

, (3.7)

where the t-admissible control set U1
t (x, y), x ∈ R+, y ∈ R is a class of (Ft)0≤t≤T -adapted

feedback strategies cs = {c(s,X1
s , Y

1
s )}s∈[t,T ] and πs = {π(s,X1

s , Y
1
s )}s∈[t,T ] taking values in R+

and R, respectively.
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3.2 Robust optimization problem

In this subsection, we consider a robust investor, who is not confident with the given reference
model, amends his objective, and correspondingly gets the HJBI equation. A robust investor
only deems the state dynamics (3.3) and (3.4) as a possibly misspecified approximation. He/She
wants to consider a family of alternative models which are close to the reference model. Denote
by Z1 = (X1, Y 1)⊤ the state vector. The reference model can then be written as

dZ1
s = Θ(s, Z1

s ; cs, πs)ds+ Λ(s, Z1
s ;πs)dBs,

where Θ is the drift vector, Λ is the volatility matrix of the state vector Z1, Σ = ΛΛ⊤ is
the covariance matrix and B is the Brownian vector Bs = {(Bs, B̂s)⊤}s∈[0,T ]. We denote by

FB = (FB)0≤s≤T the filtration generated by B. The vector Θ and the matrix Λ have the
appropriate functional forms inherited from (3.3) and (3.4), i.e.

Θ(s, x, y; c, π) = (x(r + πλ(s, y))− c, α(s, y))⊤

and

Λ(s, x, y;π) =

(

xπσ(s, y) 0

ρβ(s, y)
√

1− ρ2β(s, y)

)

. (3.8)

We assume that the true state evolution equation Z is

dZs = Θ(s, Zs; cs, πs)ds + Λ(s, Zs, πs)[Λ(s, Zs;πs)
⊤vsds+ dBs], Zt = (x, y)⊤. (3.9)

Here the t-admissible control set Ut(x, y), x ∈ R+, y ∈ R is a class of FB-adapted feedback
strategies cs = {c(s,Xs, Ys)}s∈[t,T ] and πs = {π(s,Xs, Ys)}s∈[t,T ] taking values in R+ and R,

respectively. Vt is the space of all FB-adapted processes v = {vs}s∈[t,T ] = {(v1(s), v2(s))⊤}s∈[t,T ]
taking values in R2. The state equation is much different from that in [22], i.e. there is an added
nonlinear drift term Λ(s, Zs;πs)Λ(s, Zs;πs)

⊤vs. Usually we call v the “distortion” of the true
model relative to the approximation model.

Remark 3.1. Assume that P is the subjective probability measure under the reference model.
Set

(
dQ

dP
)s = Γs,

where
dΓs
Γs

= Λ(s, Zs;πs)
⊤vsdBs, Γt = 1.

If the above exponential martingale satisfies Novikov condition, it follows from Girsanov’s the-
orem that Q is the probability measure under the alternative model. The interpretation is that
the investor endogenously chooses an alternative belief about the dynamics of the state variables
and accordingly gets the optimal consumption and portfolio policies.

The decision maker wants a decision rule which will work well across a set of distortion v

close to 0. We adjust the cost functional in (3.7) by appending a penalty term 1
2ηv

⊤Σv, among
which η is a positive parameter. In this manner, the objective becomes

(P2) max
(c,π)∈Ut(x,y)

min
v∈Vt

I(t, (x, y); (c, π), v),

where

I(s, (x, y); (c, π), v) = Is = Es
[

∫ T

s
(f(cr, Ir) +

1

2ηr
v⊤r Σrvr)dr +Φ(XT )

]

, s ∈ [t, T ]. (3.10)
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Remark 3.2. The robust control criterion comes from that the planner does not totally trust his
reference model. The positive parameter η indexes the amount of robustness. By setting η = 0,
the infimum is achieved by the original measure P. A larger value of η strengthens the incentives
to be robust. We refer to [2] for further related discussion.

Remark 3.3. The term 1
2ηv

⊤Σv in objective is actually the discounted relative entropy which
quantifies the penalty term. We refer to the existing robust models such as [25], [28] and [36] for
such a penalty term, among which [25] also focused on the Epstein-Zin utility. It is an interesting
but unsolved problem if the penalty term in the recursive utility could be also recursive, and we
aim to study for it in the future.

We further give specific assumptions to realize (A3).

Assumption 3.4. Let the coefficients γ and ψ satisfy one of the following four cases:

(a) γ > 1 and ψ > 1,

(b) γ > 1 and ψ < 1, with γψ ≤ 1,

(c) γ < 1 and ψ < 1,

(d) γ < 1 and ψ > 1, with γψ ≥ 1.

Proposition 3.2 in [22] has shown that (A3) is satisfied for the Epstein-Zin utility when
Assumption 3.4 holds. Therefore, set

L̂(c,π)[w] = wt + x(r + πλ)wx − cwx +
1

2
x2π2σ2wxx + αwy +

1

2
β2wyy + xπσβρwxy,

and then we can immediately obtain HJBI equation for problem (P2) according to Theorem
2.3.

Proposition 3.5. Let w ∈ C1,2([0, T ]× (0,∞) × R) be a solution of the HJBI equation






























max
(c,π)∈(R+,R)

inf
v∈R2

{

f(c, w(t, x, y)) + L̂(c,π)[w](t, x, y) + v⊤t Σ(t, x, y;π)
(

wx(t, x, y), wy(t, x, y)
)⊤

+
1

2η
v⊤t Σ(t, x, y;π)vt

}

= 0,

w(T, x, y) = ǫ
1

1− γ
x1−γ , (3.11)

where the aggregator f is given by (3.6) and Σ = ΛΛ⊤ is given by (3.8). Assume
(i) for any (c, π) ∈ Ut(x, y) and v ∈ Vt, (3.9)–(3.10) has a unique strong solution (Zs, Is)t≤s≤T ;
(ii) there exist admissible v∗ ∈ Vt and (c∗, π∗) ∈ Ut(x, y) satisfying

L̂(c∗,π∗)[w](s, x, y) + f(c∗, w(s, x, y)) + (v∗s)
⊤Σ(s, x, y;π∗)

(

wx(s, x, y), wy(s, x, y)
)⊤

+
1

2η
(v∗s)

⊤Σ(s, x, y;π∗)v∗s = 0, for all (s, x, y) ∈ [t, T ]× R+ ×R;

(iii) Assumption 3.4 holds;
(iv) the local martingale

∫ ·

t
wz(s, Zs)

⊤Λ(s, Zs;πs)dBs

is a true martingale for any (c, π) ∈ Ut(x, y) and v ∈ Vt;
(v) for any (c, π) ∈ Ut(x, y) and v ∈ Vt, we have E[

∫ T
t |w(s, Zs)− Is|ds] <∞.

Then (c∗, π∗, v∗) is an optimal control and w is the value function of problem (P2).
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3.3 Robust consumption and portfolio decisions

In this subsection, we will get the optimal robust consumption and portfolio by FOC method,
and also give the candidate w(t, x, y) for the solutions of HJBI equation (3.11). By (3.11), the
FOC with respect to v is

v∗ = −η∂w. (3.12)

Substituting the FOC (3.12) back into the HJBI equation (3.11), we have

0 = sup
(c,π)∈(R+,R)

{f(c, w) + L̂(c,π)[w]− η

2
(x2π2σ2w2

x + 2xπσβρwxwy + β2w2
y)} (3.13)

with boundary condition w(T, x, y) = ǫ 1
1−γx

1−γ , where the aggregator f is given by (3.6). With
the aid of a constant k, we conjecture

w(t, x, y) =
1

1− γ
x1−γg(t, y)k, (t, x, y) ∈ [0, T ] ×R+ × R (3.14)

with g ∈ C1,2([0, T ]×R) and g(T, y) = ǫ
1

k . To explicitly solve the model, we follow Maenhout’s
idea (see [27], [28]). In particular, we assume that the preference parameter η is state-dependent
and scaled by the value function:

η(t, x, y) =
a

(1− γ)w(t, x, y)
, (3.15)

where a > 0 is a constant.

Remark 3.6. The parameter a can be interpreted as the preference for robustness.

In order to make nonlinear PDE (3.13) become a linear PDE under the conjectures (3.14)
and (3.15), we need to make the following assumptions on the coefficients k and ψ.

Assumption 3.7. The coefficients k and ψ satisfy the following:

k = 1
/

(
(1 − γ − a)2ρ2

(γ + a)(1− γ)
+ 1− a

1− γ
)

and

ψ = 2− γ − a+
(1− γ − a)2

γ + a
ρ2.

Remark 3.8. The forms of coefficients k and ψ come from the calculus in Proposition 3.9. Due
to the different state equation (3.9) the calculus is much different from the case in Seifried and
Steffensen [22]. As a = 0 the forms of coefficients k and ψ coincide with [22].

The following result provides a solution to Problem (P2).

Proposition 3.9. Under Assumptions 3.4, 3.7 and (i)(ii) in Proposition 3.5, the candidate for
the solution of HJB equation (3.13) is

w(t, x, y) =
1

1− γ
x1−γg(t, y)k, (t, x, y) ∈ [0, T ]× R+ × R. (3.16)

Here g solves the following PDE:

gt(t, y) +H1(t, y)g(t, y) +H2(t, y)gy(t, y) +
1

2
β2(t, y)gyy(t, y) + δψ = 0, (3.17)
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among which

H1 =
1

k

[

(1− γ)r +
(1− γ)λ2

2(γ + a)σ2
− δθ

]

, (3.18)

H2 =
(1− γ − a)

(γ + a)

βρλ

σ
+ α. (3.19)

Moreover, for this w in (3.16), if we assume that the local martingale
∫ ·
t wz(s, Zs)

⊤Λ(s, Zs;πs)dBs

is a true martingale and E[
∫ T
t |w(s, Zs)− Is|ds] < ∞ for every (c, π) ∈ Ut(x, y), v ∈ Vt, the op-

timal consumption-wealth ratio and investment allocation are

(
c

x
)∗ =

δψ

g
and π∗ =

λ

(γ + a)σ2
+

(1− γ − a)kβρ

(γ + a)(1− γ)σ
(
gy

g
). (3.20)

Proof. Since

w(t, x, y) =
1

1− γ
x1−γgk(t, y),

we have
wt

w
= k

gt

g
,

wx

w
= (1− γ)

1

x
,

wxx

w
= −γ(1− γ)

1

x2
,

wy

w
= k

gy

g
,

wyy

w
= k(k − 1)

g2y

g2
+ k

gyy

g
,

wxy

w
= (1− γ)

k

x

gy

g
.

Substituting (3.14) and (3.15) into (3.13) and multiplying 1
w on both sides of the equation, HJB

equation (3.13) becomes

0 = max
(c,π)∈(R+,R)

{kgt
g
+ (1− γ)(r + πλ)− (1− γ)

c

x
− 1

2
(γ + a)(1− γ)π2σ2

+ αk
gy

g
+

1

2
β2k(k − 1− ak

1− γ
)(
gy

g
)2 +

1

2
β2k

gyy

g

+ (1− γ − a)kπσβρ
gy

g
+ δθ((

c

x
)1−φgζ − 1)},

(3.21)

where ζ := −k
θ . The FOC of HJB equation (3.21) with respect to π and c

x leads immediately to
the optimal investment allocation and consumption-wealth ratio

π =
λ

(γ + a)σ2
+

1− γ − a

(γ + a)(1− γ)

βρk

σ

gy

g
(3.22)

and
c

x
= (δgζ)ψ. (3.23)
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Then substituting (3.22) and (3.23) into HJB equation (3.21) and checking the coefficient of the
term (

gy
g )

2, we have

− 1

2
(γ + a)(1− γ)σ2(

1− γ − a

(γ + a)(1 − γ)

βρk

σ
)2 +

1

2
β2k(k − 1− ak

1− γ
)

+ (1− γ − a)σβρk(
1− γ − a

(γ + a)(1− γ)

βρk

σ
)

=
1

2
β2k(ρ2k

(1− γ − a)2

(γ + a)(1 − γ)
+ k − 1− a

1− γ
k).

Under our assumption

k = 1
/

(
(1− γ − a)2ρ2

(γ + a)(1 − γ)
+ 1− a

1− γ
),

the term (
gy
g )

2 disappears. Hence

gt(t, y) +H1(t, y)g(t, y) +H2(t, y)gy(t, y) +
1

2
β2(t, y)gyy(t, y) +

φθδψ

k
gζψ+1(t, y) = 0, (3.24)

where H1 and H2 are given in (3.18) and (3.19). Let ψ = 2 − γ − a + (1−γ−a)2

γ+a ρ2, which is
equivalent to ζψ + 1 = 0. Then PDE (3.24) reduces to PDE (3.17). The proof is complete.

Remark 3.10. If the coefficients in (3.17) satisfy the conditions of Heath and Schweizer [16],
the solution g admits the Feynman-Kac representation

g(t, y) = δψH(t, y) + ǫ
1

kh(t, y;T ),

where H(t, y) :=
∫ T
t h(t, y; s)ds, h(t, y; s) := Ẽt,y[e

∫ s
t
H1(Yu)du] for t ∈ [0, T ], y ∈ R, and the

expectation Ẽt,y[·] is taken with respect to the equivalent measure P̃, for which Y is conditioned
on Yt = y and has drift H2 instead of α in (3.3). Here we also note that h satisfies the PDE

ht +H1h+H2hy +
1

2
β2hyy = 0 on [0, s]× R (3.25)

with the terminal condition h(s, y; s) = 1.

4 Application: Heston model

In this section, we focus on the stochastic volatility model, in which the volatility follows a
square-root form suggested by Heston [17]. This kind of model is named by Heston and appears
in many mathematical finance problems. We name but a few existing studies for the non-robust
consumption-portfolio problem of Heston model. For the time-separable utilities, it has been
studied by Kraft [21] without consumption involved in the utility and by Liu [26] with the
assumption of zero correlation. For the recursive utilities, it has been studied by Chacko and
Viceira [6] with unit EIS and by Xing [37] in the case of γ > 1 and ψ > 1. Here setting
Φ(x) ≡ 0 in (3.5) we consider the robust consumption-portfolio problem of Heston model for
the Epstein-Zin utility without the assumption of zero correlation.

To be more precise, the dynamics of the risky asset is given by

dP (s) = P (s)[(r + λ̄Y 1
s )ds+

√

Y 1
s dBs]

13



with the constant r > 0, and the state process follows

dY 1
s = (ν −mY 1

s )ds + β̄
√

Y 1
s (ρdBs +

√

1− ρ2dB̂s),

where ν,m, β̄ > 0 are all constants and Y 1
t = y is set to be nonnegative. By comparison theorem

(see e.g. Theorem 1.5.5.9 in [19]), Y 1
s ≥ 0 for all s ≥ t a.s. Then in this case equation (3.9)

becomes

dXs = Xs[(r + πsλ̄Ys − Cs)ds+ (π2sv1(s)XsYs + πsρβ̄v2(s)Ys)ds+ πs
√

YsdBs], (4.1)

dYs = (ν −mYs + ρβ̄πsv1(s)XsYs + β̄2v2(s)Ys)ds + β̄
√

Ys(ρdBs +
√

1− ρ2dB̂s).

In the Heston model, we not only give the candidate of the optimal solution, but explicitly
check the martingale condition of Proposition 3.5, i.e. the local martingale

∫ ·
t w

⊤
z (s, Zs)Λ(s, Zs;πs)dBs

is a true martingale and E[
∫ T
t |w(s, Zs) − Is|ds] < ∞ for every admissible control (c, π; v). For

this, recalling Ut(x, y) and Vt appearing below (3.9), we define the following admissible control
set for some K ∈ R1 and nonnegative a1 :

At := {(c, π; v) : (c, π) ∈ Ut(x, y), v ∈ Vt,
c

x
(s, y) ≤ 1

T − s
+ by +K; π is nonnegative

and bounded with upper bound Kπ; v = (v1, v2), v1 = −a1
x
, and v2 is nonpositive

and bounded a.e. ;Xs ≥ 0, s ∈ [t, T ]}.

Obviously, when (c, π; v) ∈ At, Ys ≥ 0 for all s ≥ t a.s by comparison theorem again. Moreover,
we need some added assumptions for the coefficients:
(H1) 1 < γ < min{k+2, 1q+1} where q > 2 such that q−2 is sufficiently small, and ρ ≤ 0, λ̄ > 0,

(H2) m > max{1−γ−a
γ+a λ̄β̄ρ, β̄Kπ(2(γ − 1) + a1)},

(H3) 4(γ − 1)β̄2b̃ < (m− β̄Kπ(2(γ − 1) + a1))
2.

Here the constants Kπ, b̃, κ and b are defined by

b̃ := b+ (
2γ − 1

2
+ a1)K

2
π, Kπ :=

λ̄

γ + a
+

1− γ − a

(γ + a)(1 − γ)
kβ̄|ρ| b

κ
,

κ := m− 1− γ − a

γ + a
ρλ̄β̄, b := − 1

2k

1− γ

γ + a
λ̄2.

Remark 4.1. In the following Theorem 4.2, we will show that ( cX )∗, π∗ ∈ At. If a1 = a, then
v1(t) = v∗1(t), and we can also show that v∗2 ≤ 0 and bounded. In fact,

v∗2(t, x, y) = −η(t, x, y)wy(t, x, y) =
ak

γ − 1

gy(t, y)

g(t, y)
.

Due to a, k > 0, γ > 1 and expression of g in the following Theorem 4.2, we have

gy(t, y)

g(t, y)
= −

∫ T
t eA(t,s)−B(t,s)B(t, s)ds
∫ T
t eA(t,s)−B(t,s)ds

≤ 0 (4.2)

and v∗2 ≤ 0. Moreover, by (4.2),

|gy(t, y)
g(t, y)

| ≤ |B|, t ∈ [0, T ], y ∈ [0,∞), (4.3)

where |B| := maxs,t∈[0,T ],t≤s |B(t, s)| is bounded which will be proved in (4.9). So v∗2 ∈ At.
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In this section, the following result provides an explicit solution to the robust consumption-
portfolio problem of an investor with Heston model.

Theorem 4.2. Assume that (i)(ii) in Proposition 3.5, Assumptions 3.4, 3.7 and (H1)-(H3)
hold. Then the investor’s value function w in the Heston stochastic volatility model has the
representation (3.14), where

g(t, y) = δψ
∫ T

t
eA(t,s)−B(t,s)yds

and the functions A and B are explicitly given by

A(t, s) =
4bν

κ2 − d2

[

ln((κ+ d)eds − (κ− d)edt)− ln(2d) − 1

2
((κ+ d)s − (κ− d)t)

]

+
(1− γ)r − δθ

k
(s − t),

B(t, s) =2b
ed(s−t) − 1

ed(s−t)(κ+ d)− κ+ d
,

(4.4)

where d :=
√

κ2 + 2bβ̄2, b and κ are defined in (H3). The optimal portfolio strategy and
consumption-wealth ratio read

π∗s =
λ̄

(γ + a)
+

(1− γ − a)kβ̄ρ

(γ + a)(1 − γ)

gy(s, Ys)

g(s, Ys)
and (

cs

Xs
)∗ =

δψ

g(s, Ys)
, s ∈ [t, T ]. (4.5)

Proof. The proof is divided into three steps. We refer to Appendix C in Kraft, Seifried and
Steffensen [22] for the proof of Steps 1 and 2, so we only give the arguments related to our
robust model and omit the similar arguments in the first two steps.

Step 1: Explicit solution of (3.17). In the Heston model, the PDE (3.25) for h becomes

ht +
1

k

[

(1− γ)r − δθ +
1− γ

2(γ + a)
λ̄2y

]

h+
[

ν + (
1− γ − a

γ + a
ρλ̄β̄ −m)y

]

hy +
1

2
β̄2yhyy = 0. (4.6)

We conjecture that the solution h has the following form:

h(t, y; s) = eA(t,s)−B(t,s)y (4.7)

with h(s, y; s) = 1. Substituting (4.7) into (4.6), we get

dB(t, s) =
[

(m− 1− γ − a

γ + a
ρλ̄β̄)B +

1

2
β̄2B2 +

1− γ

2k(γ + a)
λ̄2

]

dt, B(s, s) = 0,

dA(t, s) =
[

νB − 1

k
[(1 − γ)r − δθ]

]

dt, A(s, s) = 0.

(4.8)

It is easy to get that (4.4) solves above ODE (4.8). The candidate optimal strategy (4.5) follows
from the results (3.20), and we shall check that (c∗, π∗) is admissible. For π∗, by its explicit
expression, together with ρ < 0 and gy ≤ 0, we can get

λ̄

γ + a
≤ π∗(s, y) ≤ Kπ, s ∈ [t, T ], y ∈ [0,∞),

where Kπ is defined below (H3). For c∗, we claim

(
c

X
)∗(s, y) ≤ 1

T − s
+ by +

1

2
νb(T − s), s ∈ [t, T ], y ∈ [0,∞),
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whose proof is similar to Lemma C.5 in [22].
Step 2: Verification of the condition that

∫

t wz(s, Zs)
⊤Λ(s, Zs;πs)dBs is a true martingale

for (c, π; v) ∈ At. From (4.4), A and B satisfy

0 ≤B(t, s) ≤ b

κ
, for all t ≤ s,

− b

κ
νT − |(1− γ)r − δθ

k
|T ≤A(t, s) ≤ |(1 − γ)r − δθ

k
|T, for all t ≤ s,

(4.9)

and similar to Proposition C.6 in [22], we have

E[Xq(1−γ)
s ] ≤ C(T − s)q(1−γ), (4.10)

for a positive and sufficiently small q − 2. Here and in the rest of the proof, C is a generic
constant depending only on given parameters and its values may change from line to line. Then
we attain the goal of Step 2 by a similar proof as Proposition C.3 in [22], based on the state
equation of Z in (3.9) and estimates of (4.3), (4.9) and (4.10).

Step 3: Verification of the condition that E[
∫ T
t |w(s, Zs)− Is|ds] <∞ for (c, π; v) ∈ At. We

first show

E[

∫ T

t
|w(s,Xs, Ys)|] <∞, (4.11)

for all (c, π; v) ∈ At. In fact,

E[

∫ T

t
|w(s,Xs, Ys)|ds] = E[

∫ T

t
| 1

1− γ
X1−γ
s gk(s, Ys)|ds]. (4.12)

By (4.1) and v1 = − a
x in At, we have

Xt = x exp {
∫ t

0
[(r + πsλ̄Ys − Cs)− π2saYs + πsρβ̄v2(s)Ys −

1

2
π2sYs]ds+

∫ t

0
πs
√

YsdBs} ≥ 0.

On the other hand, since B(t, s) ≥ 0 and Ys ≥ 0, 0 ≤ t ≤ s, we have 0 ≤ g(t, y) ≤ e|A|(T −t), t ∈
[0, T ], y ∈ [0,∞), where |A| := maxs,t∈[0,T ], t≤s |A(t, s)|. Hence we can obtain from (4.10) that,
for a positive and sufficiently small q − 2,

E[X1−γ
s gk(s, Ys)]

≤CE[X1−γ
s (T − s)k]

≤C{E[Xq(1−γ)
s (T − s)qk]}

1

q

≤C(T − s)1−γ+k.

Moreover, noticing from (H1) that 1− γ + k > −1, we have

∫ T

t
E[X1−γ

s gk(s, Ys)]ds ≤ C

∫ T

t
(T − s)1−γ+kds <∞. (4.13)

Consequently, (4.11) follows from (4.12) and (4.13).
Next we prove

E[

∫ T

t
Isds] <∞, (4.14)
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for all (c, π; v) ∈ At. Note that the cost functional I defined in (3.10) is the solution of the
following BSDE

dIt = −ḡ(t, Zt, ut, vt, It)dt+ LtdBt, IT = 0,

where

ḡ(t, z, u, v, I) = f(c, I) +
1

2η(t, x, y)
v⊤t Σ(t, x, y, π)vt,

and
z = (x, y)⊤, u = (c, π)⊤, v = (v1, v2)

⊤.

By the fact that γ > 1 and Assumption 3.1, ḡ is monotonic with respect to I,

(I1 − I2)(ḡ(s, z, u, v, I1)− ḡ(s, z, u, v, I2)) ≤ |δθ||I1 − I2|2,

and
I

|I|1|I|6=0ḡ(s, z, u, v, I) ≤ |δθ|I + | 1

2η(s, x, y)
v⊤s Σ(s, x, y, π)vs|.

According to Proposition 3.2 in [5], we have

E[

∫ T

t
|Is|p]ds ≤ CE[

∫ T

t
(

1

2η(s,Xs, Ys)
v⊤s Σ(s,Xs, Ys, πs)vs)

pds], p > 1. (4.15)

Substituting the definition of η, Σ, w into 1
2η(s,x,y)v

⊤
s Σ(s, x, y, π)vs, we have

1

2η(s, x, y)
v⊤s Σ(s, x, y, π)vs

=
1

2a1
gk(s, y)(a21π

2 − 2a1πρβ̄v2 + β̄2v2)x
1−γy

≤Cx1−γy.

The last inequality based on the facts that the admissible control π and v2 are bounded, g is
bounded, ρ ≤ 0 and β̄ > 0. Then

E[

∫ T

t
(

1

2η(s,Xs, Ys)
v⊤s Σ(s,Xs, Ys, πs)vs)

pds]

≤CE[

∫ T

t
(X1−γ

s Ys)
pds]

≤C{E[
∫ T

t
X2p(1−γ)
s ds]}1/2{E[

∫ T

t
Y 2p
s ds]}1/2, p > 1.

(4.16)

To get the integration of Y , first note

dYs = (ν − k1(s)Ys)ds + β̄
√

Ys(ρdBs +
√

1− ρ2dB̂s),

where
k1(s) = m+ a1ρβ̄πs − β̄2v2(s).

Since
π is bounded by Kπ and v2 ≤ 0,

we have
k1(s) > m− a1β̄Kπ.
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Define
k2 := m− a1β̄Kπ.

By (H2) we know k2 > 0, and thus

ν − k1(s)y < ν − k2y for all s ∈ [t, T ], y ∈ [0,∞).

Hence by the comparison theorem, it follows that

Ys ≤ Ỹs for all s ∈ [t, T ], (4.17)

where Ỹ is the solution of the following

dỸs = (ν − k2Ỹs)ds+ β̄

√

Ỹs(ρdB̃s +
√

1− ρ2dB̂s), Ỹt = y.

By Pitman-Yor Lemma for Laplace transform of the integrated square-root process in [32],
we have supt∈[0,T ] E[Ỹ

p1
t ] < ∞ for any p1 > 1, which together with (4.17) leads to 0 ≤

supt∈[0,T ] E[Y
p1
t ] <∞ for any p1 > 1. Hence for a positive and sufficiently small p− 1,

E[

∫ T

t
Y 2p
s ds] <∞. (4.18)

As for the integration of X, by (4.10) we have, for a positive and sufficiently small q − 2,

∫ T

t
E[Xq(1−γ)

s ]ds ≤ C

∫ T

t
(T − s)q(1−γ)ds.

By (H1), γ < 1
q + 1, i.e. q(1− γ) + 1 > 0. Then we know that

∫ T
t (T − s)q(1−γ)ds is integrable,

and
∫ T

t
(T − s)q(1−γ)ds =

1

q(1− γ) + 1
T q(1−γ)+1.

Thus, for a positive and sufficiently small p− 1,

E[

∫ T

t
X2p(1−γ)
s ds]} <∞. (4.19)

By (4.15), (4.16), (4.18) and (4.19), for a positive and sufficiently small p− 1, we have

E[

∫ T

t
|Is|pds] <∞,

which implies (4.14).
Therefore, Step 3 is derived from (4.11) and (4.14).

Next, we compare the results of robust consumption-portfolio with those of non-robustness.
For this, set

γ = 1.4, δ = 0.08, ρ = −0.5, r = 0.05,√
ȳ = 0.15, λ̄

√
ȳ = 0.07, m = 5, β̄ = 0.25.

(4.20)
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Figures 1, 2 and 3 demonstrate the results of Theorem 4.2 for a time horizon of T = 10 years
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and the parameters in (4.20). Also we provide the portfolio and consumption strategies with
robust (a = 0.1, a = 0.2) and non-robust (a = 0) investors.

Figure 1 shows the optimal stock allocation as a function of volatility at time t = 0, while
Figure 2 shows the optimal stock allocation as a function of time when the volatility is given 0.2.
In Figure 1, we find in both cases of non-robustness (a = 0) and robustness (a = 0.1, a = 0.2),
the optimal stock allocation is insensitive to the volatility at initial time and only decreases
very slightly in volatility. However, more robust investor is more cautious. He/She puts lower
optimal stock allocation than less robust investors.

In Figure 2, we consider the investment in the horizon of 10 years if the volatility is 0.2.
From Figures 1 and 2, we find not only at the beginning of stock allocation, but also in the
following operation, more robust investors put lower optimal stock allocation than the non-
robust investors.

Figure 3 demonstrates the difference of the optimal consumption-wealth ratio between the
robust and non-robust investors as a function of volatility at time t = 0. We find that, at the
beginning of consumption, less robust investors are willing to consume.

According to above analysis, what will robust investors do while they put lower proportion
of the wealth into the consumption and stock? In fact, robust investors are willing to put
their money into the riskless financial markets, such as banks and bond markets. We find their
behaviors showed in our figures are identical with our common sense. Robust investors are those
who do not totally trust their reference model and prefer to choose the worst scenario as their
utilities. Consequently, robust investors are more pessimistic than the others and their behaviors
are more conservative than the non-robust investors.

Remark 4.3. We provide 3 corresponding figures to show the trend of the risk-averse investor
by different γ with Heston model in comparison with the robust investor in Figures 1-3 by setting

a = 0, δ = 0.08, ρ = −0.5, r = 0.05,√
ȳ = 0.15, λ̄

√
ȳ = 0.07, m = 5, β̄ = 0.25.
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The simulation results show that the outcomes of the robust investor have very similar trends
to those of the risk-averse investor, although there maybe exist some little differences due to
parameter settings. In fact, it is pointed out in [28] and [25] that the portfolio rule of a robust
investor with risk aversion γ and preference for robustness a is identical to the one of a non-
robust investor with risk aversion γ + a for the mean-reverting model. We believe from the
simulation that a similar result can be obtained for our model as the mean-reverting model.
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