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Abstract

This paper is concerned with the fault-tolerant consensus control problem for a general class of linear continuous-time
multi-agent systems (MASs) with the data privacy preserving (DPP) constraints. Rather than employing the traditional
cryptographic mechanism, we develop a novel dynamic-quantization-based DPP scheme from a control-theoretic perspective.
Under our developed DPP scheme, the sampled, quantized, released, received and recovered data is used to design a fault-
tolerant controller. With the adopted controller structure, the consensus of the MASs is guaranteed where the size of the data
transmitted among agents can be made finite. A series of numerical examples are given and the comparative analysis is carried
out to illustrate the effectiveness of the developed consensus control scheme.

Key words: Data privacy preserving; Dynamic quantization; Sampled data; Multi-agent system; Fault-tolerant Consensus
control.

1 Introduction

With rapid development of miniaturizing technologies,
many industrial systems of increasing scales fall square-
ly into the category of multi-agent systems (MASs) with
examples including unmanned robots [17, 22], satellites
[18,44] and vessels [2,28]). The last decade has seen enor-
mous research attention devoted to dynamic analysis is-
sues with respect to various MASs from both academia
and industry [6,10,19]. As a fundamental problem in co-
operative control, the consensus control has become an
attractive research topic whose main idea is to design ap-
propriate distributed controllers in order to achieve con-
sensus on a quantity of interests, see e.g. [3–5,11,31,36]
for some recent results.

For MASs, the distributed controller relies largely on the
distributed data sharing process. Such a process is, un-
fortunately, often confronted with the phenomenon of
information leakage, for example, the illegal acquisition
of the individual global positioning system (GPS) da-
ta. The information leakage phenomenon, if not proper-

⋆ This work was supported in part by the National Natu-
ral Science Foundation of China under Grants 61733009 and
61873148, the National Key Research and Development Pro-
gram of China under Grant 2017YFA0700300, the Natural
Science Foundation of Guangdong Province of China under
Grant 2018B030311054, the Royal Society of the UK, and
the Alexander von Humboldt Foundation of Germany.
∗ Corresponding author.

Email addresses: Zidong.Wang@brunel.ac.uk (Zidong
Wang), hexiao@tsinghua.edu.cn (Xiao He),
medongy@vip.163.com (Dong Yue).

ly handled, could lead to unintended consequences and
this has therefore triggered many ongoing research ini-
tiatives on the data privacy preserving (DPP) technolo-
gies. Generally speaking, traditional DPP algorithms are
dependent on cryptographic computation which focus-
es mainly on the data rather than the physical systems
(especially dynamic systems).

Recently, some new DPP technologies have been devel-
oped in order to make better use of the system dynamics
with preserved control-theoretic performance [29]. For
example, the perturbation-injection-based scheme (PIS)
continuously adds perturbations into the data to be re-
leased such that the original data cannot be inferred by
adversaries [12, 13, 32], and the dynamic-quantization-
based scheme (DQS) generates a series of codeword-
s to conceal the original data through specific trans-
formation and quantization algorithms. In the context
of MASs, the DQS has been extensively exploited with
many excellent results reported in the literature, see
e.g. [21,23,24] for integratorMASs and [20,40] for gener-
al linear MASs. Due to the utilization of the transforma-
tion/quantization algorithms, the DQS is featured with
introducing a new function into MASs to relieve com-
munication congestions and thus reducing the size of the
transmitted data. As such, the DQS is selected as the
type of DPP schemes to be investigated in this paper.

It is worth mentioning that most existing DQS-related
literature has been concerned with discrete-time MASs
only, and the corresponding results on continuous-time
MASs are very few. One of the most effective methods
to bridge the gap between continuous- and discrete-time
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systems is the so-called sampled-data control approach
whose main idea is to actuate a continuous-time system
via a discrete-time controller [16, 27]. The representa-
tive sampling mechanisms include the uniform-sampling
method [43], non-uniform sampling approach [48], and
event-triggered sampling [25]. A key factor for imple-
menting the sampled-data control lies in the adequate
choice of the sampling period as a poor selection could
lead to undesired performance degradation or even sys-
tem instability [14, 15, 26, 35, 45]. As such, it would be
practically significant to explore how the sampling peri-
od influences the consensus control performance of the
MASs under the DQS.

Note that all above-mentioned DPP schemes contribute
to the improvement of logical security (including in-
formation integrity, confidentiality and availability). A-
part from adopting the DPP schemes, another way to
improve the logical security is to guarantee the phys-
ical security which refers to the protection of tangible
items, thereby providing yet another necessary support
for logical security. In this sense, the fault-tolerant con-
sensus control (FTCC) has proven to be an effective
means to enhance physical security of the MASs with
successful applications in a variety of practical system-
s [1, 8, 37, 41, 42]. Nevertheless, to the best of the au-
thors’ knowledge, the FTCC problem for MASs (espe-
cially general linear continuous-time MASs) under the
framework of DQS remains open yet challenging due
mainly to the tight coupling of three factors, namely, the
sampling period, the DQS and the fault. To tackle this
problem, a degree of freedom should be allocated to the
fault-tolerant controller so that the fault-induced effects
could be decoupled.

Based on the above discussions, in this paper, we are set
to investigate the FTCC problem for continuous-time
MASs under the DPP. The main contributions of this pa-
per are summarized as follows: 1) the fault-induced het-
erogeneity in the continuous-time MASs is tackled by the
dedicatedly designed controller and Lyapunov function;
2) a novel Lyapunov-function-based analysis method is
proposed in the sense that the Lyapunov function is not
required to decrease along the entire time interval, which
helps to obtain a low-conservatism sampling period; and
3) a sufficient condition is derived to ensure the bound-
edness of the size of the transmitted data..

The rest of this paper is structured as follows. Section
2 introduces the preliminaries of graph theory and the
dynamic-quantization-based DPP scheme. Section 3
provides the main results on consensus and analyzes
the size of the transmitted data. Section 4 presents a
series of simulation examples and section 5 concludes
this paper.

Notations. Let 1m and 0m denote them×1 column vec-
tors with all ones and all zeros, respectively. 0m×n stands
for them×nmatrix with all zeros. In is a n-dimensional
identity matrix. diag{f0, f1, . . . , fn} represents a diago-
nal matrix with f0, f1, . . . , fn as its diagonal elements.
N and N

+ refer to the sets of all natural numbers and

positive integers, respectively, i.e., N , {0, 1, 2, . . .} and

N
+ , {1, 2, . . .}. Let ‖ · ‖ and ‖ · ‖∞ denote, respective-

ly, the 2-norm and the ∞-norm of a vector or a matrix.
The symbol⊗ represents the Kronecker product. Denote
the base of the natural logarithm by e. For a given real
number x, ln(x) stands for the natural logarithm of x.

2 Problem Formulation and Preliminaries

2.1 Graph Theory

Given an MAS consisting of N agents, the communica-
tion among agents is described by G, (V , E ,A), where
V = {V1,V2, . . . ,VN}, E = {Eji|j ∈ Ni} and A =
[

aij

]

∈ R
N×N denote the set of nodes, the set of edges

and the adjacency matrix, respectively. j ∈ Ni means
that node j is the neighbor of node i. Denote aij > 0

if Eji ∈ E , and aij = 0 otherwise. Also, di ,
∑N

j=1 aij

denotes the degree of node i and dmax , maxi di. If
aij = aji, then the graph is said to be an undirected

graph. L =
[

lij

]

∈ R
N×N denotes the Laplacian matrix

of the graph G with lii =
∑

j 6=i aij , lij = −aij , i 6= j.

For an undirected graph G, if G is connected, then there

exists an orthogonal matrix T =
[

T0, T1

]

such that

T TLT = Λ = diag{0,Φ}, where T0 =
√

1/N1N and
Φ = diag{λ2, . . . , λN} with 0 = λ1 < λ2 ≤ . . . λN−1 ≤
λN denoting the eigenvalues of L. Obviously, Φ is a
positive-definite matrix.

2.2 Problem Formulation

Consider an MAS as follows:

ẋi(t) = Axi(t) +B(I − ̺i)ui(t), (1)

where i ∈ N , {1, 2, . . . , N}. xi ∈ R
n and ui ∈ R

m are,
respectively, the state variable and the input variable; ̺i
is defined as ̺i , diag{̺i1, . . . , ̺ih, . . . , ̺im} ∈ R

m×m,
where ̺ih represents the unknown loss-of-effectiveness
(LoE) faults of the h-th actuator of the agent i. Assume
that 0 ≤ ̺ih ≤ ̺max < 1 with ̺max being the known
upper bound of ̺ih.

In this paper, we are interested in designing an FTC-
C scheme for the MAS described by (1) with hope
to preserve the data privacy. As shown in Fig. 1, the
continuous-time state of agent j is first sampled, then
processed by the dynamic quantization algorithm and
finally released. Let sj represent the released data. Af-
ter being received by the agent i, sj is used to extract
the useful information first via the recovery algorithm
and then design the controller.

The sampled-data-based dynamic quantization algorith-
m, the data recovery algorithm and the controller are
designed as follows.

2



Fig. 1. Dynamic-quantization-based DPP scheme for MASs.

Sampled-data-based dynamic quantization algorithm of
agent i:


























ξ̇i(t) = Aξi(t), kT < t < (k + 1)T, k ∈ N

ξi ((k + 1)T ) = eAT ξi(kT ) + g ((k + 1)T ) si(k + 1)

si(k + 1) = Q

(

xi ((k + 1)T )− eAT ξi(kT )

g ((k + 1)T )

)

ξi(0) = 0n,
(2)

where T represents the sampling period. As shown in
Fig. 2, g(t) is a piecewise continuous function serving as
a dynamic quantization factor with the following defini-
tion:

g(t) =

{

g0γ
k, t = kk0T, k ∈ N

g(kk0T ), kk0T ≤ t < (k + 1)k0T
(3)

where g0 > 0 and 0 < γ < 1. k0 is a positive integer to
be design later.

Fig. 2. Dynamic quantization factor g(t).

Given a vector v =
[

v1, v2, · · · , vn
]T

, the uniform quan-

tizer is defined asQ(v) ,
[

q(v1), q(v2), · · · , q(vn)
]T

with

q(vi) =

{

d~, (d− 1
2 )~ ≤ vi < (d+ 1

2 )~

−q(−vi), vi ≤ − 1
2~,

(4)

where d = 0, 1, 2, . . . ,M with M as the upper bound.

Here, M can be calculated according to

M = max
i,k

‖si(k + 1)/~‖∞

where ~ is a given quantization parameter and the quan-
tization error satisfies |vi − q(vi)| ≤ ~/2.

Data recovery algorithm for agent i:






ẋji(t) = Axji(t), kT < t < (k + 1)T, k ∈ N

xji ((k + 1)T ) = eATxji(kT ) + g ((k + 1)T ) sj(k + 1)

xji(0) = 0n, j ∈ Ni,
(5)

where xji(t) is the extracted state and xji(t) = ξj(t).

Fault-tolerant controller for agent i:

ui(t) = −cK
N
∑

j=1

aij(ξi(t)− xji(t)), j ∈ Ni, (6)

where c and K are the coupling gain and the feedback
gain, respectively.

By defining the DPP error as ei(t) , ξi(t) − xi(t) and
the quantization error as

δi(k + 1) , si(k + 1)− xi ((k + 1)T )− eAT ξi(kT )

g ((k + 1)T )
,

we have
{

ei ((k + 1)T ) = g ((k + 1)T ) δi(k + 1)

ei(0) = −xi(0).
(7)

Denoting

x ,

[

xT
1 , x

T
2 , · · · , xT

N

]T

, e ,
[

eT1 , e
T
2 , · · · , eTN

]T

,

ξ ,

[

ξT1 , ξ
T
2 , · · · , ξTN

]T

, u ,

[

uT
1 , u

T
2 , · · · , uT

N

]T

,

̺ , diag{̺1, ̺2, . . . , ̺N},
the MAS system can be transformed into:

ẋ(t) = (IN ⊗A)x(t) + (IN ⊗B)(ImN − ̺)u(t). (8)

Before proceeding further, we give the following defini-
tion and assumptions.
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Definition 1 (Consensus [33]) For the MAS described
by (1), if

lim
t→∞

‖xi(t)− xj(t)‖ = 0 (9)

holds for any i, j ∈ N, then the consensus is said to be
reached asymptotically.

Assumption 1 The undirected graph G is connected.

Assumption 2 There exists a known positive constant
χ0 such that ‖xi(0)‖ ≤ χ0, ∀i ∈ N.

The aim of this paper is to design appropriate dynamic
quantization and recovery algorithms (2)-(5) as well as
fault-tolerant controller (6) to guarantee the consensus
of the MAS described by (1).

3 Main Results

In this section, we first provide a novel design method
for the sampled-data-based dynamic quantizer and con-
troller to ensure the consensus. Then, we discuss the size
of the transmitted data under the structure of the pro-
posed dynamic-quantization-based DPP scheme.

To start with, we make the following augmentations.

By denoting

y ,

[

yT1 , z
T

]T

, (T T ⊗ In)x

where y1 ∈ R
n and z ∈ R

n(N−1), we have z = (T T
1 ⊗In)x

and

ż(t) =
(

T T
1 ⊗A− c(T T

1 ⊗B)(I − ̺)(L⊗K)
)

x(t)

− c(T T
1 ⊗ B)(I − ̺)(L⊗K)e(t)

=
(

IN−1 ⊗A− c(T T
1 ⊗B)(I − ̺)(T1Φ⊗K)

)

z(t)

− c(T T
1 ⊗ B)(I − ̺)(L⊗K)e(t). (10)

The procedure of designing controller gains and other
parameters is given as follows:

1) design the coupling gain of the controller (6) such
that

c ≥ 1

2λ2(1 − ̺max)
, (11)

and design the feedback gain as K = BTP if there
exist a positive constant ε and a positive-definite ma-
trix P such that

ATP + PA− PBBTP + εIn = 0; (12)

2) choose the sampling period according to

T ≤ min

{

ln(ρ0)

‖A‖ ,
1

cρ0ρ1ρ3
,

ε

cρ0ρ1(ερ3 + ρ2a0
√

‖P‖)

}

, (13)

where ρ0 > 1, ρ1 = ‖B‖ , ρ2 = ‖T1Φ
1
2 ⊗ BTP

1
2 ‖,

ρ3 = ‖L ⊗ K‖ and a0 = 2(1 + η)cλ
3
2

N‖PBK‖ with
η > 0;

3) select a positive integer k0 satisfying

k0 ≥ ln(β)

ln(∆V )
, (14)

where

∆V =
1

1 + 2η
+

(

1− 1

1 + 2η

)

e−
ε(1+2η)T
2(1+η)‖P‖ ,

and
1

1 + 2η
< β < 1.

Next, the following lemmas are provided to facilitate the
derivation of our main results.

Lemma 1 For any k ∈ N, we have

‖e(kT )‖ ≤ b(kT )

ρ0
,

where b(t) = b0ρ0
√
Nn~g(t) with b0 = max

{

1
2 ,

χ0√
n~g0

}

.

Proof: For the case of k = 0, we have

‖e(0)‖ =
√

‖x1(0)‖2 + . . .+ ‖xN (0)‖2
≤

√
Nχ0

≤ b(0)

ρ0
. (15)

For the case of k ∈ N
+, we have

‖e(kT )‖ =
√

‖e1(kT )‖2 + . . .+ ‖eN(kT )‖2

≤ ~
√
Nn

2
g(kT )

≤ b(kT )

ρ0
(16)

which, together with (15), completes the proof.

Lemma 2 Let a Lyapunov function be given by

V (t) = zT (t)(Φ⊗ P )z(t). (17)

For any k1 ∈ N and k1k0T ≤ t < (k1 + 1)k0T , the
following statements are true.

a) If V (k1k0T ) < v20,k1k0T
, then V (t) < v20,k1k0T

.

b) If V (k1k0T ) ≥ v20,k1k0T
, then V (t) ≤ V (k1k0T ) and

V ((k1 + 1)k0T ) ≤ max
{

v20,k1k0T
, βV (k1k0T )

}

where c, P , T and k0 satisfy (11)-(14), respectively, and
v0,k1k0T is a function of b(k1k0T ) which will be defined
later.

Proof: From (10), we have

V̇ (t) = 2zT (t)(Φ⊗ P )ż(t)

= 2zT (t)(Φ⊗ PA)z(t)

− 2czT (t)(ΦT T
1 ⊗ PB)(I − ̺)(L ⊗K)e(t)

− 2czT (t)(ΦT T
1 ⊗ PB)(I − ̺)(T1Φ⊗K)z(t)

≤ 2zT (t)(Φ⊗ PA)z(t)
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+
ε

2(1 + η)
zT (t)(Φ⊗ In)z(t)

+
2(1 + η)

ε

(

cλ
2
3

N‖PBK‖‖e(t)‖
)2

− 2cλ2(1− ̺max)z
T (t)(Φ⊗ PBBTP )z(t)

≤ −εzT (t)(Φ⊗ In)z(t)

+
ε

2(1 + η)
zT (t)(Φ⊗ In)z(t)

+
2(1 + η)

ε

(

cλ
2
3

N‖PB‖‖K‖‖e(t)‖
)2

= − εη

1 + η
zT (t)(Φ⊗ In)z(t)

− 1

2ε(1 + η)

(

ε2zT (t)(Φ⊗ In)z(t)

−
(

2(1 + η)cλ
2
3

N‖PBK‖‖e(t)‖
)2
)

. (18)

where η > 0.

For notation simplicity, we denote

ekT , sup
kT≤t<(k+1)T

‖e(t)‖,

vkT , sup
kT≤t<(k+1)T

√

V (t).

When kT ≤ t < (k+1)T , it is inferred from (1) and (2)
that

e(t) =
(

IN ⊗ eA(t−kT )
)

e(kT )

−
∫ t

kT

(

IN ⊗ eA(t−τ)
)

(IN ⊗B)(I − ̺)u(τ)dτ.

(19)

Noting that
∥

∥

∥
IN ⊗ eA(t−kT )

∥

∥

∥
= ‖eA(t−kT )‖ ≤ e‖A‖T ≤ ρ0, (20)

we have

‖e(t)‖ ≤ ρ0‖e(kT )‖+ ρ0ρ1

∫ t

kT

‖u(τ)‖dτ. (21)

Since
∫ t

kT

‖u(τ)‖dτ ≤ cT ‖L⊗K‖ekT

+

∫ t

kT

c‖(L⊗K)x(τ)‖dτ (22)

and

‖(L⊗K)x(t)‖
=

∥

∥(T1ΦT
T
1 ⊗BTP )x(t)

∥

∥

=
∥

∥

∥

(

T1Φ
1
2 ⊗BTP

1
2

)(

Φ
1
2 T T

1 ⊗ P
1
2

)

x(t)
∥

∥

∥

≤
∥

∥

∥
T1Φ

1
2 ⊗BTP

1
2

∥

∥

∥

√

V (t), (23)

we obtain

ekT ≤ ρ0‖e(kT )‖+ cρ0ρ1ρ3TekT + cρ0ρ1ρ2TvkT .
(24)

By denoting

a1 , 1− cρ0ρ1ρ3T > 0,

a2 ,
cρ0ρ1ρ2T

a1
,

and recalling Lemma 1, we have

ekT ≤ a2vkT +
b(kT )

a1
. (25)

Note that

V (t) ≤ zT (t)(Φ⊗ In)z(t)‖P‖. (26)

Substituting (25) and (26) into (18) yields

V̇ (t) ≤ − εηV (t)

(1 + η)‖P‖ − 1

2ε(1 + η)

(

ε2

‖P‖
(

V (t)− v2kT
)

+
( ε2

‖P‖ − a20a
2
2

)

v2kT − 2a20a2b(kT )

a1
vkT

− a20
a21

b2(kT )

)

, kT ≤ t < (k + 1)T. (27)

Defining

f(vkT ) ,
( ε2

‖P‖ − a20a
2
2

)

v2kT − 2a20a2b(kT )

a1
vkT

− a20
a21

b2(kT ),

it follows from (13) that

ε2

‖P‖ − a20a
2
2 > 0.

Next, denote

v0,kT , bM b(kT ), bM > 0.

Then, as shown in Fig. 3, we have that f(vkT ) ≥ 0 if
vkT ≥ v0,kT .

0,kTv kTv

( )kTf v

Fig. 3. Curve of f(vkT ).

We are now ready to prove statements a) and b) in Lem-
ma 2 one by one.

Statement a) Let V (k1k0T ) < v20,k1k0T
. To show that

V (t) < v20,k1k0T
holds for any t ∈ [k1k0T, (k1 + 1)k0T ),

we use contradictions.
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(1) For the case of v2k1k0T
= V (t′) where t′ ∈

(k1k0T, (k1k0+1)T ), we suppose V (t′) ≥ v20,k1k0T
.

Then, f(vk1k0T ) ≥ 0 and it follows from (27)

that V̇ (t′) < 0. Since V̇ (t) is continuous on
t ∈ [k1k0T, (k1 + 1)k0T ), there exists a t′′ ∈
(k1k0T, t′) such that V (t′′) > V (t′) = v2k1k0T

,
which contradicts the definition of vk1k0T , i.e.,

vk1k0T , supk1k0T≤t<(k1+1)k0T

√

V (t). There-

fore, V (t′) < v20,k1k0T
, which implies that V (t) <

v20,k1k0T
holds for any t ∈ [k1k0T, (k1k0 + 1)T ).

(2) Consider the case where v2k1k0T
= V ((k1k0 +

1)T )) and V (t) < V ((k1k0 + 1)T )) hold for
any t ∈ [k1k0T, (k1k0 + 1)T ). Suppose that
V ((k1k0 + 1)T )) ≥ v20,k1k0T

is true. Then, we have

f(vk1k0T ) ≥ 0. Since V (t) < V ((k1k0 + 1)T )) and
V (t) is continuous on t, we know that there exists

a t′ ∈ (k1k0T, (k1k0 + 1)T )) such that V̇ (t′′) ≥ 0
for any t′′ ∈ [t′, (k1k0 + 1)T )], which contradict-
s (27). Therefore V ((k1k0 + 1)T )) < v20,k1k0T

,

which implies that V (t) < v20,k1k0T
holds for any

t ∈ [k1k0T, (k1k0 + 1)T ].
(3) Note that b(t) ≡ b(k1k0T ) for any t ∈ [k1k0T, (k1+

1)k0T ). Similar to 1) and 2), the results on the in-
terval t ∈ [k1k0T, (k1k0 + 1)T ) (where V (t) <
v20,k1k0T

) can be generalized to the interval t ∈
[k1k0T, (k1+1)k0T ). Now, the statement a) in Lem-
ma 2 is proved.

Statement b) Let V (k1k0T ) ≥ v20,k1k0T
. First, we aim

to show that V (t) ≤ V (k1k0T ) is satisfied for any t ∈
[k1k0T, (k1 + 1)k0T ).

Similar to the proof of Statement a, by constructing a
contradiction, we can easily derive V (t) ≤ V (k1k0T )
and, more specifically, V (t) < V (k1k0T ) for any t ∈
(k1k0T, (k1 +1)k0T ). This further implies that, if there
exists a t′ ∈ [k1k0T, (k1 + 1)k0T ) such that V (t′) =
v20,k1k0T

, then V (t) < v20,k1k0T
holds for any t ∈ (t′, (k1+

1)k0T ). Thus, one has V ((k1 + 1)k0T ) ≤ v20,k1k0T
due

to the continuity of V (t).

If V (t) > v20,k1k0T
holds for all t ∈ [k1k0T, (k1+1)k0T ),

then it follows from (27) that

V̇ (t) ≤ − εηV (t)

(1 + η)‖P‖ − ε2
(

V (t)− v2kT
)

2ε(1 + η)‖P‖

=
ε

2(1 + η)‖P‖v
2
kT − ε(1 + 2η)

2(1 + η)‖P‖V (t) (28)

is true for any kT ≤ t < (k + 1)T ), where k ∈ N and
k1k0 ≤ k ≤ (k1 + 1)k0 − 1.

Since V (t) is continuous, it is seen from (28) that V (t)
keeps decreasing during the interval [k1k0T, (k1 +
1)k0T ). Consequently, we have

V ((k1 + 1)k0T ) ≤ (∆V )
k0V (k1k0T ) (29)

which, together with (14), finally leads to

V ((k1 + 1)k0T ) ≤ βV (k1k0T ). (30)

Up to now, Statement b) has been proved to be true and
the proof is complete.

Lemma 3 For any k1 ∈ N
+, the Lyapunov function

(17) satisfies

V (k1k0T ) ≤ max
{

H(k1, γ, β)v
2
0,0, β

k1V (0)
}

, (31)

where

H(k1, γ, β) , max
{

(γ2)k1−1, (γ2)k1−2β, . . . ,

γ2βk1−2, βk1−1
}

.

Proof: By virtue of Lemma 2, we have

V (k0T ) ≤ max
{

v20,0, βV (0)
}

= max
{

H(1, γ, β)v20,0, βV (0)
}

, (32)

and further obtain

V (2k0T ) ≤ max
{

v20,k0T
, βV (k0T )

}

≤ max
{

v20,k0T
, βv20,k0T

, β2V (0)
}

= max
{

H(2, γ, β)v20,0, β
2V (0)

}

. (33)

Along this line, (31) can be derived through iterative
calculations and the proof is then complete.

Theorem 1 Under Assumptions 1 and 2, the consensus
of agents (1) can be reached by the controller (6) and the
sampled-data-based dynamic quantization as well as data
recovery algorithms (2)-(5) if the controller gains and
relevant parameters are designed according to (11)-(14).

Proof: It follows from Lemma 3 that

lim
k1→∞

V (k1k0T ) ≤ max
{

lim
k1→∞

H(k1, γ, β)v
2
0,0,

lim
k1→∞

βk1V (0)
}

. (34)

Moreover, it is obvious that lim
k1→∞

H(k1, γ, β) = 0 holds

for the case of β = γ2. For the case of β 6= γ2, we have

lim
k1→∞

H(k1, γ, β) ≤ lim
k1→∞

k1−1
∑

l=0

(γ2)k1−l−1βl,

= lim
k1→∞

(γ2)k1 − βk1

γ2 − β

= 0, (35)

which, together with limk1→∞ βk1V (0) = 0, yields
limk1→∞ V (k1k0T ) = 0. Finally we get limt→∞ z(t) =
0n(N−1).

Noting z(t) = 0n(N−1), one has

x(t) = (T ⊗ In)y(t) =

√

1

N

[

yT1 (t), y
T
1 (t), · · · , yT1 (t)

]T

,

which means that the consensus is reached. The proof is
complete.

We are now ready to analyze the size of the transmitted
data ‖si(k + 1)‖∞ (k ∈ N), which reflects the require-
ment on the network bandwidth. Based on Theorem 1,
we obtain the following result.
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Theorem 2 Let the dynamic-quantization-based DPP
scheme described in Theorem 1 be given. If β ≤ γ2, then
the size of the transmitted data among agents is bounded,
that is, ‖si(k+1)‖∞ is bounded for any i ∈ N and k ∈ N.

Proof: For ∀i ∈ N, at time instant (k + 1)T where
k1k0T ≤ kT < (k+1)T ≤ (k1 +1)k0T with k1 ∈ N and
k ∈ N

+, we obtain
∥

∥

∥

∥

xi ((k + 1)T )− eAT ξi(kT )

g ((k + 1)T )

∥

∥

∥

∥

≤ ρ0

∥

∥

∥

∥

∥

xi(kT )−
(

eAT ξi ((k − 1)T )) + g(kT )si(k)
)

g ((k + 1)T )

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

∫ (k+1)T

kT

(

IN ⊗ eA((k+1)T−τ)B
)

(I − ̺)u(τ)dτ

g ((k + 1)T )

∥

∥

∥

∥

∥

≤ g(kT )ρ0
g ((k + 1)T )

∥

∥

∥

∥

xi(kT )− eAT ξi ((k − 1)T ))

g(kT )
− si(k)

∥

∥

∥

∥

+
ρ0ρ1

g ((k + 1)T )

∫ (k+1)T

kT

‖u(τ)‖ dτ

≤ ρ0~
√
n

γ
+

ρ0ρ1
g ((k + 1)T )

∫ (k+1)T

kT

‖u(τ)‖ dτ. (36)

From (22), (23) and (25), we have
∫ (k+1)T

kT

‖u(τ)‖ dτ

≤ (ca2ρ3T + cρ2T )vkT +
cρ3T

a1
b(kT ). (37)

Recalling Lemmas 2 and 3, for the case of k1 ∈ N
+, we

obtain

vkT ≤ max
{

√

V (k1k0T ), v0,k1k0T

}

≤ max
{
√

H(k1, γ, β)v20,0, β
k1V (0) , bMb(k1k0T )

}

.

(38)

In view of β ≤ γ2, we have

vkT ≤ max
{√

(γ2)k1−1v20,0, β
k1V (0) , bMb(k1k0T )

}

= max

{

γk1−1bMb(0),
√

βk1V (0) , bMb(k1k0T )

}

= max

{

γk1−1bMb0ρ0
√
Nn~g0,

√

βk1V (0)

}

,

(39)

which, together with (36) and (37), yields
∥

∥

∥

∥

xi ((k + 1)T )− eAT ξi(kT )

g ((k + 1)T )

∥

∥

∥

∥

≤ cρ0ρ1T (a2ρ3 + ρ2)max

{

bMb0ρ0
√
Nn~

γ2
,

√

V (0)

g0γ

}

+
cb0ρ

2
0ρ1ρ3T

√
Nn~+ ρ0

√
n~

γ
. (40)

Then, it follows from Assumption 2 and ‖si(k+1)‖∞ ≤
‖si(k+1)‖ that ‖si(k+1)‖∞ is bounded for any k ∈ N

+.

Based on the above analysis, it can be directly proved
that ‖si(k+ 1)‖∞ is bounded for the case of k = 0. The
proof is complete now.

Remark 1 It follows from Theorem 1 that lim
t→∞

e(t) =

0nN and lim
t→∞

z(t) = 0n(N−1), which together with

ẏ(t) =
(

IN ⊗A− c(T T ⊗B)(I − ̺)(LT ⊗K)
)

y(t)

− c(T T ⊗B)(I − ̺)(L ⊗K)e(t)

leads to ẏ1(t) = Ay1(t). Then we have

y1(t) = eAty1(0)

= eAt(T T
0 ⊗ In)x(0)

= eAt

√

1

N

N
∑

i=1

xi(0).

Finally we arrive at

lim
t→∞

xi(t) = lim
t→∞

√

1

N
y1(t) =

1

N
lim
t→∞

eAt

N
∑

i=1

xi(0),

which implies that the consensus point is determined by
the matrix A. If A is Hurwitz, that is, all the eigenval-
ues of A are on the left half s-plane, then lim

t→∞
xi(t) =

0n. If A = 0n×n, e.g. the single-integrator MASs, then

lim
t→∞

xi(t) = 1
N

N
∑

i=1

xi(0), that is, the average consensus

can be achieved.

Remark 2 In the context of consensus, it is known from
Theorem 1 that the selection of β is independent of γ
which, together with (14), implies that k0 can be arbitrary
positive integer. However, some combinations of β and
γ might not be able to guarantee the boundedness of the
size of the transmitted data. In view of this, we provide a
sufficient condition in Theorem 2, i.e., β ≤ γ2, to ensure
the boundedness as can be illustrated in the simulation
part.

Remark 3 Suppose that the global information of the
graph G is unknown a priori, which means that the exact
value of λi (i = 2, . . . , N) is unknown. In this case, based
on

2 (1− cos(π/N)) d(G) ≤ λ2 ≤ λN ≤ 2dmax (41)

where d(G) represents the edge connectivity of the graph,
we can further derive a totally distributed controller with
parameters c and T modified as

c ≥ 1

4 (1− cos(π/N)) (1 − ̺max)d(G)
, (42)

T ≤ min

{

ln(ρ0)

‖A‖ ,
1

cρ0ρ1ρ3
,

ε

cρ0ρ1(ερ3 + ρ2a0
√

‖P‖)

}

(43)
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where ρ0 > 1, ρ1 = ‖B‖ , ρ2 = 2dmax‖BTP
1
2 ‖, ρ3 =

2dmax‖K‖ and a0 = 4c(1 + η)dmax‖PBK‖. Note that
d(G) stands for the minimal number of edges whose ab-
sence would result in the loss of the graph connectivity [9].

Until now, we have established a dynamic-quantization-
based DPP scheme. Through the introduction of DQS,
the size of the transmitted data can be reduced high-
ly. Considering that the quantization and recovery algo-
rithms may be obtained by potential eavesdroppers, in
what follows, we would like to provide two complemen-
tary schemes to further enhance the security of shared
data.

Complementary scheme I. In case that some agents
may be eavesdroppers,we provide a possible remedy over
undirected graphs based on the proposed scheme to en-
sure that the state of all agents is kept secret from their
neighbors.

Note that the contribution of agent j in the controller
(6), i.e., cij(t) , aij(ξi(t) − xji(t)), can be calculated
according to














ċij(t) = Acij(t), kT < t < (k + 1)T, k ∈ N

cij ((k + 1)T ) = eAT cij(kT ) + g ((k + 1)T )

× aij(si(k + 1)− sj(k + 1))

cij(0) = 0n, j ∈ Ni,

(44)

which implies that the value of aij(ξi(t) − xji(t)) can
be derived from the value of aij(si(k + 1)− sj(k + 1)).
In view of this, the Paillier encryption algorithm (PEA)
can be exploited as a complementary scheme to further
protect the data xji(t). The PEA has a notable feature
that the product of two ciphertexts is decrypted into the
sum of their corresponding plaintexts [34].

Inspired by [7], we rewrite aij as aij = ai × aj with ai
and aj generated by agents i and j, respectively. Re-
calling the parameter design rules (12), (14) and (41)-
(43), we have that c, K, T and k0 depend mainly on λN

and λ2, i.e., the maximum and minimum eigenvalues of
L, and have no direct relationship with the exact val-
ue of each element of L. This implies that the dynamic-
quantization-based DPP scheme is robust against cer-
tain changes in communication topologies. Therefore,
given two appropriate values λN and λ2, we can find pa-
rameters α1 and α2 such that λ2I ≤ α1L < α2L ≤ λNI
holds. Consequently, ai(k+1) and aj(k+1) can be cho-

sen from the range
[√

−α1lij ,
√

−α2lij
]

. Based on this,
we design the complementary scheme, as shown in Al-
gorithm 1.

Complementary scheme II. Consider that every a-
gent in the MAS is trustworthy whereas there may still
exist eavesdroppers around the MAS. In this case, Algo-
rithm 1 can be simplified to Algorithm 2.

We only need to transmit the first packet at time k = 0
using PEA to ensure the initial state is secure. Then, let
the dynamic-quantization-based DPP scheme take over,
which is sufficient to protect the state information of the
MAS since the initial inferred error of the eavesdropper
will lead to an exponentially growing estimation error.

Algorithm 1 Complementary scheme I

(1) Preparation: At time instant t = 0, agent i
generates a public key K

P
i and a private key K

S
i ,

and sends the public key K
P
i to agent j, j ∈ Ni;

(2) At time instant k + 1, k ∈ N:

(2.1) Agents i and j choose ai(k + 1) and aj(k + 1),
respectively;

(2.2) According to K
P
i , agents i and j encrypt si(k+1)

and−sj(k+1) into E(si(k+1)) and E(−sj(k+1)),
respectively;

(2.3) Agent i sends E(si(k + 1)) to agent j;

(2.4) Agent j receives E(si(k + 1)) and calculates
E(si(k + 1)) × E(−sj(k + 1)), which equals to
E(si(k + 1) − sj(k + 1));

(2.5) Agent j gets
(

E (si(k + 1)− sj(k + 1))
)aj(k+1)

,

which equals to E
(

aj(k+1)(si(k+1)−sj(k+1))
)

;

(2.6) Agent j sends E
(

aj(k+1)(si(k+1)− sj(k+1))
)

to agent i;

(2.7) According to K
S
i , agent i decrypts the received

information E
(

aj(k + 1)(si(k + 1) − sj(k + 1))
)

;

(2.8) Agent i finally obtains ai(k+1)×aj(k+1)(si(k+
1)− sj(k + 1)).

Algorithm 2 Complementary scheme II

(1) Preparation: At time instant t = 0, agent i
generates a public key K

P
i and a private key K

S
i ,

and sends the public key K
P
i to agent j, j ∈ Ni;

(2) At time instant k = 0:

(2.1) Agent j encrypts sj(1) into E(sj(1)) according to
K

P
i , and sends E(sj(1)) to agent i;

(2.2) According to K
S
i , agent i decrypts the received

information E(sj(1));

(2.3) Agent i estimates xji(T ) according to (5);

(3) At time instant k > 0:

(3.1) Agent j sends sj(k + 1) to agent i;

(3.2) Agent i estimates xji((k+1)T ) according to (5).

Remark 4 So far, we have solved the FTCC problem
for a general class of linear continuous-time multi-agent
systems (MASs) under the data privacy preserving (DP-
P) scheme. In comparison to the existing literature on
MASs with the DPP constraints, the main results devel-
oped in this paper exhibit the following three distinctive
merits: 1) the proposed dynamic-quantization-based DP-
P scheme is new in that the system dynamics is taken into
account when the MASs suffer from possible faults; 2) the
developed sampled-data strategy is new because the sam-
pling period is purposely designed based on a Lyapunov-
function-analysis method; and 3) the derived sufficient
condition is new in the sense of ensuring the bounded-
ness of the size of the transmitted data. One of our fu-
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ture research topics is to study the FTCC problem with
network-induced effects [46,47].

4 Simulations

Consider a network consisting of four agents [30] de-
scribed by (1) with

A =









0.2 1 0

−0.1 −0.5 0.1

0.1 −0.1 −0.2









, B =









1

0

1









,

where A has an unstable eigenvalue 0.0949. The undi-
rected topology among agents is shown in Fig. 4 with

L =















1 −1 0 0

−1 3 −1 −1

0 −1 2 −1

0 −1 −1 2















and λ2 = 1, λN = 4.

1

2

3 4

Fig. 4. Topology of the multi-agent system.

Case 1: The fault-free case with ̺max = 0.

Choosing ρ0 = 1.02, ε = 0.1, β = 0.81, γ = 0.9, η =
0.5, c = 0.5001, ~ = 1, and g0 = 0.5, we can design

that K =
[

0.4129 0.4599 0.1636
]

. The parameters can

be set as T = 0.01s and k0 = 739 according to (13)-

(14). The initial states are given as x1(0) =
[

10, 0, 0
]T

,

x2(0) =
[

20, 2, 1
]T

, x3(0) =
[

3, 0, 3
]T

and x4(0) =
[

4, 1, 2
]T

.

Denoting xe
i (t) , ‖xi(t)− 1

N

∑N

j=1 xj(t)‖ and smax(k) ,

maxi ‖si(k)‖∞, we obtain the simulation results as
shown in Figs. 5-7. Fig. 5 indicates that the consensus
of the MAS is indeed asymptotically reached. The chat-
tering in Fig. 6 is caused by the non-zero function g(t)
and will be eliminated as g(t) approaches zero. Fig. 7
shows that the size of the transmitted data is bounded
under the condition β = γ2 as proved in Theorem 2. To
show the impact of different β on the size of the trans-
mitted data, we conduct the following simulation with
β = 0.9998. The other parameters are set the same as
above. By choosing T = 0.01s and k0 = 1, we obtain the

simulation results as shown in Figs. 8-10. The consen-
sus can be asymptotically reached. However, as pointed
out in Remark 2, the size of the transmitted data will
tend to infinity eventually. Therefore, parameters β
and γ should be selected appropriately and Theorem 2
provides such a feasible solution.

As an important evaluation index of the sample-data-
based method, the sampling period T reflects the sam-
pling rate of the sensor and the frequency of communi-
cation. The choice of T is a critical issue and, in general,
we prefer to choose a larger sampling period while pre-
serving consensus. Compared with the method in [30],
the method proposed in this paper leads to a larger sam-
pling period as shown in Table 1, where sampling peri-
ods are calculated with varying ε. It is worth noting that
both results are derived based on the assumption that
the graph information is known in advance.

Table 1
Comparative analysis of the sampling period.

ε max T (s) in [30] max T (s) in this paper

0.001 0.0011 0.0034

0.01 0.0041 0.0131

0.1 0.0040 0.0167

1 0.00084 0.0088

10 0.00007 0.0024
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15
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4

Fig. 5. Trajectories of xe
i (t) with β = 0.81 in Case 1.
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Fig. 6. Trajectories of ui(t) with β = 0.81 in Case 1.
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Fig. 7. Trajectory of smax(k) with β = 0.81 in Case 1.
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Fig. 8. Trajectories of xe
i (t) with β = 0.9998 in Case 1.
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Fig. 9. Trajectories of ui(t) with β = 0.9998 in Case 1.
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Fig. 10. Trajectory of smax(k) with β = 0.9998 in Case 1.

Case 2: The faulty case with ̺max = 0.3.

Choosing ρ0 = 1.02, ε = 0.1, β = 0.902, γ = 0.95,
η = 0.1, c = 0.7144, ~ = 1, and g0 = 0.1, we come

up with K =
[

0.4129 0.4599 0.1636
]

according to

(12). The parameters can be designed as T = 0.01s
and k0 = 1326 according to (13)-(14). The initial s-

tates are x1(0) =
[

2, 0, 0
]T

, x2(0) =
[

10, 2, 1
]T

,

x3(0) =
[

3, 0, 3
]T

and x4(0) =
[

4, 1, 2
]T

. Suppose

that ̺ = diag{0.3, 0.1, 0.2, 0.15}. As shown in Figs. 11-
13, the proposed fault-tolerant consensus controller can
tolerate the LoE faults of actuators satisfying ̺ ≤ ̺max

and the size of the transmitted data is indeed bounded.

Recall the design rules (11)-(14). For any given 0 ≤
̺max < 1, we know that there always exist a matrix K
and parameters c, T and k0 such that the consensus is
reached. However, with the increase of ̺max, the val-
ue of min T will decrease (as shown in Table 2), which
means that more effort is needed to tolerate more seri-
ous faults. Note that min T provided in Table 2 is calcu-
lated by choosing the same parameters as in the case of
̺max = 0.3.

5 Conclusion

In this paper, we have proposed a novel DPP scheme
(including a dynamic quantization algorithm and a da-
ta recovery algorithm) for a class of continuous-time
MASs corrupted by faults. A kind of sampled-data-based

Table 2
Values of max T towards different ̺max.

max T (s) ̺max c

0.0145 0.2 0.6251

0.0112 0.3 0.7144

0.0082 0.4 0.8334

0.0057 0.5 1.0001

0.0037 0.6 1.2501

0.0021 0.7 1.6668

0.0009 0.8 2.5001
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Fig. 11. Trajectories of xe
i (t) in Case 2.
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Fig. 12. Trajectories of ui(t) in Case 2.
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Fig. 13. Trajectory of smax(k) in Case 2.

controller is employed to deal with such continuous-
time MASs and one of our main contributions is the
development of a novel Lyapunov-function-based anal-
ysis method. In addition, we have derived a sufficien-
t condition to ensure that the size of the transmitted
data is bounded, which helps relieve the computational
burden and saving communication bandwidth. As a fu-
ture research topic, the integration of DPP technologies
and systems dynamics deserves further investigation e-
specially in the presence of disturbances, dishonest n-
odes [13] and multi-rate sampling [38, 39].
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[3] Y. Chen, J. Lü, X. Yu and D. J. Hill, Multi-agent systems
with dynamical topologies: Consensus and applications,
IEEE Circuits and Systems Magazine, vol. 13, no. 3, pp. 21–
34, 2013.

[4] Y. Chen, Z. Chen, Z. Chen and A. Xue, Observer-based
passive control of non-homogeneous Markov jump systems
with random communication delays, International Journal

of Systems Science, vol. 51, no. 6, pp. 1133–1147, 2020.

[5] Y. Cui, Y. Liu, W. Zhang and F. E. Alsaadi, Sampled-based
consensus for nonlinear multiagent systems with deception
attacks: The decoupled method, IEEE Transactions on

Systems, Man, and Cybernetics: Systems, vol. 51, no. 1,
pp. 561–573, Jan. 2021.

[6] D. Ding, Z. Wang and Q.-L. Han, Neural-network-based
consensus control for multiagent systems with input
constraints: The event-triggered case, IEEE Transactions on

Cybernetics, vol. 50, no. 8, pp. 3719–3730, 2020.

[7] W. Fang, M. Zamani and Z. Chen, Secure and privacy
preserving consensus for second-order systems based on
Paillier encryption, arXiv: Systems and Control, 2018.

[8] Z. Feng and G. Hu, Connectivity-preserving flocking for
networked Lagrange systems with time-varying actuator
faults, Automatica, vol. 109, pp. 108509, 2019.

[9] M. Fiedler, Algebraic connectivity of graphs, Czechoslovak

mathematical journal, vol. 23, no. 2, pp. 298–305, 1973.

[10] C. Gao, Z. Wang, X. He and Q.-L. Han, On
consensus of second-order multiagent systems with actuator
saturations: A generalized-Nyquist-criterion-based approach,
IEEE Transactions on Cybernetics, in press, DOI:
10.1109/TCYB.2020.3025824.

[11] F. Han, Z. Wang, H. Dong and H. Liu, Partial-nodes-based
scalable H∞-consensus filtering with censored measurements
over sensor networks, IEEE Transactions on Systems, Man,

and Cybernetics: Systems, vol. 51, no. 3, pp. 1892–1903, 2021.

[12] J. He, L. Cai, P. Cheng, J. Pan and L. Shi, Consensus-
based data-privacy preserving data aggregation, IEEE

Transactions on Automatic Control, vol. 64, no. 12, pp. 5222–
5229, 2019.

[13] J. He, L. Cai, P. Cheng, J. Pan and L. Shi, Distributed
privacy-preserving data aggregation against dishonest nodes
in network systems, IEEE Internet of Things Journal, vol. 6,
no. 2, pp. 1462–1470, 2019.

[14] L. Hetel, C. Fiter, H. Omran, A. Seuret, E. Fridman, J.-
P. Richard and S. I. Niculescu, Recent developments on the
stability of systems with aperiodic sampling: An overview,
Automatica, vol. 76, pp. 309–335, 2017.

[15] P. Hsu and S. Sastry, The effect of discretized feedback in
a closed loop system, In: Proc. 26th IEEE Conference on

Decision and Control, vol. 26, pp. 1518–1523, 1987.

[16] J. Hu, H. Zhang, H. Liu and X. Yu, A survey on sliding mode
control for networked control systems, International Journal
of Systems Science, vol. 52, no. 6, pp. 1129–1147, 2021.

[17] K. Klausen, C. Meissen, T. I. Fossen, M. Arcak and
T. A. Johansen, Cooperative control for multirotors
transporting an unknown suspended load under
environmental disturbances, IEEE Transactions on Control

Systems Technology, vol. 28, no. 2, pp. 653–660, 2020.

[18] I. Levchenko, M. Keidar, J. Cantrell, Y.-L. Wu, H. Kuninaka,
K. Bazaka and S. Xu, Explore space using swarms of tiny
satellites, Nature, vol. 562, pp. 185–187, 2018.

[19] B. Li, Z. Wang, Q.-L. Han and H. Liu, Distributed
quasiconsensus control for stochastic multiagent systems
under Round-Robin protocol and uniform quantization,
IEEE Transactions on Cybernetics, in press, DOI:
10.1109/TCYB.2020.3026001.

[20] H. Li, G. Chen, X. Liao and T. Huang, Leader-following
consensus of discrete-time multiagent systems with encoding-
decoding, IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 63, no. 4, pp. 401–405, 2016.

[21] H. Li, C. Huang, G. Chen, X. Liao and T. Huang, Distributed
consensus optimization in multiagent networks with time-
varying directed topologies and quantized communication,
IEEE Transactions on Cybernetics, vol. 47, no. 8, pp. 2044–
2057, 2017.

[22] S. Li, R. Batra, D. Brown, H.-D. Chang, N. Ranganathan,
C. Hoberman, D. Rus and H. Lipson, Particle robotics
based on statistical mechanics of loosely coupled components,
Nature, vol. 567, pp. 361–365, 2019.

[23] T. Li and L. Xie, Distributed consensus over digital networks
with limited bandwidth and time-varying topologies,
Automatica, vol. 47, no. 9, pp. 2006–2015, 2011.

[24] T. Li and L. Xie, Distributed coordination of multi-agent
systems with quantized-observer based encoding-decoding,
IEEE Transactions on Automatic Control, vol. 57, no. 12,
pp. 3023–3037, 2012.

[25] Q. Li, Z. Wang, N. Li and W. Sheng, A dynamic event-
triggered approach to recursive filtering for complex networks
with switching topologies subject to random sensor failures,
IEEE Transactions on Neural Networks and Learning

Systems, vol. 31. no. 10, pp. 4381–4388, 2020.

[26] K. Liu, X. Mu and T. Li, Sampled-data-based consensus of
continuous-time systems with limited data rate, IET Control

Theory & Applications, vol. 11, no. 14, pp. 2328–2335, 2017.

[27] W. Liu and J. Huang, Output regulation of linear systems
via sampled-data control, Automatica, vol. 113, pp. 108684,
2020.

[28] Y. Lu, G. Zhang, Z. Sun and W. Zhang, Adaptive
cooperative formation control of autonomous surface vessels
with uncertain dynamics and external disturbances, Ocean

Engineering, vol. 167, pp. 36–44, 2018.

[29] Y. Lu and M. Zhu, A control-theoretic perspective on cyber-
physical privacy: Where data privacy meets dynamic systems,
Annual Reviews in Control, vol. 47, pp. 423–440, 2019.

[30] J. Ma, H. Ji, D. Sun and G. Feng, An approach to quantized
consensus of continuous-time linear multi-agent systems,
Automatica, vol. 91, pp. 98–104, 2018.

[31] L. Ma, Z. Wang, Q.-L. Han and Y. Liu, Consensus control
of stochastic multi-agent systems: A survey, Science China

Information Sciences, vol. 60, no. 12, pp. 120201, 2017.

[32] Y. Mo and R. M. Murray, Privacy preserving average
consensus, IEEE Transactions on Automatic Control, vol. 62,
no. 2, pp. 753–765, 2017.

[33] R. Olfati-Saber and R. M. Murray, Consensus protocols for
networks of dynamic agents, In: Proc. 2003 American Control

Conference, pp. 951–956, 2003.

[34] P. Paillier, Public-key cryptosystems based on composite
degree residuosity classes, In: Proc. International Conference

on the Theory and Applications of Cryptographic Techniques,
pp. 223–238, 1999.

11



[35] C. Peng, Y.-C. Tian and D. Yue, Output feedback control
of discrete-time systems in networked environments, IEEE

Transactions on Systems, Man, and Cybernetics-Part A:

Systems and Humans, vol. 41, no. 1, pp. 185–190, 2010.

[36] J. Qin, Q. Ma, Y. Shi and L. Wang, Recent advances
in consensus of multi-agent systems: A brief survey, IEEE

Transactions on Industrial Electronics, vol. 64, no. 6,
pp. 4972–4983, 2017.

[37] J. Qin, G. Zhang, W. X. Zheng and Y. Kang, Adaptive
sliding mode consensus tracking for second-order nonlinear
multiagent systems with actuator faults, IEEE Transactions

on Cybernetics, vol. 49, no. 5, pp. 1605–1615, 2019.

[38] Y. Shen, Z. Wang, B. Shen, F. E. Alsaadi and F. E. Alsaadi,
Fusion estimation for multi-rate linear repetitive processes
under weighted Try-Once-Discard protocol, Information

Fusion, vol. 55, pp. 281–291, 2020.

[39] Y. Shen, Z. Wang, B. Shen and H. Dong, Outlier-
resistant recursive filtering for multi-sensor multi-rate
networked systems under weighted Try-Once-Discard
protocol, IEEE Transactions on Cybernetics, in press, DOI:
10.1109/TCYB.2020.3021194.

[40] L. Wang, Z. Wang, G. Wei and F. E. Alsaadi, Observer-
based consensus control for discrete-time multiagent
systems with coding-decoding communication protocol,
IEEE Transactions on Cybernetics, vol. 49, no. 12, pp. 4335–
4345, 2019.

[41] X. Wang and G.-H. Yang, Fault-tolerant consensus tracking
control for linear multiagent systems under switching directed
network, IEEE Transactions on Cybernetics, pp. 1–10, 2019.

[42] E. Tian, D. Yue and C. Peng, Reliable control for networked
control systems with probabilistic actuator fault and random
delays, Journal of the Franklin Institute, vol. 347, no. 10,
pp. 1907–1926, 2010.

[43] Y. Yuan, Y. Yu, Z. Wang and L. Guo, A sampled-
data approach to nonlinear ESO-based active disturbance
rejection control for pneumatic muscle actuator systems
with actuator saturations, IEEE Transactions on Industrial

Electronics, vol. 66, no. 6, pp. 4608–4617, 2019.

[44] H. Zhang and P. Gurfil, Cooperative orbital control of
multiple satellites via consensus, IEEE Transactions on

Aerospace and Electronic Systems, vol. 54, no. 5, pp. 2171–
2188, 2018.

[45] H. Zhang, D. Yue, C. Dou, W. Zhao and X. Xie, Data-
driven distributed optimal consensus control for unknown
multiagent systems with input-delay, IEEE Transactions on

Cybernetics, vol. 49, no. 6, pp. 2095–2105, 2019.

[46] Z. Zhao, Z. Wang, L. Zou and J. Guo, Set-membership
filtering for time-varying complex networks with uniform
quantisations over randomly delayed redundant channels,
International Journal of Systems Science, vol. 51, no. 16,
pp. 3364–3377, 2020.

[47] L. Zou, Z. Wang, J. Hu, Y. Liu and X. Liu,
Communication-protocol-based analysis and synthesis of
networked systems: progress, prospects and challenges,
International Journal of Systems Science, in press, DOI:
10.1080/00207721.2021.1917721.

[48] L. Zou, Z. Wang and D. H. Zhou, Moving horizon
estimation with non-uniform sampling under component-
based dynamic event-triggered transmission, Automatica,
vol. 120, art. no. 109154, 2020.

12


