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Abstract

Detectability has been introduced as a generalization of state-estimation properties of discrete event systems studied in the literature. It asks
whether the current and subsequent states of a system can be determined based on observations. Since, in some applications, to exactly
determine the current and subsequent states may be too strict, a relaxed notion of D-detectability has been introduced, distinguishing only
certain pairs of states rather than all states. Four variants of D-detectability have been defined: strong (periodic) D-detectability and weak
(periodic) D-detectability. Deciding weak (periodic) D-detectability is PSpace-complete, while deciding strong (periodic) detectability or
strong D-detectability is polynomial (and we show that it is actually NL-complete). However, to the best of our knowledge, it is an open
problem whether there exists a polynomial-time algorithm deciding strong periodic D-detectability. We solve this problem by showing that
deciding strong periodic D-detectability is a PSpace-complete problem, and hence there is no polynomial-time algorithm unless PSpace

= P. We further show that there is no polynomial-time algorithm deciding strong periodic D-detectability even for systems with a single
observable event, unless P = NP. Finally, we propose a class of systems for which the problem is tractable.
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1 Introduction

Detectability of discrete event systems (DESs) modeled by
finite automata has been introduced by Shu et al. [22] as a
generalization of other notions studied in the literature, in-
cluding stability of Ozveren and Willsky [18] and observ-
ability of Caines et al. [5] or of Ramadge [19]. An evidence
that many practical problems can be formulated as the de-
tectability problem for DESs has been provided by Shu and
Lin [20]. Furthermore, Lin [13] has shown that detectability
is closely related to other important properties, such as ob-
servability, diagnosability, and opacity.

Detectability is a state-estimation property asking whether
the current and subsequent states of a DES can be deter-
mined after a finite number of observations. Shu et al. [22]
have defined four variants of detectability: strong (periodic)
detectability and weak (periodic) detectability. In their work,
they first studied detectability for deterministic DESs, which
are DESs modeled by deterministic finite automata with a
set of initial states. The motivation for a set of initial states
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author: T. Masopust, tel. +420222090785, fax +420541218657.
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masopust@math.cas.cz (Tomáš Masopust).

rather than a single initial state results from the observation
that it is often unknown which state the system is initially
in. They proposed an exponential algorithm for deciding de-
tectability of a deterministic DES based on the computation
of an observer. Shortly after, Shu and Lin [20] extended
the problem to nondeterministic DESs (DESs modeled by
general nondeterministic finite automata) and designed an
algorithm deciding strong (periodic) detectability of nonde-
terministic DESs in polynomial time. Deciding strong (pe-
riodic) detectability was later shown NL-complete [14], that
is, the problem is efficiently solvable on a parallel computer.

The complexity of deciding weak (periodic) detectability has
been investigated only recently. Zhang [26] has shown that
deciding weak (periodic) detectability is PSpace-complete
and that it remains PSpace-hard even for deterministic DESs
with all events observable. Masopust [14] further strength-
ened these results by proving the same complexity for struc-
turally “simplest” deadlock-free DESs that are modeled by
deterministic finite automata without non-trivial cycles.

Since the requirement in the definition of detectability to
exactly determine the current and subsequent states after a
finite number of observations may be too strict in some ap-
plications, Shu and Lin [20] relaxed the notion of detect-
ability to a so-called D-detectability property. The idea be-
hind the relaxation is to distinguish only certain pairs of
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states rather than all states of the system. Four variants of
D-detectability have been defined: strong (periodic) D-de-
tectability and weak (periodic) D-detectability.

The notion of (D-)detectability has been extended in many
directions. To mention a few, Shu and Lin [21] extended
strong (D-)detectability to delayed (D-)detectability, moti-
vated by discrete event systems with delays, and designed a
polynomial-time algorithm to check strong (D-)detectability
for delayed DESs. Zhang and Giua [27] have recently im-
proved the algorithm for checking strong delayed (D-)detect-
ability. They further introduced several other notions of de-
tectability, see Zhang et al. [28] for more details. Alves and
Basilio [1] studied (D-)detectability for discrete event sys-
tems with multi-channel communication networks. Yin and
Lafortune [25] examined the verification of weak and strong
detectability properties for modular DESs, and showed that
checking both is PSpace-hard. The exact complexities of
these two problems have recently been resolved by Masopust
and Yin [17]. They are, respectively, PSpace-complete and
ExpSpace-complete. We refer the reader to Hadjicostis [8]
for the latest development of state-estimation properties.

Since detectability is a special case of D-detectability, de-
ciding D-detectability is at least as hard as deciding detect-
ability. An immediate consequence is that the complexity of
deciding whether a DES satisfies weak (periodic) D-detect-
ability is PSpace-complete.

The case of strong D-detectability is similar to that of strong
detectability. For strong (periodic) detectability, Shu and
Lin [20] designed a detector that can decide, in polynomial
time, whether a DES satisfies strong (periodic) detectability.
They have further shown that their detector is also suitable
for deciding strong D-detectability. Consequently, the com-
plexity of verifying whether a DES satisfies strong D-detect-
ability is polynomial; see Zhang and Giua [27] for details
on the algorithmic complexity. We further improve this re-
sult by showing that deciding whether a DES satisfies strong
D-detectability is NL-complete (Theorem 1). Since NL is
the class of problems that can be efficiently parallelized, see
Arora and Barak [2] for details, we obtain that the verifica-
tion of strong D-detectability can be efficiently verified on
a parallel computer.

However, deciding strong periodic D-detectability is more
involved. Although the detector-based technique provides a
polynomial-time algorithm to decide strong periodic detect-
ability, Shu and Lin [20] give an example that this algorithm
does not work for checking strong periodic D-detectability.
They leave the question of the existence of a polynomial-
time algorithm deciding strong periodic D-detectability of
a DES open. To the best of our knowledge, this question
has not yet been answered in the literature. We answer this
question by showing that there does not exist any algorithm
that would decide, in polynomial time, whether a DES sat-
isfies strong periodic D-detectability (Theorem 3), unless P

= PSpace. The question whether P = PSpace is a longstand-
ing open problem of computer science asking whether every

problem solvable in polynomial space can also be solved in
polynomial time. It is generally believed that it is not the
case. In particular, Theorem 3 shows that the strong peri-
odic D-detectability problem is PSpace-complete. Formu-
lated differently, the result says that the technique based on
the computation of the observer is in principle optimal. No-
tice that since NL is a strict subclass of PSpace, strong pe-
riodic D-detectability is significantly more complex than its
non-periodic counterpart—strong D-detectability.

We further show that strong periodic D-detectability is more
complex than strong D-detectability even for systems having
only a single observable event. Namely, we show that strong
periodic D-detectability cannot be verified in polynomial
time even for DESs that have only a single observable event
(Theorem 4), unless P = NP.

Finally, we specify a class of systems for which decid-
ing strong periodic D-detectability is in polynomial time.
Namely, we consider the class of systems modeled by NFAs
where all cycles are in the form of self-loops and where
there is no nondeterministic choice between a step changing
the state and a step not changing the state under the same
observation. These restrictions are purely structural, and the
models are called rpoDES, see Section 5 for details.

Our contributions, compared with known results, are sum-
marized in Tables 1 and 2.

2 Preliminaries and Definitions

For a set A, |A| denotes the cardinality of A and 2A its power
set. An alphabet Σ is a finite nonempty set of events. A string
over Σ is a sequence of events of Σ. Let Σ∗ denote the set
of all finite strings over Σ; the empty string is denoted by
ε. For a string u ∈ Σ∗, |u| denotes its length. As usual, the
notation Σ+ stands for Σ∗ \ {ε}.

A nondeterministic finite automaton (NFA) over an alphabet
Σ is a structure A = (Q, Σ, δ, I, F), where Q is a finite set
of states, I ⊆ Q is a set of initial states, F ⊆ Q is a set of
marked states, and δ : Q × Σ → 2Q is a transition function
that can be extended to the domain 2Q × Σ∗ by induction.
The language recognized by A is the set L(A) = {w ∈ Σ∗ |
δ(I,w) ∩ F , ∅}. Equivalently, the transition function δ is a
relation δ ⊆ Q × Σ × Q, where, for instance, δ(q, a) = {s, t}
denotes the two transitions (q, a, s) and (q, a, t).

The NFA A is deterministic (DFA) if it has a unique initial
state, i.e., |I | = 1, and no nondeterministic transitions, i.e.,
|δ(q, a)| ≤ 1 for every q ∈ Q and a ∈ Σ. The DFA A is total
if in every state, a transition under every event is defined,
i.e., |δ(q, a)| = 1 for every q ∈ Q and a ∈ Σ. For DFAs, we
identify singletons with their elements and simply write p
instead of {p}. Specifically, we write δ(q, a) = p instead of
δ(q, a) = {p}.

A discrete event system (DES) is an NFA G with all states
marked. Hence we simply write G = (Q, Σ, δ, I) leaving
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DESs rpoDESs

detectability D-detectability detectability D-detectability

known known new known known new

strong NL-c [14] in P [20] NL-c (Thm 1) NL-c [14] in P [20] NL-c (Thm 1 & Cor 9)

weak PSpace-c [26] PSpace-c — PSpace-c [14] PSpace-c —

strong periodic NL-c [14] ? PSpace-c (Thm 3) NL-c [14] ? NL-c (Thm 8)

weak periodic PSpace-c [26] PSpace-c — PSpace-c [14] PSpace-c —

Table 1
Summary of known and new results for DESs and rpoDESs; ? means that the problem was open; results easily derivable from existing
results are also placed among known results

unary DESs unary rpoDESs

detectability D-detectability detectability D-detectability

strong NL-c [14] NL-c (Thm 1) NL-c (Cor 9) NL-c (Cor 9)

weak NL-c (Thm 6) NL-c (Thm 6) NL-c (Thm 6) NL-c (Thm 6)

strong periodic NL-c [14] NP-c (Thm 4) NL-c (Thm 8) NL-c (Thm 8)

weak periodic NL-c (Thm 6) NP-c (Thm 6) NL-c (Thm 6) NL-c (Thm 6)

Table 2
Summary of known and new results for DESs and rpoDESs with a single observable event

out the set of marked states. Additionally, the alphabet Σ is
partitioned into the set Σo of observable events and the set
Σuo = Σ \ Σo of unobservable events.

State-estimation properties are based on the observation of
events. The observation is described by projections. The pro-
jection P : Σ∗ → Σ∗o is a morphism defined by P(a) = ε for
a ∈ Σ \ Σo, and P(a) = a for a ∈ Σo. The action of P on
a string w = a1a2 · · · an, where ai ∈ Σ for 1 ≤ i ≤ n, is to
erase all events from w that do not belong to Σo; in partic-
ular, P(a1a2 · · · an) = P(a1)P(a2) · · · P(an). The definition
can readily be extended to infinite strings and languages.

Shu and Lin [20] make the following two reasonable as-
sumptions on the DES G = (Q, Σ, δ, I) that we adopt:

(1) G is deadlock free – it means that for every state of
the system, at least one event can occur; formally, for
every q ∈ Q, there exists σ ∈ Σ such that δ(q, σ) , ∅.

(2) No loop in G consists solely of unobservable events –
for every q ∈ Q and every w ∈ Σ+uo, q < δ(q,w).

We point out that to verify whether a system satisfies these
two properties is very easy. The violation of any of the prop-
erties is often considered a modeling error. Moreover, omit-
ting the conditions does not change our results.

The set of infinite sequences of events (or trajectories) gen-
erated by the DES G is denoted by Lω(G). Given a set
Q′ ⊆ Q, the set of all possible states after observing a string
t ∈ Σ∗o is denoted by

R(Q′, t) =
⋃

w∈Σ∗,P(w)=t

δ(Q′,w) .

For w ∈ Lω(G), we denote the set of its prefixes by Pr(w).

2.1 A Brief Complexity Review

We now briefly review the basics of complexity theory
needed to understand the results. A decision problem is a
yes-no question. A decision problem is decidable if there
exists an algorithm that can solve the problem. Complexity
theory classifies decidable problems to classes according to
the time or space an algorithm needs to solve the problem.
The complexity classes we consider in this paper are NL, P,
NP, and PSpace. They denote the classes of problems that are
solvable by a nondeterministic logarithmic-space, determin-
istic polynomial-time, nondeterministic polynomial-time,
and deterministic polynomial-space algorithm, respectively.
The hierarchy of classes is NL ⊆ P ⊆ NP ⊆ PSpace. Which
of the inclusions are strict is a longstanding open problem
in computer science. The widely accepted conjecture is that
all inclusions are strict. However, so far only the inclusion
NL ⊆ PSpace is known to be strict. A decision problem is
NL-complete (resp. NP-complete, PSpace-complete) if it
belongs to NL (resp. NP, PSpace) and every problem from
NL (resp. NP, PSpace) can be reduced to it by a determin-
istic logarithmic-space (resp. polynomial-time) algorithm.

3 Definitions of the D-Detectability Problems

Shu and Lin [20] defined D-detectability as a generalization
of detectability by making the states that need to be distin-
guished explicit.

Let G = (Q, Σ, δ, I) be a DES, and let Tspec ⊆ Q × Q be a
relation on the set of states of G. The relation Tspec specifies
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pairs of states that must be distinguished, and is therefore
called a specification. The idea behind the definition of D-de-
tectability is to ensure that the pairs of states from Tspec are
distinguished after a finite number of observations. We now
recall the definitions of the four variants of D-detectability.

A DES G = (Q, Σ, δ, I) is strongly D-detectable with respect
to projection P : Σ∗ → Σ

∗
o and a specification Tspec if, for

all trajectories of the system, the pairs of states of Tspec can
be distinguished in every step of the system after a finite
number of observations. This is formally defined as follows:

(∃n ∈ N)(∀s ∈ Lω(G))(∀t ∈ Pr(s)) |P(t)| > n

⇒ (R(I, P(t)) × R(I, P(t))) ∩ Tspec = ∅ .

A DES G = (Q, Σ, δ, I) is weakly D-detectable with respect
to projection P : Σ∗ → Σ

∗
o and a specification Tspec if, for

some trajectories of the system, the pairs of states of Tspec

can be distinguished in every step of the system after a finite
number of observations. This is formally defined as follows:

(∃n ∈ N)(∃s ∈ Lω(G))(∀t ∈ Pr(s)) |P(t)| > n

⇒ (R(I, P(t)) × R(I, P(t))) ∩ Tspec = ∅ .

A DES G = (Q, Σ, δ, I) is strongly periodically D-detectable
with respect to projection P : Σ∗ → Σ

∗
o and a specification

Tspec if the pairs of states of Tspec can be periodically dis-
tinguished for all trajectories of the system. Formally,

(∃n ∈ N)(∀s ∈ Lω(G))(∀t ∈ Pr(s))(∃t ′ ∈ Σ∗)

tt ′ ∈ Pr(s) ∧ |P(t ′)| < n

∧ (R(I, P(tt ′)) × R(I, P(tt ′))) ∩ Tspec = ∅ .

A DES G = (Q, Σ, δ, I) is weakly periodically D-detectable
with respect to projection P : Σ∗ → Σ

∗
o and a specification

Tspec if the pairs of states of Tspec can be periodically dis-
tinguished for some trajectories of the system. Formally,

(∃n ∈ N)(∃s ∈ Lω(G))(∀t ∈ Pr(s))(∃t ′ ∈ Σ∗)

tt ′ ∈ Pr(s) ∧ |P(t ′)| < n

∧ (R(I, P(tt ′)) × R(I, P(tt ′))) ∩ Tspec = ∅ .

4 Results

We now discuss the complexity of deciding whether a DES
satisfies D-detectability. As already pointed out in the in-
troduction, the complexity of checking whether a DES sat-
isfies weak (periodic) D-detectability follows directly from
the complexity of checking weak (periodic) detectability. In-
deed, a polynomial space is sufficient for an algorithm based
on the inspection of states in the observer and works for all

the D-detectability variants. Therefore, deciding weak (pe-
riodic) D-detectability is in PSpace. On the other hand, de-
tectability is a special case of D-detectability for Tspec =

Q × Q \ {(q, q) | q ∈ Q}. Therefore, deciding weak (pe-
riodic) D-detectability is at least as hard as deciding weak
(periodic) detectability. Since the latter is PSpace-hard, so
is the former.

4.1 Verification of Strong D-Detectability

Shu and Lin [20] designed an algorithm that verifies strong
(periodic) detectability in polynomial time. Their algorithm
is based on the construction of a finite automaton called a
detector. Intuitively, given a DES G, their detector Gdet is
constructed from G so that (i) the set of initial states of Gdet

is the set of all states of G reachable from the initial states of
G under strings consisting only of unobservable events, (ii)
all the other states of Gdet are one- or two-element subsets
of the set of states of G, and (iii) the transition relation of
Gdet is constructed in the similar way as that of the observer,
but if the reached state X in the observer consists of more
than two states, then the detector Gdet has several transitions
each leading to a two-element subset of X , see Shu and
Lin [20] for details. Since the states of the detector are one-
or two-element subsets, their number is polynomial.

Shu and Lin [20] showed that a DES G satisfies strong (pe-
riodic) detectability if and only if any state reachable from
any loop in Gdet consists solely (periodically) of distinguish-
able states. They further proved that their algorithm, respec-
tively the detector, works for checking whether a DES sat-
isfies strong D-detectability. This in particular implies that
the complexity of verifying whether a DES satisfies strong
D-detectability is polynomial. Zhang and Giua [27] recently
improved the algorithmic complexity of this problem.

We now discuss the computational complexity of deciding
strong D-detectability and show that it is an NL-complete
problem. Consequently, since NL is the class of problems
that can be efficiently parallelized, see Arora and Barak [2]
for details, our result shows that the question whether a DES
satisfies strong D-detectability can be efficiently verified on
a parallel computer.

Theorem 1. Deciding whether a DES is strongly D-detect-
able is an NL-complete problem.

Proof. We prove membership of the problem in NL by
giving a nondeterministic logarithmic-space algorithm that
checks whether the condition does not hold. Since NL is
closed under complement, see Immerman [10] or Szelepc-
sényi [24] for details, it shows that there is a nondeterminis-
tic logarithmic-space algorithm checking whether the con-
dition is satisfied.

To check that the property is not satisfied, our NL algorithm
guesses two states of Gdet , say x and y, where y contains
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Figure 1. The DES A constructed from G in the NL-hardness
proof of Theorem 1

1 2 3

a

b
a

a

Figure 2. The DES G from Example 2

indistinguishable states, and verifies that (i) y is reachable
from x, (ii) x is reachable from the initial state of Gdet , and
(iii) x is in a cycle, i.e., x is reachable from x by a path having
at least one transition. Notice that our algorithm does not
construct the detector Gdet . It only stores a constant number
of states of Gdet and computes the required transitions of
Gdet on demand. Therefore, our algorithm does not need
more than a logarithmic space. For more details how to check
reachability in NL, we refer the reader to Masopust [15].

To show NL-hardness, we reduce the DAG non-reachability
problem, see Cho and Huynh [6] for details: Given a directed
acyclic graph G = (V, E) and two nodes s, t ∈ V , it asks
whether t is not reachable from s. From G, we construct a
DES A = (V ∪ {x}, {a}, δ, s), where x < V is a new state
and a is an observable event. For every edge (p, r) ∈ E , we
add the transition (p, a, r) to δ, and for every p ∈ V \ {t}, we
add the transition (p, a, x) to δ. Moreover, we add the self-
loop transitions (x, a, x) and (t, a, t) to δ. The construction is
depicted in Fig. 1. Notice that A is deadlock-free and has no
unobservable events. Let the specification Tspec be defined
as Tspec = {(t, x)}. We now show that t is not reachable from
s in the graph G if and only if the DES A is strongly D-de-
tectable. If t is not reachable from s in G, then, for every
k ≥ |V |, δ(s, ak) = {x}. Therefore, A is strongly D-detect-
able. If t is reachable from s in G, then, for every k ≥ |V |,
δ(s, ak) = {t, x}. Therefore, A is not strongly D-detectable,
because (t, x) ∈ Tspec . �

4.2 Verification of Strong Periodic D-Detectability

Although the detector-based technique leads to a polynomi-
al-time algorithm deciding whether a DES satisfies strong
periodic detectability, Shu and Lin [20] have shown that this
algorithm does not work for checking strong periodic D-de-
tectability. To give the reader an idea of the detector-based
polynomial-time algorithm and of the problem why it does
not work for checking strong periodic D-detectability, we
slightly elaborate the example of Shu and Lin [20].

Example 2. Let G = ({1, 2, 3}, {a, b}, δ, {1, 2, 3}) be the
DES depicted in Fig. 2, where both events are observable.

{1, 2, 3}

{1, 3}{1, 2} {2, 3}

{2} {3}

a a a
a

a

a

b

b b
a

a

Figure 3. Detector Gdet constructed from the DES G of Example 2

{1, 2, 3} {2} {3}

a

b
a

a

Figure 4. The observer of the DES G from Example 2

Let the specification Tspec = {(1, 3)}. The detector Gdet is
depicted in Fig. 3. In Gdet , we can immediately see that G is
not strongly D-detectable, since there is an infinite path that
goes periodically through state {1, 3}, violating thus strong
D-detectability. From the same infinite path going periodi-
cally through the states {1, 2} and {1, 3}, the reader could get
an impression that G is strongly periodically D-detectable.
However, this is not the case as can be seen from the observer
depicted in Fig. 4. There, there is an infinite trajectory aω in
state {1, 2, 3} that violates strong periodic D-detectability. ⋄

Shu and Lin [20] have left the question whether there exists
a polynomial-time algorithm deciding strong periodic D-de-
tectability of a DES open. To the best of our knowledge,
this question has not yet been answered in the literature. We
answer this question in the sequel. We distinguish two cases
based on the number of observable events in the system:

(i) The general case where the system has two or more ob-
servable events;

(ii) A special case where the system has only a single ob-
servable event.

The case of two or more observable events

As pointed out above, the problem whether a DES satisfies
strong or weak (periodic) D-detectability is in PSpace. In
this section, we show that deciding strong periodic D-detect-
ability is PSpace-hard, and hence PSpace-complete. Conse-
quently, there is no algorithm solving this problem in poly-
nomial time, unless P = PSpace.

Theorem 3. Deciding whether a DES is strongly periodi-
cally D-detectable is a PSpace-complete problem. The prob-
lem is PSpace-hard even if the DES has only two observable
and no unobservable events.
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Proof. Membership in PSpace follows from the inspection
of states of the observer that are built on demand [20,26,15].

To show PSpace-hardness, we reduce the intersection empti-
ness problem. The problem is PSpace-complete [7] and asks,
given a sequence A1, . . . ,An of total DFAs over a common
alphabet Σ with |Σ| ≥ 2, whether the language ∩n

i=1
L(Ai)

is empty? Without loss of generality, we may assume that
Σ = {0, 1}. From A1, . . . ,An, we construct a DES G that
is strongly periodically D-detectable if and only if the inter-
section of the languages of A1, . . . ,An is empty.

The main idea of our proof is to construct G as a non-
deterministic union of the automata A1, . . . ,An together
with n + 1 new states such that all and only these states are
reachable at the same time if and only if the intersection is
nonempty. In the case the intersection is empty, only a strict
subset of the new states can be reached at the same time.
After reaching the new states, the computation remains in
the new states. The new states (up to one special state) form
a cycle, and hence, during any further computation, the cur-
rent states are periodically rotated. This allows us to make
one of the new states periodically indistinguishable from the
special state, and one periodically distinguishable.

Formally, let A1, . . . ,An be total DFAs over a common
alphabet Σ, and let Ai = (Qi, Σ, δi, q0,i, Fi). Without loss
of generality, we may assume that the states of the DFAs
are pairwise disjoint. We construct a DES G as a nonde-
terministic union of the automata Ai, i.e., G contains all
states and transitions of every Ai , and we add n + 1 new
states q−, q+

1
, . . . , q+n and several new transitions under a new

event a < Σ as depicted in Fig. 5. Namely, for i = 1, . . . , n,
we add the transition (q, a, q−) for every non-marked state
q ∈ Qi \ Fi , and the transition (q, a, q+

i
) for every marked

state q ∈ Fi . Furthermore, we add the self-loop (q−, σ, q−)
for every σ ∈ Σ′ = Σ ∪ {a}. Finally, we create a cy-
cle on the states Q+ = {q+

1
, . . . , q+n } by adding, for every

σ ∈ Σ′, the transitions (q+
i
, σ, q+

i+1
), for 1 ≤ i < n, and the

transition (q+n, σ, q
+

1
). The set of initial states of G is the

set I = {q−, q0,1, . . . , q0,n} of initial states of the automata
Ai plus the newly added state q−. The alphabet of G is
Σ
′
= Σ∪ {a} = {0, 1, a}, all events of which are observable.

To show that the problem is PSpace-hard for |Σ′ | = 2, we
modify G by encoding the events of Σ′ in binary as follows.
Let b be a new event, and let f : Σ∗ → {a, b}∗ be a morphism
defined by f (0) = ba and f (1) = bb. Now, in G, we replace
each transition t = (p, 0, q) with two transitions (p, b, pt )
and (pt, a, q), where pt is a new state. Similarly, we replace
each transition r = (p, 1, q) with two transitions (p, b, pr )
and (pr, b, q), where pr is a new state; see Fig. 7 for an
illustration how to replace the transitions of the DFAs of
Fig. 6. Notice that this replacement requires to add a new
state for each transition of G, which can indeed be done in
polynomial time. This results in a DES G′ with the alphabet
Σ
′
= {a, b}, where both a and b are observable.

q+
1

q+
2

q+n

A1

A2

An

...
...

q−

a

a

a

Σ
′

Σ
′

Σ
′

a

a

a

Σ
′

Σ
′

Figure 5. Construction of the DES G from the PSpace-hardness
part of the proof of Theorem 3

We define the specification Tspec = {(q−, q+
1
)}, and show

that G′ is strongly periodically D-detectable if and only if
the intersection ∩n

i=1
L(Ai) is empty.

Assume that the intersection is empty. A trajectory that never
reaches the states of Q+ cannot violate strong periodic D-de-
tectability, because it cannot enter state q+

1
from the speci-

fication. Therefore, assume that G′ eventually enters a state
of Q+. When G′ enters a state of Q+, it leaves all states out
of Q+ ∪ {q−}. Thus, let s ∈ Lω(G′) be an arbitrary trajec-
tory that enters Q+. Then, s = s1s2 where G′ generates s1 in
states outside Q+, and s2 is the part after G′ first enters Q+.
In this case, s1 = f (w) ∈ {a, b}∗, for some w ∈ {0, 1}∗, and
s2 ∈ a{a, b}ω. Then, after generating the first event of s2,
the observer of G′ is in a set of states consisting of q− and
a strict subset of Q+; indeed, G′ cannot transit to all states
of Q+ at the same time, since the assumption that the inter-
section is empty implies that, for every w ∈ Σ∗, there exists
i ∈ {1, . . . , n} such that w < L(Ai).

Let pi ∈ Q+ = {q+
1
, . . . , q+n } denote the state of Q+ with the

minimal index, in which G′ cannot be when the ith event of
s2 is generated. By construction, the cycle on Q+ ensures that
pi periodically alternates among q+

1
and some other states of

Q+ when generating s2. Therefore, in the infinite sequence
p1, p2, . . ., there are infinitely many j such that pj = q+

1
,

and hence q− and q+
1

are periodically distinguished, which
shows that G is strongly periodically D-detectable.

On the other hand, assume that the intersection is nonempty,
and let w ∈ ∩n

i=1
L(Ai). Then, after generating the string

f (w)a, the observer of G′ reaches the state {q−}∪Q+. Now,
every transition keeps G′ in all states of {q−}∪Q+ , and hence
it results in a self-loop in the observer of G′. However, this
self-loop violates strong periodic D-detectability, because it
contains both states q− and q+

1
. Therefore, any trajectory

s ∈ Lω(G′) with f (w)a as its prefix leads to a set of states
where the states of Tspec can never be distinguished, and
hence G′ is not strongly periodically D-detectable. �
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a b c d

A1 A20, 1

0, 1

0, 1

0, 1

Figure 6. The DFAs A1 and A2 over Σ = {0, 1}

Two illustrative examples of our construction without the bi-
nary encoding can be found in the conference version [3].
Here we illustrate the binary encoding on one of the exam-
ples. Let A1 and A2 be total DFAs over the alphabet {0, 1}
depicted in Fig. 6; L(A1) consists of strings of odd length,
and L(A2) of strings of even length. Our construction results
in a DES G′ depicted in Fig. 7. Since L(A1) ∩ L(A2) = ∅,
G′ is strongly periodically D-detectable, which is evident
from the observer of G1 depicted in Fig. 8, where on every
trajectory, q− and q+

1
can be periodically distinguished.

a

e

f

h

g
b q+

1

c

i

j

ℓ

k
d q+

2

A1

A2

q−

a

a

b
b

b

a

b

b

b
a

b
b

b

a

b

b

b
a

a, ba, b

a

a

a, b

Figure 7. The DES G′ with Σ′ = {a, b}, where 0 is encoded as
ba and 1 as bb

The case of a single observable event

In the previous subsection, we have shown that deciding
strong periodic D-detectability is PSpace-complete for DESs
with at least two observable events. We now show that the
problem is still more difficult than its non-periodic counter-
part even for DESs having only a single observable event.

{a, d, q−} X Y {b, c, q−}

{q−, q+
1
}{q−, q+

2
}

a a
a, b

a, b

b

a, b

b

a, b

Figure 8. The observer of G′; states marked by double circles
contain indistinguishable states of G′; here X = {e, f , k, ℓ, q−} and
Y = {g, h, i, j, q−}

Theorem 4. Deciding strong periodic D-detectability for
DESs with a single observable event is NP-complete.

Proof. Consider a DES with a single observable event {a}.
If the DES has unobservable events, we can eliminate them
as follows. First, we replace each unobservable transition,
i.e., a transition of the form (p, u, q) with u being an unob-
servable event, by an ε-transition (p, ε, q). Then, we use the
standard technique to eliminate ε-transitions [9]. This elimi-
nation results in a DES and can be done in polynomial time.
Therefore, without loss of generality, we may assume that
the DES is of the form G = (Q, {a}, δ, I).

A proof that we can decide strong periodic D-detectability
of G in nondeterministic polynomial time uses a so-called
fast matrix multiplication technique. The basic idea of this
technique is to represent the transition function δ of G as a
binary matrix M, where M[i, j] = 1 if and only if there is a
transition from state i to state j in G. Then, for r ≥ 1, Mr

represents the reachability in G under the string ar . Further-
more, using the fact that M2

= M × M, M4
= M2 × M2,

etc., we can compute Mr by O(log r) matrix multiplications,
each multiplication in polynomial time. For more details and
examples on this technique, we refer to Masopust [15].

Assume that G has n states. Then, the observer of G consists
of a sequence of k states followed by a cycle consisting of ℓ
states, that is, the language of G is ak(aℓ)∗. Since the number
of states of the observer of G is at most 2n, k + ℓ ≤ 2n.

Now, G is strongly periodically D-detectable if and only if
there is a state X ⊆ Q in the cycle of the observer of G (we
assume that the observer is constructed by the standard sub-
set construction [9]) that is disjoint from the specification,
that is, X∩Tspec = ∅. Indeed, to check whether X∩Tspec = ∅
can be done in polynomial time. It remains to show how to
find X in polynomial time. This means to find m ≤ 2n such
that δ(I, a2n+m) ∩Tspec = ∅. However, an NP algorithm can
guess m in binary and verify the guess in polynomial time by
computing δ(I, a2n+m) using the fast matrix multiplication,
cf. Masopust [15] for more details and an example.

To prove NP-hardness, we use the construction of Stock-
meyer and Meyer [23] encoding a boolean formula in 3CNF
in the form of a unary NFA.1 For an illustration, the reader
may follow Example 5 in parallel with the proof.

1 A boolean formula is built from propositional variables, oper-
ators conjunction, disjunction, and negation, and parentheses. A
formula is satisfiable if there is an assignment of 1 (true) and 0
(false) to its variables making it true. A literal is a variable or
its negation. A clause is a disjunction of literals. A formula is in
conjunctive normal form (CNF) if it is a conjunction of clauses;
e.g., ϕ = (x ∨ y ∨ z) ∧ (¬x ∨ y ∨ z) is a formula in CNF with two
clauses x ∨ y ∨ z and ¬x ∨ y ∨ z. If every clause has at most three
literals, the formula is in 3CNF. Given a formula in 3CNF, 3CNF
satisfiability asks whether the formula is satisfiable; e.g., ϕ is sat-
isfiable for (x, y, z) = (0, 1, 0). 3CNF satisfiability is NP-complete.
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Let ϕ be a formula in 3CNF with n variables and m clauses,
and let Ck be the set of literals in the kth clause, k = 1, . . . ,m.
The assignment to the variables is represented by a binary
vector of length n. Let p1, . . . , pn be the first n prime num-
bers. For a natural number z congruentwith 0 or 1 modulo pi ,
for every i = 1, . . . , n, we say that z satisfies ϕ if the assign-
ment (z mod p1, z mod p2, . . . , z mod pn) ∈ {0, 1}n satisfies
ϕ. Let A0 be an NFA recognizing the language of the ex-

pression
⋃n

i=1

⋃pi−1

j=2
0j · (0pi )∗, that is, L(A0) = {0z | ∃k ≤

n, z . 0 mod pk and z . 1 mod pk} is the set of all natural
numbers that do not encode an assignment to the variables.

For each Ck , we construct an NFA Ak such that if 0z ∈
L(Ak) and z is an assignment, then z does not assign 1
(true) to any literal in Ck ; e.g., if Ck = {xr,¬xs, xt }, 1 ≤
r, s, t ≤ n and r, s, t are distinct, let zk be the unique integer
such that 0 ≤ zk < pr pspt , zk ≡ 0 mod pr , zk ≡ 1 mod ps ,
and zk ≡ 0 mod pt . Then L(Ak) = 0zk · (0pr ps pt )∗.

Now, ϕ is satisfiable if and only if there exists z such that
z encodes an assignment to ϕ and 0z < L(Ak) for all 1 ≤
k ≤ m, which is if and only if L(A0) ∪

⋃m
k=1 L(Ak) , 0∗.

The construction of all the automata A0,A1, . . . ,Ak can be
done in polynomial time [23].

Let A denote the NFA obtained by taking the automata
A0, A1, . . . ,Ak as a single NFA, and let p = Πn

i=1
pi . If

z encodes an assignment to ϕ, then so does z + cp for any
natural c: if z ≡ xi mod pi , then z + cp ≡ xi mod pi , for
every 1 ≤ i ≤ n, as well. Thus, if 0z < L(Ak) for all k,
then 0z(0p)∗ ∩ L(A) = ∅. Since both languages are infinite,
the minimal DFA recognizing L(A) must have a nontrivial
cycle alternating between marked and non-marked states,
and hence the same holds for the observer of A.

We now show that ϕ is satisfiable if and only if A is strongly
periodically D-detectable with respect to the specification
Tspec consisting of all pairs of states, where the states come
from two different automata Ai and A j , i , j, and at least
one state is marked in its automaton.

Assume that ϕ is satisfiable. As shown above, this is if and
only if L(A) , 0∗. We have further shown that L(A) is infi-
nite and that the observer of A consists of a single trajectory
with a non-marked state, X , in its cycle part, i.e., X contains
only non-marked states of the automata A0, . . . ,Ak . Since
Tspec consists of pairs of states of two different automata
Ai and A j , 0 ≤ i , j ≤ k, with at least one state marked in
its automaton, we have that (X × X) ∩Tspec = ∅. Therefore,
A is strongly periodically D-detectable with respect to the
specification Tspec .

On the other hand, assume that ϕ is not satisfiable. As shown
above, this is if and only if L(A) = 0∗. But then every state
of the observer of A must be marked, i.e., every state, X , of
the observer contains a marked state of some Ai , 0 ≤ i ≤ k,
and hence (X ×X)∩Tspec , ∅. Therefore, A is not strongly
periodically D-detectable with respect to Tspec . �

a b c

d

e
0 0

0 0

0

Figure 9. Automaton A1,0

f

g h i j

k

0
0 0 0

0

0

Figure 10. Automaton A1,1

l m n o

pqrs

t
0 0 0

0
000

0

0

Figure 11. Automaton A1,2

The following example illustrates the construction.

Example 5. Let ϕ1 = (x ∨ y) ∧ (¬x ∨ y) and ϕ2 = x ∧ ¬x.
Obviously, ϕ1 is satisfiable and ϕ2 is not. For both formulae,
we can construct the unary automata A1 and A2, respec-
tively, and show that A1 is strongly periodically D-detect-
able while A2 is not. In this paper, we construct only the
automaton A1; the construction of the automaton A2 can
be found in the conference version [3].

The formula ϕ1 = (x ∨ y) ∧ (¬x ∨ y) has two variables, and
therefore we set p1 = 2 and p2 = 3, the first two prime num-
bers. The automaton A1,0, depicted in Fig. 9, recognizes

the language 02(03)∗ of all strings that do not encode the
assignment to ϕ1. Since ϕ1 consists of two clauses, we fur-
ther construct two automata: A1,1 recognizing the language

(06)∗, and A1,2 recognizing the language 03(06)∗; the reader
can verify that if 0z ∈ L(A1,1) and z is an assignment, then z
assigns true neither to x nor to y, and if 0z ∈ L(A1,2) and z
is an assignment, then z assigns true to x (that is, it assigns
false to the literal ¬x) and false to y. The automata are
depicted in Figs. 10 and 11, respectively. The specification

Tspec = {c} × { f , g, h, i, j, k, l,m, n, o, p, q, r, s, t}

∪ {a, b, c, d, e, l,m, n, o, p, q, r, s, t} × { f }

∪ {a, b, c, d, e, f , g, h, i, j, k} × {o} .

Let A1 be the NFA consisting of the automata A1,0, A1,1,
and A1,2. The observer of A1 is depicted in Fig. 12. The
reader can see that the observer contains a cycle where the
state {e, j, p} appears periodically. Since this state does not
contain any pair from the specification Tspec, the NFA A1

is strongly periodically D-detectable as claimed. ⋄

As already pointed out, the observer of a DES with a single
observable event consists of a single trajectory ending with
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{a, f , l} {b, g,m} {c, h, n} {d, i, o}

{e, j, p}{c, k, q}{d, f , r}{e, g, s}

{c, h, t}
0 0 0

0
000

0

0

Figure 12. The observer of the NFA A1; states marked by a double
circle contain indistinguishable states of A1

a cycle. We now formulate the consequences of this obser-
vation.

Theorem 6. For a DES with a single observable event, de-
ciding weak detectability coincides with deciding strong de-
tectability, and deciding weak periodic detectability coin-
cides with deciding strong periodic detectability. The same
holds true for D-detectability.

Proof. Let G be a DES with n states and a single observable
event Σo = {a}. Then the observer of G consists of a se-
quence of k states followed by a cycle consisting of ℓ states,
that is, the language of G is ak(aℓ)∗ with k + ℓ ≤ 2n. The
existence of the cycle follows from the two assumptions on
Page 3. Since the observer of G consists of a single infinite
trajectory, deciding strong (periodic) detectability coincides
with deciding weak (periodic) detectability; the same holds
when we replace detectability with D-detectability. �

5 A Tractable Case

In the previous sections, we have shown that deciding strong
periodic D-detectability is a difficult problem for DES mod-
eled by NFAs. In this section, we discuss a special case of
systems for which the verification of strong periodic D-de-
tectability is polynomial.

Looking for a class of DESs, for which the problem is
tractable, we first inspect the proof of Theorem 3. This re-
veals that the proof is based on the intersection emptiness
problem for DFAs that was shown by Kozen [11] to be
PSpace-complete. His proof heavily relies on DFAs with cy-
cles. Allowing only self-loops instead of cycles in the DFAs
makes the problem easier [16]. Therefore, we consider DESs
modeled by NFAs where all cycles in the transition graph are
only self-loops. A self-loop may be added to any state, and
hence the NFA may fulfill the deadlock-free requirement.
Such NFAs recognize a strict subclass of regular languages
that are strictly included in star-free languages [4,12]. Star-
free languages are languages definable by linear temporal
logic, which is a logic widely used as a specification lan-
guage in automated verification.

A practical motivation for such systems comes from the fol-
lowing observation. Every infinite trajectory in a system de-
scribes a task that is possibly repeated ad infinitum. Indeed,
every task is a finite sequence of events, though for the mod-
eling purposes some repetitions of subtasks may be modeled

a

a

Figure 13. The forbidden pattern of rpoNFAs

as cycles. In some cases and on same level of abstraction,
these internal cycles could be seen as self-loops. This results
in a system with only self-loops. Now we need to model
the situation that the task has been finished and the whole
process can be restarted. This can be done by the repeated
generation of a special event telling the system to restart the
specific task.

Let A = (Q, Σ, δ, I, F) be an NFA. The reachability relation
≤ on the state set Q is defined by p ≤ q if there is w ∈ Σ∗

such that q ∈ δ(p,w). The NFA A is restricted partially
ordered (rpoNFA) if the reachability relation ≤ is a partial
order and A is self-loop deterministic in the sense that the
pattern of Fig. 13 does not appear. Formally, for every state q
and every event a, if q ∈ δ(q, a) then δ(q, a) = {q}. We now
formally define so-called rpoDES. The name comes from
restricted partially ordered DES.

Definition 7. Let G = (Q, Σ, δ, I) be a DES with Σo being
the set of observable events. Let P : Σ∗ → Σ

∗
o be the cor-

responding projection. We say that G is an rpoDES if the
NFA P(G) = (Q, Σo, δ

′, I) obtained from G by replacing ev-
ery transition (p, a, q) by (p, P(a), q), and by eliminating the
ε-transitions [9] is an rpoNFA.

Notice that P(G) is an NFA that can be constructed from G
in polynomial time [9]. Therefore, the question whether a
DES is an rpoDES is decidable in polynomial time.

What do we know about rpoDES? Deciding weak (peri-
odic) detectability for rpoDESs is PSpace-complete [14],
and hence so is deciding weak (periodic) D-detectability.

We now show that the complexity of deciding strong periodic
D-detectability for rpoDESs coincides with the complexity
of deciding strong D-detectability.

Theorem 8. Deciding strong periodic D-detectability for
rpoDESs is NL-complete.

Proof. To prove the theorem, we show that the observer of
an rpoDES is a partially ordered DFA. Then, since there are
no nontrivial cycles in the observer, strong periodic D-de-
tectability coincides with strong D-detectability. Theorem 1
then finishes the proof.

Let A = (Q, Σo, δ, I, F) be an rpoNFA. We show that the
DFA D computed from A by the standard subset construc-
tion (i.e., the observer) is partially ordered. To this aim, let
X = {p1, . . . , pn} with pi < pj for i < j be a state of D, and
let w ∈ Σ∗ be a nonempty string such that δD(X,w) = X .
First, we show that δ(pi,w) = {pi} for all i. For the sake
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of contradiction, let 1 ≤ k ≤ n be the minimal integer such
that δ(pk,w) , {pk }. Since X = δ(X,w) = ∪n

i=1
δ(pi,w),

δ(pi,w) = {pi} for all i < k, and pk < pi ≤ δ(pi,w) for
all i > k, we have that pk < ∪n

i=1
δ(pi,w) = X , which is

a contradiction.2 Therefore, pk ∈ δ(pk,w), and the defini-
tion of rpoNFAs implies that every event of w is in a self-
loop in state pk . Because rpoNFAs have no choice between
staying in the state and leaving it under the same event,
δ(pk,w) = {pk}. Thus, for i = 1, . . . , n, δ(pi, a) = {pi} for
every event a occurring in w. Consequently, for any state
Y of D and any strings w1 and w2, if δ(X,w1) = Y and
δ(Y,w2) = X , the previous argument gives that X = Y , and
hence D is partially ordered. �

Finally, we have the following corollary of Theorem 1.

Corollary 9. Deciding whether an rpoDES with a single
observable event is strongly (D-)detectable is NL-complete.

Proof. This result is an immediate consequence of the proof
of Theorem 1, since in the hardness part we actually con-
struct a unary rpoNFA, cf. Fig. 1. �

6 Conclusions

In this paper, we answered the open question concerning the
complexity of deciding whether a DES satisfies strong peri-
odic D-detectability, and provided a full complexity picture
of this problem. Since the results for DES are mainly nega-
tive, we also discussed a class of DESs, so-called rpoDESs,
for which the complexity of deciding strong (periodic) D-de-
tectability is tractable.
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