
1

Sufficient Conditions for Feasibility of Optimal
Control Problems Using Control Barrier Functions

Wei Xiao, Calin Belta, and Christos G. Cassandras

Abstract—It has been shown that satisfying state and control
constraints while optimizing quadratic costs subject to desired
(sets of) state convergence for affine control systems can be
reduced to a sequence of quadratic programs (QPs) by using Con-
trol Barrier Functions (CBFs) and Control Lyapunov Functions
(CLFs). One of the main challenges in this approach is ensuring
the feasibility of these QPs, especially under tight control bounds
and safety constraints of high relative degree. In this paper,
we provide sufficient conditions for guranteed feasibility. The
sufficient conditions are captured by a single constraint that
is enforced by a CBF, which is added to the QPs such that
their feasibility is always guaranteed. The additional constraint
is designed to be always compatible with the existing constraints,
therefore, it cannot make a feasible set of constraints infeasible
- it can only increase the overall feasibility. We illustrate the
effectiveness of the proposed approach on an adaptive cruise
control problem.

Index Terms—Lyapunov methods, Safety-Critical Control,
Control Barrier Function, Optimal Control.

I. INTRODUCTION
Constrained optimal control problems with safety specifi-

cations are central to increasingly widespread safety critical
autonomous and cyber physical systems. Traditional Hamil-
tonian analysis [1] and dynamic programming [2] cannot
accommodate the size and nonlinearities of such systems,
and their applicability is mostly limited to linear systems.
Model Predictive Control (MPC) [3] methods have been
shown to work for large, non-linear systems. However, safety
requirements are hard to be guaranteed between time intervals
in MPC. Motivated by these limitations, barrier and control
barrier functions enforcing safety have received increased
attention in the past years [4] [5] [6].

Barrier functions (BFs) are Lyapunov-like functions [7],
[8], whose use can be traced back to optimization problems
[9]. More recently, they have been employed to prove set
invariance [10], [11], [12] and to address multi-objective
control problems [13]. In [7], it was proved that if a BF for
a given set satisfies Lyapunov-like conditions, then the set is
forward invariant. A less restrictive form of a BF, which is
allowed to grow when far away from the boundary of the set,
was proposed in [4]. Another approach that allows a BF to be
zero was proposed in [5], [14]. This simpler form has also been
considered in time-varying cases and applied to enforce Signal
Temporal Logic (STL) formulas as hard constraints [14].
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Control BFs (CBFs) are extensions of BFs for control
systems, and are used to map a constraint defined over system
states to a constraint on the control input. The CBFs from
[4] and [5] work for constraints that have relative degree
one with respect to the system dynamics. A backstepping
approach was introduced in [15] to address higher relative
degree constraints, and it was shown to work for relative
degree two. A CBF method for position-based constraints with
relative degree two was also proposed in [16]. A more general
form was considered in [17], which works for arbitrarily high
relative degree constraints, employs input-output linearization
and finds a pole placement controller with negative poles to
stabilize an exponential CBF to zero. The high order CBF
(HOCBF) proposed in [6] is simpler and more general than
the exponential CBF [17].

Most works using CBFs to enforce safety are based on
the assumption that the (nonlinear) control system is affine
in controls and the cost is quadratic in controls. Convergence
to desired states is achieved by using Control Lyapunov
Functions (CLFs) [18]. The time domain is discretized, and
the state is assumed to be constant within each time step (at
its value at the beginning of the step). The optimal control
problem becomes a Quadratic Program (QP) in each time step,
and the optimal control value is kept constant over each such
step. Using this approach, the original optimal control problem
is reduced to a (possibly large) sequence of quadratic programs
(QP) - one for each interval [19]. While computationally
efficient, this myopic approach can easily lead to infeasibility:
the constant optimal control derived at the beginning of an
interval can lead the system to a state that gives incompatible
control constraints at the end of the interval, rendering the QP
corresponding to the next time interval infeasible.

For the particular case of an adaptive cruise control (ACC)
problem in [4], it was shown that an additional constraint
(minimum braking distance) can help keep the system away
from states leading to incompatibility of control CBF and
CLF constraints. However, this additional constraint itself may
conflict with other constraints in the ACC problem, such as the
control bounds. To improve the problem feasibility for general
optimal control problems with the CBF method, the penalty
method [6] and adaptive CBF [20] were proposed; however,
they still do not guarantee the QP feasibility.

In this paper, we provide a novel method to find sufficient
conditions to guarantee the feasibility of CBF-CLF based
QPs. This is achieved by the proposed feasibility constraint
method that makes the problem constraints compatible in
terms of control given an arbitrary system state. The sufficient
conditions are captured by a single constraint that is enforced
by a CBF, and is added to the problem to formulate the
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sequence of QPs mentioned above with guaranteed feasibility.
The added constraint is always compatible with the existing
constraints and, therefore, it cannot make a feasible set of
constraints infeasible. However, by “shaping” the constraint
set of a current QP, it guarantees the feasibility of the next
QP in the sequence. We illustrate our approach and compare
it to other methods on an ACC problem.

The remainder of the paper is organized as follows. In
Sec.II, we provide preliminaries on HOCBF and CLF. Sec.III
formulates an optimal control problem and outlines our CBF-
based solution approach. We show how we can find a fea-
sibility constraint for an optimal control problem in Sec.IV,
and present case studies and simulation results in Sec. V. We
conclude the paper in Sec.VI.

II. PRELIMINARIES

Definition 1. (Class K function [21]) A continuous function
α : [0, a)→ [0,∞), a > 0 is said to belong to class K if it is
strictly increasing and α(0) = 0.

Consider an affine control system of the form

ẋ = f(x) + g(x)u (1)

where x ∈ X ⊂ Rn, f : Rn → Rn and g : Rn → Rn×q are
locally Lipschitz, and u ∈ U ⊂ Rq is the control constraint
set defined as

U := {u ∈ Rq : umin ≤ u ≤ umax}. (2)

with umin,umax ∈ Rq and the inequalities are interpreted
componentwise.

Definition 2. A set C ⊂ Rn is forward invariant for system
(1) if its solutions starting at any x(0) ∈ C satisfy x(t) ∈ C,
∀t ≥ 0.

Definition 3. (Relative degree) The relative degree of a
(sufficiently many times) differentiable function b : Rn → R
with respect to system (1) is the number of times it needs to be
differentiated along its dynamics until the control u explicitly
shows in the corresponding derivative.

In this paper, since function b is used to define a constraint
b(x) ≥ 0, we will also refer to the relative degree of b as the
relative degree of the constraint.

For a constraint b(x) ≥ 0 with relative degree m, b : Rn →
R, and ψ0(x) := b(x), we define a sequence of functions
ψi : Rn → R, i ∈ {1, . . . ,m}:

ψi(x) := ψ̇i−1(x) + αi(ψi−1(x)), i ∈ {1, . . . ,m}, (3)

where αi(·), i ∈ {1, . . . ,m} denotes a (m − i)th order
differentiable class K function.

We further define a sequence of sets Ci, i ∈ {1, . . . ,m}
associated with (3) in the form:

Ci := {x ∈ Rn : ψi−1(x) ≥ 0}, i ∈ {1, . . . ,m}. (4)

Definition 4. (High Order Control Barrier Function (HOCBF)
[6]) Let C1, . . . , Cm be defined by (4) and ψ1(x), . . . , ψm(x)
be defined by (3). A function b : Rn → R is a High Order
Control Barrier Function (HOCBF) of relative degree m for

system (1) if there exist (m− i)th order differentiable class K
functions αi, i ∈ {1, . . . ,m − 1} and a class K function αm
such that

sup
u∈U

[Lmf b(x) + LgL
m−1
f b(x)u + S(b(x))

+αm(ψm−1(x))] ≥ 0,
(5)

for all x ∈ C1∩, . . . ,∩Cm. In (5), Lmf (Lg) denotes Lie
derivatives along f (g) m (one) times, and S(·) denotes the
remaining Lie derivatives along f with degree less than or
equal to m− 1 (omitted for simplicity, see [6]).

The HOCBF is a general form of the relative degree one
CBF [4], [5], [14] (setting m = 1 reduces the HOCBF to the
common CBF form in [4], [5], [14]), and it is also a general
form of the exponential CBF [17].

Theorem 1. ([6]) Given a HOCBF b(x) from Def. 4 with
the associated sets C1, . . . , Cm defined by (4), if x(0) ∈
C1∩, . . . ,∩Cm, then any Lipschitz continuous controller u(t)
that satisfies (5), ∀t ≥ 0 renders C1∩, . . . ,∩Cm forward
invariant for system (1).

Definition 5. (Control Lyapunov function (CLF) [18]) A
continuously differentiable function V : Rn → R is an
exponentially stabilizing control Lyapunov function (CLF) for
system (1) if there exist constants c1 > 0, c2 > 0, c3 > 0 such
that for all x ∈ X , c1||x||2 ≤ V (x) ≤ c2||x||2,

inf
u∈U

[LfV (x) + LgV (x)u + c3V (x)] ≤ 0. (6)

Many existing works [4], [17], [22] combine CBFs for
systems with relative degree one with quadratic costs to form
optimization problems. Time is discretized and an optimization
problem with constraints given by the CBFs (inequalities of
the form (5)) is solved at each time step. The inter-sampling
effect is considered in [22]. If convergence to a state is desired,
then a CLF constraint of the form (6) is added, as in [4]
[22]. Note that these constraints are linear in control since the
state value is fixed at the beginning of the interval, therefore,
each optimization problem is a quadratic program (QP). The
optimal control obtained by solving each QP is applied at the
current time step and held constant for the whole interval.
The state is updated using dynamics (1), and the procedure is
repeated. Replacing CBFs by HOCBFs allows us to handle
constraints with arbitrary relative degree [6]. This method
works conditioned on the fact that the QP at every time step is
feasible. However, this is not guaranteed, in particular under
tight control bounds. In this paper, we show how we can find
sufficient conditions for the feasibility of the QPs.

III. PROBLEM FORMULATION AND APPROACH

Objective: (Minimizing cost) Consider an optimal control
problem for the system in (1) with the cost defined as:

J(u(t)) =

∫ T

0

C(||u(t)||)dt (7)

where || · || denotes the 2-norm of a vector, C(·) is a strictly
increasing function of its argument, and T > 0. Associated
with this problem are the requirements that follow.
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State convergence: We want the state of system (1) to reach
a point K ∈ Rn, i.e.,

min
u(t)
||x(T )−K||2. (8)

Constraint 1 (Safety constraints): System (1) should al-
ways satisfy one or more safety requirements of the form:

b(x(t)) ≥ 0,∀t ∈ [0, T ]. (9)

where b : Rn → R is continuously differentiable.
Constraint 2 (Control constraints): The control must satisfy

(2) for all t ∈ [0, T ].
A control policy for system (1) is feasible if constraints

(9) and (2) are satisfied for all times. In this paper, we consider
the following problem:

Problem 1. Find a feasible control policy for system (1) such
that the cost (7) is minimized, and the state convergence (8)
is achieved with the minimum ||x(T )−K||2.

Approach: We use a HOCBF to enforce (9), and use a
relaxed CLF to achieve the convergence requirement (8). If
the cost (7) is quadratic in u, then we can formalize Problem
1 using a CBF-CLF-QP approach [4], with the CBF replaced
by the HOCBF [6]:

min
u(t),δ(t)

∫ T

0

||u(t)||2 + pδ2(t)dt (10)

subject to

Lmf b(x) + LgL
m−1
f b(x)u + S(b(x)) + αm(ψm−1(x)) ≥ 0,

(11)
LfV (x) + LgV (x)u + εV (x) ≤ δ(t), (12)

umin ≤ u ≤ umax, (13)

where V (x) = ||x(t) −K||2, c3 = ε > 0 in Def. 5, p > 0,
and δ(t) is a relaxation for the CLF constraint. We assume that
b(x) has relative degree m. The above optimization problem
is feasible at a given state x if all the constraints define a
non-empty set for the decision variables u, δ.

The optimal control problem (10), (11), (12), (13) with
decision variables u(t), δ(t) is usually solved point-wise, as
outlined in the end of Sec.II. The time interval [0, T ] is
divided into a finite number of intervals. At every discrete
time t̄ ∈ [0, T ) defining the bounds of the intervals, we fix the
state x(t̄), so that the optimal control problem above becomes
a QP. We obtain an optimal control u∗(t̄) and we apply it
to system (1) for the whole interval for which t̄ is the lower
bound.

This paper is motivated by the fact that this myopic ap-
proach can easily lead to infeasible QPs, especially under tight
control bounds. In other words, after we apply the constant
u∗(t̄) to system (1) starting at x(t̄) for the whole interval
that starts at t̄, we may end up at a state where the HOCBF
constraint (11) conflicts with the control bounds (13), which
would render the QP corresponding to the next time interval
infeasible 1. To avoid this, we define an additional feasibility
constraint:

1Note that, since the CLF constraint (12) is relaxed, it does not affect the
feasibility of the QP.

Definition 6. [feasibility constraint] Suppose the QP (10),
subject to (11), (12) and (13), is feasible at the current state
x(t̄), t̄ ∈ [0, T ). A constraint bF (x) ≥ 0, where bF : Rn → R,
is a feasibility constraint if it makes the QP corresponding to
the next time interval feasible.

In order to ensure that the QP (10), subject to (11), (12)
and (13), is feasible for the next time interval, a feasibility
constraint bF (x) ≥ 0 should have two important features:
(i) it guarantees that (11) and (13) do not conflict, (ii) the
feasibility constraint itself does not conflict with both (11)
and (13) at the same time.

An illustrative example of how a feasibility constraint works
is shown in Fig. 1. A robot whose control is determined by
solving the QP (10), subject to (11), (12) and (13), will run
close to an obstacle in the following step. The next state may
be infeasible for the QP associated with that next step. For
example, the state denoted by the red dot in Fig. 1 may have
large speed such that the robot cannot find a control to avoid
the obstacle in the next step. If a feasibility constraint can
prevent the robot from reaching this state, then the QP is
feasible.

Fig. 1. An illustration of how a feasibility constraint works for a robot
control problem. A feasibility constraint prevents the robot from going into
the infeasible state.

After we find a feasibility constraint, we can enforce it
through a CBF and take it as an additional constraint for (10)
to guarantee the feasibility given system state x. We show
how we can determine an appropriate feasibility constraint in
the following section.

IV. FEASIBILITY CONSTRAINT

We begin with a simple example to illustrate the necessity
for a feasibility constraint for the CBF-CLF based QPs.

A. Example: Adaptive Cruise Control

Consider the adaptive cruise control (ACC) problem with
the ego (controlled) vehicle dynamics in the form:[

v̇(t)
ż(t)

]
︸ ︷︷ ︸

ẋ(t)

=

[
− 1
M Fr(v(t))
vp − v(t)

]
︸ ︷︷ ︸

f(x(t))

+

[
1
M
0

]
︸ ︷︷ ︸
g(x(t))

u(t) (14)

where M denotes the mass of the ego vehicle, z(t) denotes
the distance between the preceding and the ego vehicles,
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vp ≥ 0, v(t) ≥ 0 denote the speeds of the preceding and the
ego vehicles, respectively, and Fr(v(t)) denotes the resistance
force, which is expressed [21] as:

Fr(v(t)) = f0sgn(v(t)) + f1v(t) + f2v
2(t),

where f0 > 0, f1 > 0 and f2 > 0 are scalars determined
empirically. The first term in Fr(v(t)) denotes the Coulomb
friction force, the second term denotes the viscous friction
force and the last term denotes the aerodynamic drag. The
control u(t) is the driving force of the ego vehicle subject to
the constraint:

−cdMg ≤ u(t) ≤ caMg,∀t ≥ 0, (15)

where ca > 0 and cd > 0 are the maximum acceleration
and deceleration coefficients, respectively, and g is the gravity
constant.

We require that the distance z(t) between the ego vehicle
and its immediately preceding vehicle be greater than l0 > 0,
i.e.,

z(t) ≥ l0,∀t ≥ 0. (16)

Let b(x(t)) := z(t) − l0. The relative degree of b(x(t))
is m = 2, so we choose a HOCBF following Def. 4 by
defining ψ0(x(t)) := b(x(t)), α1(ψ0(x(t))) := p1ψ0(x(t))
and α2(ψ1(x(t))) := p2ψ1(x(t)), p1 > 0, p2 > 0. We then
seek a control for the ego vehicle such that the constraint (16)
is satisfied. The control u(t) should satisfy (5) which in this
case is:

Fr(v(t))

M︸ ︷︷ ︸
L2

f b(x(t))

+
−1

M︸︷︷︸
LgLf b(x(t))

×u(t) + p1(vp − v(t))︸ ︷︷ ︸
S(b(x(t)))

+ p2(vp − v(t)) + p1p2(z(t)− l0)︸ ︷︷ ︸
α2(ψ1(x(t)))

≥ 0.

(17)

Suppose we wish to minimize
∫ T
0

(
u(t)−Fr(v(t))

M

)2
dt, in

which case we have a constrained optimal control problem. We
can then use the QP-based method introduced at the end of the
last section to solve this ACC problem. However, the HOCBF
constraint (17) can easily conflict with −cdMg ≤ u(t) in
(15), i.e., the ego vehicle cannot brake in time under control
constraint (2) so that the safety constraint (16) is satisfied when
the two vehicles get close to each other. This is intuitive when
we rewrite (17) in the form:

1

M
u(t)≤ Fr(v(t))

M
+(p1+p2)(vp−v(t))+p1p2(z(t)−l0).

(18)
The right-hand side above is usually negative when the two
vehicles get close to each other. If it is smaller than −cdMg,
the HOCBF constraint (17) will conflict with −cdMg ≤ u(t)
in (15). When this happens, the QP will be infeasible. In the
rest of the paper, we show how we can solve this infeasibility
problem in general by a feasibility constraint as in Def. 6.

B. Feasibility Constraint for Relative-Degree-One Safety Con-
straints

For simplicity, we start with feasibility constraints for a
relative-degree-one safety constraint.

Suppose we have a constraint b(x) ≥ 0 with relative degree
one for system (1), where b : Rn → R. Then we can define
b(x) as a HOCBF with m = 1 as in Def. 4, i.e., we have a
“traditional” CBF. Following (5), any control u ∈ U should
satisfy the CBF constraint:

−Lgb(x)u ≤ Lfb(x) + α(b(x)), (19)

where α(·) is a class K function of its argument. We define a
set of controls that satisfy the last equation as:

K(x) = {u ∈ Rq : −Lgb(x)u ≤ Lfb(x) + α(b(x))}. (20)

Our analysis for determining a feasibility constraint depends
on whether any component of the vector Lgb(x) will change
sign in the time interval [0, T ] or not.

1) All components in Lgb(x) do not change sign: Since
all components in Lgb(x) do not change sign for all x ∈ X ,
the inequality constraint for each control component does not
change sign if we multiply each component of Lgb(x) by the
corresponding one of the control bounds in (2). Therefore, we
assume that Lgb(x) ≤ 0 (componentwise),0 ∈ Rq in the rest
of this section. The analysis for other cases (each component
of Lgb(x) is either non-negative or non-positive) is similar.
Not all the components in Lgb(x) can be 0 due to the relative
degree definition in Def. 3. We can multiply the control bounds
(2) by the vector −Lgb(x), and get

−Lgb(x)umin ≤ −Lgb(x)u ≤ −Lgb(x)umax, (21)

The control constraint (21) is actually a relaxation of the
control bound (2) as we multiply each component of Lgb(x)
by the corresponding one of the control bounds in (2), and
then add them together. We define

Uex(x) = {u ∈ Rq :

− Lgb(x)umin ≤ −Lgb(x)u ≤ −Lgb(x)umax},
(22)

It is obvious that U is a subset of Uex(x). Nonetheless, the
relaxation set Uex(x) does not negatively affect the property
of the following lemma:

Lemma 1. If the control u is such that (21) is conflict-free
with (19) for all x ∈ X , then the control bound (2) is also
conflict-free with (19).

Proof: Let g = (g1, . . . , gq) in (1), where gi :
Rn → Rn, i,∈ {1, . . . , q}. We have that Lgb(x) =
(Lg1b(x), . . . , Lgqb(x)) ∈ R1×q . For the control bound
ui,min ≤ ui ≤ ui,max, i ∈ {1, . . . , q} in (2), we can multiply
by −Lgib(x) and get

−Lgib(x)ui,min ≤ −Lgib(x)ui ≤ −Lgib(x)ui,max,

i ∈ {1, . . . , q},

as we have assumed that Lgb(x) ≤ 0. If we take the
summation of the inequality above over all i ∈ {1, . . . , q},
then we obtain the constraint (21). Therefore, the satisfaction
of (2) implies the satisfaction of (21). Then U defined in (2)
is a subset of Uex(x). It is obvious that the boundaries of the
set Uex(x) in (22) and K(x) in (20) are hyperplanes, and
these boundaries are parallel to each other for all x ∈ X .
Meanwhile, the two boundaries of Uex(x) pass through the



5

two corners umin,umax of the set U (a polyhedron) following
(22), respectively. If there exists a control u1 ∈ Uex(x) that
satisfies (19), then the boundary of the set K(x) in (20)
lies either between the two hyperplanes defined by Uex(x)
or above these two hyperplanes (i.e., Uex(x) is a subset of
K(x) in (20)). In the latter case, this lemma is true as U is
a subset of Uex(x). In the former case, we can always find
another control u2 ∈ U that satisfies (19) as the boundary of
K(x) in (20) is parallel to the two Uex(x) boundaries that
respectively pass through the two corners umin,umax of the
set U . Therefore, although U is a subset of Uex(x), it follows
that if (21) is conflict-free with (19) in terms of u for all
x ∈ X , the control bound (2) is also conflict-free with (19).
�

As motivated by Lem. 1, in order to determine if (19)
complies with (2), we may just consider (19) and (21).
Since there are two inequalites in (21), we have two cases
to consider: (i) − Lgb(x)u ≤ −Lgb(x)umax and (19);
(ii) − Lgb(x)umin ≤ −Lgb(x)u and (19). It is obvious that
there always exists a control u such that the two inequalities
in case (i) are satisfied for all x ∈ X , while this may not
be true for case (ii), depending on x. Therefore, in terms
of avoiding the conflict between the CBF constraint (19) and
(21) that leads to the infeasibility of problem (10), subject to
(11)-(13), we wish to satisfy:

Lfb(x) + α(b(x)) ≥ −Lgb(x)umin. (23)

This is called the feasibility constraint for problem (10),
subject to (11)-(13) in the case of a relative-degree-one safety
constraint b(x) ≥ 0 in (9).

The relative degree of the feasibility constraint (23) is also
one with respect to dynamics (1) as we have b(x) in it. In
order to find a control such that the feasibility constraint (23)
is guaranteed to be satisfied, we define

bF (x) = Lfb(x) + α(b(x)) + Lgb(x)umin ≥ 0, (24)

so that bF (x) is a CBF as in Def. 4. Then, we can get a
feedback controller KF (x) that guarantees the CBF constraint
(19) and the control bounds (2) do not conflict with each other:

KF (x) = {u ∈ Rq : LfbF (x)+LgbF (x)u+αf (bF (x)) ≥ 0},
(25)

if bF (x(0)) ≥ 0, where αf (·) is a class K function.

Theorem 2. If Problem 1 is initially feasible and the CBF
constraint in (25) corresponding to (23) does not conflict with
both the control bounds (2) and (19) at the same time, any
controller u ∈ KF (x) guarantees the feasibility of problem
(10), subject to (11)-(13).

Proof: If Problem 1 is initially feasible, then the CBF
constraint (19) for the safety requirement (9) does not conflict
with the control bounds (2) at time 0. It also does not conflict
with the constraint (21) as U is a subset of Uex(x) that
is defined in (22). In other words, bF (x(0)) ≥ 0 holds in
the feasibility constraint (23). Thus, the initial condition for
the CBF in Def. 4 is satisfied. By Thm. 1, we have that
bF (x(t)) ≥ 0,∀t ≥ 0. Therefore, the CBF constraint (19)
does not conflict with the constraint (21) for all t ≥ 0. By

Lemma 1, the CBF constraint (19) also does not conflict with
the control bound (2). Finally, since the CBF constraint in (25)
corresponding to (23) does not conflict with the control bounds
(2) and (19) at the same time by assumption, we conclude that
the feasibility of the problem is guaranteed. �

The condition “the CBF constraint in (25) corresponding to
(23) does not conflict with both the control bounds (2) and (19)
at the same time” in Thm. 2 is too strong. If this condition is
not satisfied, then the problem can still be infeasible. In order
to relax this condition, one option is to recursively define other
new feasibility constraints for the feasibility constraint (23) to
address the possible conflict between (25) and (2), and (19).
However, the number of iterations is not bounded, and we may
have a large (unbounded) set of feasibility constraints.

In order to address the unbounded iteration issue in finding
feasibility constraints, we can try to express the feasibility
constraint in (25) so that it is in a form which is similar to
that of the CBF constraint (19). If this is achieved, we can
make these two constraints compliant with each other, and
thus address the unbounded iteration issue mentioned above.
Therefore, we try to construct the CBF constraint in (25) so
that it takes the form:

Lfb(x) + Lgb(x)u + α(b(x)) + ϕ(x,u) ≥ 0 (26)

for some appropriately selected function ϕ(x,u). One obvious
choice for ϕ(x,u) immediately following (25) is ϕ(x,u) =
LfbF (x) + LgbF (x)u + αf (bF (x))− Lfb(x)− Lgb(x)u−
α(b(x)), which can be simplified through a proper choice of
the class K functions α(·), αf (·), as will be shown next. Since
we will eventually include the constraint ϕ(x,u) ≥ 0 into
our QPs (shown later) to address the infeasibility problem,
we wish its relative degree to be low. Otherwise, it becomes
necessary to use HOCBFs to make the control show up in
enforcing ϕ(x) ≥ 0 (instead of ϕ(x,u) ≥ 0 due to its
high relative degree), which could make the corresponding
HOCBF constraint complicated, and make it easily conflict
with the control bound (2) and the CBF constraint (19), and
thus leading to the infeasibility of the QPs. Therefore, we
define a candidate function as follows (note that a relative-
degree-zero function means that the control u directly shows
up in the function itself):

Definition 7 (Candidate ϕ(x,u) function). A function ϕ(x,u)
in (26) is a candidate function if its relative degree with respect
to (1) is either one or zero.

Finding candidate ϕ(x,u): In order to find a candidate
ϕ(x,u) from the reformulation of the CBF constraint in
(25), we can properly choose the class K function α(·) in
(19). A typical choice for α(·) is a linear function, in which
case we automatically have the constraint formulation (26) by
substituting the function bF (x) from (24) into (25), and get

ϕ(x,u) = L2
fb(x) + LgLfb(x)u + Lf (Lgb(x)umin)

+Lg(Lgb(x)umin)u + αf (bF (x))− b(x).

Note that it is possible that LgLfb(x) = 0 and
Lg(Lgb(x)umin) = 0 (depending on the dynamics (1) and
the CBF b(x)), in which case the relative degree of ϕ(x,u)
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(written as ϕ(x)) is one as we have αf (bF (x)) in it and bF (x)
is a function of b(x).

If the relative degree of ϕ(x,u) is zero (e.g., LgLfb(x) = 0
and Lg(Lgb(x)umin) = 0 are not satisfied above), we wish
to require that

ϕ(x,u) ≥ 0, (27)

such that the satisfaction of the CBF constraint (19) implies
the satisfaction of the CBF constraint (26), and the satisfaction
of the CBF constraint (26) implies the satisfaction of (23) by
Thm. 1, i.e., the CBF constraint (19) does not conflict with
the control bound (2). Besides, if (27) happens to not conflict
with both (19) and (2) at the same time, depending on the
CBF b(x) and the dynamics (1), then the QPs are guaranteed
to be feasible. The constraint (27) is simplier than (25) as
all the terms in the CBF constraint (19) are removed through
(26), thus, it is less likely to conflict with the CBF constraint
(19) and the control bound (2) in the QP. This is more helpful
in the case of safety constraints with high relative degree (in
the next subsection) as the HOCBF constraint (5) has many
complicated terms, and it is better to remove these terms in
the feasibility constraint and just consider (27) in the QP in
order to make (27) compliant with (19) and (2).

If the relative degree of a candidate ϕ(x,u) with respect to
(1) is one, i.e., ϕ(x,u) ≡ ϕ(x), we define a set Us(x):

Us(x) = {u ∈ Rq : Lfϕ(x) + Lgϕ(x)u + αu(ϕ(x)) ≥ 0}.
(28)

where αu(·) is a class K function.
From the set of candidate functions ϕ(x), if we can find one

that satisfies the conditions of the following theorem, then the
feasibility of problem (10), subject to (11)-(13) is guaranteed:

Theorem 3. If ϕ(x) is a candidate function such that
ϕ(x(0)) ≥ 0, Lfϕ(x) ≥ 0, Lgϕ(x) = γLgb(x), for
some γ > 0,∀x ∈ X and 0 ∈ U , then any controller
u(t) ∈ Us(x),∀t ≥ 0 guarantees the feasibility of problem
(10), subject to (11)-(13).

Proof: Since ϕ(x) is a candidate function, we can define a
set Us(x) as in (28). If ϕ(x(0)) ≥ 0 and u(t) ∈ Us(x),∀t ≥
0, we have that ϕ(x(t)) ≥ 0,∀t ≥ 0 by Thm. 1. Then,
the satisfaction of the CBF constraint (19) corresponding to
the safety constraint (9) implies the satisfaction of the CBF
constraint (26) (equivalent to (25)) for the feasibility constraint
(23). In other words, the CBF constraint (19) automatically
guarantees that it will not conflict with the control constraint
(21) as the satisfaction of (26) implies the satisfaction of (23)
following Thm. 1 and (23) guarantees that (19) and (21) are
conflict-free. By Lemma 1, the CBF constraint (19) will also
not conflict with the control bound U in (2), i.e. K(x)∩U 6= ∅,
where K(x) is defined in (20).

Since Lfϕ(x) ≥ 0, we have that 0 ∈ Us(x). We also
have 0 ∈ U(x), thus, Us(x) ∩ U 6= ∅ is guaranteed. Since
Lgϕ(x) = γLgb(x), γ > 0, the two hyperplanes of the two
half spaces formed by Us(x) in (28) and K(x) in (20) are
parallel to each other, and the normal directions of the two
hyperplanes along the half space direction are the same. Thus,
Us(x)∩K(x) is either Us(x) or K(x), i.e., Us(x)∩K(x)∩U
equals either Us(x)∩U or K(x)∩U . As Us(x)∩U 6= ∅ and

K(x) ∩ U 6= ∅, we have Us(x) ∩ K(x) ∩ U 6= ∅,∀x ∈ X .
Therefore, the CBF constraint (19) does not conflict with the
control bound (2) and the CBF constraint in Us(x) at the same
time, and we can conclude that the problem is guaranteed to
be feasible. �

The conditions in Thm. 3 are sufficient conditions for
the feasibility of problem (10), subject to (11)-(13). Under
the conditions in Thm 3, we can claim that ϕ(x) ≥ 0 is a
single feasibility constraint that guarantees the feasibility of
problem (10), subject to (11)-(13) in the case that the safety
constraint (9) is with relative degree one (i.e., m = 1 in (11)).

Finding valid ϕ(x): A valid ϕ(x) is a function that satisfies
the conditions in Thm. 3. The conditions in Thm. 3 may be
conservative, and how to determine such a ϕ(x) function is
the remaining problem. For a general system (1) and safety
constraint (9), we can parameterize the definition of the CBF
(19) for the safety and the CBF constraint for the feasibility
constraint (25), i.e., parameterize α(·) and αF (·), such as the
form in [23], and then choose the parameters to satisfy the
conditions in Thm. 3.

Remark 1. An example for determining such a ϕ(x) for the
ACC problem in Sec. IV-A can be found in the end of this
section. However, it is still not guaranteed that such ϕ(x)
functions can be found. To address this, we may consider a
special class of dynamics (1), and then formulate a systematic
way to derive such ϕ(x) functions. In the case of such
dynamics, we may even relax some of the conditions in Thm.
3. For example, if g(x) in (1) is independent of x and the
safety constraint (9) is in linear form, then it is very likely
that the condition Lgϕ(x) = γLgb(x), for some γ > 0 in
Thm. 3 is satisfied, and thus this condition may be removed.

We can now get a feasible problem from the original
problem (10), subject to (11)-(13) in the form:

min
u(t),δ(t)

∫ T

0

||u(t)||2 + pδ2(t)dt (29)

subject to the feasibility constraint (27) if the relative degree
of ϕ(x,u) is 0; otherwise, subject to the CBF constraint in
(28). The cost (29) is also subject to the CBF constraint (19),
the control bound (2), and the CLF constraint:

LfV (x) + LgV (x)u + εV (x) ≤ δ(t), (30)

where ϕ(x) satisfies the conditions in Thm. 3 for (28), and
(27) is assumed to be non-conflicting with the CBF constraint
(19) and the control bound (2) at the same time. In order
to guarantee feasibility, we may try to find a ϕ(x) that has
relative degree one, and that satisfies the conditions in Thm.
3.

2) Some Components in Lgb(x) Change Sign: Recall that
Lgb(x) = (Lg1b(x), . . . , Lgqb(x)) ∈ R1×q . If Lgib(x), i ∈
{1, . . . , q} changes sign in [0, T ], then we have the following
symmetric and non-symmetric cases to consider in order to
find a valid feasibility constraint.

Let u = (u1, . . . , uq), umin = (u1,min, . . . , uq,min) ≤ 0,
umax = (u1,max, . . . , uq,max) ≥ 0,0 ∈ Rq .
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Case 1: the control bound for ui, i ∈ {1, . . . , q} is sym-
metric, i.e. ui,max = −ui,min. In this case, by multiplying
−Lgib(x) by the control bound for ui, we have

−Lgib(x)ui,min ≤ −Lgib(x)ui ≤ −Lgib(x)ui,max (31)

if Lgib(x) < 0. When Lgib(x) changes sign at some time
t1 ∈ [0, T ], then the sign of the last equation will be reversed.
However, since ui,max = −ui,min, we have exactly the same
constraint as (31), and −Lgib(x)ui,min will still be contin-
uously differentiable when we construct the feasibility con-
straint as in (23). Therefore, the feasibility constraint (23) will
not be affected by the sign change of Lgib(x), i ∈ {1, . . . , q}.

Case 2: the control bound for ui, i ∈ {1, . . . , q} is not
symmetric, i.e., ui,max 6= −ui,min. In this case, we can define:

ui,lim := min{|ui,min|, ui,max} (32)

Considering (32), we have the following constraint

−ui,lim ≤ ui ≤ ui,lim. (33)

The satisfaction of the last equation implies the satisfaction of
ui,min ≤ ui ≤ ui,max in (2).

If Lgib(x) < 0, we multiply the control bound by −Lgib(x)
for ui and have the following constraint

Lgib(x)ui,lim ≤ −Lgib(x)ui ≤ −Lgib(x)ui,lim (34)

The satisfaction of (34) implies the satisfaction of (31) fol-
lowing (32). Now, the control bound for ui is converted to the
symmetric case, and the feasibility constraint (23) will not be
affected by the sign change of Lgib(x), i ∈ {1, . . . , q}.

C. Feasibility Constraint for High-Relative-Degree Safety
Constraints

Suppose we have a constraint b(x) ≥ 0 with relative degree
m ≥ 1 for system (1), where b : Rn → R. Then we can define
b(x) as a HOCBF as in Def. 4. Any control u ∈ U should
satisfy the HOCBF constraint (5).

In this section, we also assume that LgLm−1f b(x) ≤ 0,0 ∈
Rq and all components in LgL

m−1
f b(x) do not change sign

in [0, T ]. The analysis for all other cases is similar to the last
subsection.

Similar to (19), we rewrite the HOCBF constraint (5) as

−LgLm−1f b(x)u ≤ Lmf b(x)+S(b(x))+αm(ψm−1(x)) (35)

We can multiply the control bounds (2) by the vector
−LgLm−1f b(x):

−LgLm−1f b(x)umin ≤ −LgLm−1f b(x)u

≤ −LgLm−1f b(x)umax,
(36)

As in (21), the last equation is also a relaxation of the original
control bound (2), and Lem. 1 still applies in the high-relative-
degree-constraint case.

The HOCBF constraint (35) may conflict with the left
inequality of the transformed control bound (36) when its right
hand side is smaller than −LgLm−1f b(x)umin. Therefore, we
wish to have

Lmf b(x) + S(b(x)) + αm(ψm−1(x)) ≥ −LgLm−1f b(x)umin.
(37)

This is called the feasibility constraint for the problem
(10), subject to (11)-(13) in the case of a high-relative-degree
constraint b(x) ≥ 0 in (9).

In order to find a control such that the feasibility constraint
(23) is guaranteed to be satisfied, we define

bhF (x) = Lmf b(x) + S(b(x)) + αm(ψm−1(x))

+LgL
m−1
f b(x)umin ≥ 0,

and define bhF (x) to be a HOCBF as in Def. 4.
It is important to note that the relative degree of bhF (x)

with respect to dynamics (1) is only one, as we have ψm−1(x)
in it. Thus, we can get a feedback controller KhF (x) that
guarantees free conflict between the HOCBF constraint (35)
and the control bounds (2):

KhF (x) = {u ∈ Rq : LfbhF (x) + LgbhF (x)u

+αf (bhF (x)) ≥ 0},
(38)

if bhF (x(0)) ≥ 0, where αf (·) is a class K function.

Theorem 4. If Problem 1 is initially feasible and the CBF
constraint in (38) corresponding to (37) does not conflict with
control bounds (2) and (35) at the same time, any controller
u ∈ Khf (x) guarantees the feasibility of problem (10), subject
to (11)-(13).

Proof: The proof is the same as Thm. 2.
Similar to the motivation for the analysis of the relative

degree one case, we also reformulate the constraint in (38) in
the form:
Lmf b(x) + LgL

m−1
f b(x)u + S(b(x)) + αm(ψm−1(x))

+ϕ(x,u) ≥ 0.
(39)

for some appropriate ϕ(x,u). An obvious choice is
ϕ(x,u) = LfbhF (x)+LgbhF (x)u+αf (bhF (x))−Lmf b(x)−
LgL

m−1
f b(x)u − S(b(x)) − αm(ψm−1(x)), which is a can-

didate function and we wish to simplify it. We define a set
Us(x) similar to (28).

Similar to the last subsection, we just consider the case that
the relative degree of ϕ(x,u) is one, i.e., we have ϕ(x) from
now on. Then, we have the following theorem to guarantee
the feasibility of the problem (10), subject to (11)-(13):

Theorem 5. If ϕ(x) is a candidate function, ϕ(x(0)) ≥
0, Lfϕ(x) ≥ 0, Lgϕ(x) = γLgL

m−1
f b(x), for some γ >

0,∀x ∈ X and 0 ∈ U , then any controller u(t) ∈ Us(x),∀t ≥
0 guarantees the feasibility of the problem (10), subject to
(11)-(13).

Proof: The proof is the same as Thm. 3.
The approach to find a valid ϕ(x) is the same as the last

subsection. The conditions in Thm. 5 are sufficient conditions
for the feasibility of the problem (10), subject to (11)-(13).
Under the conditions in Thm 5, we can also claim that
ϕ(x) ≥ 0 is a single feasibility constraint that guarantees
the feasibility of the problem (10), subject to (11)-(13) in the
case that the safety constraint (9) is with high relative degree.
We can get a feasible problem from the original problem (10),
subject to (11)-(13) in the form:

min
u(t),δ(t)

∫ T

0

||u(t)||2 + pδ2(t)dt (40)
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subject to the feasibility constraint: (27) if the relative degree
of ϕ(x,u) is 0; otherwise, subject to the CBF constraint in
(28). The cost (40) is also subject to the HOCBF constraint
(5), the control bound (2), and the CLF constraint:

LfV (x) + LgV (x)u + εV (x) ≤ δ(t), (41)

where ϕ(x) satisfies the conditions in Thm. 5 for (28),
and (27) is assumed to be non-conflicting with the HOCBF
constraint (5) and the control bound (2) at the same time.

Remark 2. When we have multiple safety constraints, we can
employ similar ideas to find sufficient conditions to guarantee
problem feasibility. However, we also need to make sure that
these sufficient conditions do not conflict with each other.

Example revisited. We consider the example discussed in
the beginning of this section, and demonstrate how we can
find a single feasibility constraint ϕ(x(t)) ≥ 0 for the ACC
problem. It is obvious that LgLfb(x(t)) = − 1

M in (17) does
not change sign. The transformed control bound as in (36) for
(15) is

−cdg ≤
1

M
u(t) ≤ cag. (42)

The rewritten HOCBF constraint (18) can only conflict with
the left inequality of (42). Thus, following (37) and combining
(18) with (42), the feasibility constraint is bhF (x(t)) ≥ 0,
where

bhF (x(t)) =
Fr(v(t))

M
+ 2(p1 + p2)(vp − v(t))

+p1p2(z(t)− l0) + cdg.
(43)

Since Fr(v(t))
M ≥ 0,∀t ≥ 0, we can replace the last equation

by
b̂hF (x(t)) = 2(p1 + p2)(vp − v(t))

+p1p2(z(t)− l0) + cdg.
(44)

The satisfaction of b̂hF (x(t)) ≥ 0 implies the satisfaction
of bhF (x(t)) ≥ 0. Although the relative degree of (16) is
two, the relative degree of b̂hF (x(t)) is only one. We then
define b̂hF (x(t)) to be a CBF by choosing α1(b(x(t))) =
kb(x(t)), k > 0 in Def. 4. Any control u(t) should satisfy the
CBF constraint (5) which in this case is

u(t)

M
≤ Fr(v(t))

M
+ (

p1p2
p1 + p2

+ k)(vp − v(t))

+
kp1p2
p1 + p2

(z(t)− l0) +
kcdg

p1 + p2

(45)

In order to reformulate the last equation in the form of (39),
we try to find k in the last equation. We require ϕ(x(t)) to
satisfy Lgϕ(x(t)) ≥ 0 as shown in one of the conditions in
Thm. 5, thus, we wish to exclude the term z(t)−l0 in ϕ(x(t))
since its derivative vp − v(t) is usually negative. By equating
the coefficients of the term z(t)− l0 in (45) and (18), we have

kp1p2
p1 + p2

= p1p2 (46)

Thus, we get k = p1 + p2. By substituting k back into (45),
we have

u(t)

M
≤ Fr(v(t))

M
+ (p1 + p2)(vp − v(t))

+p1p2(z(t)− l0) + ϕ(x(t))
(47)

where
ϕ(x(t)) =

p1p2
p1 + p2

(vp − v(t)) + cdg (48)

It is easy to check that the relative degree of the last function
is one, Lfϕ(x(t)) = p1p2

p1+p2

Fr(v(t))
M ≥ 0 and Lgϕ(x(t)) =

p1p2
p1+p2

LgLfb(x(t)). Thus, all the conditions in Thm. 5 are
satisfied except ϕ(x(0)) ≥ 0 which depends on the initial
state x(0) of system (14). The single feasibility constraint
ϕ(x(t)) ≥ 0 for the ACC problem is actually a speed
constraint (following (48)) in this case:

v(t) ≤ vp +
cdg(p1 + p2)

p1p2
(49)

If p1 = p2 = 1 in (18), we require that the half speed
difference between the front and ego vehicles should be greater
than −cdg in order to guarantee the ACC problem feasibility.

We can find other sufficient conditions such that the ACC
problem is guaranteed to be feasible by choosing different
HOCBF definitions (different class K functions) in the above
process.

V. CASE STUDIES AND SIMULATIONS

In this section, we complete the ACC case study. All the
computations and simulations were conducted in MATLAB.
We used quadprog to solve the quadratic programs and ode45
to integrate the dynamics.

In addition to the dynamics (14), the safety constraint
(16), the control bound (15), and the minimization of the

cost
∫ T
0

(
u(t)−Fr(v(t))

M

)2
dt introduced in Sec. IV-A, we also

consider a desired speed requirement v → vd, vd > 0 in
the ACC problem. We use the relaxed CLF as in (12) to
implement the desired speed requirement, i.e., we define a
CLF V = (v − vd)2, and choose c1 = c2 = 1, c3 = ε > 0
in Def. 5. Any control input should satisfy the CLF constraint
(12).

We consider the HOCBF constraint (18) to implement the
safety constraint (16), and consider the sufficient condition
(49) introduced in the last section to guarantee the feasibility
of the ACC problem. We use a HOCBF with m = 1 to impose
this condition, as introduced in (38). We define α(·) as a linear
function in (38).

Finally, we use the discretization method introduced in the
end of Sec. II to solve the ACC problem, i.e., We partition
the time interval [0, T ] into a set of equal time intervals
{[0,∆t), [∆t, 2∆t), . . . }, where ∆t > 0. In each interval
[ω∆t, (ω + 1)∆t) (ω = 0, 1, 2, . . . ), we assume the control is
constant (i.e., the overall control will be piece-wise constant),
and reformulate the ACC problem as a sequence of QPs.
Specifically, at t = ω∆t (ω = 0, 1, 2, . . . ), we solve

u∗(t) = arg min
u(t)

1

2
u(t)THu(t) + FTu(t) (50)

u(t)=

[
u(t)
δ(t)

]
, H=

[
2

M2 0
0 2pacc

]
, F =

[
−2Fr(v(t))

M2

0

]
.

subject to
Aclfu(t) ≤ bclf,
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TABLE I
SIMULATION PARAMETERS FOR THE ACC PROBLEM

Parameter Value Units Parameter Value Units
v(0) 6 m/s z(0) 100 m
vp 13.89 m/s vd 24 m/s
M 1650 kg g 9.81 m/s2

f0 0.1 N f1 5 Ns/m
f2 0.25 Ns2/m l0 10 m
∆t 0.1 s ε 10 unitless
ca(t) 0.4 unitless cd(t) 0.4 unitless
pacc 1 unitless

Alimitu(t) ≤ blimit,

Ahocbf safetyu(t) ≤ bhocbf safety,

Afeau(t) ≤ bfea,

where pacc > 0 and the constraint parameters are

Aclf = [LgV (x(t)), −1],

bclf = −LfV (x(t))− εV (x(t)).

Alimit =

[
1, 0
1, 0

]
,

blimit =
[
caMg − cdMg

]
.

Ahocbf safety =
[

1
M , 0

]
,

bhocbf safety =
Fr(v(t))

M
+(p1+p2)(vp−v(t))+p1p2(z(t)− l0)

Afea =
[

p1p2
M(p1+p2)

, 0
]
,

bfea =
p1p2Fr(v(t))

M(p1 + p2)
+

p1p2
p1 + p2

(vp − v(t)) + cdg

After solving (50), we update (14) with u∗(t), ∀t ∈ (t0 +
ω∆t, t0 + (ω + 1)∆t).

The simulation parameters are listed in Table I. We first
present a case study in Fig. 2 showing that if the ego vehicle
exceeds the speed constraint from the feasibility constraint
(49), then the QP becomes infeasible. However, this infeasi-
bility does not always hold since the feasibility constraint (49)
is just a sufficient condition for the feasibility of QP (50).
In order to show how the feasibility constraint (49) can be
adapted to different parameters p1, p2 in (18), we vary them
and compare the solution without this feasibility sufficient
condition in the simulation, as shown in Figs. 3 and 4.

It follows from Figs. 3 and 4 that the QPs (50) are always
feasible with the feasibility constraint (49) under different
p1, p2, while the QPs may become infeasible without this
constraint. This validates the effectiveness of the feasibility
constraint. We also notice that the ego vehicle cannot reach
the desired speed vd with the feasibility condition (49); this is
due to the fact that we are limiting the vehicle speed with (49).
In order to make the ego vehicle reach the desired speed, we
choose p1, p2 such that the following constraint is satisfied.

vp + cdg
(p1 + p2)

p1p2
≥ vd (51)

Fig. 2. A simple case with p1 = 1, p2 = 2. The QP becomes infeasible
when the ego vehicle exceeds the speed limit vp + 1.5cdg from (49).

Fig. 3. Speed and control profiles for the ego vehicle under different p1, p2,
with and without feasibility condition (49).

Fig. 4. The variation of functions b(x(t)) and ψ1(x(t)) under different
p1, p2. b(x(t)) ≥ 0 and ψ1(x(t)) ≥ 0 imply the forward invariance of the
set C1 ∩ C2.
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For example, the above constraint is satisfied when we select
p1 = 0.5, p2 = 1 in this case. Then, the ego can reach the
desired speed vd, as the blue curves shown in Fig. 5.

We also compare the feasibility constraint (49) with the
minimum braking distance approach from [4]. This approach
adds the minimum braking distance 0.5(vp−v(t))2

cdg
of the ego

vehicle to the safety constraint (16):

z(t) ≥ 0.5(vp − v(t))2

cdg
+ l0,∀t ≥ 0. (52)

Then, we can use a HOCBF with m = 1 (define α1(·) to be
a linear function with slope 2 in Def. 4) to enforce the above
constraint whose relative degree is one. As shown in Fig. 5, the
HOCBF constraint for (52) conflicts with the control bounds,
and thus, the QP can still become infeasible.

Fig. 5. Comparison between the feasibility constraint (49) with p1 =
0.5, p2 = 1 and the minimum braking distance approach from [4]. The
HOCBF constraint for (52) in the minimum braking distance approach
conflicts with the control bound (15).

VI. CONCLUSION & FUTURE WORK

We provide provably correct sufficient conditions for fea-
sibility guarantee of constrained optimal control problems
in this paper. These conditions are found by the proposed
feasibility constraint method. We have demonstrated the effec-
tiveness of sufficient feasibility conditions by applying them
to an adaptive cruise control problem. In the future, we will
study the derivation of the necessary conditions of feasibility
guarantee for constrained optimal control problems, or find
less conservative sufficient conditions for specific dynamics.
We will also try to figure out how to quickly find a single
feasibility constraint for specific dynamics.
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