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Abstract

This paper studies distributed optimal formation control with hard constraints on energy levels and termination time, in
which the formation error is to be minimized jointly with the energy cost. The main contributions include a globally optimal
distributed formation control law and a comprehensive analysis of the resulting closed-loop system under those hard constraints.
It is revealed that the energy levels, the task termination time, the steady-state error tolerance, as well as the network topology
impose inherent limitations in achieving the formation control mission. Most notably, the lower bounds on the achievable
termination time and the required minimum energy levels are derived, which are given in terms of the initial formation error,
the steady-state error tolerance, and the largest eigenvalue of the Laplacian matrix. These lower bounds can be employed to
assert whether an energy and time constrained formation task is achievable and how to accomplish such a task. Furthermore,
the monotonicity of those lower bounds in relation to the control parameters is revealed. A simulation example is finally given
to illustrate the obtained results.
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1 Introduction

This paper is concerned with energy and time con-
straints and performance tradeoff issues one frequently
encounters in distributed formation control of multi-
agent systems. A fundamental problem under investi-
gation is how energy level, mission termination time,
and steady-state error tolerance may inherently impact
on the achievable performance of formation control,
and how such impacts may be quantified analytically.
Formation control problems have been widely studied
in the recent literature (see, e.g., [1–6] and the refer-
ences therein). However, only a rather limited number
of works have considered energy constraints [7–10],
though the issue is of significant importance for agents
with limited energy supplied by on-board batteries.

⋆ This work was supported in part by the National Nat-
ural Science Foundation of China under Grants 61973064
and 61973061, and in part by the Hebei Natural Sci-
ence Foundation for Distinguished Young Scholars un-
der Grant F2019501043. Corresponding author: Fei Chen
(fei.chen@ieee.org).

The energy and time constraints impose severe limita-
tions on distributed cooperative control design and have
motivated several existing works involving various co-
operative tasks [11–16], wherein the energy cost is de-
fined as an integral of the square of the input, and is to
be minimized, together, with certain control error func-
tions. Other relevant attempts have been pursued by
researchers to reduce redundant communication to de-
crease the energy cost [17, 18]. In addition, it has been
recognized that the resistance caused by velocity mis-
matches may also contribute to the energy expenditure,
which cannot be ignored for systems with relatively high
velocities [19, 20].

The LQR-based method is just one case of many efforts
which seek to limit the energy consumption. It is noted
that a direct application of the LQR-based method to
multi-agent systems will generically require an all-to-all
network topology (see, e.g., [21, 22]). That is, there is
a dilemma between distributed control and LQR-based
optimal control. Very recently, a network approximation
approach is developed in [23] by introducing a “minimal”
distribution cost in the LQR function, which guarantees
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that the resulting control law is optimal in the global
sense.

The present paper continues the aforementioned devel-
opment in the study of energy-aware formation con-
trol of multi-agent systems. The main contributions are
three-fold. Firstly, a distributed formation control law
is derived which is globally optimal with respect to a
cost pertinent to energy and control error of the multi-
agent system under the LQR framework. To the best of
the authors’ knowledge, the proposed algorithm is the
first formation control algorithm that is concurrently
distributed and optimal while satisfying the hard con-
straints on energy expenditure and convergence time.
Secondly, the conditions on the feasibility of the for-
mation control problem are derived analytically, which
depends upon the initial energy level, the formation
termination time, the steady-state error tolerance, the
network topology, as well as the control parameters.
Thirdly, monotonicity properties of the achievable ter-
mination time and the required minimum initial energy
with respect to the control parameters are further re-
vealed, which provides some design guidelines in achiev-
ing formation control missions under time and energy
constraints. A preliminary version of the results dis-
cussed here has appeared in [24]. With respect to [24],
the current version provides a comprehensive analysis
on the monotonicity properties of the PARE solution,
the termination time, as well as the energy expenditure.
Moreover, numerical examples are also provided to illus-
trate the validity of the proposed results.

The rest of this paper is organized as follows. In Sec-
tion 2, preliminaries are presented and the problem is
formulated. Section 3 is devoted to the development of
the optimal distributed control algorithm and its analy-
sis. Section 4 discusses the monotonicity properties of the
achievable termination time and the required minimum
energy with respect to the control parameters. Simula-
tion results are presented in Section 5. Finally, Section 6
concludes the paper.

2 Preliminaries and problem statement

2.1 Notation

Let R denote the set of real numbers, R+ the set of
positive real numbers, Rn the set of n-dimensional real
vectors, and R

n×n the set of n × n real matrices. Let
In ∈ R

n×n be the n-dimensional identity matrix, 0n ∈
R

n the vector with all zeros, and 1n ∈ R
n the vector

with all ones. The subscripts of In, 0n, and 1n might
be dropped if no confusion arises from the context. The
superscript T denotes the transpose of a matrix or a
vector. The set of the eigenvalues of A is denoted by
spec(A). The Euclidean norm is given by ‖ · ‖. For two
matrices A ∈ R

m×n and B ∈ R
p×q, their Kronecker

product is denoted by

A⊗B =











a11B · · · a1nB

...
. . .

...

am1B · · · amnB











.

The abbreviation “iff” means “if and only if”.

2.2 Graph theory

The information exchange among the agents is described
by a graph G = (V , E), where V = {ν1, . . . , νN} is the set
of nodes and E ⊆ V×V is the set of edges. In this paper,
the graph G is assumed to be undirected. The adjacency
matrix A = [aij ] ∈ R

N×N of G is defined as: aij = 1
if (i, j) ∈ E , and aij = 0 otherwise. The degree matrix
is then given by D = diag([d1, . . . , dN ]), where di =
∑N

j=1 aij . A path from node νi to node νj is a sequence
of nodes νi, . . . , νj , such that each two consecutive nodes
in the sequence is connected by an edge. An undirected
graph is connected if for any two vertices in V , there
always exists a path connecting them. Throughout the
paper, the following assumption is made.

Assumption 1 Graph G is undirected and connected.

The Laplacian matrix of the undirected graph G is given
by L = D −A ∈ R

N×N , which is known to be symmet-
ric and positive semi-definite. It has a zero eigenvalue
whose normalized eigenvector is 1√

N
1N , where 1N ∈ R

N

is the vector with all ones. The N real eigenvalues of
L can be ordered as 0 = λ1 ≤ λ2 ≤ · · · ≤ λN . Let
W = [w1, . . . , wN ]T be the matrix comprising orthonor-
mal eigenvectors of L. The Laplacian matrix L can be
diagonalized as follows:

L = WTJW , (1)

where J = diag([λ1, . . . , λN ]).

2.3 Problem statement

Consider a multi-agent system consisting of N agents
moving in the n-dimensional space. Each agent is gov-
erned by the following equations:

ṗi(t) = vi(t), v̇i(t) = ui(t), (2)

Ėi(t) = −uT
i (t)ui(t)−

β

2

N
∑

i=1

aij‖vi(t)− vj(t)‖2, (3)

pi(0) = p0i , vi(0) = v0i , Ei(0) = E0
i , i = 1, . . . , N,

where pi(t) ∈ R
n, vi(t) ∈ R

n, ui(t) ∈ R
n, and Ei(t) ∈ R

denote, respectively, the position, velocity, input, and
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energy level of agent i, and p0i ∈ R
n, v0i ∈ R

n, and E0
i ∈

R are their initial values. Equation (2) describes the
double-integrator dynamics of the agents, while Eq. (3)
delineates how the energy level of the agents changes.
The first term of (3) represents the energy expenditure
caused by the control input, while the second term rep-
resents the energy expenditure due to the resistance of
velocity mismatch, where β is a positive constant. Let

J i
E(t) =

∫ t

0

−Ėi(τ)dτ

be the energy consumed by agent i till time t. The energy
cost of the multi-agent system is given by

JE(t) =

N
∑

i=1

∫ t

0

−Ėi(τ)dτ

=

∫ t

0

{uT (τ)u(τ) + βvT (τ)(L ⊗ In)v(τ)}dτ, (4)

where u(τ) = [uT
1 (τ), . . . , u

T
N(τ)]T ∈ R

Nn and v(τ) =
[vT1 (τ), . . . , v

T
N (τ)]T ∈ R

Nn. For notational convenience,
JE(∞) will be simplified as JE in the rest of the paper.

Define xi(t) = [pTi (t) vTi (t)]
T ∈ R

2n. Equation (2) can
be written compactly as

ẋi(t) = Axi(t) +Bui(t), (5)

where A =

[

0 1

0 0

]

⊗ In and B =

[

0

1

]

⊗ In. Let

xd = [(pd)T (vd)T ]T ∈ R
2Nn represents the de-

sired state with pd = [(pd1)
T , . . . , (pdN )T ]T ∈ R

Nn and
vd = [(vd1 )

T , . . . , (vdN )T ]T ∈ R
Nn denoting, respectively,

the desired position and velocity. To guarantee the
tracking result, it is necessary that all agents have the
same desired velocity. Particularly, for notational con-
venience, it is assumed that vd = 0. Accordingly, the
energy cost function (4) can be rewritten in terms of
u(t) and x(t) as

JE =

∫ ∞

0

{uT (t)u(t) + β[x(t) − xd]T (L ⊗Q)

× [x(t)− xd]}dt, (6)

whereQ = diag([0 1])⊗In, x(t) = [xT
1 (t), . . . , x

T
N (t)] ∈

R
2Nn. Let dij = [(pdij)

T (vdij)
T ]T denote the prespeci-

fied relative state between agent i and j, i.e., pdij = pdi−pdj
and vdij = vdi − vdj = 0. Let T be the termination time

of the formation task, and ε ∈ R
+ be the parameter of

the steady-state error tolerance. The following problem
is investigated in the paper.

Problem 1 Design a distributed control input ui(t) for
the system (5), based on local information, such that for
some tf ∈ R

+,

lim sup
t→tf

‖xi(t)− xj(t)− dij‖ ≤ ε

s.t. tf ≤ T, J i
E(T ) < E0

i . (7)

It is worth pointing out that tf ≤ T and J i
E(T ) < E0

i are
two “hard” constraints on the formation task. If tf > T ,
the formation task fails to be achieved since it is not
accomplished in a timely manner. On the other hand,
J i
E(T ) ≥ E0

i means that the energy is exhausted before
the mission is completed.

3 Distributed optimal energy-aware formation
control

This section is devoted to the development of an energy-
aware distributed formation control algorithm by em-
ploying solely local information. To this aim, define the
performance measure

J = JE + Jf
x + JNA

x ,

where the energy cost JE is defined in (6), and

Jf
x = α

∫ ∞

0

[x(t) − xd]T (L ⊗ I2n)[x(t) − xd]dt

=
α

2

∫ ∞

0

N
∑

i=1

aij‖xi(t)− xj(t)− dij‖2dt,

JNA
x = α

∫ ∞

0

[x(t) − xd]T [M ⊗ S][x(t)− xd]dt.

Here, α > 0 is a tradeoff parameter, M = α(L2 − σL)
with 0 < σ < λ2, and S ≥ 0 is a positive semi-definite
matrix to be designed. The formation cost term Jf

x repre-
sents the accumulated formation error, and ensures that
the formation is reached asymptotically. It has been rec-
ognized that for a multi-agent system, the LQR-based
optimal control law only exists under an all-to-all net-
work topology [21]. To circumvent the difficulty, the dis-
tribution cost term JNA

x is introduced to warrant that
the optimal distributed control law exists for a generic
connected network topology [23]. The main results of
this section are given as follows.

Theorem 1 Let

P =
1√
σα





√

σα+ βσ + 2
√
σα 1

1
√

1 + β
α
+ 2√

σα



⊗ In,

where 0 < σ < λ2 with λ2 being the second smallest
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eigenvalue of the Laplacian matrixL. IfM = α(L2−σL),
S = PBBTP , and Assumption 1 holds, then

(1) the optimal distributed control input of (5) that min-
imizes J is given by

u∗
i (t) = −α

N
∑

j=1

aijB
TP [x∗

i (t)− x∗
j (t)− dij ], (8)

where x∗
i (t) is the state under the optimal input u∗

i (t)
at time t;

(2) for given initial energyE(0) = [E1(0), . . . , EN (0)]T ∈
R

N , termination time T > 0, and steady-state error
tolerance ε > 0, if the following inequalities hold















































T ≥ λmin(P ) ln
V (x(0))

λmin(P )(N − 1)ε2
, (9)

Ei(0) ≥
VL(0)

2

[

λN

(

α+
1

σ

)(

α+ β + 2

√

α

σ

)

+β

]

√

1 +
β

α
+

2√
ασ

(

1− e
−λN

√

α
σ
(1+ β

α
+ 2√

ασ
)T

)

,

i ∈ {1, . . . , N}, (10)

where

λmin(P ) =
1

2
√
σα

((

1 +
√
σα

)

√

1 +
β

α
+

2√
σα

−
√

(

1 + σα− 2
√
σα

)(

1 +
β

α
+

2√
σα

)

+ 4

)

,

V (x(0)) = [x(0)− xd]T
[(

IN − 1

N
11

T

)

⊗ P

]

× [x(0)− xd],

VL(0) = [x(0)− xd]T (L ⊗ I2n) [x(0)− xd],

then Problem 1 is solved under the distributed opti-
mal control algorithm (8).

Proof 1 1) Define

J(tf , x(tf ))

=

∫ tf

0

{uT (t)u(t) + β[x(t)− xd]T (L ⊗Q)[x(t)− xd]}dt

+ α

{
∫ tf

0

[x(t) − xd]T (L ⊗ I2n)[x(t) − xd]dt

+

∫ tf

0

[x(t)− xd]T [M ⊗ S(t)][x(t) − xd]dt

+ [x(tf )− xd]T (L ⊗ I2n)[x(tf )− xd]

}

,

where S(t) ∈ R
2n×2n is a time-varying positive semi-

definite matrix, and tf is the actual convergence time
defined in Problem 1. Let x̃i(t) and ũi(t) denote, respec-

tively, the ith component of x̃(t) , (W ⊗ I2n)[x(t)− xd]

and ũ(t) , (W⊗I2n)u(t), whereW is defined in (1). The
multi-agent system (5) can be written equivalently as

˙̃xi(t) = Ax̃i(t) +Bũi(t), i = 1, . . . , N, (11)

where Axd
i = 0, i = 1, . . . , N, is used. Due to As-

sumption 1, J(tf , x(tf )) can be written equivalently as

J(tf , x(tf )) =
∑N

i=1 Ji(tf , x̃i(tf )),

where

J1(tf , x̃1(tf )) =

∫ tf

0

ũT
1 (t)ũ1(t)dt,

Ji(tf , x̃i(tf )) =

∫ tf

0

{ũT
i (t)ũi(t) + λiβx̃

T
i (t)Qx̃i(t)}dt

+ α

{
∫ tf

0

x̃T
i (t)[λiI2n +miS(t)]x̃i(t)dt

+ λix̃
T
i (tf )x̃i(tf )

}

, i = 2, . . . , N (12)

with mi , α(λ2
i − σλi). It is straightforward to obtain

that ũ∗
1 ≡ 0.

Next, the optimal input ũ∗
i is derived for i = 2, . . . , N .

Let x̃∗
i (t) denote the state of (11) under the optimal input

ũ∗
i (t), i.e.,

˙̃x∗
i (t) = Ax̃∗

i (t) + Bũ∗
i (t) (13)

with the initial condition x̃∗
i (0) = x̃0

i , where x̃0
i is the ith

component of x̃0 = (W ⊗ I2n)(x
0 − xd). Consider a new

input vector

ũi(t) = ũ∗
i (t) + ǫûi(t) (14)

for (11), where ûi(t) is an arbitrary function of time, and
ǫ ∈ R is an arbitrary number. Due to the variation of
the input vector, the state of the system (11) will change
from x̃∗

i (t) to

x̃i(t) = x̃∗
i (t) + ǫx̂i(t), 0 ≤ t ≤ tf , (15)

where x̂i(t) is some function of time. Substitution of (14)
and (15) into (11) yields

˙̃x∗
i (t) + ǫ ˙̂xi(t) =A[x̃∗

i (t) + ǫx̂i(t)] +B[ũ∗
i (t) + ǫûi(t)].

(16)

Substraction of (13) from (16) and cancelation of ǫ lead
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to

˙̂xi(t) = Ax̂i(t) +Bûi(t) (17)

with the initial condition x̂i(0) = 0. The solution of (17)
is

x̂i(t) =

∫ t

0

eA(t−τ)Bûi(τ)dτ. (18)

Using (14) and (15), Equation (12) can be rewritten as
a function related to ǫ, denoted by Ji(tf , x̃i(tf ), ǫ). Since
ũ∗
i (t) is the control input that minimizes Ji(tf , x̃i(tf ), ǫ),

Ji(tf , x̃i(tf ), ǫ) must have a minimum at ǫ = 0, which
implies that the first derivative of Ji(tf , x̃i(tf ), ǫ) with
respect to ǫ should be zero at ǫ = 0. It thus follows that

∫ tf

0

{ûT
i (t)ũ

∗
i (t) + x̂T

i (t)[λiβQ+ λiαI2n +miαS(t)]

× x̃∗
i (t)}dt+ λiαx̂

T
i (tf )x̃

∗
i (tf ) = 0. (19)

Substitution of (18) into (19) together with some rear-
rangements leads to

∫ tf

0

ûT
i (t)

{

ũ∗
i (t) +BT

∫ tf

t

eA
T (τ−t)[λiβQ+ λiαI2n

+miαS(τ)]x̃
∗
i (τ)dτ + λiαB

T eA
T (tf−t)x̃∗

i (tf )

}

dt = 0.

(20)

Let

pi(t) ,

∫ tf

t

eA
T (τ−t)[λi

β

α
Q+ λiI2n +miS(τ)]x̃

∗
i (τ)dτ

+ λie
AT (tf−t)x̃∗

i (tf ). (21)

Equation (20) can be written compactly as

∫ tf

0

ûT
i (t){ũ∗

i (t) + αBT pi(t)}dt = 0. (22)

Since (22) holds for all possible ûi(t), it follows that

ũ∗
i (t) = −αBT pi(t). (23)

Therefore, the problem of finding the optimal input ũ∗
i (t)

is transformed into the problem of finding the solution of
pi(t) that satisfies (21). Similar to the process of obtain-
ing pi(t) in [23], it can be shown that

pi(t) = λiP (t)x̃∗
i (t), (24)

where P (t) is the solution to the following parametric

differential Riccati equation (PDRE)

Ṗ (t)+I2n+
β

α
Q+ATP (t)+P (t)A−σαP (t)BBTP (t) = 0,

(25)

P (tf ) = I2n,

where 0 < σ < λ2. Substitution of (24) into (23) yields

ũ∗
i (t) = −αλiB

TP (t)x̃∗
i (t),

or equivalently

ũ∗(t) = −α[J ⊗BTP (t)]x̃∗(t),

which can be further written as

u∗(t) = −α[L ⊗BTP (t)][x∗(t)− xd].

Let P be the solution to the following parametric algebraic
Riccati equation (PARE)

I2n +
β

α
Q+ATP + PA− σαPBBTP = 0. (26)

Since (A,B) is stabilizable and (A, I2n) is detectable, the
solution to (25) converges to that of (26) as tf → ∞. This
leads to the optimal control input in the infinite-horizon
case,

ũ∗
i (t) = −αλiB

TP x̃∗
i (t), (27)

or equivalently

u∗(t) = −α(L ⊗BTP )[x∗(t)− xd].

Substituting A =

[

0 1

0 0

]

⊗ In and B =

[

0

1

]

⊗ In into

(26), the solution P to (26) is given by

P =
1√
σα





√

σα+ βσ + 2
√
σα 1

1
√

1 + β
α
+ 2√

σα



⊗ In.

(28)

The proof of the first part is thus completed.

2) Substituting the optimal control law (8) into the system
(5) yields the following closed-loop system:

ẋ∗(t) = (IN ⊗A)x∗(t)− α(L ⊗BBTP )[x∗(t)− xd].
(29)

5



Define V (x) = [x(t) − xd]T
[

(IN − 1
N
11

T )⊗ P
]

[x(t) −
xd], where P is given by (28). Note that V (x) = 0 iff the
formation is reached. It follows from (29) that

V̇ (x∗)

= 2[x∗(t)− xd]T
[(

IN − 1

N
11

T

)

⊗ PA

]

[x∗(t)− xd]

− 2[x∗(t)− xd]T [L ⊗ αPBBTP ][x∗(t)− xd]. (30)

The first term in (30) can be written as

2[x∗(t)− xd]T
[(

IN − 1

N
11

T

)

⊗ PA

]

[x∗(t)− xd]

= 2[x∗(t)− xd]T (WTΥW ⊗ PA)[x∗(t)− xd]

= 2

N
∑

i=2

[x̃∗
i (t)]

TPAx̃∗
i (t), (31)

where Υ = diag([0, 1, . . . , 1]) ∈ R
N×N . Similarly, the

second term can be rewritten as

2[x∗(t)− xd]T [L ⊗ αPBBTP ][x∗(t)− xd]

= 2
N
∑

i=2

αλi[x̃
∗
i (t)]

TPBBTP x̃∗
i (t). (32)

Substituting (32) and (31) into (30) yields

V̇ (x∗) =

N
∑

i=2

[x̃∗
i (t)]

T [(A− λiαBBTP )TP

+ P (A− λiαBBTP )]x̃∗
i (t)

= −
N
∑

i=2

[x̃∗
i (t)]

T

{

I2n +
β

α
Q+ α[σ + 2(λi − σ)]

× PBBTP

}

x̃∗
i (t)

≤ −
N
∑

i=2

[x̃∗
i (t)]

T x̃∗
i (t), (33)

where the second equality is due to (A−λiαBBTP )TP +
P (A − λiαBBTP ) = ATP − σαPBBTP + PA −
σαPBBTP − 2α(λi − σ)PBBTP = −

(

I2n + β
α
Q +

α[σ + 2(λi − σ)]PBBTP

)

. Additionally,

V (x∗) = [x∗(t)− xd]T
[

(IN − 1

N
11

T )⊗ P

]

[x∗(t)− xd]

≥ λmin(P )

N
∑

i=2

[x̃∗
i (t)]

T x̃∗
i (t). (34)

It follows from (33) and (34) that V̇ (x∗)
V (x∗) ≤ − 1

λmin(P ) ,

which gives

V (x∗(t)) ≤ e
− 1

λmin(P )
t
V (x(0)). (35)

Moreover, V (x∗(tf )) =
∑N

i=2[x̃
∗
i (tf )]

TP x̃∗
i (tf ) ≥

λmin(P )
∑N

i=2 ‖x̃∗
i (tf )‖2 ≥ λmin(P )(N − 1)ε2. By (35),

the upper bound on the formation time is given by

tf ≤ λmin(P ) ln
V (x(0))

V (x∗(tf ))

≤ λmin(P ) ln
V (x(0))

λmin(P )(N − 1)ε2
.

Therefore, for the given steady-state error tolerance ε
and the termination time T , the formation task can be
achieved if

T ≥ λmin(P ) ln
V (x(0))

λmin(P )(N − 1)ε2
,

where by (28)

λmin(P ) =
1

2
√
σα

((

1 +
√
σα

)

√

1 +
β

α
+

2√
σα

−
√

(

1 + σα − 2
√
σα

)(

1 +
β

α
+

2√
σα

)

+ 4

)

.

Let JE∗ denote the energy consumption during [0, T ] un-
der the optimal control law (8). Due to Assumption 1,

JE∗ can be written as JE∗ =
∑N

i=2 JẼ∗
i
, where

JẼ∗
i
=

∫ T

0

{[ũ∗
i (t)]

T ũ∗
i (t) + βλi[x̃

∗
i (t)]

TQx̃∗
i (t)}dt.

It follows from (27) that

JẼ∗
i
=

∫ T

0

[x̃∗
i (t)]

T (α2λ2
iPBBTP + βλiQ)x̃∗

i (t)dt

≤ [α2λiλmax(PBBTP ) + β]λi

∫ T

0

[x̃∗
i (t)]

T x̃∗
i (t)dt

≤
[

λN

(

α+
1

σ

)(

α+ β + 2

√

α

σ

)

+ β

]

λi

×
∫ T

0

[x̃∗
i (t)]

T x̃∗
i (t)dt. (36)

On the other hand, the solution of (13) is given by

x̃∗
i (t) = e(A−λiαBBT P )tx̃i(0).
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It hence follows that
∫ T

0
[x̃∗

i (t)]
T x̃∗

i (t)dt =
∫ T

0
x̃T
i (0) ×

e(A−λiαBBTP )T te(A−λiαBBTP )tx̃i(0)dt ≤ ‖x̃i(0)‖2
∫ T

0

‖e(A−λiαBBTP )t‖2dt. Since

‖e(A−λiαBBTP )t‖ ≤ e
[ max
i=2,...,N

λmax(A−λiαBBTP )]t

,

it follows that

∫ T

0

[x̃∗
i (t)]

T x̃∗
i (t)dt

≤ ‖x̃i(0)‖2
∫ T

0

e
2[ max

i=2,...,N
λmax(A−λiαBBTP )]t

dt

=
‖x̃i(0)‖2

2| max
i=2,...,N

λmax(A− λiαBBTP )|

×
(

1− e
2[ max

i=2,...,N
λmax(A−λiαBBTP )]T

)

. (37)

It can be verified that

λmax(A− λiαBBTP )

=
1

2

(

− λi

√

α

σ

(

1 +
β

α
+

2√
σα

)

+

√

λ2
i

α

σ

(

1 +
β

α
+

2√
σα

)

− 4λi

√

α

σ

)

.

Additionally,

λi‖x̃i(0)‖2

≤
N
∑

i=1

λi‖x̃i(0)‖2

≤ [x(0)− xd]T (L ⊗ I2n)[x(0)− xd]. (38)

Combining (36), (37), and (38) leads to

JẼ∗
i
≤
VL(0)[λN (α+ 1

σ
)(α+ β + 2

√

α
σ
) + β]

2| max
i=2,...,N

λmax(A− λiαBBTP )|

×
(

1− e
2[ max

i=2,...,N
λmax(A−λiαBBTP )]T

)

, (39)

where

VL(0) = [x(0)− xd]T (L ⊗ I2n)[x(0)− xd].

Let Max(λ) denote the parameter λi that maximizes

λmax(A− λiαBBTP ). Eq. (39) can be written as

JẼ∗
i
≤
VL(0)[λN (α + 1

σ
)(α + β + 2

√

α
σ
) + β]

2|λmax(A−Max(λ)αBBTP )|

×
(

1− e2λmax(A−Max(λ)αBBT P )T

)

. (40)

Since

λmax(A−Max(λ)αBBTP )

=
1

2

(

−Max(λ)

√

α

σ

(

1 +
β

α
+

2√
σα

)

+

√

Max2(λ)
α

σ

(

1 +
β

α
+

2√
σα

)

− 4Max(λ)

√

α

σ

)

≥ −1

2
Max(λ)

√

α

σ

(

1 +
β

α
+

2√
σα

)

,

it follows that

1− e2λmax(A−Max(λ)αBBTP )T

≤ 1− e
−Max(λ)

√

α
σ
(1+ β

α
+ 2√

ασ
)T

≤ 1− e
−λN

√

α
σ
(1+ β

α
+ 2√

ασ
)T
. (41)

Combining (40) and (41) leads to

JẼ∗
i
≤

VL(0)[λN (α+ 1
σ
)(α+ β + 2

√

α
σ
) + β]

2|λmax(A−Max(λ)αBBTP )|

×
(

1− e
−λN

√

α
σ
(1+ β

α
+ 2√

ασ
)T

)

=
VL(0)[λN (α+ 1

σ
)(α+ β + 2

√

α
σ
) + β]

4Max(λ)
√

α
σ

×
(

√

Max2(λ)
α

σ
(1 +

β

α
+

2√
ασ

)− 4Max(λ)

√

α

σ

+Max(λ)

√

α

σ
(1 +

β

α
+

2√
ασ

)

)

×
(

1− e
−λN

√

α
σ
(1+ β

α
+ 2√

ασ
)T

)

, (42)

which holds by multiplying the numerator and denomina-

tor with

√

Max2(λ)α
σ

(

1 + β
α
+ 2√

σα

)

− 4Max(λ)
√

α
σ
+

7



Max(λ)

√

α
σ

(

1 + β
α
+ 2√

σα

)

. Additionally,

√

Max2(λ)
α

σ

(

1 +
β

α
+

2√
σα

)

− 4Max(λ)

√

α

σ

+Max(λ)

√

α

σ

(

1 +
β

α
+

2√
σα

)

≤ 2Max(λ)

√

α

σ

(

1 +
β

α
+

2√
σα

)

. (43)

Substituting (43) into (42) yields

JẼ∗
i

≤
VL(0)[λN (α+ 1

σ
)(α+ β + 2

√

α
σ
) + β]

4Max(λ)
√

α
σ

2Max(λ)

×
√

α

σ

(

1 +
β

α
+

2√
σα

)(

1− e
−λN

√

α
σ
(1+ β

α
+ 2√

ασ
)T

)

=
1

2
VL(0)

[

λN

(

α+
1

σ

)(

α+ β + 2

√

α

σ

)

+ β

]

×
√

1 +
β

α
+

2√
ασ

(

1− e
−λN

√

α
σ
(1+ β

α
+ 2√

ασ
)T

)

.

The energy constraint is given by JẼ∗
i
≤ Ei(0). Thus, the

energy requirement can be met if

Ei(0) ≥
1

2
VL(0)

[

λN

(

α+
1

σ

)(

α+ β + 2

√

α

σ

)

+ β

]

×
√

1 +
β

α
+

2√
ασ

(

1− e
−λN

√

α
σ
(1+ β

α
+ 2√

ασ
)T

)

,

i ∈ {1, . . . , N}.

The proof is thus completed.

According to Theorem 1, if the time constraint is re-
moved, i.e., T → ∞, the energy bound can be simpli-

fied as Ei(0) ≥ 1
2VL(0)

[

λN

(

α+ 1
σ

)(

α+ β + 2
√

α
σ

)

+

β

]

√

1 + β
α
+ 2√

ασ
, i ∈ {1, . . . , N}. Additionally, it is

noted that if the initial formation error is large, a longer
termination time T and a higher energy level Ei(0) are
expected for achieving the formation of the multi-agent
system. Besides, the smaller the formation threshold ε,
the longer the termination time and the more the energy
consumption.

4 Monotonicity properties of the optimal for-
mation algorithm

This section is devoted to the discussion of the relation-
ships between the lower bound of the required initial en-
ergy Ei(0), the lower bound of the achievable termina-
tion time T , and the algorithm parameters.

4.1 Monotonicity of the PARE solution

The following result presents the monotonicity of the so-
lution P of the PARE (26) with respect to the parame-
ters α, σ, and β.

Theorem 2 The solution P of the PARE (26) is a de-
creasing function of α and σ, and an increasing function
of β, i.e.,

∂P

∂α
≤ 0,

∂P

∂σ
≤ 0,

∂P

∂β
≥ 0, ∀α, σ, β > 0.

Proof 2 It follows from (26) that

(A− ασBBTP )TP + P (A− ασBBTP )

= −
(

I2n +
β

α
Q+ ασPBBTP

)

. (44)

Since I2n+
β
α
Q+ασPBBTP is positive definite, it follows

from (44) that (A− ασBBTP ) is Hurwitz. To show the
relationship between P and α, differentiating both sides
of (44) with respect to α yields

∂P

∂α
(A− ασBBTP ) + (A− ασBBTP )T

∂P

∂α

= σPBBTP +
β

α2
Q. (45)

Since (A−ασBBTP ) is Hurwitz, and the right-hand side
of (45) is positive semidefinite, (45) has the following
unique solution

∂P

∂α
= −

∫ ∞

0

e(A−ασBBTP )T t

(

σPBBTP +
β

α2
Q

)

× e(A−ασBBTP )tdt

≤ 0.

Thus, P is monotonically decreasing with α. Similarly,
it can be shown that

∂P

∂σ
(A− ασBBTP ) + (A− ασBBTP )T

∂P

∂σ
= αPBBTP,

8



which has the following unique solution

∂P

∂σ
= −

∫ ∞

0

e(A−ασBBTP )T tαPBBTPe(A−ασBBTP )tdt

≤ 0.

Similarly, it can be shown that

∂P

∂β
(A− ασBBTP ) + (A− ασBBTP )T

∂P

∂β
= − 1

α
Q,

which has the unique solution

∂P

∂β
=

∫ ∞

0

e(A−ασBBTP )T t 1

α
Qe(A−ασBBTP )tdt ≥ 0.

Thus, P is monotonically decreasing with σ and mono-
tonically increasing with β. The proof is thus completed.

4.2 Termination time

The following result discusses the monotonicity of the
lower bound of the termination time T in (9).

Theorem 3 The lower bound of the achievable termi-
nation time T in (9) is a decreasing function of both σ
and α and an increasing function of β.

Proof 3 For notational convenience, define the lower
bound of the termination time T as Tl, i.e.,

Tl = λmin(P ) ln
V (x(0))

λmin(P )(N − 1)ε2
. (46)

Differentiating both sides of (46) with respect to α yields

∂Tl

∂α
=
∂λmin(P )

∂α

(

ln
V (x(0))

λmin(P )(N − 1)ε2
− 1

)

+
λmin(P )

V (x(0))

∂V (x(0))

∂α
. (47)

It is straightforward to know that ∂Tl

∂α
≤ 0 if the two

terms on the right-hand side of (47) are non-positive.
According to the relationship of P and α, it follows that

∂V (x(0))

∂α
≤ 0.

Since P is symmetric and positive semidefinite, it can be
diagonalized as

P = MTΛ(P )M, (48)

where M = [m1, . . . ,m2n] is the matrix compris-
ing the orthonormal eigenvectors of P and Λ(P ) =

diag([λ1(P ), . . . , λ2n(P )]) with λi(P ) being the ith eigen-
value of P .
Differentiating both sides of (48) with respect to α yields

∂P

∂α
=

∂MT

∂α
(Λ(P )M) +MT ∂(Λ(P )M)

∂α

= 0 +MT (
∂Λ(P )

∂α
M+ Λ(P )

∂M
∂α

)

= MT ∂Λ(P )

∂α
M.

Since ∂P
∂α

≤ 0, each eigenvalue of ∂P
∂α

must be non-
positive, i.e.,

∂λi(P )

∂α
≤ 0, i ∈ {1, . . . , 2n},

which gives ∂λmin(P )
∂α

≤ 0. Additionally,

ln
V (x(0))

λmin(P )(N − 1)ε2
− 1

≥ ln
λmin(P )

∑N
i=2 ‖x̃i(0)‖2

λmin(P )(N − 1)ε2
− 1

= ln

∑N

i=2 ‖x̃i(0)‖2
(N − 1)ε2

− 1 ≥ 0,

which leads to ∂Tl

∂α
≤ 0. Similarly, it can be shown that

∂Tl

∂σ
≤ 0,

∂Tl

∂β
≥ 0.

The proof is thus completed.

4.3 Energy expenditure

Next, the effect of the parameters α, σ, and β on the
lower bound of the energy level Ei(0) in (10) is investi-
gated. The following assumption is made in this subsec-
tion.

Assumption 2 Suppose that

λN

(

3

2
α+

1

2
β + 2

√

α

σ
+

1

2σ
− β

2ασ

)

− β

2α
≥ 0,

where λN denotes the largest eigenvalue of the Laplacian
matrix.

Theorem 4 If Assumption 2 holds, then the lower bound
of the required initial energyEi(0) in (10) is an increasing
function of α and β and a decreasing function of σ.

Proof 4 For notational convenience, define the lower
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bound of Ei(0) as Eil , i.e.,

Eil =
1

2
VL(0)

[

λN

(

α+
1

σ

)(

α+ β + 2

√

α

σ

)

+ β

]

×
√

1 +
β

α
+

2√
ασ

(

1− e
−λN

√

α
σ
(1+ β

α
+ 2√

ασ
)T

)

. (49)

Differentiating both sides of (49) with respect to α yields

∂Eil

∂α
=

∂H1

∂α
VL(0)H2 +

∂H2

∂α
VL(0)H1, (50)

where H1 =

[

λN

(

α + 1
σ

)(

α + β + 2
√

α
σ

)

+

β

]

√

1 + β
α
+ 2√

ασ
, H2 = 1

2

(

1−e
−λN

√

α
σ
(1+ β

α
+ 2√

ασ
)T

)

,

∂H1

∂α
= λN

(

2α+β+3
√

α
σ
+ 1

σ
+ 1

σ
√
σα

)

√

1 + β
α
+ 2√

ασ
−

[

λN

(

α + 1
σ

)(

α + β + 2
√

α
σ

)

+ β

]

β

α2 + 1
α
√

ασ

2
√

1+ β
α
+ 2√

ασ

, and

∂H2

∂α
= λNT

1
σ
(1+ 1√

σα
)

4
√

α
σ
(1+ β

α
+ 2√

ασ
)
e
−λN

√

α
σ
(1+ β

α
+ 2√

ασ
)T
. It

can be seen that
∂Eil

∂α
≥ 0 when the two terms on

the right-hand side of (50) are non-negative. Since

VL(0) ≥ 0, H1 ≥ 0, H2 ≥ 0, and ∂H2

∂α
≥ 0, the sec-

ond term of (50) is non-negative. In the following, the

sign of ∂H1

∂α
is discussed. It follows that

∂H1

∂α
≥ λN

(

2α+ β + 3

√

α

σ
+

1

σ
+

1

σ
√
σα

)

×
√

1 +
β

α
+

2√
ασ

−
[

λN

(

α+
1

σ

)(

α+ β

+ 2

√

α

σ

)

+ β

] 1
α
[(β

α
+ 1√

ασ
) + 1 + 1√

ασ
]

2
√

1 + β
α
+ 2√

ασ

, (51)

which leads to ∂H1

∂α
≥ λN

(

2α + β + 3
√

α
σ

+ 1
σ

+

1
σ
√
σα

)

√

1 + β
α
+ 2√

ασ
−
[

λN

(

α+ 1
σ

)(

α+β+2
√

α
σ

)

+

β

]

1
α
(1+ β

α
+ 2√

ασ
)

2
√

1+ β

α
+ 2√

ασ

=

[

λN

(

3
2α+ 1

2β+2
√

α
σ
+ 1

2σ − β
2ασ

)

−

β
2α

]

√

1 + β
α
+ 2√

ασ
. When Assumption 2 holds, one has

∂H1

∂α
≥ 0, which gives

∂Eil

∂α
≥ 0. Thus, the lower bound of

the required initial energy Ei(0) is an increasing function
of α.

Similarly, it can be shown that

∂Eil

∂σ
= VL(0)

∂H1

∂σ
H2 + VL(0)

∂H2

∂σ
H1,

where

∂H1

∂σ
= −λN

σ2

(

α+ β + 3

√

α

σ
+ α

√
ασ

)

√

1 +
β

α
+

2√
σα

−
λN (α+ 1

σ
)(α+ β + 2

√

α
σ
) + β

2σ
√
ασ

√

1 + β
α
+ 2

ασ

≤ 0,

∂H2

∂σ
= −

λNT α
σ2 (1 +

β
α
+ 3√

ασ
)

4
√

1 + β
α
+ 2√

ασ

e
−λN

√

α
σ
(1+ β

α
+ 2√

ασ
)T

≤ 0,

which further leads to
∂Eil

∂σ
≤ 0. Also, one has

∂Eil

∂β
=

VL(0)
∂H1

∂β
H2 + VL(0)

∂H2

∂β
H1, and

∂H1

∂β
= [λN (α+

1

σ
) + 1]

√

1 +
β

α
+

2√
ασ

+
[λN (α+ 1

σ
)(α+ β + 2

√

α
σ
) + β]

2α
√

1 + β
α
+ 2√

ασ

≥ 0,

∂H2

∂β
=

λNT

4σ
√

α
σ
(1 + β

α
+ 2√

ασ
)
e
−λN

√

α
σ
(1+ β

α
+ 2√

ασ
)T ≥ 0,

which leads to
∂Eil

∂β
≥ 0. Thus, the lower bound of the

required initial energy Ei(0) is a decreasing function of
σ and an increasing function of β. The proof is hence
completed.

It follows from Theorems 3 and 4 that the lower bounds
on the achievable termination time and the required ini-
tial energy are both decreasing functions of σ. Hence, one
can increase the value of σ to reduce the formation time
and the energy consumption. However, σ is not allowed
to be arbitrarily large, because the condition σ < λ2

must be met as indicated by Theorem 1. Meanwhile, a
large value of α is capable of speeding the convergence
of the formation algorithm, yet at the cost of more en-
ergy consumption. Finally, the resistance coefficient β
is both harmful to convergence time as well as energy
consumption. That is, a larger value of β will lead to a
longer convergence time and more energy consumption.

5 Simulation

In this section, numerical examples are presented to ver-
ify the theoretical results. LetN = 5 and n = 2. The ini-
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tial states of the agents are given by x1(0) = (0, 4, 0, 0),
x2(0) = (12, 9, 0, 0), x3(0) = (5, 3, 0, 0), x4(0) =
(9, 3, 0, 0), and x5(0) = (4, 0, 0, 0). The desired relative
states are set to d12 = (5,−2.5, 0, 0), d23 = (5, 2.5, 0, 0),
d34 = (−5, 2.5, 0, 0), d14 = (−5,−2.5, 0, 0), d15 =
(5, 0, 0, 0), and d53 = (5, 0, 0, 0). The initial energy lev-
els are given by E(0) = {1000, 1200, 700, 900, 500}, the
termination time is T = 3s, and the steady-state error
tolerance is ε = 0.1. The network topology is given in
Fig. 1, for which the eigenvalues of the Laplacian matrix
L are spec(L) = {0, 1.382, 1.382, 3.618, 3.618}, and the
second smallest eigenvalues is λ2 = 1.382.

1

2

34

5

Fig. 1. The network topology

Fig. 2 shows the curves of the lower bound of the achiev-
able termination time versus the parameters α, σ and β.
It can be observed that the lower bound of the achiev-
able termination time is a decreasing function of both
α and σ and is an increasing function of β. This is con-
sistent with the theoretical results in Section 4. Fig. 3
shows the curves of the lower bound of the required total

initial energy, i.e.,El =
∑N

i=1 Eil , versus the parameters
α, σ and β. It can be observed that the lower bound of
the required total initial energy is an increasing function
of α and β and is a decreasing function of σ. In the fol-
lowing simulation, σ = 1.3 is employed which is smaller
than λ2.

Table 1
Values of the parameters

Simulation Value of Value of Value of Formation

Number α σ β Time tf (s)

I 450 1.3 0.2 0.49

II 5 1.3 0.3 N/A

III 853 1.3 0.7 N/A

Table 1 shows three sets of the values ofα, σ, and β. Only
the first set satisfies the energy and time constraints, i.e.,
Eqs. (9) and (10), simultaneously. The second set vio-
lates the termination time constraint (9), while the third
set violates the energy constraint (10). Fig. 4 depicts the
final formation shape of the multi-agent system in each
case. Fig. 5 shows the energy consumption of the agents
during the formation task. It can be observed that in
the first case, the formation is achieved and the energy
is not exhausted for each agent; in the second case, the

formation task is not accomplished by the end of the
termination time T = 3s; in the third case, the energy
of agent 4 is exhausted before the formation mission is
accomplished.

6 Conclusions

This paper presents a globally optimal distributed for-
mation control algorithm and a comprehensive analysis
of the roles of energy levels, termination time, control
parameters, as well as the network topology on achiev-
ing energy and time constrained formation control. Two
lower bounds on the required initial energy levels and
on the achievable termination time are explicitly given,
which help answer the question whether a distributed
formation control problem is feasible under prescribed
hard constraints on the termination time and energy
expenditure. Additionally, several monotonicity proper-
ties in relation to the control parameters, in particular,
the achievable termination time and the required initial
energy with respect to those control parameters are de-
rived. These properties can be properly exploited to fa-
cilitate the formation control design. The formulation of
this paper provides a solution to LQR-based formation
control under constraints of both termination time and
energy. The future topic can be directed to nonlinear
agent dynamics and directed network topologies.
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Fig. 2. The lower bound of the achievable termination time for the multi-agent system.
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Fig. 3. The lower bound of the required initial energy for all agents.
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Fig. 4. The final formation shape of the multi-agent system. The position of each agent is indicated by ∗.
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Fig. 5. The energy consumption of the multi-agent system. The red color indicates the energy consumed, whilst the blue color
indicates the remaining energy level.
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