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Abstract

A new concept of stabilisation of hybrid stochastic systems in distribution by feedback controls based on discrete-time state
observations is initialised. This is to design a controller to stabilise the unstable system such that the distribution of the solution
process tends to a probability distribution. In addition, the discrete-time state observations are also taken into consideration
to make the design of the controller more practical. Theorems on the stabilisation of hybrid stochastic systems in distribution
are proved. The lower bound of the duration between two consecutive state observations is obtained. The implementation of
theorems are demonstrated by designing the feedback controls in the structure cases and easy-to-rules are provided for the
user. Numerical examples are discussed to illustrate the theoretical results.
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1 Introduction

One important class of hybrid systems, which has been
used to model many practical systems where they may
experience abrupt changes in their structure and param-
eters, is family of hybrid stochastic differential equations
(SDEs) (also known as SDEs with Markovian switching)
[6,9,11,14,15,17-20,23,27,28,30,35,36]. When a given hy-
brid SDE is not stable, Mao [12] in 2013 discussed how
to design a feedback control based on discrete-time state
observations to stabilise the SDE in the sense of the
mean-square exponential stability. Such a stabilisation
problem has since then been studied by many authors
(see, e.g., [2,3,8,16,22,24-26,31,32]). A common feature
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of these papers is that the stabilisation was achieved in
the sense of asymptotic stability of the trivial solution,
namely the solution of the controlled SDE will tend to
zero (the steady state) asymptotically in mean-square
or almost surely or in probability and so on.

However, many stochastic systems do not posses a de-
terministic steady state. Sometimes to achieve the sta-
bility of the deterministic steady state precisely is not
a wise strategy of sustainable development. For popu-
lation systems with environmental fluctuation such as
tree, fish and other animal population, the stochastic
permanence but not extinction is regarded as the con-
trol objective. In this situation it is useful to investigate
whether or not the solution will converge in distribution
(not necessary to converge to zero), which is known as
the asymptotic stability in distribution. Especially, the
limit invariant measure with supported set in positive
cone implies the permanence of population system [4]. It
should be pointed out that for some SDE models of the
populations of species the solution to the equation does
not have the second or even first moment but could be
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stable in distribution (see, e.g., [13]). In some cases, it is
more practical to control the systems in the distribution
sense rather than to force the solution to tend to zero.
For example, for some viruses we can not make them ex-
tinct but only hope to control them in certain distribu-
tions with the probability of re-outbreak relatively low.

The aim of this paper is to discuss how to design a feed-
back control based on discrete-time state observations
to stabilise a given unstable hybrid SDE in the sense
of asymptotic stability in distribution [7]. As this is the
first paper on such a problem of stabilisation in distri-
bution, it is better to state it more precisely in terms of
mathematics. Consider an unstable hybrid SDE

dX(t) = f(X(t),r(t))dt + g(X(t),r(t))dB(t), (1)

where X () € R"isthestate, B(t) = (By1(t), -+ , Bm(t))T
is an m-dimensional Brownian motion, r(t) is a Markov
chain with its state space S (please see Section 2 for
the formal definitions) which represents the system
mode. The aim here is to design a feedback control
w(X ([t/7]7),r(t)) in the drift part so that the controlled
system

dX (t) = (f(X(1),r(t) +w(X([t/7]7),r(1)))dt
+g(X(2),r(1))dB(t (2)

becomes asymptotically stable in distribution. By
asymptotic stability in distribution we mean that the
law (or probability distribution) of the solution X ()
will converge to a unique probability measure pu, on R™
as t tends to infinity for any initial values X (0) € R"
and r(0) € S. Here 7 > 0 is a constant and [t/7] is the
integer part of t/7.

It should be noted that we assume that we only need
to observe X (t) at time points 0, 7, 27, ---, and the
feedback control u(X ([t/7]7),r(t)) will be designed only
based on those discrete-time observations of the state
X (t), but not whole continuous-time state X (¢). This is
one of the special features in this paper. It is due to this
special feature, we need to cope with the mixture of the
continuous-time state X (t) and the discrete-time state
X([t/7]7) in the system. As we will explain later, the
controlled SDE (2) can be regarded as a hybrid stochas-
tic differential delay equation (SDDE). Although the
asymptotic stability in distribution of hybrid SDDEs was
studied before, for example, in [34], the existing theory
is not applicable to our special controlled SDE (2). In-
stead, we will develop a new approach consisting of two
stages: (i) Imaging if whole continuous-time state X (t)
is observable, we can then design the feedback control
u(X(t),r(t)) to make the auxiliary SDE

dX(t) = (F(X(t),r(t)) +u(X(t),r(t))dt
+g(X(t),r(t)dB(t) (3)

to be asymptotically stable in distribution. (ii) Show
that there is a positive number 7* such that the feedback
control w(X([t/7]7),r(t)) formed from the same con-
trol function u(-,-) but based on the discrete-time state
observations will make the controlled system (2) to be
asymptotically stable in distribution provided 7 < 7.
We will also give a lower bound on 7* which is com-
putable numerically. We will see that stage (i) is rela-
tively easier but stage (ii) is very technical. Let us begin
to develop our new approach.

2 Mathematical Preliminaries
2.1 Notations

Throughout this paper, unless otherwise specified, we
let R™ be the n-dimensional Euclidean space and B(R")
denote the family of all Borel measurable sets in R™. If
x € R", then |z| is its Euclidean norm. If A is a vector
or matrix, its transpose is denoted by A”. If A is a ma-
trix, we let |A| = (/trace(AT A) be its trace norm and
|A|l = max{|Az| : |z| = 1} be the operator norm. If
A is a symmetric matrix (A = AT), denote by Amin(A)
and A\pax (A) its smallest and largest eigenvalues, respec-
tively. By A > 0 and A > 0, we mean A is positive and
non-negative definite, respectively. If both a,b are real
numbers, then a A b = min{a, b} and a V b = max{a, b}.
Let N denote the set of nonnegative integers.

We let (Q, F,{Fi}t>0,P) be a complete probability
space with a filtration {F;};>0 satisfying the usual con-
ditions (i.e. it is right continuous and Fy contains all
P-null sets). For a subset Q of Q, I5 denotes its indi-
cator function. Let B(t) = (Bi(t), -, Bm(t))T be an
m-~dimensional Brownian motion defined on the prob-
ability space. Let r(t), t > 0, be a right-continuous
irreducible Markov chain on the probability space tak-
ing values in a finite state space S = {1,2,--- , N} with
generator I' = (7;;) nxn given by

it # j,

P{r(t+A)=jlr(t) =i} = {%JAJFO(A) ifi=j

L +7iA +o(A)

where A > 0. Here ~;; > 0 is the transition rate from
ito jif i # j while vi; = — 37, 7i;. We assume that
the Markov chain r(-) is independent of the Brownian
motion B(-).

2.2 Basic assumptions and discussions on the equations

Consider an n-dimensional hybrid SDE (1) on ¢t > 0,
where f : R" xS - R®” and g : R" x § — R"*™
are Borel measurable functions satisfying the following
assumption.



Assumption 2.1 There is a pair of positive constants
a1 and ag such that

|f (i) = fly

i) < arfz =yl

and
gz, i) — g(y,1)| < azlz -y
forallz,y € R" andi € S.

It is easy to see from Assumption 2.1 that

|f(z,0)] < enla[+di, |g(a,i)| < azlz| +da,  (4)
for all (z,i) € R™ x S, where d; = max;cg |f(0,7)] and
dy = max;es [g(0,7)].

It is well known (see, e.g., [19]) that under Assumption
2.1 the hybrid SDE (1) has a unique global solution X (¥)
on t > 0 for any given initial values X(0) € R™ and
r(0) € S. In addition, the pth moment of solution is
bounded for any p > 0, which indicates the controlla-
bility of the system. Assume that this given SDE does
not have the desired property of stability in distribu-
tion and we are required to design a feedback control
u(X(0¢),7(t)), which is based on the the discrete-time
observations of the state at times 0, 7, 27, - - -, to stabilise
the system, where we have used the notation §; = [¢t/7]T
for convenience. We see that the bigger 7 could save
more on the cost of state observations as the observa-
tions can be made less frequently. To make the design of
the feedback control simpler, we will seek a linear form of
feedback control, namely u(X (d;),r(t)) = A(r(t)) X (5¢),
where A(i) € R"*" for all ¢ € S, and we will often write
A(i) = A;. The underlying controlled system (2) there-
fore becomes

dX (1) = (FX(0), r(8) + A(r(£) X (5,)) dt
+g(X (1), r(1)dB(1). (5)

Accordingly, our two-stage approach becomes to find NV
matrices A; plus a positive number 7%, as bigger as possi-
ble, so that this controlled system is asymptotically sta-
ble in distribution provided 7 < 7*. We should point out
that in many practical situations, the matrices A; have
their structure form of A; = F;G; with F; € R™*! and
G, € R™™ for some positive integer [ < n. There are two
cases which are known as: (i) State feedback: design F;’s
when G;’s are given; (ii) Output injection: design G;’s
when F;’s are given. We will treat two cases together by
stating our new results in terms of matrices A; but will
explain how to deal with these two cases in Section 4.

We observe that the controlled system (5) is in fact a
hybrid SDDE with a bounded variable delay. Indeed, if
we define the bounded variable delay v : [0,00) — [0, 7]
by

v(t)=t—kr forkr <t<tlk+1)r (6)

and k =0,1,2,---, then equation (5) can be written as

dX(t) [(X(tar(t)) A(r() X (= v(t)))dt
+g(X(#), r(t)dB(1) (7)

It is therefore known (see, e.g., [19]) that under Assump-
tion 2.1, for any given initial values X(0) = z € R”
and r(0) =i € S, equation (5) has a unique solution on
t > 0. We will denote the solution by X, ;(t) while by
r;(t) the Markov chain starting from ¢ at time 0. More-
over, the solution has the property that E| X, ;(¢)|P < oo
for all ¢ > 0 and any p > 0.

However, the joint process (X ;(t), r;(t)) does not have
the Markov property on ¢t > 0. Fortunately, the pro-
cess does have a Markov property at discrete times
kt. As a matter of fact, if we know (X, ;(k7),r;(kT))
at time k7, then (X, ,(¢),r;(t)) on t > k7 is uniquely
determined by solving equation (5) with initial vales
(Xg,i(kT),7;(kT)) but the information on how the pro-
cess reaches (X ;(k7),r;(kT)) starting from (z,7) is of
no further use. In particular, {(X,;(k7),7:(k7))} k>0
forms a discrete-time time-homogeneous Markov pro-
cess and we define its k-step transition probability
measure on R™ x S by p(k,z,i;dy x {j}). That is,

for any U € B(R™) and V C S.
2.8 Definition of stability in distribution

To state the definition of asymptotically stable in distri-
bution, we still need a few more notations. Denote C, the
family of continuous functions ¢ from [0, 7] to R™ with
norm [|§||; = sup,eg, - [€(s)|- Denote by P(C;) the fam-
ily of probability measures on C,. For P, P> € P(C,),
define the Wasserstein metric dy, by

(P P2y =sup| [ o Paae) ~ [ o0)Pata0

p€EL

where

L ={¢ : C; — R satistying |¢(&) —
and [6(€)] < 1 for £, € C.}.

PO < llE=<ll-

Moreover, for t > 0, define )A(m(t) ={X,(t+s):0<
s < 7} which is C,-valued. Denote by £(X,;(t)) the
probability measure on C, generated by )A(“(t) We re-
fer readers to [5] for more details about probability mea-
sures generated by stochastic processes and the follow-
ing definition.



It should be mentioned that there are other metrics to
measure the distance between two probability measures.
Our results in this paper hold for the Wasserstein met-
ric defined above. It is also worth to investigate similar
problems in other metrics.

Definition 1 The controlled system (5) is said to be
asymptotically stable in distribution if there exists a prob-
ability measure pi, € P(C;) such that

lim d]L(ﬁ(Xz’i(kT))?uT) =0

k—oo
for all (z,i) e R™ x S.

It should be pointed out that in the literature (see, e.g.,
[33]), the asymptotic stability in distribution is in general

defined on the joint process (X, ;(k7),7i(x7)). On the
other hand, given that the law of the Markov chain r;(t)
is already known to converge to its unique stationary
distribution (see, e.g.,[1]), our definition here only on

Xz,i(kT) is consistent with that in the literature.

3 Stabilisation in Distribution

Let us begin this section by stating a key assumption in
this paper.

Assumption 3.1 There exists a positive number 8 and
N symmetric positive definite matrices Q; (1 <i < N)
such that

2(z — )" Qilf(w,i) — fy. i) + Ai(z — y)]

+ trace[(g(w, 1) — g(y,1))" Qi(g(z,i) — g(y,1))]

N
+Y vl —y)"Qiw—y) < —Blz—yl>  (10)
j=1

for all (z,y,i) € R® x R™ x S.

Remark 3.2 Assumption 3.1 looks quite complicated at
first glance. It is actually, to some extend, a version of the
one-sided Lipschitz condition. The extra Q; provides our
more freedom to design the controllers when the theorem
is applied.

It is straightforward to show from Assumptions 2.1 and
3.1 that

2xTQi[f(x, 1) + A;x] + trace[g(z, i)TQig(x, 1)]

N
+ > yi2" Qi < —Blaf* + pulx| + B (11)

Jj=1

for all (x,i) € R™ x S, where $; and f3; are positive
numbers.

Throughout this paper, we will set

as = max [ Al and g = max Qi A (12)

while define

H,(r) = br[r(a1 +a3)* +a3e™0ded), - (13)
Hy(7) = [47(2703 + a3) + 4r2aB)et7(?reited)  (14)

for 7 > 0 as well as

and Hy(7) = _2Ha(r) (15)

2H, (1)
Hs(r) = 1 1 2H,(1)

- 1—-2H,(7)

for small 7 > 0 such that 2Hs(7) < 1. We will not
mention their definitions any more.

Remark 3.3 The reason that we write down the forms
of Hi(7), Ha(1), H3(1) and Hy(T) explicitly is that we
need them to calculate T in Theorem 3.7. Only when the
value of T is known, we are able to design the feedback
control based on the discrete-time state observations with
any two observations having time grip less than 7. Such
a process will be demonstrated in Example 5.1.

3.1 Lemmas

To show our new results on the stabilisation in distribu-
tion, we first present a couple of lemmas.

Lemma 3.4 Let Assumption 2.1 hold. Let T be suffi-
ciently small for 2H1 (1) < 1. Then the solution X, ;(t)
of equation (5) satisfies

E|Xa,i(t) = Xa,i(60)* < H(T)E|[Xa:()* + h(7) (16)

for all t > 0, where h(1) = % with hi(7) being
defined by

hi(7) = 67(7d2 + d2)eb7(reitad), (17)

Moreover, let T be sufficiently small for 2Hs(T) < 1, then
forany (x,y,i) € R® x R™ x S,

E|Z(t) = Z(3,)]” < Hu(T)E|Z(t)]” (18)
for allt > 0, where Z(t) = X, ;(t) — X,.:(2).

Proof. Fix the initial values (x,4) arbitrarily and write
X,.i(t) = X (t) simply. Let v be any non-negative inte-
ger. For t € [vT, (v + 1)7), we have 0, = v7. It follows



from (5) that
X(t) = X(0r) = X(t) — X(v7)

=/ [F(X(s),7(5)) + A(r(5)) X (vT)]ds

T

ﬁ/ﬁX@m@Mﬂﬁ

T

This together with (4) implies easily that
E|X (t) — X (0,)[

t
§27-]E/ (a1 X (s)| + di + as| X (v7)|)*ds

T

t
+2E/ (2| X (s)| + d2)?ds

vT

§271E/ (1] X (s) = X(05)| + d1 + (a1 + a3)| X (v7)])?ds

T

+2E /t (o] X (5) — X (85)] + da + az| X (v7)])%ds

-

t
<6(ra? +a§)/ E| X (s) — X (65)|%ds

+ 67[7(a1 + a3)® + AJE| X (vr)]? + 67(7d? + d2).
The Gronwall inequality shows
E[X(t) — X (8,)[
<H:(1)E|X (v7)[* + hu ()
<2H,(7)(BIX () - X(8)* + EIX()[2) + (1),

where hq(7) was defined by (17) already. Consequently

h1<7')

o _ 2Hi(7)
E|X () — X (0,)]* <= 1—2H (1)’

B O +

This implies that (16) holds for ¢ € [vT, (v 4+ 1)7). But
v > 0 is arbitrary so the first assertion (16) must hold
for all ¢ > 0. The second assertion (18) can be proved in
the similar fashion. O

Lemma 3.5 Let Assumptions 2.1 and 3.1 hold. If T is
sufficiently small for

2H,(7) < 1 and 8 > B, := 204/ Hs(7),

then the solution of equation (5) satisfies

(19)

2
Ele,i(t”Q < Zﬁ(|x‘26—0.5t(ﬁ—57—)/02+ B3 )7 (20)
1

- MT

for all t > 0, where ¢; = mines Amin(Q4), c2 =
maxX;es Amax(Qi) and B3 = Bo+2a2h(T)/B.+0.563 /(B—
Br) with f1 and By being specified in (11) and h(T) in
Lemma 3.4.

Proof. Once again we fix (z,4) arbitrarily and write
X.i(t) = X(t). Let = 0.5(8 — 8;)/ce which is posi-
tive. Applying the generalized It6 formula (see, e.g., [19,
Theorem 1.14 on page 48]) to e®* X7 (#)Q(r(t)) X (t) and
using (11), we can show easily that

c1e?EIX(t)|* — eolz|?
< [ B (30X + BIX ) + ) s
0

+E/O 2¢%% B X (s)]| X (s) — X (8,)])ds. (21)

But, by Lemma 3.4, we have

204 E(|X (8)]| X (s) — X (85)])

2
207

<0.56,E[X (5)]2 + Z2E[X(s) — X (55)[?

i
2
20

Br
h(r).

2
2aj

Br

<0.56-E[X (s)]* + == H3(7)E|X (s)] + —"h(T)

2
2a%

Br

=6-E[X(s)]” + (22)

Substituting this into (21) and recalling the definition of
0, we obtain

c1e”E|X())? — ealz|?
(- 058 - 5)|X ()P
< /0 e . -
+ BUX (3)] + B2+ (7)) ds

t
S/J%ms%wwa (23)
0

where (3 was defined in the statement of Lemma 3.5.
This implies the required assertion (20). O

Lemma 3.6 Let Assumptions 2.1 and 3.1 hold. If T is
sufficiently small for

2H5(7) < 1 and B > B = 2a4/ Hy(7), (24)
then for any (z,y,i) € R" x R® x S,
E[| Xoi(k7) = Xy a(k7)[7 < cslz — g’ (25)

for allk € Ny, where c3 = dea[1+7%(a2 +a3) +Ta3]/e1

andy = (8 - B.)/ez.

Proof. Fix any (z,y,7) € R™ x R™ x S and set Z(t) =
Xoi(t) — X,i(t) and Z(t) = {Z(t +5) : 0 < 5 < 7}
for t > 0. So Z(0) =  — y. In a similar fashion as (23)
was proved, we can apply the generalised It6 formula to



e ZT(#)Q(r(t))Z(t) and then use Assumption 3.1 and
Lemma 3.4 to obtain

e E|Z(t)* — c2 Z(0)

t
<-(B-re-8) [ CBZEPE=0. (20)
0
This implies

E|Z(t)]% < ?kc —yl2e T, Wt>0.  (27)
1

Now, for any k € N, it follows easily from equation (5)
and Assumption 2.1 that

E||Z(k7)|? < 4E|Z(kT)|?

(k+1)T
44 / (702 + 02)E|Z(1)[2 + 7a2E|Z(kr)[?] dt.
k

T

This, together with (27), implies assertion (25) immedi-
ately. O

3.2  Main theorem

Theorem 3.7 Let Assumptions 2.1 and 3.1 hold. Let
T, ..., T be the unique positive roots to the following
equations

2H (1) =1 and B = 204/ H3(75), (28)

2H5(73) =1 and B = 20/ Ha(T}), (29)

respectively, and set 7* = 1 AN 15 A T3 AT, Then for
each T < T, there exists a unique probability measure
wr € P(C;) such that

lim dp,(L(X,i(kT)), pr) =0 (30)

k—o0

for all (z,i) € R™ x S. In other words, equation (5) is
asymptotically stable in distribution provided T < 7*.

Proof. We divide the whole proof into three steps in order
to make the technical proof more understandable. Fix
T < 7 arbitrarily.

Step 1. We first claim that for any compact subset K of
R™,

lim dy(£(X,,:(k7)), L(X,; (k7)) =0 (31)

k— o0

uniformly in z,y € K and i,57 € S. Note that

{r(k7)}ren, is a discrete-time ergodic Markov chain

with its one-step transition probability matrix e™T.

Define the stopping time

kij = inf{k7 : ri(kT) = r;(kT), k > 0}.

Then k;; < 0o a.s. (see, e.g., [1]). Hence, for any ¢ €
(0,1), there is a positive number 77 > 0 such that

P(ki; <Ty) >1—¢/6 Vi,jeS. (32)

Recalling a known result ([19, p. 99, Theorem 3.24]) that

sup E( sup \Xm(t)|2)<oo,
(z,))EKXS NO<t<Ty

we see there is a sufficiently large p > 0 such that
P(Q,;) >1—¢/12 ¥Y(z,i) € K x S, (33)

where Q,; = {w € Q : supg< e, | Xei(t,w)| < p}. We
now fix z,y € K and i, j € S arbitrarily. For any ¢ € L
and k € N} with k7 > T}, we have

[E¢(Xaa(kr)) — E§(K, 5 (k)| < 5 + Ji(k7),
(34)

where
Tu(k7) 1= BT,y 16X (k7)) = 6(Xy k7)) ).

Set Q1 = Q,; NQy; N{ki; < T1}. By the paragraph
before (8), we derive

Jl(k’r)
—E(Iin, <1 (10K i (k7)) = 6(Xy 5 (k7)) F,))
=E (I{m,-ng}EW(Xu,z(kT — Kij)) — ¢(Xpa (kT — Hij)|)
<2 +E(In, B[Ry (b7 — rij) = Xoa(kr = r5)]) (35)
where u = X i(kij), v = Xy j(kij) and | = ri(ki;) =
7j(K4j). Observing that for any given w € Qy, |u|V |v] <

p, we can apply Lemma 3.6 to see that there is another
positive constant 75 such that

]E|Xuyl(]€7'—l€ij)—Xv’l(k’r_ﬁij)‘ S VkT 2 T1 +T2

Wl ™

Substituting this into (35) yields that Jy(¢) < 2¢/3 for
all k7 > Ty 4+ T. This, together with (34), implies that

E¢(X,:(k7) — Ep(X, (k)| < e Vkr >T, + Ty,
(36)

Since ¢ is arbitrary, we must have
dL(L( Xy i(kT)), L(X, (k7)) <& Vkr > Ty + Tp

for all z,y € K and ¢,j € S. This proves our claim.



Step 2. We next claim that for any (z,i) € R™ x S,

{/J()A(I,i(lm’))}keN+ is a Cauchy sequence in P(C,) with
metric dr,. In other words, we need to show that for any
€ > 0, there is an integer kg > 0 such that

d(L(Xei((v+u)7)), L(Xoi(uT))) <€ (37)

for all integers u > kg and v > 1. Let ¢ € (0,1) be
arbitrarily. By Lemma 3.5, there is a p > 0 such that

P{we Q: | X, i(vr,w)| <p}>1—-¢/8 VYu>1. (38)

For any ¢ € L and u > 1, we can then derive, using (8)
and (38), that

(X i((v+ u)7)) — ES(Xyi(ur))]
=[E(E[p(Xz.i((v+ 1)) For]) — Ed(Xa,i(ur))|

:‘ > /Rn E¢(Xy;(ur)p(v, z,i;dy x {j}) — E¢(X, i (ur))

JjeS

S Z~/]Rw |E¢(Xy7](u7)) - E¢(Xm,i(UT))|p(U,l',i;dy X {]})

jES

4 Implementation: Structure Feedback Con-
trols

The application of our main result, Theorem 3.7, de-
pends on the design of N matrices A;’s. In this section
we will explain how to design the matrices in the situa-
tion of structure feedback controls. That is, we will look
for the matrices in the structure form of A; = F;G; with
F; € R™*! and G; € R™™ for some positive integer .
Two cases can be discussed: (i) State feedback: design
F;’s when G,’s are given; (ii) Output injection: design
G;’s when F;’s are given (see, e.g., [14]). But, due to the
limit of the length of paper, we only give the details of
the state feedback and leave the case of output injection
to the readers.

4.1 State feedback: general results

We will use the technique of linear matrix inequalities
(LMIs, see, e.g., [35]) to design F;’s. Under Assumption
2.1, we will introduce some rules which lead to the design
of F;’s. Our first rule is:

Rule 4.1 Find N pairs of symmetric matrices Q; and

gg + Z/ d(L(Xy (), L(Xa i (ur)))p(v, @, i5 dy x {j}R: (1 <i < N) with Q; > 0 such that

jes’B
where B, = {y € R” : |y| < p}. But, by (31), there is a
positive integer kg such that

di (L(Xy,j(uT)), £( X i(uT))) < 5 Vu > ko

N ™

whenever (y,j) € B, x S. We therefore obtain

IE(Xoi((v+u)7)) — E¢(Xpi(ur))| < e

for u > kg and v > 1. As this holds for any ¢ € L, we
must have (37) as claimed.

Step 3. It follows from Step 2 that there is a unique
pr € P(C;) such that

lim dp,(£(Xo(k7)), pr) = 0.

k—o0

This, together with (31), implies that

kILH;o dL(‘C(XJJ,i(kT))7 /’[’7')
< lim. d (L(Xo,:(kT)), £(Xo,1(kT)))
+ lim di(L(Xo1(kT)), pr) =0

for all (z,4) € R™ x S, which is assertion (30). O

2(1‘ - y)TQz[f(‘T7 7’) - f(yv Z)]
+race[(g(x, 1) — g(y,9)" Qilg(x, 1) — gy, )]
<(z—9)"Qi(z —y) (39)

for all (z,y,1) € R® x R™ x S.

It is very easy to meet this rule under Assumption 2.1.
The simplest one is to let all ); = I,,, the n x n identity
matrix, and Q; = (2a1 + a3)I,,. However, it is wise to
find alternative matrices in order to make use of the
given structures of f and g so that the following rule can
be met more easily.

Rule 4.2 Find a solution of matrices F; of the LMIs

N
Qi+ FGi+ G F' +) 7;Q; <0, i€S.  (40)

=1

This rule guarantees that Assumption 3.1 is satisfied
with

N
ﬁ = _I?eag()\max(Qi + FZG1 + G;FFzT + E:I’YZJQJ)
j=

(41)

We hence have the following corollary.



Corollary 4.3 Under Assumption 2.1, find matrices F;
(i € S) by Rules 4.1 and 4.2. Then Theorem 3.7 holds
with B defined by (41) and A; = F;G;.

4.2 State feedback: linear case

In the previous subsection, the matrices F; or G; are
determined in two steps based on Rules 4.1 and 4.2. In
particular, Rule 4.1 may have to be performed manually.
However, in the linear case, we can set up a set of LMIs
so that Matlab can be used to search for matrices Q;, F;
or G; together automatically. Assume that f and g have
the linear forms

g(x,1) = (vii + Viz, -+, Ui + Vinix)
for (z,i) € R™ x S, where u;, vy4,- -
Ui7V1i7 e 7Vmi S R’I’LXTL'

s Umi S Rn and
Assumption 3.1 means that we need to find F; and QQ; =
QT >0 (i € S) in order for

QiU + F,Gy) + (Ui + FiG)TQ;

m N
+ Z VkEQz‘sz’ + Z’Yiij <0, 1€8. (43)
k=1 j=1

These matrix inequalities are not linear in Q; and F;’s.
However, if we set J; = @Q;F;, then they become the
following LMIs

QiUi + JiG;i + UL Qi+ GT I

m N
+ Z V;g;leky + Z’}/iij <0, i€ S. (44)
k=1 j=1

The following corollary is therefore immediate.
Corollary 4.4 Consider the controlled system (5) with

f and g having the linear forms (42). If the LMIs (44)
have their solutions J; and Q; = QT > 0, then Theorem

3.7 holds with A; = Q; ' J;G; and

B = —meagc)\max (QiUi + JiGi + Ul Qi + GT I

m N
+Y VEQiVki+ ) 'Yiij)' (45)
k=1 j=1
5 Example

Let us now discuss an example to illustrate our theory.

Example 5.1 Consider a linear hybrid SDE
dx(t) = [u(r(t)) + U(r(t))=(t)]dt
+ [o(r(t)) + V(r(t))x(t)]dB(t) (46)

on t > 0. Here z(t) = (x1(t),2(t))T; B(t) is a scalar
Brownian motion; r(t) is a Markov chain on the state
space S = {1,2} with the generator

-1 1
= ;
and the system matrices are u; = (10,57, up =
(15,10)T, vy = (0.5,0.3)T, vy = (0.4,0.6)7,

2 11 [1 21

) U2 = )
1 -1 -2 1
0.1 0.1] [—0.1 —0.1]

L = .

0.1 —0.1 —-0.1 0.1
By Theorem 10.13 in Page 383 of [19], it is not hard to
verify that both x1(¢) and zo(t) will tend to infinity al-
most surely as ¢ — oo, namely, every sample path will
get large as the time advances, which indicates the in-
stability in distribution. In addition, the K-S test [21]
for 2-dimensional data is used to test the difference be-
tween probability distribution functions (PDFs) at time
points with 0.2 difference, namely difference between
PDF at t = 90+ 0.2k and PDF at ¢t = 90+0.2(k+ 1) for
k=0,1,2,...,99. The simulation is conducted by using
the EM method with 5000 paths. The result is drawn in
the upper plot of Fig. 1. Logarithm of the corresponding
p values is drawn in the lower plot !. It is clear that the
difference between PDF's does not vanish for large ¢ and
the p values also indicate the significant difference be-
tween PDFs at quite close time points with much more

than 99% confidence. All those observations indicate the
instability in distribution.

U, =

‘/1:

We therefore need to design a feedback control to sta-
bilize the system in distribution sense. We consider the
state feedback control and assume that we could only
observe x1-component in mode 1 and x9-component in
mode 2. In terms of mathematics, we look for a controller
function of the form u(z,i) = F;G;z with G; = (1,0),
Gy = (0,1) and Fy, F, € R**1. Our aim is to find F}
and F5 as well as a positive number 7* so that the con-
trolled system

dz(t) = [u(r(t)) + U(r(t))x(t) + FruGrez(de)]dt
+ [v(r(t)) + V(r(t)z(t)|dB(t) (47)

1 Since the p values are extremely small, we take logarithm
of them to make them visible
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Fig. 1. Upper: difference between PDFs. Lower: logarithm
of the corresponding p values

becomes stable in distribution as long as 7 < 7*.

To apply Corollary 4.4, it is easy to verify that both @4
and Qg are the 2 x 2 identity matrix. J; = (—3,0)7 and
Jo = (0,—2)T form a set of solutions to the LMI (44).
In fact, the left-hand-side terms of (44) become

—1.98 0
U, + J,G; + UlT + G?JZT + VZTVZ =
0 —1.98
(48)

for both i = 1 and 2. We therefore see that, by setting
F;, = J; (i = 1,2), Theorem 3.7 can be applied to the
controlled system (47) with § = 1.98 and

0 0
0-2|

a1 =3, ag = 0.1414214, a3 = 3, as = 3.

A=

-3 0
and Ay =
0 0

To determine 7%, we compute

Consequently

Hy(7) =67(367 + 0.02)e57(O710-02),
Hy(7) =[47(187 + 0.02) + 3672]et7(O7+0-02),

We can then compute
71 = 0.04513, 75 = 0.01476, 75 = 0.06284, 7; = 0.02086

and hence 7* = 0.01476. By Corollary 4.4 and Theorem
3.7, we can finally conclude that the controlled system

(47) with F; = (=3,0)T and F = (0,—2)7 is stable in
distribution as long as 7 < 0.01476.

Now, we choose 7 = 0.01 and use the EM method with
5000 paths to simulate samples. The K-S test for 2-
dimensional data is used to test the difference between
PDF's at time points with 1 difference, namely differ-
ence between PDF at ¢ = k and PDF at ¢ = (k + 1) for
1 =1,2,...,100. The result is drawn in the upper plot of
Fig. 2. It is clear that the difference between PDFs van-
ishes as t advances. The p values drawn in the lower plot
of Fig. 2, which are larger than 0.2 for large ¢, also indi-
cate that we can not reject that PDFs at quite distant
time points follow the same distribution.

o o 9o
» o o =

difference between pdfs
(=)
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—_—
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Fig. 2. Upper: difference between PDFs. Lower: the p values

6 Conclusion and future research

In this paper, we initiated the new problem of sta-
bilisation in distribution for a class of hybrid SDEs.
We showed that the stabilisation in distribution can
be achieved by linear feedback controls based on the
discrete-time state observations. We also gave a lower
bound on 7* so that the feedback control works as long
as 7 < 7%, where 7 stands for the duration between two
consecutive state observations (namely one state obser-
vation per 7 unit of time). The lower bound can be de-
termined numerically so that our theory can be applied
more easily in practice. It should be pointed out that
the lower bound derived in this paper is not optimal. It
is worth to search a larger 7*, which can help to save the
cost as the frequency of the observations can be reduced
when 7 is allowed to be larger. To demonstrate how to
implement our new theory, we discuss how to design the
feedback control in the case of the state feedback. In the
nonlinear systems, we proposed a couple of simple rules
so that the feedback control can be designed by follow-
ing these simple rules. In the linear systems, we showed



the design of the feedback control can be done by solv-
ing LMIs and this can be achieved by using Matlab. An
example were discussed to illustrate our theory.

It is still an open problem that whether a general the-
orem employing the general set-up of Lyapunov func-
tions can be built up and proved, which may help to
further release the constraint on 7*. We will investigate
this problem in future. Since we only used the discrete-
time observations for the state to design the control in
this paper, it is also worth to investigate designing the
controllers based on discrete-time observations for both
the state, X (t) and the mode, r(t).

At last, it should be noted that we proved the existence
and uniqueness of such a p, in Theorem 3.7 for those
controlled hybrid stochastic systems. But, the explicit
form the p, can rarely be found. Therefore, to find a
reliable numerical method that can approximate u, ef-
ficiently is another very interesting open question.
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