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Abstract

This paper presents an on-line parametric estimation method for robot manipulators. The identification algorithm estimates
the parameters by using the input error between the robot and a parallel estimated model. Both, the robot and the estimated
model are controlled by two Proportional-Derivative (PD) controller tuned with the same gain values, and a persistent
excitation (PE) signal for ensuring parameters convergence is included. The exact model matching and the estimation error
cases are analysed. Noisy state measurements and filters are avoided in the model parameterization by using only the states of
the estimated model. A second parameter identification algorithm, which is based on a composite update law, is also proposed.
It improves parameters convergence and robustness of the update rule in presence of estimation errors. The stability of the
closed-loop dynamics related to the estimated model is assessed via Lyapunov stability theory. Simulations are carried out to
validate the proposed approaches.

Key words: System identification, CLIE, persistent exciting signal, composite update rule, estimation error, parameter
convergence, gradient method.

1 Introduction

Parameter identification of robot manipulators is a well-
known problem and it is a key component in the design
of model-based controllers for these systems [13,37,27].
Its aim is to estimate a set of parameters depending
on the robot physical parameters including link lengths,
masses and moments of inertia, joint friction coefficients
and gravitational terms.

There exist several motivations for developing parameter
identification methods tailored to robot manipulators.
Their dynamics are usually described by a set of cou-
pled nonlinear differential equations. Moreover, in many
cases only joint position and velocity measurements are
available and acceleration measurements, which are re-
quired in some approaches, are absent in commercial
available robots. Regarding the first issue, many of the
classic parameter identification methods have been de-
veloped for discrete-time Linear Time Invariant (LTI)
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systems [17,8,20], and applying them to robot manipula-
tors would require a discrete-time model of their dynam-
ics. In this regard, there are very few works on discrete-
time models for robot manipulators and its use for pa-
rameter identification has not yet been explored. Early
work [21] shows a discrete-time nonlinear robot model
obtained considering a constant inertia matrix, an as-
sumption which may be unrealistic in practice, in par-
ticular for robots having only rotational joints. On the
other hand, acceleration measurements are not available
in industrial robots. A way to circumvent this problem is
to add external accelerometers. However, these devices
measure linear acceleration and in most cases the robot
joints are rotational and thus angular acceleration mea-
surements are needed. Moreover, data fusion from posi-
tion encoders, gyroscopes and linear accelerometers to-
gether with Kalman filtering are needed to obtain joint
angular velocity and acceleration estimates [19]. Besides,
acceleration measurements are biased and possess large
levels of measurement noise thus making filtering and
signal processing necessary. To avoid angular accelera-
tion measurements, one could resort to techniques ap-
plied to continuous-time LTI systems to obtain linear
parametrizations of the robot model [5]. In this case, a
filtering procedure avoids the measurement of the time
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derivatives of the system input and output. However,
their usefulness in parameter identification of robot ma-
nipulators is limited by the nonlinearities appearing in
their models.

An account of the identification methods developed for
robot manipulators and proposed in the literature is de-
scribed next. One of the most widely studied approaches
is the IDIM-LS method, which is based on the Inverse
Dynamic model (IDIM) of a robot manipulator cou-
pled with the Least Squares (LS) or some of its vari-
ants [38,39,11,41,10,12]. A feature of this method is the
fact that each robot joint is first stabilized through a
Proportional Derivative (PD) or a Proportional Integral
Derivative (PID) controller. Then, the robot measured
input torques, the joint positions and in some cases the
joint velocities feed a Least Squares algorithm. A filtered
IDIM and the LS algorithm has been proposed in [31]
where the robot Supplied Energy Model (SEM), iden-
tified using the LS algorithm, is also studied. Flexible
joint robot manipulators have been identified using an
IDIM filtered model coupled with an LS algorithm [18].
In the IDIM-IV method an Instrumental Variable (IV)
algorithm replaces the standard LS algorithm, and the
identified model corresponds to the IDIM [9].

An alternative approach to the above methods is the
use of Closed-Loop Output Error (CLOE) algorithms.
The idea dates back to the parameter identification of
discrete-time linear systems [15]. The CLOE methods
are based on a parallel model structure in which the
robot and its model are simultaneously controlled by PD
controllers tuned with the same gains and fed by the
same excitation signal. The parameters of the model are
tuned through a parameter estimation algorithm like the
LS method, which is driven by the error between the po-
sition of the robot and the simulated position generated
by the robot model. Unlike the IDIM-based methods,
the signals generated by the model feed the identification
algorithm thus avoiding measurement noise problems.
The above configuration produces a nonlinear closed-
loop system composed by the robot model, the PD con-
troller and the parameter identification algorithm. Ex-
amples of approaches exploiting this idea are found in
[2,7].

The Closed-Loop Input Error (CLIE) method [2], is the
counterpart of the CLOE method and retains the same
parallel topology. However, in this case the robot po-
sition error is replaced by the error between the real
robot torque and the torque generated by the model. It
is particularly interesting reference [7], which describes
most of the approaches used for parameter identification
of robot manipulators. That work also reports the Di-
rect and Inverse Dynamic Identification Model (DIDIM)
method which shares some of the features of the CLIE
method and uses a nonlinear LS algorithm for parame-
ter identification. A problem faced by this approach is
the choice of the initial parameter estimates, which may

require prior knowledge on the robot parameters.

It is also worth to note that parameter identification of
robot manipulators may be performed as a part of an
adaptive controller [29] as in the case of the classic and
widely known Slotine-Li algorithm [34,40,42,24].

In spite of the successful implementation of the CLOE
and CLIE methods for the parameter identification of
robot manipulators, the theoretical question about the
stability of the nonlinear closed-loop system resulting
from the robot model, the PD controller and the pa-
rameter identification algorithm remains open. In other
words, the boundedness of the trajectories of the simu-
lated model whose parameters are updated through an
LS or a VI method has not been theoretically proved
even if the experimental results produce good parameter
estimates. Moreover, there are no studies showing how
the previous CLIE and CLOE algorithms are affected
by bounded estimation errors.

Motivated by the above comments, this work reports a
CLIE algorithm in which the stability problem previ-
ously mentioned is solved. The approach is related to
previous work on parameter identification of servo sys-
tems [6].

The main features of the proposed CLIE algorithm are
the following

(1) Rigorous stability and parameter convergence re-
sults related to the estimated model using Lya-
punov stability theory and results on based on Per-
sistency of Excitation conditions are given to sup-
port the proposed approach.

(2) The regressor matrix used in the proposed update
law depends only on the signals produced by a
model, which are noise-free and consequently avoids
the use of measurements of joint positions and ve-
locities that may be contaminated by noise.

(3) A robustness analysis of the CLIE algorithm is pre-
sented by considering bounded estimation errors
and Persistency of Excitation conditions.

(4) A modification of the update law of the CLIE algo-
rithm called the composite update law, and aimed
to improve parameter convergence, adds a term de-
pending on an identification error.

The contributions of this work with respect to previous
developments for parameter identification of robot ma-
nipulators based on CLIE and CLOE algorithms are the
following:

• The proposed CLIE algorithm is supported by a rig-
orous stability proof, which proves that all the signals
in the nonlinear closed-loop system resulting from the
robot model, the PD controller and the update law
are bounded under zero and non-zero bounded esti-
mation error conditions.
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• Parameter convergence is also rigorously demon-
strated by considering Persistency of Excitation
conditions also under zero and non-zero bounded
estimation error conditions.

• The algorithm is simple to put to work since only a
gain in the update law for each robot joint needs tun-
ing while in the case of the composite update law two
gains need tuning, and unlike some previous meth-
ods the parameter estimates initial conditions may be
freely set.

The paper outline is as follows: Section II presents the
robot dynamics including the actuators gear trains. Sec-
tion III defines the CLIE algorithm for robot manipula-
tor identification where the update rule and exponential
convergence is proved via Lyapunov theory. Section IV
introduces the CLIE algorithm based on a composite up-
date law using a gradient algorithm. Section V reports
simulations studies using a 2-DOF robot. The conclu-
sions are presented in Section VI.

Throughout this paper, N, R, C, R+, Rn, Rn×m de-
note the spaces of natural numbers, real numbers, com-
plex numbers, positive real numbers, real n-vectors, and
real n×m-matrices, respectively; I ∈ Rn×n denotes an
identity matrix; L∞ denotes the space of bounded sig-
nals, L2 denotes the space of square integrable functions,
λmin(A) and λmax(A) denotes the minimum and maxi-
mum eigenvalues of matrix A, respectively; diag (·) de-
notes a diagonal matrix, the norms ‖A‖ =

√
λmax(A⊤A)

and ‖x‖ stand for the induced matrix and vector Eu-
clidean norms, respectively; max(·) denote the maxi-
mum operator, A > 0 denotes a positive definite matrix,
and A > B means that A−B is positive definite; where
x ∈ Rn, A,B ∈ Rn×n and n,m ∈ N.

2 Robot dynamics of n-DOFwith actuator/gear
train

The robot dynamics of a n-DOF robot is obtained by
the Euler-Lagrange formulation and is given by [37]

M(q)q̈ + C(q, q̇)q̇ +Hq̇ +G(q) = τ + δr, (1)

where M(q) ∈ Rn×n is a symmetric and positive defi-
nite inertia matrix, C(q, q̇) ∈ Rn×n stands for the Cori-
olis and centrifugal forces/torques matrix, H ∈ Rn×n

is a diagonal viscous friction matrix, G(q) ∈ Rn is the
gravitational torques vector, δr is a vector of bounded
disturbances, τ ∈ Rn is the input torques vector, and
q, q̇, q̈ ∈ Rn are the position, velocity and acceleration
vectors, respectively. The robot dynamics (1) may also
be written as

n∑

j=1

mjk(q)q̈j +

n∑

i,j=1

cijk q̇iq̇j + hkk q̇k + gk(q) = τk + δkr,

or equivalently as

mkk(q)q̈k + hkk q̇k + ηk = τk + δkr, k = 1, . . . , n (2)

where

ηk =

n∑

j 6=k

mjk(q)q̈j +

n∑

i,j=1

cijk q̇iq̇j + gk(q) (3)

Then, ηk lumps the off-the-diagonal nonlinear coupling
terms of the robot model (1) and is assumed as a time-
varying bounded disturbance.

The mechanical model of each DC motor k driving the
robot joints through a gearbox is given by

Jkθ̈k +Rkθ̇k = uk − τk
rk

+ δkm (4)

where Jk is the motor inertia, Rk is the motor viscous
friction coefficient, uk is the control input, δkm accounts
for bounded disturbances, rk is the k-th gear ratio and
θk, θ̇k θ̈k ∈ R are the motor angular position, veloc-
ity and acceleration. A high gear ratio rk decouples the
robot dynamics by reducing the effect of the off-the-
diagonal terms in the robot model on the DC motors.
Typical values of rk are 200-500. On the other hand, the
joint and motor angular positions are related by

qk =
θk
rk

. (5)

Using the above formula and (4) allow obtaining the next
set of decoupled linear models for each robot joint

Jk q̈k +Rk q̇k + dk = uk (6)

where Jk = Jkrk + 1
rk
mkk(q), Rk = Rkrk + hkk

rk
and

dk =
ηk − δkr

rk
− δkm. (7)

Notice that the term Jk is composed of the inertia of
the k-th DC motor and the kk-th diagonal term of the
robot matrix inertia divided by the gear ratio rk. Hence,
for large values of rk the term 1

rk
mkk(q) is small and Jk

is approximately constant. On the other hand, a large
gear ratio rk also renders the quotient hkk/rk small and
therefore the term Rk is dominated by the DC motor
viscous friction coefficientRk. Moreover, note in (6) that
whilst the effect of the DC motor dynamics increases
proportionally with rk, the terms associated to the robot
dynamics including ηk and δkr are proportionally atten-
uated by the inverse of rk. The diagram of each joint k
is given in Fig. 1 in closed-loop with a PD controller.
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Fig. 1. Diagram of each robot joint in closed-loop with a PD
controller.

Therefore, the corresponding matrix-vector model of the
perturbed robot dynamics is

J q̈ +Rq̇ + d = u (8)

where J ∈ Rn×n is a constant diagonal inertia matrix,
R ∈ Rn×n is a diagonal viscous friction matrix, d ∈ Rn is
a bounded disturbance vector and u ∈ Rn is the control
input vector.

Now consider the following alternative form of the robot
dynamics (8)

q̈ = −Aq̇ +Bu−D (9)

where A and B are diagonal positive definite matrices
defined as A = J−1R, B = J−1, and D = J−1d.

Each component of the vector D is given by

Dk =
1

Jk

[
ηk − δkr

rk
− δkm

]
(10)

Assume that the disturbances δkm are constant. Notice
that a large gear ratio rk attenuates the effect of the off-
the-diagonal nonlinear coupling terms ηkr and the dis-
turbance δkr. Consequently, the termDk depends essen-
tially on δkm/Jk. These conditions permit assuming that
the terms Dk and thus the vector D in (9) are constant.

3 Closed loop input error (CLIE) identification
technique

A block diagram of the CLIE algorithm is depicted in
Fig. 2. The robot and its model are controlled using the
same PD controller and the error between their outputs
feeds an identification algorithm that subsequently up-
dates the estimated model.

Consider the next PD control law applied to the dynam-
ics (9)

u = Kpq̃ −Kdq̇ + PE, (11)

where Kp,Kd ∈ Rn×n are diagonal and positive
definite matrices and correspond to the propor-
tional and derivative gains, respectively, defined as
Kp = diag (kp1

, · · · , kpn
) and Kd = diag (kd1

, · · · , kdn
),

where kpi
, kdi

> 0, i = 1, · · ·n are the diagonal elements

-
+

+
+

PD

Controller

Robot

Dynamics

uqd q̃, ˙̃q q, q̇

-
+

+
+

PD

Controller

Estimated

Model

Identification

Algorithm

vp̃, ˙̃p p, ṗ

-

+

eu

Θ̂

PE

Fig. 2. Block diagram of the closed-loop input identification
technique

of the proportional and derivative gain, respectively,
q̃ = qd − q is a position error, qd ∈ Rn is a constant
desired reference and PE is a bounded persistent exci-
tation signal.

The dynamics (9) under the control law (11) yields the
closed-loop dynamics

q̈ = −(A+BKd)q̇+B(Kpq̃+PE)−D = −Φ⊤Θ (12)

where Φ = Φ(q̃, q̇, PE) ∈ Rp×n is the regressor matrix
and Θ ∈ Rp is the unknown parameters vector which are
defined as

Φ =




diag (q̇i)
n

i=1

−diag (Kpi
q̃i −Kdi

q̇i + PEi)
n

i=1

I


 , Θ =




A ·~1
B ·~1
D




(13)

where ~1 =
[
1 . . . 1

]⊤
∈ Rn.

The following Lyapunov function is used to verify the
Uniform Ultimate Boundedness (UUB, also known as
practical stability) [14] of the closed-loop trajectories of
(12) under the effect of bounded disturbances [22,30,28].

V =
1

2
q̇⊤q̇ +

1

2
q̃⊤
(
1

2
W 2 +BKp

)
q̃ − 1

2
q̃⊤Wq̇, (14)

where W = A+ BKd and BKp > 0. It is easy to check
that (14) is positive definite by writing V as

V =
1

2

[(
q̇ − 1

2
Wq̃
)⊤(

q̇ − 1

2
Wq̃
)

+q̃⊤
(1
4
W 2 +BKp

)
q̃
] (15)
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The time-derivative of (14) along the closed-loop trajec-
tories of (12) is

V̇ =− 1

2
q̇⊤Wq̇ − 1

2
q̃⊤WBKpq̃ + q̇⊤η − 1

2
q̃⊤Wη

V̇ ≤− 1

2
λmin(W )‖q̇‖2 − 1

2
λmin(WBKp)‖q̃‖2

+ ‖q̇‖‖η‖+ 1

2
λmax(W )‖q̃‖‖η‖ (16)

where η = BPE−D. The inequality (16) can be written
as

V̇ ≤− x⊤Ax+ ‖η‖B⊤x

≤− λmin(A)‖x‖
[
‖x‖ − ‖B‖‖η‖

λmin(A)

]
(17)

where x = [q̇⊤ q̃⊤]⊤,A = 1
2diag{λmin(W ), λmin(WBKp)},

and B = [1 1
2λmax(W )]⊤. Therefore, V̇ < 0 as long as

‖x‖ ≥ ‖B‖‖η‖
λmin(A)

≡ µ0 (18)

Selecting positive control gainsKp andKd such that (18)
is satisfied ensures that the trajectories of system (12)
converge to a compact set Sx of radius µ0, i.e., ‖x‖ ≤ µ0

and hence, the trajectories of (12) are UUB.

Remark 1 The above result shows that a simple PD con-
troller stabilizes (in a practical stability sense) the robot
manipulator without explicit knowledge on its parame-
ters. An advantage of this controller is that it is easy to
tune [4,22]. Note that there exists an steady state error
due to the bounded disturbances. In this regard, a PID
controller [43] could be used to reduce the steady state
error by means of the integral term. However, the only
restriction on the robot controller imposed by the param-
eter identification approach proposed here is to guaran-
tee a stable closed-loop dynamics of the real robot without
regard on the tracking quality of the closed-loop system.
Thus, an integral action is not needed. Moreover, adding
an integrator further complicates the stability analysis
[26] and the controller tuning, and opens the possibility
of windup phenomena.

3.1 Exact Model Matching

Consider an estimated model whose structure matches
the robot dynamics (9)

p̈ = −Âṗ+ B̂v − D̂ (19)

where Â, B̂, D̂ are estimates of A,B andD, respectively,
and p ∈ Rn is the model state. Let the following PD

control law applied to (19) be

v = Kpp̃−Kdṗ+ PE (20)

with p̃ = qd − p. Notice that (11) and (20) use the same
values of the gain matrices and the persistent signal PE.
The system dynamics (19) under the control law (20)
yields the closed loop dynamics

p̈ = −(Â+ B̂Kd)ṗ+ B̂(Kpp̃+PE)−D̂ = −Φ⊤
p Θ̂. (21)

The term Φp = Φp(p̃, ṗ, PE) ∈ Rp×n is a regressor ma-

trix and Θ̂ ∈ Rp is an estimate of the parameter vector
Θ which are defined as

Φp =




diag (ṗi)
n

i=1

−diag (Kpi
p̃i −Kdi

ṗi + PEi)
n

i=1

I


 , Θ̂ =




Â ·~1
B̂ ·~1
D̂


 .

(22)

Note that the regressor Φp depends on the state of the
estimated model instead of the state of the robot dynam-
ics. Then, all the signals in the regressor are noise-free.
Define the output error as

e = p̃− q̃ = q − p (23)

Under this new coordinates the closed-loop error dynam-
ics between the dynamics (9) and the estimated model
(19) are

ë = −Āė− B̄e+ Ãṗ− B̃v + D̃

= −Āė− B̄e+Φ⊤
p Θ̃ (24)

where Ā = A+BKd, B̄ = BKp, Θ̃ = Θ̂−Θ ∈ Rp is the
parametric error vector. The parametric error is defined
as

Θ̃ = Θ̂−Θ =




(Â−A) ·~1
(B̂ −B) ·~1
D̂ −D


 . (25)

The input error eu is defined by

eu = v − u

= Kpe+Kdė (26)

The following theorem establishes the stability and pa-
rameter convergence of the CLIE approach applied to
parameter estimation of robot manipulators.

Theorem 1 Consider the robot dynamics (9) in closed-
loop with the PD control law (11), and the estimated
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model (19) in closed-loop with control law (20). If the

parameter estimates Θ̂ are updated as

˙̂
Θ = −ΓΦpKdK

−1
p eu, (27)

where Γ ∈ Rp×p is a positive definite matrix gain, and

K−1
p KdĀ − I > 0 then Θ̃, e, ė, p, ṗ and Φp remain

bounded and the input error eu converges to zero.

PROOF. See Appendix A. ✷

Parameter convergence is obtained if the following per-
sistence of excitation condition [32,3,23] on the regressor
matrix Φp is fulfilled

Definition 1 A matrix Φp : Rn → Rp×n is persistently
exciting (PE) [3] if there exist β1, β2, T > 0 such that for
all t ≥ 0 the next relationship is fulfilled

β1I ≤ L1 =

t+T∫

t

Φp(σ)Φ
⊤
p (σ)dσ ≤ β2I (28)

The above definition requires that the p × p matrix
Φp(t)Φ

⊤
p (t) integrated over the interval [t, t + T ] for all

t be nonsingular, i.e the eigenvalues of the resulting ma-
trix are different from zero.

3.2 Estimation error

It is well known that any identifier exhibits estimation
errors due to unmodelled dynamics and disturbances
such as noise measurements, time-delays, nonlinear dis-
turbances in the DC motor, etc. In order to take into
account these issues the closed-loop error dynamics (24)
are rewritten as

ë = −Āė− B̄e+Φ⊤
p Θ̃ + ε (29)

where ε = Φ⊤Θ − Φ⊤
p Θ̂ ∈ Rn is a bounded estimation

error with ‖ε‖ ≤ ε̄.

Remark 2 The estimation error ε is independent from
the disturbance vector D since it depends on measure-
ment noise and time-varying disturbances that cannot be
estimated by the CLIE algorithm.

To prove boundedness of e, ė and Θ̃, the PE condition
(28) and the next lemma on Linear Time Varying (LTV)
systems are required.

Lemma 1 [16] Consider the linear time-varying system
defined by

ẋ(t) = B(t)u(t)

y(t) = C(t)x(t)
(30)

with x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp and the elements
of B(t) and C(t) are piecewise continuous functions of
time. Its Observability Grammian is

N(t, t+ T ) =

∫ t+T

t

C⊤(σ)C(σ)dσ.

Let the system (30) be uniformly completely observable
(UCO) with B(t) bounded. Then if u(t) and y(t) are
bounded, then the state x(t) is bounded.

Note that the PE condition (28) is equivalent to the
uniform complete observability (UCO) [16] with C(t) =
Φ⊤

p .

The following theorem establishes the uniform ultimate
boundedness (UUB) [14] of the trajectories of the system

(29) and boundedness of the parameter estimates Θ̂ as
long as the PE condition is satisfied.

Theorem 2 Consider the closed-loop error dynamics

(29). The parameters Θ̂ are updated by (27) and the re-
gressor matrix Φp fulfils the PE condition (28). Define
the following terms

k1 = min{λmin(KdB̄), λmin(KdK̄)}
k2 = max{λmax(Kd), λmax(KdK

−1
p Kd)}.

with K̄ = K−1
p KdĀ − I > 0. Assume that the bound k1

satisfies

k1 >
√
2k2ε̄+ ρ (31)

where ρ ∈ R+. Then the trajectories of (29) are UUB

with a practical bound given by µ1 =
√
2k2ε̄
k1

, and the

parameter estimates Θ̂ remain bounded.

PROOF. See Appendix A. ✷

4 Closed loop input error (CLIE) identification
technique: Composite update rule

The update rule (27) can be modified by adding a second
term that is a function of the identification error, which
will be defined later. This approach is presented in [36]
for adaptive control purposes. Here this idea is exploited
for parameter identification.
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4.1 Gradient method (GM)

Consider the exact model matching case, i.e., ε = 0.
Recall the robot dynamics (9). The Laplace transform
of the robot dynamics (9) is

Q(s) = (s2I +As)−1 [BU(s)−D(s)] (32)

where L{q} = Q(s), L{u} = U(s) and L{D} = D(s).
L(·) denotes the Laplace transform. Model (32) is fil-
tered by multiplying both sides of (32) by G2(s) =
((s+ f)I)−1f

((s+ f)I)−1fQ(s) =(s2I +As)−1((s+ f)I)−1f

× [BU(s)−D(s)] (33)

The term G2(s) corresponds to the transfer function of
a low-pass filter with cut-off frequency f . Note that D
is a constant vector then D(s) = 1

s
D. Define

Qf (s) = ((s+ f)I)−1fQ(s)

sQf (s) = ((s+ f)I)−1fsQ(s)

s2Qf (s) = ((s+ f)I)−1fs2Q(s)

Uf (s) = ((s+ f)I)−1fU(s)

F (s) = ((s+ f)I)−1fD(s)

(34)

Therefore, the new filtered robot dynamics is

yf ≡ q̈f = −Aq̇f +Buf − F

= −Φ⊤
f Θ (35)

where q̇f = L−1{sQf (s)}, uf = L−1{Uf (s)} and F =
L−1{F (s)}. L−1(·) denotes the inverse Laplace trans-
form. Here Φf = Φf (qf , q̇f , uf ) is given by

Φf =




diag (q̇fi)
n

i=1

−diag (ufi)
n

i=1

(1− exp−ft)I


 (36)

The filtered robot dynamics (35) eliminates measure-
ments of the acceleration vector q̈, which are not avail-
able from measurements. The unknown parameters Θ in
(35) can be estimated using the following model

ŷf ≡ −Φ⊤
f Θ̂ = −Âq̇f + B̂uf − F̂ (37)

where F̂ = (1−exp−ft)D̂. Define the identification error

ǫ = ŷf − yf = −Φ⊤
f Θ̃. (38)

The goal is to minimize ǫ according to the following cost
index

J =
1

2
ǫ⊤ǫ

subject to (35) and (37).

The GM update rule is defined as

˙̂
Θ = −α

∂J

∂Θ̂
= αΦf ǫ (39)

with α ∈ R+, and it is added to (27) to improve parame-
ter convergence. The resulting composite update rule is

˙̂
Θ = −ΓΦpKdK

−1
p eu + αΓΦf ǫ. (40)

The first term of the right-hand side of (40) would guar-
antee stability and boundedness of the parameters esti-
mates, whereas the second term of the right-hand-side
of (40) would improve the parameters convergence if the
PE signal is rich enough.

Moreover, the update rule (40) is written as an LTV
system of the form

˙̃
Θ = ΓΦpKdK

−1
p u1 + αΓΦfu2

y = Φ⊤
p Θ̃

z = Φ⊤
f Θ̃ = −ǫ,

(41)

where y and z are the system outputs. The above system
corresponds to a feedback interconnection with input
u1 = −eu and feedback signal u2 = −z.

It is assumed thatmatrix Φf fulfils the next PE condition

Definition 2 The matrix Φf : Rn → Rp×n is persis-
tently exciting (PE) [3] if there exist βf1 , βf2 , T > 0 such
that for all t ≥ 0 the next inequality holds

βf1I ≤ Lf =

t+T∫

t

Φf (σ)Φ
⊤
f (σ)dσ ≤ βf2I (42)

On the other hand, assume that the error eu is zero in
(40), which yields

˙̃
Θ = −αΓΦfΦ

⊤
f Θ̃. (43)

Therefore, the solution of (43) is

Θ̃(t) = Θ̃(0) exp
−αΓ

∫
t

0
Φf (σ)Φ

⊤

f (σ)dσ
(44)
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and Θ̃ converges exponentially to zero if Φf satisfies the
PE condition (42). The exponential convergence proof
is similar to what is presented in Theorem 2.5.3 of [33].

The next result shows the exponential stability of the
error dynamics (24) under the update rule (40).

Theorem 3 Consider the error dynamics (24). Let the

parameter estimates Θ̂ be generated by the update rule
(40), K−1

p KdĀ − I > 0 and the regressors Φp and Φf

fulfil the PE conditions (28) and (42), respectively. Then

the parameter error Θ̃ converges exponentially to zero.

PROOF. See Appendix A. ✷

4.2 Estimation error

In this section the performance of the CLIE technique
is analyzed based on the composite update rule (40) in
presence of estimation errors.

The identification error ǫ may be affected by an esti-
mation error due to unmodelled dynamics and distur-
bances. To consider this issue, the equation (38) is rewrit-
ten as

ǫ = ŷf − yf = −Φ⊤
f Θ̃ + ς, (45)

where ς ∈ Rn is a bounded estimation error with ‖ς‖ ≤
ς̄. This error may introduces biases in the parameters

estimates Θ̂, which in turn may influence the tracking
error e. Note also that the estimation error ε may also
affect e.

The next results establishes the UUB of the trajectories
of the system (29) and boundedness of the parameter

estimates Θ̂ as long as the PE conditions (28) and (42)
are satisfied.

Theorem 4 Consider the closed-loop error dynamics

(29). The parameter estimates Θ̂ are updated by (40) and
the regressors Φp and Φf fulfill the PE conditions (28)
and (42), respectively. Define the following terms

k3 = max{min{λmin(KdB̄), λmin(KdK̄)}, α}
k4 = max{λmax(Kd), λmax(KdK

−1
p Kd), α}

with K̄ = K−1
p KdĀ − I > 0. Assume that the bound k3

satisfies

k3 >
√
2ε̄2 + ς̄2k4 + ̺ (46)

where ̺ ∈ R+. Then the trajectories of (29) are UUB

with a practical bound given by µ2 =
√
2ς̄+ε̄k4

k3

, and the

parameter estimates Θ̂ remain bounded.

PROOF. See Appendix A. ✷

Note that the GM in the composite update law helps
improving the negativity of the time derivative of V̇ and
to ensure exponential convergence of the parameter esti-
mates. However, it introduces an estimation error ς pro-

ducing a bias in the parameter estimates Θ̂.

5 Numerical simulation studies

The performance of the CLIE and CLIE+GM identifica-
tion algorithms are assessed using a 2-DOF robot model
actuated by DC motors endowed with a gearbox.

The dynamics (1) of the 2-DOF robot (without fric-
tion)[13] is

M(q) =

[
(m1 +m2)l

2
1 + w1 + 2w2 + J1 w1 + w2

w1 + w2 w1

]

C(q, q̇) =




∂w2

∂q2
q̇2

∂w2

∂q2
(q̇1 + q̇2)

−∂w2

∂q2
q̇1 0




G(q) =

[
(m1 +m2)gl1 cos(q1) + w3

w3

]

where q1 and q2 define the joint angles of the 2-DOF
robot, mk, Jk and lk stand for the mass, inertia and
length of each link k = 1, 2, g = 9.81 m/s

2
is the gravity

acceleration and w1 = m2l
2
2 + J2, w2 = m2l1l2 cos(q2),

w3 = m2gl2 cos(q1+q2). The robot parameters arem1 =
m2 = 0.5 kg and l1 = l2 = 0.6m. The Simulink diagrams
use a sampling period of 0.1ms and the ODE5 solver to
obtain more accurate approximations of the continuous-
time update laws and the filters employed in the simula-
tions. Gaussian noise ∆q ∼ N (0, σ2) of small magnitude
is used to model position measurement noise. The Gaus-
sian noise is obtained from the random number block of
Simulink with a variance of σ2 = 1 × 10−3 and a mean
µ = 0. The following transfer function composed by a
high-pass filter in cascade with low-pass filter was used
to obtain velocity estimates from position measurements

G1(s) =
200s

s+ 200

300

s+ 300

[
1 0

0 1

]
∈ C

2×2. (47)

The cut-off frequency of the high and low-pass filter were
selected manually such that the high frequency compo-
nents of the position measurements were attenuated.

Each DC motor dynamics (4) driving the robot links has
the following parameters: Jk = 1/50 kgm2 and Rk =
1/25 kgm2/s. The gear ratio rk=100.
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The interaction between the robot dynamics (1), the DC
motor dynamics (4) and the gearbox relation (5) gives
the decoupled dynamics, which in the case of the 2-DOF
robot is

[
q̈1

q̈2

]
= −

[
A1 0

0 A2

][
q̇1

q̇2

]
+

[
B1 0

0 B2

][
u1

u2

]
−
[
D1

D2

]

= −Φ⊤Θ

where Ak, Bk and Dk are the robot parameters. The
regressor matrix Φ and the parameters vector Θ are

Φ =

[
q̇1 0 −u1 0 1 0

0 q̇2 0 −u2 0 1

]⊤

Θ =
[
A1 A2 B1 B2 D1 D2

]⊤
.

Hence, the identification algorithms estimate six pa-
rameters. In contrast to the CLOE method, the CLIE
method does not require to initialize the parameters
estimates using previous values obtained under open
loop conditions or from CAD blueprints [6,7]. For this
simulation study the parameter estimates and the robot
initial conditions are initialized at zero.

5.1 System identification

The estimated model for the 2-DOF robot is

[
p̈1

p̈2

]
= −

[
Â1 0

0 Â2

][
ṗ1

ṗ2

]
+

[
B̂1 0

0 B̂2

][
v1

v2

]
−
[
D̂1

D̂2

]

= −Φ⊤
p Θ̂

Âk, B̂k and D̂k are the estimates of the robot parame-

ters. The regressor Φp, and the parameter estimates Θ̂
are

Φp =

[
ṗ1 0 −v1 0 1 0

0 ṗ2 0 −v2 0 1

]⊤

Θ̂ =
[
Â1 Â2 B̂1 B̂2 D̂1 D̂2

]⊤
.

For the composite update rule (40) the next filter is used
to avoid acceleration measurements

G2(s) =
300

s+ 300

[
1 0

0 1

]
∈ C

2×2.

The above filter is tuned manually to reduce the high-
frequency components of the position measurements.

The filtered dynamics (37) is:

[
q̈f1

q̈f2

]
= −

[
Â1 0

0 Â2

][
q̇f1

q̇f2

]
+

[
B̂1 0

0 B̂2

][
uf1

uf2

]
−
[
D̂1

D̂2

]

= −Φ⊤
f Θ̂

and the regressor Φf is given by

Φf =

[
q̇f1 0 −uf1 0 1− e−300t 0

0 q̇f2 0 −uf2 0 1− e−300t

]⊤
.

The following PE signal is chosen using low frequency
sine waves and their amplitudes and frequencies are set
by a trial and error procedure.

PE = 0.7 sin(2πt) + 0.5 sin(πt)− 0.25 cos(πt) (48)

In practice other factors should be considered for design-
ing a PE signal. It must be smooth to avoid sudden ve-
locity changes in the robot that could affect its mechan-
ical integrity. The amplitude of the PE signal should be
chosen such that the robot joints do not reach its me-
chanical limits, and the power amplifiers do not satu-
rate or reach its maximum current limits. Moreover, the
bandwidth of the PE signal should produce joint veloc-
ities respecting their maximum allowable values.

On the other hand, condition (28) in Definition 1 cannot
be established in practice because it requires verifying
the positive definiteness of the integral of the matrix
ΦΦ⊤ in a time window [t, t+T ] for all time t. However, it
is possible to evaluate the condition in a finite number of
windows to verify that at least the PE condition holds in
these time instants. To this end, consider the following
weighted scalar PE condition

βw1
≤
∫ t+T

t

w⊤Φp(σ)Φ
⊤
p (σ)wdσ ≤ βw2

, (49)

where w = 1√
p
~1p, ~1p =

[
1 . . . 1

]⊤
∈ Rp, and

βw1
,βw2

, T > 0. The values of Φp used for computing
(49) are the ones obtained from the simulation corre-
sponding to the CASE 1 in Table 1. Notice that the PE
condition (49) is a scalar value instead of a p× p matrix
as in (28), then, computing and visualizing condition
(49) is easier. For this study p = 6 and the time window
is T = 10 s except for the first window. Fig. 3 shows the
time-evolution of the weighted PE signal condition at
time windows starting at 0,5,15,25,35 and 45 s. At the
end of each time window the integral is reset.

It is easy to check that in all the cases the value of the in-
tegral (49), which corresponds to the peaks in the graph,
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is always positive. Therefore, the proposed PE signal
satisfies (49) and consequently (28) at least at the these
time windows. A similar procedure can be done to verify
the PE condition (42).

The gains of the PD controller were tuned off-line
through a manual procedure without using the PE sig-
nal and applying step responses. The tuning starts by
setting to zero the Kp gains and setting the Kd gains to
non-zero low values. Then, increase the Kp until over-
shoots appear, then increase Kd to add damping until
the oscillations disappear. Increase again Kp and then
Kd. The goal is to set the Kp as high as possible while
obtaining a nonovershooting response.

The final gains were set toKp = 10I andKd = 5I. These
gains were tested to verify (18) using the real values
of Table 2 and the PE signal (48). For the proposed
signal the disturbance vector was bounded by ‖η‖ =
‖BPE − D‖ = 0.8768. The closed-loop trajectories of
(12) converged to a compact set Sx with radius µ0 =
0.9637 which verifies the UUB stability of the closed-
loop trajectories of the robot under the PD control law.
Furthermore, it is possible to verify that µ0 increases or
decreases when the PD gains are decreased or increased,
that is, if the gains are decreased to Kp = 8I and Kd =
4I then the radius µ0 increases to µ0 = 0.9845. On the
other hand, if the gains are increased to Kp = 12I and
Kd = 6I then µ0 = 0.9485.

Three different composite update identification experi-
ments are executed. CASE 1 corresponds to the CLIE
update law (27) whereas CASE 2 and CASE 3 considers
the update law (40). The gains in each case are given in
Table 1.

Fig. 4 shows the time evolution of the parameter esti-
mates. Table 2 summarizes the mean value of the pa-
rameters estimates and the parametric error percentage

obtained as |Θ̃k|×100%, of each identification algorithm
during the last 20 seconds.

Table 1
Gains for the update rules (27) and (40)

CASE Γ gain GM Gain α

CASE 1 update law (27) 20I -

CASE 2 update law (40) 20I 0.0001

CASE 3 update law (40) 20I 0.001

The results of Table 2 and Fig. 4 show that the composite
rule in CASE 2 improves parameter convergence and
presents less parametric error percentage in comparison
to CASE 3. The main difference between CASE 2 and
CASE 3 is that large values of the update gain α increase
the effect of the estimation error ζ. On the other hand,
small values of Γ causes slow convergence of the CLIE
algorithm (27). Therefore, the gain Γ has to be selected
large enough to ensure fast estimates convergence, and
the update gain α has to be selected small enough, but
not zero, to ensure that the estimation error ε is small.
It is worth mentioning that the gain values depends on
the selection of the PE signal and using other excitation
signal may required changing the gain values.

The disturbance estimates D̂1 and D̂2 have different val-
ues for each identification method due to the incorpo-
ration of the filtered dynamics in the update law. The
filtered dynamics has small amounts of noise attributed
to the Gaussian noise ∆q.

The estimates of Table 2 are used to compute the esti-

mation error ε = Φ⊤
p Θ̂ − Φ⊤Θ = [ε1, ε2]

⊤ of each iden-
tification method for 100 seconds of simulation time.

The mean estimation error ε̄k = 1
100

100∑
t=0

εk(t) is used

to obtain the mean value of the estimation error, with
k = 1, 2. Notice that ε̄k denote the mean estimation er-
ror of the DOF k, and ε̄ denotes an upper bound of ‖ε‖.
The numerical results are given in Table 3.

The mean error results shows that the CASE 1 has bet-
ter performance in comparison to the CASE 3. The main
reason is because the composite rule adds the estima-
tion error ς which increases when a large gain α is used.
Both CASE 1 and CASE 2 methods have similar mean
estimation error ε̄k.

The estimation error norm ‖ε‖ =
√∑2

k=1 ε̄
2
k is used

to validate the condition (31) and (46). The estima-
tion error norm for each case are ‖ε‖CASE 1 = 2.36 ×
10−5,‖ε‖CASE 2 = 2.3 × 10−5 and ‖ε‖CASE 3 = 8.86 ×
10−5 . The following terms are obtained by considering
knowledge of the real parameters: k1 = 11.19, k2 = 5,
k3 = 11.19, k4 = 5. The estimation error ζ̄ is assumed
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Fig. 4. Parameter estimates of the 2-DOF planar robot

Table 2
Parameter estimates of the 2-DOF planar robot through the composite update rule (40)

Approximate CLIE Algorithm

Estimate Θ̂k Real value Θk CASE 1 CASE 1 |Θ̃k| (%) CASE 2 CASE 2 |Θ̃k| (%) CASE 3 CASE 3 |Θ̃k| (%)

Â1 1.9891 1.9839 0.52 1.9855 0.36 2.0015 1.24

Â2 1.9952 1.9926 0.26 1.9943 0.09 2.0103 1.51

B̂1 0.4973 0.4964 0.09 0.4964 0.09 0.4968 0.05

B̂2 0.4998 0.4983 0.19 0.4983 0.15 0.4985 0.13

D̂1 0.0113 0.0132 0.05 0.0129 0.16 0.0098 0.15

D̂2 -0.0026 -0.0018 0.08 -0.0021 0.05 -0.005 0.24

to be equivalent to ε̄. Then,

k1 >
√
2k2ε̄ = 1.67× 10−4

k3 >
√
2ε̄2CASE 2 + ζ̄2, k4 = 1.99× 10−4

k3 >
√
2ε̄2CASE 3 + ζ̄2, k4 = 7.67× 10−4

The above inequalities are satisfied according to the ob-
tained values for k1 and k3. Furthermore, it is easy to
check that the scalars ρ and ̺ of each case are equal to:
ρ ≅ ̺CASE 2 ≅ ̺CASE 3 = 11.19.

5.2 Validation

The parameter estimates of Table 2 are validated by
computing the feedback linearization controller depicted
in Fig. 5. The diagram is composed of four main com-
ponents: a desired joint position reference qd; a PD con-
trol law designed as in Fig. 2; a dynamic compensation
which uses the estimates obtained from the CLIE cases;
and the robot manipulator which in this case is a 2-DOF
robot.

PD Control

Dynamics 

Compensation

2-DOF 

Robot
Reference

�

�

q

q&

udd
qq &

,

Fig. 5. Feedback linearization controller scheme.

The feedback linearization controller is

u = B̂−1
[
Âq̇ − D̂ +Kpq̃ +Kd

˙̃q + q̈d

]
(50)

where same Kp and Kd gains of the previous identifica-
tion experiment are employed; qd, q̇d, q̈d are the desired
joint position, velocity and acceleration, respectively.

q̃ = qd − q and ˙̃q = q̇d − q̇ are the position and velocity
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Fig. 6. Tracking control results of the 2-DOF robot

tracking errors, respectively. The desired reference is

qd =

[
1
2 sin

(
π
4 t
)
+ 3

4 sin
(
π
3 t
)

1
10 sin

(
π
3 t
)
+ 1

2 cos
(
π
4 t
)
]
.

The feedback linearization controllers compensate the
dynamics of the 2-DOF robot and establish a desired
dynamic behaviour given by the PD control law.

Fig. 6 shows the tracking results using the estimates of
Table 2 and the feedback linearization controller (50).
The results show an accurate tracking performance for
each identification method, which means that the pa-

rameter estimates Θ̂ are close to their real values Θ.

The mean squared error qk = 1
100

∑100
t=0 q̃

2
k(t) of the

tracking error q̃ is used to show the accuracy of the feed-
back linearization controller under the estimates of Ta-
ble 2. The numerical results of the estimation error ‖ε‖
and the mean squared tracking and estimation errors q̄k
and ε̄k are summarized in Table 3.

These outcomes show that the proposed approach ob-
tains reliable estimates that are closer to their real val-
ues. Furthermore, the composite rule adds another es-
timation error due to the filtered dynamics that cannot
be compensated using the proposed approach, which is
a topic of future work.

6 Conclusion

This work exposes a Closed Loop Input Error (CLIE)
method for an on-line identification of robot manipula-
tors. The advantage of this method is that it depends on
a PD controller whose gains are freely chosen such that

they only need to stabilize the robot dynamics. More-
over, the regressor used in the method does not depend
on noisy measurements and uses only the the noise-free
states of an estimated model. A composite update rule
based on a gradient method that improves parameter
convergence is also proposed. Stability and convergence
of the proposed approach is assessed using Lyapunov sta-
bility theory, which takes into account the Persistency of
Exciting conditions. Numerical simulations are carried
out to support the proposed approach.

Regarding future work, inverse control problem [1] has
become popular in recent years in human-behavior learn-
ing applications in order to extract useful features of a
given control law, such as the weight matrices of a cost
function or an approximation and parametrization of an
utility function [25]. Since the control input is known
and stabilizes the closed-loop system, then a modified
CLIE method could be used to solve the inverse control
problem.

Another issue worth studying is how to attenuate or even
eliminate the bias introduced by the Gradient Method
in the composite update law (40) fed by the identifica-
tion error ǫ. A way to circumvent this problem is to as-
sume a model of the estimation error ς in (45) expressed
as a linear regression containing known functions and
unknown parameters. For instance, the model could be
a sum of sinusoids each having unknown amplitude and
phase. Then, the estimation of the unknown parameters
could be carried out together with the robot parameters.

A Proofs

Proof of Theorem 1. Consider the next Lyapunov
function

V =
1

2
e⊤uK

−1
p eu +

1

2
Θ̃⊤Γ−1Θ̃

+
1

2
e⊤
[
B̄⊤KdK

−1
p Kd +Kp

(
K−1

p KdĀ− I
)]

e

(A.1)

This function is positive definite if K−1
p KdĀ − I > 0.

Recall that Ā, B̄, Γ, Kp and Kd are diagonal matrices
since the system is decoupled. The time-derivative of
(A.1) is

V̇ =e⊤uK
−1
p (Kpė+Kdë) + Θ̃⊤Γ−1 ˙̃Θ

+ e⊤
(
KdĀ+ B̄⊤KdK

−1
p Kd −Kp

)
ė

=− e⊤KdB̄e− ė⊤Kd(K
−1
p KdĀ− I)ė

+ Θ̃⊤(Γ−1 ˙̃Θ + ΦpKdK
−1
p eu)
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Table 3
Estimation and mean squared tracking errors numerical values.

CLIE ε̄1 ε̄2 ‖ε‖ q̄1 q̄2

CASE 1 2.29× 10−5 5.54× 10−6 2.39× 10−5 1.468× 10−7 9.342× 10−7

CASE 2 2.23× 10−5 5.66× 10−6 2.3× 10−5 1.468× 10−7 9.342× 10−7

CASE 3 6.26× 10−5 6.26× 10−5 8.86× 10−5 1.481× 10−7 9.342× 10−7

If the update law is chosen as (27), then the time-
derivative of the Lyapunov function simplifies to

V̇ = −e⊤KdB̄e− ė⊤Kd(K
−1
p KdĀ− I)ė

= −
[
e

ė

]⊤ [
KdB̄ 0

0 Kd(K
−1
p KdĀ− I)

]

︸ ︷︷ ︸
Q∈R2n×2n

[
e

ė

]

≤ −λmin(Q)‖E‖2 (A.2)

where E = [e⊤, ė⊤]⊤. The matrixQ is positive definite if
K−1

p KdĀ−I > 0. From (A.2), it is clear that E is an L∞
function and V (0) ≥ V . On the other hand, boundedness
of E implies boundedness of p and ṗ; hence, the control
input v and the regressor vector Φp are also bounded. In
summary E, p, ṗ, v,Φp ∈ L∞.

Barbalat’s lemma can be applied to prove the conver-
gence of E and eu to zero. Integrating (A.2) yields

V (t)− V (0) ≤ −
t∫

0

λmin(Q)‖E‖2dτ.

The next inequality follows from this last result

t∫

0

‖E‖2dτ ≤ V (0)

λmin(Q)
< ∞. (A.3)

From (A.3), it follows that E is an L2 function. Bound-

edness of the parametric error Θ̃, e and ė in (A.2) al-

low concluding that Ė = [ė⊤, ë⊤]⊤ is an L∞ function.
Applying Barbalat’s lemma permits concluding that E
converges to zero. Finally, from (26) it is clear that eu
converges to zero. ✷

Proof of Theorem 2. Consider again the Lyapunov
function (A.1). Its time derivative along the identifica-
tion error dynamics (29) is

V̇ =e⊤uK
−1
p (Kpė+Kdë) + Θ̃⊤Γ−1 ˙̃Θ

+ e⊤
(
KdĀ+ B̄⊤KdK

−1
p Kd −Kp

)
ė

=− e⊤KdB̄e− ė⊤Kd(K
−1
p KdĀ− I)ė

+ Θ̃⊤(Γ−1 ˙̃Θ + ΦpKdK
−1
p eu) + e⊤uK

−1
p Kdε

If the update law is chosen as (27), then the time-
derivative of the Lyapunov function simplifies to

V̇ =− e⊤KdB̄e− ė⊤Kd(K
−1
p KdĀ− I)ė+ e⊤uK

−1
p Kdε

=− e⊤KdB̄e− ė⊤KdK̄ė+ e⊤Kdε+ ė⊤KdK
−1
p Kdε

≤− λmin(KdB̄)‖e‖2 − λmin(KdK̄)‖ė‖2
+ ε̄λmax(Kd)‖e‖+ ε̄λmax(KdK

−1
p Kd)‖ė‖

≤ − k1‖ζ‖2 +
√
2k2ε̄‖ζ‖

=− k1‖ζ‖
(
‖ζ‖ −

√
2k2ε̄

k1

)
(A.4)

where ζ = [‖e‖, ‖ė‖]⊤ and ‖ζ‖ = ‖E‖. Therefore V̇ ≤ 0
as long as

‖E‖ >

√
2k2ε̄

k1
≡ µ1. (A.5)

Selecting the control gains Kp and Kd such that (31) is
satisfied ensures that the trajectories of the system (29)
converge to a compact set SE of radius µ1, i.e., ‖E‖ ≤ µ1

and hence, the trajectories of (29) are UUB.

Boundedness of E implies boundedness of eu, p and ṗ;
hence the control input v and the regressor Φp are also

bounded. It can be shown that ‖Ė‖ is bounded as it is
done in Theorem 1. These facts guarantee boundedness
of the term

y ≡ ë+ Āė+ B̄e− ε (A.6)

From (29) it can be seen that the output (A.6) is equiv-

alent to y = Φ⊤Θ̃. The dynamics of Θ̃ can be expressed
as in (30) by substituting the input error (26) as follows

˙̃
Θ = −ΓΦpKdK

−1
p

[
Kp Kd

]
E

y = Φ⊤
p Θ̃

(A.7)
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Let B(t) = −ΓΦpKdK
−1
p

[
Kp Kd

]
, x(t) = Θ̃, C(t) =

Φ⊤
p and u(t) = E. Since y,E and Φp are bounded and Φp

is PE, so by Lemma 1 boundedness of E and y ensures

boundedness of the parametric error Θ̃, and hence Θ̂. ✷

Proof of Theorem 3. Consider the following Lya-
punov function

V =
1

2
e⊤uK

−1
p eu +

1

2
Θ̃⊤Γ−1Θ̃

+
1

2
e⊤
[
B̄⊤KdK

−1
p Kd +Kp(K

−1
p KdĀ− I)

]
e

(A.8)

Its time derivative along the identification error dynam-
ics (24) under the update rule (40) and considering (38)
is

V̇ =− e⊤KdB̄e− ė⊤Kd(K
−1
p KdĀ− I)ė− αǫ⊤ǫ

=− E⊤QE − αǫ⊤ǫ (A.9)

From (A.9) it is clear that both E and Θ̃ are an L∞
functions and V (0) ≥ V if K−1

p KdĀ− I > 0. Note from
(A.9) that

V̇ ≤ −E⊤QE

≤ −λmin(Q)‖E‖2.
(A.10)

Applying the results of Theorem 1, the convergence to
zero of E can be concluded. Moreover, the parametric

error Θ̃ is bounded. Since E converges to zero then eu
also converges to zero. From (43), it can be seen that Θ̃
converges exponentially to zero by considering eu = 0,
then (40) represents and exponentially stable dynamics
and hence the convergence of the estimated parameters

Θ̂ to the true parameters Θ can be concluded under a
convergent input ΦpKdK

−1
p eu to zero[35]. ✷

Proof of Theorem 4. The time derivative of the Lya-
punov function (A.8) along the closed-loop error dynam-
ics (29) trajectories is

V̇ =− e⊤KdB̄e− ė⊤Kd(K
−1
p KdĀ− I)ė+ e⊤uK

−1
p Kdε

+ Θ̃⊤(Γ−1 ˙̃Θ + ΦpKdK
−1
p eu)

=− e⊤KdB̄e− ė⊤KdK̄ė+ e⊤Kdε+ ė⊤KdK
−1
p Kdε

− αΘ̃⊤Φf

(
Φ⊤

f Θ̃− ς
)

≤− λmin(KdB̄)‖e‖2 − λmin(KdK̄)‖ė‖2 − α‖ǫ‖2
+ ας̄‖ǫ‖+ ε̄λmax(Kd)‖e‖+ ε̄λmax(KdK

−1
p Kd)‖ė‖

Define Σ = [‖e‖, ‖ė‖, ‖ǫ‖]⊤, then

V̇ ≤ −k3‖Σ‖2 + k4ε̄ς̄Σ
⊤Ψ

where Ψ =
[
1
ς̄
, 1
ς̄
, 1
ε̄

]⊤
. Then

V̇ ≤− k3‖Σ‖2 +
√

2ε̄2 + ς̄2k4‖Σ‖

=− k3‖Σ‖
(
‖Σ‖ −

√
2ε̄2 + ς̄2k4

k3

)
. (A.11)

Therefore V̇ ≤ 0 as long as

‖Σ‖ >

√
2ε̄2 + ς̄2k4

k3
≡ µ2. (A.12)

If (46) is satisfied, then the trajectories of the system
(29) converge to a compact set SΣ of radius µ2, i.e.,
‖Σ‖ ≤ µ2 and hence, the trajectories of both (29) and
(45) are UUB.

Boundedness of Σ implies boundedness of e, ė and ǫ;
hence eu, p, ṗ, Φf and Φp are also bounded. These facts

guarantee boundedness of ‖Ė‖. The outputs of system
(41) under the estimation errors ε and ς are bounded
and satisfy

y ≡ ë+ Āė+ B̄e− ε (A.13)

z ≡ ς − ǫ (A.14)

From (29) and (45) it can be seen that (A.13) and (A.14)

are equivalent to y = Φ⊤
p Θ̃ and z = Φ⊤

f Θ̃, respectively.
Recall from Theorem 3 that the composite update rule
(40) has an exponential stable dynamics under the PE
conditions (28) and (42). Furthermore, it can be shown
that the error eu and the estimation error ς act as inputs
of the exponentially stable dynamics (40). Then, since

eu and ς are bounded so does the parametric error Θ̃.

Therefore boundedness of both Θ̃ and Θ̂ is concluded.
This completes the proof. ✷
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