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Abstract

This paper investigates Nash equilibrium (NE) seeking problems for noncooperative games over multi-players networks
with finite bandwidth communication. A distributed quantized algorithm is presented, which consists of local gradient play,
distributed decision estimating, and adaptive quantization. Exponential convergence of the algorithm is established, and a
relationship between the convergence rate and the bandwidth is quantitatively analyzed. Finally, a simulation of an energy
consumption game is presented to validate the proposed results.
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1 Introduction

Game theory as a powerful tool for analyzing the interac-
tions between rational decision-makers, has penetrated
into various fields, including biology (Hammerstein &
Selten, 1994), economics (Choi, Taleizadeh, & Yue,
2020) and computer sciences (Shoham, 2008). Nash equi-
librium (NE), named after John Forbes Nash, Jr., is an
important strategy profile of players in noncooperative
games. Recently, advances in network optimization tech-
niques have been applied to develop NE seeking algo-
rithms (Salehisadaghiani & Pavel, 2016; Ye & Hu, 2017;
Gadjov & Pavel, 2018; Lu, Jing, & Wang, 2018; De Per-
sis & Grammatico, 2019; Zeng, Chen, Liang, & Hong,
2019; Zhu, Yu, Wen, & Chen, 2020).

Note that the above NE seeking algorithms mainly
focused on infinite precision transmission. However,
the communication bandwidth is limited in the actual
network, such as underwater vehicles and low-cost
unmanned aerial vehicles systems. Hence, each player
should sample and quantize its real value into finite
bits before transmitting it while receiving it from
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its neighbors. This quantized communication process
overcomes the bandwidth constraints, significantly
reduces storage consumption, and is suitable for solving
the practical network problems (Rabbat & Nowak,
2005; Nedic, Olshevsky, Ozdaglar, & Tsitsiklis, 2008).
In the existing quantization works (Yuan, Xu, Zhao,
& Rong, 2012; Yi & Hong, 2014; Li, Liu, Soh, &
Xie, 2017; Liu, Wu, Tian, & Ling, 2021; Kajiyama,
Hayashi, & Takai, 2021), the following three problems
were mainly concerned: i) How can it ensure convergence
even with inexact iterations throughout the distributed
quantized algorithm? ii) What is the required minimum
bandwidth when convergence is obtained? iii) How does
the bandwidth affect convergence rate? To answer these
problems, a zooming-in quantization rule is used in (Yi
& Hong, 2014), which proved that merely three bits
could obtain the optimal solution. After that, only one-
bit transmission was required in (Li et al., 2017), which
explicitly characterized the proposed algorithm’s sub-
linear convergence rate. Further, the work (Kajiyama et
al., 2021) guaranteed a linear convergence rate of the
quantized gradient tracking algorithm.

Although the above three questions have been widely
discussed in distributed quantized optimization prob-
lems, few answers for the distributed NE seeking prob-
lem. Primarily because the cost function of each player
in distributed NE seeking problems depends on the ac-
tions of all players, while the cost function of each player
in a distributed optimization only depends on the action
of itself. Thus, the update of the action of each player is
much more complex in distributed NE seeking problems,
which further brings technical difficulties in the design
of the adaptive quantization scheme that depends on
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the trajectories of the actions of the players. Hence, the
quantization scheme in distributed optimization prob-
lems can not be directly extended to distributed NE
seeking, which motivates our works. Notably, the liter-
ature (Nekouei, Nair, & Alpcan, 2016) tried to answer
these problems for the distributed NE seeking, but in
which each player was required to broadcast their quan-
tized actions to all other players. It is still a centralized
method in essence.

We take a step from our previous works on distributed
NE seeking (Liang, Yi, & Hong, 2017) and distributed
quantized cooperative problems (Ma, Ji, Sun, & Feng,
2018; Chen & Ji, 2020) toward distributed quantized NE
seeking. The main contributions are as follows.

1) This is the first work to reveal that a distributed
quantized NE seeking algorithm achieves exponential
convergence under any positive bandwidth.

2) An affine inequality explicitly characterizes the
relation between the convergence rate and bandwidth,
which indicts linearly increased convergence rate would
linearly increase the bandwidth requirement.

3) Our work is an extension to the distributed NE seeking
with infinite precision transmission (Salehisadaghiani &
Pavel, 2016; Ye & Hu, 2017; Gadjov & Pavel, 2018; Lu et
al., 2018; De Persis & Grammatico, 2019). Further, the
assumption on the Lipschitz condition of the augment
game mapping is not required anymore.

4) Compared with the only distributed quantized NE
seeking work (Nekouei et al., 2016), the communication
graph must be fully connected. Our algorithm is
distributed, and each player only interacts the quantized
information with its neighbors, not all other players.

The rest of the paper is organized as follows. In Section
2, the problem is formulated. In Section 3, we propose
the distributed quantized NE seeking algorithm based on
the designed adaptive quantization scheme. In Section 4,
the main results, including the convergence analysis and
the quantitative analysis on bandwidth, are discussed.
An energy consumption game example is presented in
Section 5 and the conclusion is given in Section 6.

Notation: Denote Rn as the n-dimensional Euclidean
space. For x ∈ Rn, denote the 2-norm by ‖x‖. col{xi}i∈I
stacks the vector xi as a new column vector in the order
of the index set I. For matrices A and B, the Kronecker
product is denoted as A ⊗ B. Denote by 0n, 1n ∈ Rn,
and In ∈ Rn×n the vectors of all zero and ones, and
the identical matrix. A function J : Rn → R is strictly
convex if, for all x, y ∈ Rn and x 6= y, J

(
tx+ (1 −

t)y
)
< tJ(x)+(1 − t)J(y) with t ∈ (0, 1). A function

J(x) : Rn→R is radially unbounded on Rn if for every
xn ∈Rn such that ‖xn‖→∞, we also have J(xn)→∞.
For a differentiable function J(x) : Rn→R, its gradient

∇xJ(x)=col{ ∂J∂xi }i∈{1,··· ,n}∈R
n. The minimum integer

not smaller than a∈R is denoted as dae.

2 Problem statement

Consider the noncooperative game G = {V, Ji, xi},
where V = {1, · · · , N} is the set of players involved in
the game. A variable xi ∈ Rni is the action of player
i ∈ V. A differentiable function Ji(xi, x−i) ∈ R is the
local cost function of each player i ∈ V, where xi ∈ Rni
is its own action and x−i ∈ Rn−ni for n =

∑N
i=1 ni

denotes all players’ actions except player i.

The aim of the NE seeking is that each selfish player i
obtains x−i through communication for minimizing its
own cost function Ji(xi, x−i) : Rn → R. The definition
of the NE is given as follows.

Definition 1 (Nash Equilibrium) Given a game G =
{V, Ji, xi}, a vector of actions x∗= (x∗1,· · · ,x∗N )∈Rn is
a NE if Ji(x

∗
i ,x
∗
−i)≤ infxi∈Rni Ji(xi,x

∗
−i),∀i ∈ V holds.

We describe the information sharing between players as
an undirected and connected graph G = (V, E), where V
as the vertex set and E ⊆ V ×V as the edge set. Denote
Ni ⊆ V as the set of neighbors of player i.The adjacency
matrix of the graph G is denoted as A = [aij ]N×N ,
with aij > 0 if (i, j) ∈ E , and aij = 0 otherwise.The
corresponding Laplacian matrix is LG = [lij ]N×N , with

lij = −aij if i 6= j, and lij =
∑N
j 6=i aij otherwise.

For an undirected and connected graph G, one has that
LG1N = 0N , 1TNLG = 0TN and all eigenvalues of LG are
real numbers and could be arranged by an ascending
order 0 = λ1 < · · · ≤ λN . To proceed, we further make
the following technical assumptions.

Assumption 1 For every i∈V, the local cost function
Ji(xi,x−i) is continuously differentiable, strictly convex
and radially unbounded in xi∈Rni for any fixed x−i.

Assumption 1 was widely used in the existing related
works such as Assumption 2 in (Gadjov & Pavel, 2018)
and Assumption 1 in (De Persis & Grammatico, 2019).

Definition 2 The game mapping F (x) : Rn → Rn is
defined as F (x) = col{∇iJi(xi, x−i)}i∈V .

The following assumptions formulate the restricted
strongly monotone and the Lipschitz continuity of the
elements of the game mapping F (x).

Assumption 2 The game mapping F (x) satisfies

• F (x) is µ-strongly monotone with the constant µ > 0,
that is, for any x, y ∈ Rn

〈F (x)− F (y), x− y〉 ≥ µ‖x− y‖2.
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• For every i ∈ V, the gradient ∇xiJi(xi, x−i) is
uniformly Lipschitz continuous in xi, that is, there is
some constants θi≥ 0 such that for any fixed x−i ∈
Rn−ni ,

‖∇xiJi(xi, x−i)−∇xiJi(yi, x−i)‖ ≤ θi‖xi − yi‖.

Moreover, for every i ∈ V the gradient ∇xiJi(xi, x−i)
is uniformly Lipschitz continuous in x−i, that is, there
is some constants θ−i ≥ 0 such that for any fixed
xi ∈ Rn−ni ,

‖∇x−iJi(xi, x−i)−∇x−iJi(xi, y−i)‖≤θ−i‖x−i−y−i‖.

Define θ=(θ2
i +θ2

−i)
1/2. It follows from Assumption 3 in

(Gadjov & Pavel, 2018) and Assumption 2 in (De Persis
& Grammatico, 2019) that Assumptions 1-2 ensure the
existence and uniqueness of the NE for the game G.

Assumption 3 The initial states of all players satisfy
‖xi(0)‖∞ ≤M for i ∈ V and ‖x∗‖∞ ≤M ′.

Remark 1 It is worth pointing out that in existing works
on distributed quantized consensus, the assumption on
the initial state, that is, ‖xi(0)‖∞ ≤ M was required
to estimate the upper bound of tracking errors, see
Assumption 2 in (You & Xie, 2011) and Assumption 3
in (Ma et al., 2018). These errors guide the design of the
scaling function to avoid the saturation of quantizers at
the initial time. However, in the game context, the upper
bound of tracking errors is related to both xi(t) and x∗.
Hence, ‖x∗‖∞≤M ′ is also needed.

3 Algorithm design

In the distributed framework, each player has no access
to the exact action of all other players, and it only
receives a fixed number of bits from its neighbors.
Frequently that means each player i, i ∈ V needs
to estimate all other players’ actions. We denote this
estimated action as xi = (xi1; · · · ;xiN )∈Rn, where xii is
actual actions of player i and xij is an estimated action
of player j.

Player j

Estimator
Decoder

Holder

Limited bandwidth channel

Player i

Sampler Quantizer
Encoder

…

Fig. 1. Communication Process

Since the communication digital channels among players
exist bandwidth constraints, each player i interacts the

quantized version of xj with its neighbors j, j∈Ni. As
shown in Fig. 1, quantized communication process for
(j, i) ∈ E is summarized as the following two parts.

• Quantized communication process for (j, i) ∈ E.
(i) Encoder: Player j samples its own estimation

xj(t) at the fixed sampling time kT, k ∈ N, then it
encodes xj(kT ) as the quantized message qj(k) with
a uniform quantizer as follows,

qj(0)=Q

(
xj(0)

s(0)

)
,

qj(k)=Q

(
xj(kT )− x̂j((k − 1)T )

s(k)

)
, k ∈ N+,

where the multi-quantizer Q(·)=1n ⊗ q(·) ∈ Rn with
nlog2(2L+ 1) bits is designed as follows,

q(x) =


0, if − 1

2 < x < 1
2 ,

i, if 2i−1
2 ≤ x<

2i+1
2 , i=1, · · · , L,

L, if x ≥ 2L+1
2 ,

−q(−x), if x ≤ − 1
2 .

(1)

Then, player j broadcasts the quantized message
qj(k) to its neighbor i at time kT .

(ii) Decoder: Player i receives qj(k) from player j,
then estimates xj(t) as x̂j(t). The decoder is designed
as follows,

x̂j(0) = s(0)qj(0), (2)

x̂j(kT )= x̂j((k − 1)T ) + s(k)qj(k), (3)

x̂j(t)= x̂j(kT ), kT ≤ t<(k+1)T, k∈N+. (4)

• Quantized parameters design:
(i) Select the sampling period T > 0 satisfying

(eαλNT − 1)(eγT − 1)ρε−1 ≤ a1 < 1, (5)

where γ = ενβ/4, α > ε
λ2

( θ
2

µ +θ), a1, β ∈ (0, 1), ν =

2λmin

([ µ
N − θ√

N

− θ√
N

αλ2

ε − θ

])
, ρ=

(
θFε
αλN

+1
)

8αλN

ν2βε
√

1−β
.

(ii) Design the scaling function s(k) as follows,

s(k) = s(0)e−γkT , (6)

where s(0)= ενM0

αλN

√
1−βe−γT−αλNT andM0 ,M+M ′.

(iii) Choose L as a positive integer satisfying

L > max

{
M0

s(0)
,

⌈√
NneενβT/4+αλNT

2a2
− 1

2

⌉}
,

where 0 < a2 < 1− a1.

Remark 2 Notably, an exponentially decaying scaling
function (6) is used here for the exponential convergence

3



of the quantization errors, which is important to the
exponential convergence of the NE seeking algorithm. On
the other hand, s(k) should be large enough such that the
quantizer keeps non-saturated. That is, the convergence
rate of s(k) cannot be faster than that of the tracking error
x̃i(t) = xi(t)−x∗. Hence, the designed convergence rate
γ for s(k) matches that of x̃i(kT ), whose convergence
rate will be proved as γ in the following Theorem 1.

By using x̂i(t) and x̂j(t), player i updates its estimated
action as follows,

ẋi(t) = α

N∑
j=1

aij(x̂
j(t)− x̂i(t))−Ri∇iJi(xi), (7)

where Ri=[0n1×ni ,· · · , εIni×ni , · · · ,0nN×ni ]T ∈ Rn×ni .

The dynamic (7) is developed from (Gadjov & Pavel,
2018; Lu et al., 2018), which requires continuous
communication and accurate message interaction. In (7),
each player just exchanges the quantized information
with its neighbors at the sampling instant. Thus, our
approach significantly saves communication resources.

Remark 3 Compared with quantized NE seeking liter-
ature (Nekouei et al., 2016), in which the algorithm as
xik+1 = xik + µk

∂
∂xiUi

(
xik,Dk

(
x−ik

))
, where Dk

(
x−ik

)
represents quantized actions received from all other play-
ers at time k. It means that the communication graph is
assumed to be fully connected, in contrast, we need not
this assumption anymore.

4 Main results

We prove that the dynamic (7) exponentially converges
to a NE in Subsection 4.1 and then discuss quantitative
properties on the required bandwidth in Subsection 4.2.

4.1 Convergence analysis

First, we present the following lemma to prove that the
equilibrium of the dynamic (7) is a NE.

Lemma 1 The equilibrium x∗ of the dynamic (7) is a
NE of game G.

The proof is similar to the proof of Lemma 4 in (Gadjov
& Pavel, 2018) and thus omitted here.

Definition 3 The augmented game mapping is defined

as F(x)=col{∇iJi(xi)}i∈V : Rn2 → Rn.

The following lemma shows the Lipschitz continuity of
the augmented mapping F(x).

Lemma 2 Under Assumptions 1 and 2, the augmented

mapping F(x) is θ-Lipschitz continuous in x ∈ Rn2

.

PROOF. Follows from Assumptions 1-2, for any x, y ∈
Rn such that xi, yi ∈ Rni and x−i, y−i ∈ Rn−ni , there is

‖∇iJi(xi, x−i)−∇iJi(yi, y−i)‖
= ‖∇iJi(xi, x−i)−∇iJi(yi, x−i) +∇iJi(yi, x−i)
−∇iJi(yi, y−i)‖

≤
(
βθ2

i ‖xi−yi‖2+β/(β − 1)θ2
−i‖x−i−y−i‖22

) 1
2

, (8)

where β > 1. Choose β = 1 + θ2
−i/θ

2
i to rewrite (8) as

‖∇iJi(x)−∇iJi(y)‖ ≤ (θ2
i + θ2

−i)
1/2‖x− y‖, (9)

Due to the arbitrary of x, y ∈ Rn, Lemma 2 holds.

Note that the Lipschitz continuity of F(x) was assumed
in most distributed NE seeking works, see Assumption
4 in (Gadjov & Pavel, 2018) and Assumption 5
in (De Persis & Grammatico, 2019). Lemma 2 indicts
that using Assumptions 1-2, the Lipschitz continuity of
F(x) can be yielded such that it need not be assumed in
this work.

Define Φ1 = 1√
N

1N and Φ2 ∈ RN×(N−1) to construct

a unitary matrix Φ = [Φ1, Φ2] such that ΦTLGΦ =
diag(0, λ2, · · · , λN ). Observe that ΦT2 Φ2 = IN−1 and
Φ2Φ

T
2 = IN − Φ1Φ

T
1 . Further, define tracking errors as

x̃i=xi−x∗ and estimation errors as ei,xi−x̂i. Stack the
above vectors as x∗= 1N ⊗ x∗, x̃= col{x̃i}i∈V and e =
col{ei}i∈V , respectively. The coordinate transformation
of x̃ and e is written as follows,

x1(t)=(ΦT1 ⊗In)x̃(t)∈Rn, x2(t)=(ΦT2 ⊗In)x̃(t)∈R(N−1)n,

e1(t)=(ΦT1 ⊗In)e(t)∈Rn, e2(t)=(ΦT2 ⊗In)e(t)∈R(N−1)n.

Next, we will prove the exponential convergence of the
quantized NE seeking dynamic (7), to do so, we present
the following lemma whose proof is given in Appendix.

Lemma 3 Construct the Lypaunov function as follows,

V (x) =
1

2
(‖x1‖2 + ‖x2‖2).

Under Assumptions 1-3, along with the dynamic (7), if
the following three inequalities hold when k=k1, ∀k1∈N,

‖e(kT )‖≤
a2ενM0

√
(1− β)Nne−αλNT

2αλN
e−γ(k+1)T , (10)

‖e(t)‖<
ενM0

√
(1−β)Nn

2αλN
e−γ(bt/Tc+1)T , t∈ [0, kT ),(11)

V (x)≤(NnM2
0 /2)e−2bt/TcT , t∈ [0, kT ], k ∈ N, (12)

then (10)-(12) hold when k = k1 + 1.

Theorem 1 Given an undirected and connected graph
G, under Assumptions 1-3, the dynamic (7) exponentially
converges to a NE of game G.
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PROOF. We prove Theorem 1 via the principle of
induction. When k = 0, it follows from s(0) =
ενM0/(αλN )

√
1−βe−γT−αλNT and Assumption 3 that

(10)-(12) hold. Using the conclusion of Lemma 3, if (10)-
(12) hold when k = k1, it follows that (10)-(12) hold
when k = k1 + 1. We conclude that (10)-(12) hold for
any k ∈ N. By (12), x exponentially converges to zero,
which implies that x̃(t) exponentially converges to zero.
Then, based on Lemma 1, Theorem 1 holds.

4.2 Quantitative analysis on bandwidth

In this subsection, Theorem 2 gives the required mini-
mum bandwidth to ensure the exponential convergence
of the dynamic (7). Theorem 3 discusses the relation be-
tween the required communication bandwidth and the
convergence rate. The bandwidth is defined as follows.

Definition 4 The bandwidth between the communica-
tion process (j, i) ∈ E is defined as

B = max
(j,i)∈E

{ lim
t→∞

sup
t′
{ 1

t′

∑
tji
k
≤t′

rji(k), t′ ≥ t}} bits/sec,

where tjik , k ∈ N are the sampling instants and rji(k) is

the bits required to be transmitted at tjik .

Theorem 2 Given an undirected and connected graph
G, under Assumptions 1-4, the dynamic (7) exponentially
converges to a NE under any positive bandwidth.

PROOF. Choose α
ε > 1

λ2
( θ

2

µ + θ). In this case, the

parameters ν and ρ are two constants. For any T > 0,

lim
ε→0

(eαλNT−1)(e
ενβ
4 T−1)ρε−1= lim

ε→0
αλNT

2ενβρ/(4ε)=0,

thus, (5) is satisfied. If ε is chosen properly, then

lim
ε→0

√
NneενβT/4+αλNT /(2a2)=

√
Nn/(2a2).

In this case, the transmitted quantized information qi(k)

is represented by n log2

(
2
⌈
max

{
M0

s1
,
√
Nn

2a2

}⌉
+1
)

bits at

each T . Since T could be chosen by any positive constant,
the bandwidth B could be any positive constants.

Remark 4 By Shannon’s rate-distortion theory, if
there is a distributed algorithm achieving exponential
convergence with the rate γ, then the communication
bandwidth B > γ log2 e > 0. Particularly, Theorem 2
establishes a sufficient and necessary condition on the
required bandwidth for the exponential convergence of the
dynamic (7).

Naturally, much bandwidth means relaxed communica-
tion constraints, which contributes to the fast conver-
gence rate for the dynamic (7). We give an affine inequal-
ity in the following theorem to describe this fact.

Theorem 3 Given an undirected and connected graph
G, under Assumptions 1-3, the convergence rate and the
minimum bandwidth required in the dynamic (7) satisfy

B≤c1γ+c2, (13)

where c1, c2 > 0 are some constants independent of B
and γ.

PROOF. We prove (13) via computing the upper
bound of the minimum bandwidth B0 for any given
convergence rate γ0. Choose α/ε = c0 and β as two
positive constants such that ν is a positive constant.
Then, the convergence rate γ0 = ε0νβ/4 is determined
by ε0. Let the sampling instants T0 = 1/(b1γ0 + b2),

where b1 = 4c0λN/(νβ)+1
ln(ρ0) , b2 = ρ0ρνβ

4a1
and ρ0 > 1.

Using T0≤min{1/b1γ0, 1/b2}, eαλNT0−1≤ eαλNT0 and
eγ0T0−1≤γ0T0e

γ0T0 , we observe the chosen T0 satisfies

(eαλNT0−1)(eγ0T0 − 1)ε−1≤eαλNT0+γ0T0νβT0/4<a1/ρ,

which grantees that T0 satisfies (5). Next, we estimate
the number of quantization levels L0 for computing B0.
Recalling from the definition of the bandwidth, it could
be computed via

B = lim
n→∞

∑n−1
k=0 rji(k)

nT
= lim
n→∞

∑n−1
k=1 rji(k)

(n− 1)T
. (14)

It implies that the choice of the quantization levels
at the initial time has no effect on the value of the
communication bandwidth. Hence, we only consider the

case L0 =

⌈√
Nneγ0T0+αλNT0

2a2
− 1

2

⌉
and we obtain

B0= log2(2L0 + 1)/T0 = log2(
√
Nn/a2e

γ0T0+αλNT0)/T0

= log2 e(1+4c0λN/νβ)γ0+log2(nN)/2−log2 a2/T0

∆
= c1γ0 + c2,

Since the chosen of γ0 is arbitrary, Theorem 3 holds.

Remark 5 The problem of the minimum bandwidth for
the fixed convergence rate γ0 is complicated and still
unsolved in the quantized control. In fact, for a given
convergence rate γ0, Theorem 3 provides an upper bound
of the minimum bandwidthB0 = c1γ0+c2, which partially
deals with this problem.

5 An example

In this section, we utilize an energy consumption game
for heating ventilation and air conditioning systems (Ye
& Hu, 2017) to illustrate the effectiveness of our results.
The cost function of player i is modeled as

fi(x)=ai‖xi−bi‖2+xTi

(
c

N∑
i=1

xi+d

)
, i = 1, · · · , 5,

where xi ∈ R3, ai = 0.96 − 0.5i, bi = [9; 11; 13] +
4(i − 1)13, c = 0.001, and d = [10; 12; 14]. Based
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Fig. 3. Three dimensions of the theoretical NE x∗i (dotted
line), and dynamics xi (solid line) for players i, i = 1, · · · , 5.

on theoretical analysis, the unique Nash equi-
librium is computed as x∗ = [x∗1; · · · ;x∗5] =
[3.7608; 4.7165; 5.6722; 7.4709; 8.3692; 9.2675; 11.1473;
11.9816; 12.8159; 14.7838; 15.5462; 16.3086; 18.3724;
19.0535; 19.7345] ∈ R15. The initial estimation is set
as xi(0) = [x1(0); · · · ;x5(0)] + 2(i − 1)115 ∈ R15 with
xi(0) = [−10 + 3i;−5−2i; 10−2i]. The communication
graph is given in Fig.2.
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Fig. 2. Communication graph.

The parameters of quantization scheme are chosen as: (a)
the sampling period T =0.1sec; (b) the scaling function
s(k)=0.1e−0.1k; (c) the bandwidth B=270 bit/sec.

We perform the proposed the dynamic (7) with α =
1. Fig.3 compares theoretical NE and distributed
estimated actions of all players for the three dimensions.
It shows that the distributed estimates accurately track
the theoretical NE [cf. Theorem 1].

Fig. 4 compares the tracking errors ‖x(t)−15⊗x∗‖ of our
quantized algorithm with that of the existing distributed
NE seeking algorithm presented in (Gadjov & Pavel,
2018; Lu et al., 2018) under an ideal communication
channel. It shows that the quantized communication
brings the difficulty to the NE seeking.

Fig. 5 shows simulation results for Theorem 3. It proves
that for any given convergence rate γ0, the actually
required bandwidth B is less than the upper bound of
the minimum bandwidth B0 = c0γ0+c1 [cf. Theorem 3].
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Fig. 4. The comparison of tracking errors between distributed
NE seeking algorithm without quantization (blue line) and
the dynamic (7) (red line).
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Fig. 5. The upper bound of minimum bandwidth B0 (red
line) and practical bandwidth B (blue line) for the given γ.

6 Conclusions

We investigated the distributed NE seeking with finite
bandwidth constraints among each pair of players. To
solve this problem, a distributed NE seeking algorithm
with an adaptive quantization scheme was proposed.
Theoretical and experimental results showed that for
any bandwidth constraints, the proposed algorithm
could achieve exponential convergence. In addition, an
affine inequality was given to describe the relation
between convergence rate and the required bandwidth.

7 Appendix

For notations simplicity, define

a(t)=(NnM2
0 /2)e−2γbt/TcT , R=diag{R1, · · · , RN},

b(t)=
ενM0

√
(1−β)Nn

2αλN
e−γ(bt/Tc+1)T , Θ=F(x)−F(x∗).

Step 1. We prove that the following conclusion.

‖e(t)‖ ≤ b(k1T ), ∀ t ∈ (k1T, t
′)⇒V (x) ≤ a(t)

∀ t ∈ (k1T, t
′], ∀ t′ ∈ (k1T, (k1 + 1)T ] . (15)

Follow the update dynamic (7) that

ẋ1(t)=−(ΦT1 ⊗ In)RΘ,

ẋ2(t)=−α(ΦT2 LGΦ2⊗In)x2(t)−(ΦT2 ⊗In)RΘ

+α(ΦT2 LGΦ2 ⊗ In)e2(t),

Using Φ2Φ
T
2 = IN − Φ1Φ

T
1 , compute V̇ (x) as

V̇≤ −x̃TRΘ−αλ2‖x2‖2+αxT2 [ΦT2 LGΦ2 ⊗ In]e2. (16)

Since x̃=(Φ1 ⊗ In)x1+(Φ2 ⊗ In)x2=x̃1 + x̃2, it yields

−x̃TRΘ = −x̃T1 R[F(x̃1 + x̃2 + x∗)− F(x̃1 + x∗)]

− x̃T2 R[F(x̃1 + x̃2 + x∗)− F(x̃1 + x∗)]

− x̃T1 R[F(x̃1 + x∗)− F(x∗)]

− x̃T2 R[F(x̃1 + x∗)− F(x∗)]. (17)
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Since F(1N ⊗ x) = F (x) for any x ∈ Rn and F (x) is
strong monotone, the third term of (17) is written as

x̃T1 R[F(x̃1+x∗)−F(x∗)] = εxT1 /(N)1/2[F (x1/(N)1/2

+x∗)−F (x∗)]>εµ/N‖x1‖2,(18)

where (1TN ⊗ In)R = εIn is utilized. Recalling ‖R‖ =
ε‖Φ2‖ = ε, it follows from Lemma 2 that

x̃T2 R[F(x̃1 + x∗)− F(x∗)]≤εθ/(N)1/2‖x1‖‖x2‖. (19)

Similarly, we further obtain

−x̃T1 R[F(x̃1+x̃2+x∗)−F(x̃1+x∗)]≤εθ/(N)1/2‖x1‖‖x2‖,
−x̃T2 R[F(x̃1+x̃2+x∗)−F(x̃1+x∗)] ≤εθ‖x2‖2. (20)

Summing up both side of (18)-(20), we have

−x̃TRΘ≤2εθ/(N)1/2‖x1‖‖x2‖+εθ‖x2‖2−εµ/N‖x1‖2.

Then the derivative of V in (16) is rewritten as follows,

V̇ ≤ 2εθ/(N)1/2‖x1‖‖x2‖+ εθ‖x2‖2 − εµ/N‖x1‖2

−αλ2‖x2‖2+αxT2 (ΦT2 LGΦ2 ⊗ In)e2

≤− ενV +αxT2 (ΦT2 LGΦ2 ⊗ In)e2, (21)

where the second inequality holds using the fact α
ε >

1
λ2

( θ
2

µ + θ). Since Φ2Φ
T
2 = IN − Φ1Φ

T
1 and 1TNL = 0TN ,

the second term of (21) is expressed as follows,

αxT2 (ΦT2 LGΦ2 ⊗ In)e2 =αx̃T (LG ⊗ In)e.

Thus, (21) is equivalent to

V̇ ≤ −ενV + αx̃T (LG ⊗ In)e. (22)

It implies that

V̇ ≤ −ενV/2−
(
εν‖x̃‖2/4− α‖x̃‖‖LG‖‖e‖

)
. (23)

Use α‖x̃‖‖LG‖‖e‖≤εν‖x̃‖2/4+α2‖LG‖2‖e‖2/(εν) such

that V̇ ≤ −ενV/2 + α2‖LG‖2‖e‖2/(εν). Select β ∈
(0, 1) such that V̇ ≤ −εβνV/2 − ε(1 − β)νV/2 +
α2‖LG‖2‖e‖2/(εν), and for t∈(k1T, (k1 + 1)T ),

V (x)>a((k1+1)T )>a(t), ‖e(t)‖<b(t)⇒V̇≤−ενV
2

.(24)

Since a(t) ≡ a(k1T ), t ∈ [k1T, (k1 + 1)T ), it follows
from (24) that (15) holds for t′ ∈ (kT, (k1 + 1)T ). We
then consider the situation on t′ = (k1 + 1)T . Assume
that V (x) > a((k1 + 1)T ) for t ∈ (k1T, (k1 + 1)T ].

Based on (23), there is V̇ (x) ≤ −ενV/2 . Hence, A =
{x|V (x) ≤ a((k1 + 1)T )} is an invariant set. Note that
V (x)≤a(k1T ) when t = k1T , then from (24), x(t) enters
into the setA not later than the time t=(k1+1)T . Thus,
(15) holds for t = (k1 + 1)T .

Step 2. We prove the following conclusion

V (x)≤a(k1T ), ∀ t ∈ (k1T, t
′]⇒ ‖e(t)‖<b(k1T ),

∀ t∈(k1T, t
′], ∀t′∈ [k1T, (k1 + 1)T ). (25)

From (7), ė(t)=−αLx̃(t)+αLe(t)−RΘ. It implies that

e(t)=eαL(t−k1T )e(k1T )−
∫ t

k1T

eαL(t−τ)(αLx̃(τ)+RΘ) dτ.(26)

Taking the Euclidean norm of both side of (26), it yields

‖e(t)‖≤‖ eαL(t−k1T ) ‖‖e(k1T )‖+
∫ t

k1T

‖ eαL(t−τ)‖

(‖αLx̃(τ)‖+‖RΘ‖) dτ, k1T < t ≤ t′. (27)

For any t ∈ (k1T, t
′], the first term of (27) satisfies

‖ eαL(t−k1T )‖‖e(k1T )‖≤eαλNT ‖e(k1T )‖. (28)

For any t ∈ (k1T, t
′], due to ‖x̃(t)‖ ≤ NnM2

0 e
−2γt, then∫ t

k1T

‖ eαL(t−τ) ‖‖αLx̃(τ)‖dτ

≤ αλN
√
NnM0e

αλN t

∫ t

k1T

e−αλNτ dτ

∫ (k+1)T

k1T

e−
ενβ
4 τ dτ

≤ 4
√
NnM0

ενβ
(eαλNT−1)(e

ενβ
4 T−1)e−

ενβ
4 (k+1)T . (29)

For any t ∈ (k1T, t
′], the third term of (27) satisfies∫ t

k1T

‖ eαL(t−τ) ‖‖RΘ‖ dτ

≤ (eαλNT−1)
4
√
NnM0θF
αλNβν

(e
ενβ
4 T−1)e−

ενβ
4 (k1+1)T .(30)

Denote ∆k
e = supt∈(k1T,t′] ‖e(t)‖. By (28)-(30),

∆k
e≤eαλNT ‖e(k1T )‖+

(
θFε

αλN
+ 1

)
4
√
NnM0

ενβ

(eαλNT−1)(e
ενβ
4 T − 1)e−

ενβ
4 (k1+1)T . (31)

From ‖e(k1T )‖ ≤ a2e
−αλNT b(k1T ), we have

‖e(t)‖ ≤ eαλNT ‖e(k1T )‖≤a2b(k1T ), t ∈ (k1T, t
′]. (32)

It follows from (5) and (31) that(
θFε

αλN
+1

)
4
√
NnM0

ενβ
(eαλNT−1)(e

εν
4 T−1)e−

εν
4 (k+1)T

≤ a1
ενM0

2αλN

√
Nn(1− β)e−

εν
4 β(k+1)T . (33)

Since a1+a2<1, (31)-(33) yields (25).

Step 3. We prove the following conclusion

‖e(t)‖ < b(t), t ∈ [k1T, (k1 + 1)T ),

⇒ ‖e((k1 + 1)T )‖ ≤ a2e
−αλNT b((k1 + 1)T ). (34)

7



Denote the left limit of e(t) as e−(t). Since x̂(t) ≡
x̂(k1T ), t ∈ [k1T, (k1 + 1)T ),

x((k1+1)T )−x̂(k1T )= lim
t→((k+1)T )−

x(t)−x̂(t)=e−((k+1)T ).

Using s(k)= α2ενM0

αλN

√
1−βe−αλNT−

εβν(k+1)T
4 , we have∥∥∥∥x((k1 + 1)T )− x̂(k1T )

s(k1 + 1)

∥∥∥∥≤∥∥∥∥ b(k1T )

s(k1 + 1)

∥∥∥∥ ≤ L, (35)

that is, the quantizer is unsaturated at t=(k1+1)T.Then

‖e((k1 +1)T )‖≤
√
Nn
2 s(k1 +1)=a2e

−αλNT b((k1 +1)T ).

Step 4. Based on Steps 1-3, we conclude the proof
of Lemma 3. First, denote Ω = {t ∈ (k1T, (k1 +
1)T )

∣∣||e(t)|| < b(k1T )}, which is nonempty because of
‖e(k1T )‖ < b(k1T ).

Then, we show that supt∈Ω t = (k1 + 1)T via a
contradiction argument. Assume that there exists t′ ∈
[k1T, (k1 + 1)T ) such that t′ = supt∈Ω t, then ‖e(t′)‖ =
b(k1T ), drawing on the fact that e(t) is continuous on
any t ∈ [k1T, (k1 + 1)T ). For any t ∈ [k1T, t

′), since
‖e(t)‖ < b(k1T ), it follows from (15) in Step 1 that
V (x) ≤ a(t), t ∈ [k1T, t

′]. With (25) in Step 2, we further
obtain ‖e(t)‖ < b(k1T ),∀ t ∈ [k1T, t

′], which contradicts
to ‖e(t′)‖ = b(k1T ). Hence, supt∈Ω t = (k1 + 1)T .

To sum up, we can conclude that ‖e(t)‖ < b(k1T ) for
any t ∈ [k1T, (k1 + 1)T ) and (11) holds for k = k1 + 1.
Combining with (15) and (34), we further conclude that
(12) and (10) hold for k = k1 + 1. Lemma 3 is verified.
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