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Abstract

Given a convex quadratic potential of which its minimum is the agent’s goal and a Euclidean space populated with ellipsoidal
obstacles, one can construct a Rimon-Koditschek (RK) artificial potential to navigate. Its negative gradient attracts the agent
toward the goal and repels the agent away from the boundary of the obstacles. This is a popular approach to navigation
problems since it can be implemented with local spatial information that is acquired during operation time. However, navigation
is only successful in situations where the obstacles are not too eccentric (flat). This paper proposes a modification to gradient
dynamics that allows successful navigation of an environment with a quadratic cost and ellipsoidal obstacles regardless of their
eccentricity. This is accomplished by altering gradient dynamics with a Hessian correction that is intended to imitate worlds
with spherical obstacles in which RK potentials are known to work. The resulting dynamics simplify by the quadratic form of
the obstacles. Convergence to the goal and obstacle avoidance is established from almost every initial position (up to a set of
measure one) in the free space, with mild conditions on the location of the target. Results are corroborated empirically with
numerical simulations.
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1 Introduction

Path planning, sometimes formulated as reaching the
minimum of a potential function from a start configura-
tion while avoiding collisions with obstacles, is a corner-
stone problem in controls and robotics (Bhattacharya
et al., 2007; LaValle, 2006; Murphy et al., 2008). In this
paper we develop a navigation function approach that
is guaranteed to reach the minimum of an arbitrary
quadratic convex potential in a space with an arbitrary
number of ellipsoidal obstacles of arbitrary eccentricity.

To better explain this contribution it is important to
emphasize that navigation function approaches to path
planning occupy an appealing middle ground in terms
of complexity and quality of trajectories (Ghaffarkhah
and Mostofi, 2009; Loizou, 2017; Paternain and Ribeiro,
2019; Rimon and Koditschek, 1992; Tanner and Ku-
mar, 2005; Vrohidis et al., 2018). In one extreme, bug
algorithms follow potential gradients until they hit bor-
der obstacles, at which point they follow the border
until the projection of the direction to the destination
on the obstacle’s tangent plane pushes it away (Taylor
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and LaValle, 2009). Bug algorithms rely on simple local
sensing of gradients and obstacles and are guaranteed
to reach the target destination. But they may do so by
following excessively long trajectories. In the other ex-
treme, minimum path length search algorithms such as
A∗ (Hart et al., 1968) and random trees (LaValle, 1998)
build graphs that describe the geometry of the environ-
ment and find trajectories of optimal length. But to do
so they require access to complex global sensing of the
environment.

Navigation function approaches combine the goal poten-
tial with repulsive potentials that push the agent away
from the obstacles. This implies they can still be im-
plemented with local sensing of gradients and obstacles
while empirical evidence shows they find trajectories to
the goal that are better than obstacle following bug al-
gorithms (Ghaffarkhah and Mostofi, 2009; Loizou, 2017;
Paternain and Ribeiro, 2019; Tanner and Kumar, 2005;
Vrohidis et al., 2018). The cost to pay for this appeal-
ing tradeoff between sensing complexity and trajectory
length is the possibility of failure. Locally implementable
navigation functions are guaranteed to reach the goal,
but they are difficult to construct except for conservative
geometries. Famously, they are known to work always
for spherical potentials in worlds with spherical obsta-
cles (Koditschek and Rimon, 1990). With the addition
of an analytic switch, local diffeomorphisms can be con-
structed to enable navigation of a single point agent in
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star worlds (Rimon and Koditschek, 1992). Since then,
there has been a significant effort to implement naviga-
tion functions locally without a diffeomorphism (Loizou,
2012; Paternain et al., 2018; Tanner and Kumar, 2005).
Such constructions extend the applications to to mul-
tiple agents (Dimarogonas and Johansson, 2008), non-
point agents (Arslan and Koditschek, 2016), and min-
imal adjustment of a single tuning parameter (Lionis
et al., 2008). All of these efforts, however, require that
the obstacles are sufficiently curved (Filippidis and Kyr-
iakopoulos, 2012). In the specific case of ellipsoidal ob-
stacles, this puts a limit on their eccentricity.

More recently, Vasilopoulos et al. (2020) have shown a
method to construct a diffeomporphism via polygonal
decomposition on-the-fly with non-convex obstacles us-
ing real-time perception; however, they require the shape
of the obstacles to be ”familiar” or come from a known
obstacle class. Indeed, mapped model space after apply-
ing the diffeomporphism does need to satisfy the suffi-
ciently curved condition.

In this work, we consider ellipsoidal worlds with arbi-
trary eccentricity. By drawing connections to second or-
der optimization (Boyd and Vandenberghe, 2004, Ch. 9),
we directly propose dynamics given by a Hessian correc-
tion on the locally implementable navigation function of
Paternain et al. (2018). The correction on the quadratic
obstacles simplifies so that the agent only requires easily
obtainable information; namely, the agent must estimate
the direction to the goal and obstacle centers as well as
the distances to the obstacles and goal. Implementable
in practice (Fitzgibbon et al., 1999; Li and Griffiths,
2004), we show that with these four quantities and with
mild conditions on the position of the target, the agent is
guaranteed to reach the target from almost all starting
conditions while avoiding obstacles along the way.

The paper is organized as follows. In section 2, we for-
mally introduce the path planning problem and the nav-
igation function approach. In section 3, we present our
Hessian-corrected and simplified dynamics. Following
the proof of the main result in section 4, numerical re-
sults are presented in section 5 which showcases the suc-
cess in spaces where the traditional navigation function
approaches fail. We conclude in section 6 with a sum-
mary and possible extensions of this work.

2 Potential, Obstacles, & Navigation Functions

We consider the problem of a point agent navigating a
quadratic potential in a space with ellipsoidal punctures.
Formally, let X ⊂ Rn be a non empty compact convex
domain that we call the workspace, and let f0 : X →
R+ be a convex strictly quadratic function that we call
the potential. A point agent is interested in reaching
the target destination x∗ ∈ X which is defined as the
minimizer of the potential. Without loss of generality,

we use the standard squared Euclidean distance to the
target

x∗ = argmin
x∈X

f0(x) :=
1

2
‖x− x∗‖2. (1)

In some navigation problems, arbitrary quadratic func-
tions are of interest (Paternain et al., 2018). For future
reference, we denote the minimum and maximum eigen-
values of Q := ∇2f0(x) as 0 < λmin ≤ λmax.

The workspace X is populated bym ellipsoidal obstacles
Oi ⊂ X for i = 1, . . . ,m which are closed and have
a non empty interior. We define the free space as the
complement of the obstacle set relative to the workspace,

F := X \
( m⋃
i=1

Oi
)
, (2)

We assume that each obstacle, or each connected com-
ponent of the complement of the workspace is an ellip-
soid. Formally, we have the assumption

Assumption 1 Obstacles are ellipsoids. Each ob-
stacle is represented as the zero sublevel set of a proper
convex quadratic function βi : Rn → R

βi(x) =
1

2
(x− xi)>Ai(x− xi)−

1

2
r2
i , (3)

where Ai is a positive definite matrix with minimum and
maximum eigenvalues 0 < µimin ≤ µimax, xi is the ellip-
soid center and ri is the maximum axis length so that

Oi =
{
x ∈ X

∣∣βi(x) ≤ 0
}
. (4)

From (3) and (4) it follows thatOi is an ellipsoid centered
at xi with axes given by the eigenvectors of Ai. The
length of the axis along the kth eigenvector is riµ

i
k. In

particular, the length of the minor axis is riµ
i
min and the

length of the major axis is riµ
i
max.

While it is true that convergence guarantees have been
given for more complex obstacles, such as tori, cylinders,
one-sheet hyperboloids, and convex obstacles in general
Filippidis and Kyriakopoulos (2012); Paternain et al.
(2018), these obstacles must be sufficiently curved. In
the case of ellipsoidal obstacles, this puts a restriction on
their eccentricity. Focusing on the ellipsoidal case, this
work guarantees convergence on ellipsoidal worlds with
arbitrary eccentricity.

We further introduce a concave quadratic function β0 :
Rn → R so that we write the workspace as a superlevel
set,

X =
{
x ∈ Rn

∣∣β0(x) ≥ 0
}
. (5)
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The fact that the workspace is bounded admits the fol-
lowing bounds which will appear in our convergence
analysis. Let B be a strictly positive constant. For any
four points a, b, c, d ∈ X , the absolute value of the inner
product of the distances a− b and c− d is bounded by

|(a− b)>(c− d)| ≤ B. (6)

Additionally, let

Λ0 := max
i,x∈X

βi(x), and P0 := max
x∈X

f0(x). (7)

The navigation problem we want to solve is one in which
the agent stays in the interior of the workspace at all
times, does not collide with any obstacle, and approaches
the goal at least asymptotically.

For a formal specification we specify the agent’s goal as
that of finding a trajectory x(t) such that for all t ≥ 0,

x(t) ∈ F , and lim
t→∞

x(t) = x∗. (8)

The problem is feasible when x∗, x(0) ∈ F .

2.1 Navigation Functions

A navigation function is a twice continuously differen-
tiable function defined on the free space that satisfies
three properties: (i) It has a unique minimum at x∗.
(ii) All of its critical points are are nondegenerate. (iii)
Its maximum is attained at every point on the bound-
ary of the free space. These three properties guaran-
tee that if an agent follows the negative gradient of
the navigation function, it will converge to the mini-
mum of the navigation function without running into the
boundary of free space for almost every initial condition
(Koditschek and Rimon, 1990). Thus, it is possible to re-
cast (8) as the problem of finding a navigation function
whose minimum is at the goal destination x∗. This is al-
ways possible to do since for any manifold with bound-
ary it is guaranteed that such a function exists (Rimon
and Koditschek, 1992). In practice, depending on the
geometry of the freespace the navigation functions are
constructed differently. For instance, in sphere worlds,
Rimon-Koditschek artificial potentials can be used (Ri-
mon and Koditschek, 1992), and in topologically com-
plex ones navigation functions based on harmonic po-
tentials are preferred (Loizou, 2011, 2012). The family
of Rimon-Koditshek potentials was extended to enable
the navigation of convex potentials in a space of con-
vex obstacles (Filippidis and Kyriakopoulos, 2012; Pa-
ternain et al., 2018; Rimon and Koditschek, 1991). How-
ever, some geometric conditions restrict its application
directly, which we will now elucidate.

The Rimon-Koditschek navigation function is formally
defined by ϕk : F → R+ with parameter k ∈ R as

ϕk(x) =
f0(x)(

f0
k(x) + β0(x)β(x)

)1/k
, (9)

where the function β : Rn → R is the product of all the
obstacle equations,

β(x) =

m∏
i=1

βi(x). (10)

It was established that ϕk(x) is a navigation function
when k is sufficiently large under some restrictions on
the shape of the obstacles, the potential function, and
position of the goal (Filippidis and Kyriakopoulos, 2012;
Paternain et al., 2018).

Namely, ϕk(x) in (9) is not always a valid navigation
function because for some geometries it can have several
local minima as critical points for all k > 0. For the case
of a quadratic potential and ellipsoidal obstacles that
we consider here, a sufficient condition for ϕk(x) to be a
valid potential is when (Paternain et al., 2018, Theorem
3)

λmax

λmin
× µimax

µimin

< 1 +
di

riµimax

, (11)

where di = ‖xi − x∗‖ is the distance from the center of
the ellipsoid to the goal. When (11) fails, ϕk might fail to
be a navigation function because it may present a local
minimum on the side of the obstacle opposite the target.

An important consequence of (11) is that the artificial
potential ϕk(x) in (9) may fail to solve the navigation
problem specified in (8). Indeed, it will fail whenever
the obstacles are wide with respect to the potential level
sets. On the other hand, notice that when the attractive
potential is rotationally symmetric and the obstacles are
spherical, the left hand side of the previous expression is
equal to one, and thus the condition is always satisfied.
The main contribution of this paper is to leverage this
observation as a motivation for introducing a correction
to the gradient field of an Rimon-Koditschek navigation
function that results in a field construction that is valid
in all environments with ellipsoidal obstacles, and for
any quadratic potential.

3 Curvature Corrected Navigation Fields

To gain some intuition about the gradient-following dy-
namics of Rimon-Koditschek potentials we write them
explicitly as

ẋ = −∇ϕk

= −
(
fk0 + ββ0

)−1− 1
k

(
ββ0∇f0 −

f0∇(ββ0)

k

)
.

(12)
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Note that for convenience in notation, we omit the de-
pendence on x. In practice, the dynamics are typically
normalized since the norm of the gradient is generally
small (Whitcomb and Koditschek, 1991). Therefore, it
is reasonable to omit the scaling (fk0 + ββ0)−1−1/k. We
also omit β0 for simplicity, a minor modification which
we explain in Section 4.1. The resulting dynamics is

ẋ = gnav(x) := −β∇f0 +
f0

k
∇β. (13)

The first term, −β∇f0, in this dynamical system is a
potential field attracting the agent to the goal, and the
second term, (f0/k)∇β, is a repulsive field pushing the
agent away from the obstacles. When the agent is close
to the obstacle Oi, the product function β takes a value
close to zero thereby eliminating the first summand in
(13) and prompting the agent’s velocity to be almost
collinear with the vector ∇β(x). In turn, this makes the

time derivative β̇(x) positive thus preventing β(x) from
becoming negative. This guarantees that the agent re-
mains in free space. When the agent is away from the
obstacles, the term that dominates is the negative gra-
dient of f0(x) which pushes the agent towards the goal
x∗. The parameter k balances the relative strengths of
these two potentials.

At points where the attractive and repulsive potentials
cancel we find critical points. By choosing large enough
k, these points can be made into saddles when (11) holds.
An important observation here is that the condition is
always satisfied when the potential and the obstacles
are spherical because in that case the left hand side is
(λmax/λmin)× (µimax/µ

i
min) = 1. This motivates an ap-

proach in which we implement a change of coordinates
to render the geometry spherical. The challenge is that
the change of coordinates that would render one obsta-
cle spherical is not the same change of coordinates that
would render the potential, or any of the other obsta-
cles, spherical. Still, this idea motivates the curvature-
corrected dynamics that we present in this section. We
emphasize that this exposition is only meant to moti-
vate introducing the navigation dynamics developed in
this paper. At no point during implementation does the
agent need to estimate the Hessians of the obstacles.

3.1 Proposed Navigation Dynamics

Consider the obstacle gradient term ∇β from (13). Use
the product rule of derivation to write

∇β =

m∑
i=1

β̄i∇βi, β̄i ,
∏
j 6=i

βj . (14)

Apply separate correction terms to the gradient of each
obstacle function (∇2β−1

i βi), which simplifies to x− xi

as well as the potential function (∇2f0
−1f0), which sim-

plifies to x − x∗. Our proposed dynamics therefore be-
comes

ẋ = gnew(x) := −β·(x−x∗)+f0(x)

k

m∑
i=1

β̄i·(x−xi). (15)

Similar to how Newton’s Method uses second order in-
formation to render the level sets of the objective func-
tion into spherical sets so to obtain a faster rate of con-
vergence(Boyd and Vandenberghe, 2004, Ch. 9.5), pre-
multiplying each gradient in the original flow (13) by the
Hessian inverse of the corresponding function corrects
the dynamics so that the world appears spherical to the
agent.

An interesting side effect of the simplified dynamics ex-
pression in (15) is that implementation is simpler than
it appears. The first term pushes in the direction of the
goal and the second term pushes away from the center of
the obstacle. Thus, the algorithm can be made to work
if we just estimate these two quantities. Curvature esti-
mates are not needed for implementation.

The advantages of this approach are threefold: (i) the
estimate of the Hessian does not need to be computed,
(ii) the dynamics are simpler and easier to implement,
and (iii) the convergence proof is complete for almost
all initial conditions x0 (with measure one)with mild
conditions on the location of the target. We now present
our main result, which guarantees convergence to the
target in environments with ellipsoidal obstacles.

3.2 Convergence Guarantees

Before we present our main result, we require the fol-
lowing definitions. Because the obstacles are ellipsoidal,
and the target is a point, for each obstacle, we define the
generalized Voronoi cell (Arslan and Koditschek, 2016)
based on maximum margin separating hyperplanes to
be

Ci :=

{
x ∈ F

∣∣∣∣∀j 6=i∀p∈Oi∀q∈Oj‖x− p‖ ≤ ‖x− q‖} ,
(16)

for all i, j = 1, . . . ,m where we define O0 := x∗. For
each Voronoi cell Ci, we can define its boundary to an
adjacent cell Cj by

∂Cji :=

{
x ∈ Ci

∣∣∣∣∀p∈Oi∀q∈Oj‖x− p‖ = ‖x− q‖
}
.

We also assume that the target is bounded away from
the union of the affine extension of the Voronoi borders.
Formally, we assume the following.

4



Assumption 2 Target lies away from hyperplanes
For each ∂Cji , there exists a δi,j > 0 such that the inner
product between (x−x∗) and the normal unit vector per-

pendicular to ∂Cji , or ni,j, is strictly positive. In particu-

lar, for any a, b, x ∈ ∂Cji , the normal vector ni,j satisfies

n>i,j(a− b) = 0, and n>i,j(x− x∗) > 0, (17)

and
n>i,j(x− x∗) ≥ δi,j . (18)

Assumption 2 simplifies the analysis significantly, albeit
at the cost of placing minor conditions on the location of
the target. We discuss the procedure to lift these condi-
tions in Remark 1. We are now equipped to present our
main result.

Theorem 1 Let f0(x) be a quadratic potential as in (1)
and let βi(x) be an ellipsoid as in (3) for all i = 1, . . . ,m.
Further let x be the solution of the dynamical system
(15) with initial condition x0, and let Assumption 2 be
in effect. Then, there exists a K such that when k > K,
x(t) ∈ F for all t ≥ 0 and limt→∞ x(t) = x∗ for almost
all initial conditions x0.

The complete proof is presented in section 4, however
we present a sketch of proof here.

• First, we show that the free space F is invariant (Sec-
tion 4.1).
• Then, we show that the dynamics (15) induce a di-

rected acyclic graph which determines the order in
which the Voronoi cells defined in (16) are traversed.
The final cell visited is a cell containing the target.
(Section 4.2 and Section 4.3).
• Furthermore, we show that x∗ is stable in C0, the

Voronoi cell containing the target. (Section 4.4)
• Finally, we show that the agent will almost always exit

each Voronoi cell Ci, i = 1, . . . ,m. (Section 4.5)

The order of the bullets is selected intentionally. To prove
bullet three, we use a Lyapunov function. Together with
the invariance of the final C0, it follows that x∗ is asymp-
totically stable. In order to show the final bullet of the
proof, we invoke the same Lyapunov function of bullet
three in specific regions where we know how the obstacle
will traverse the border of those sets. In particular, we
use the Lyapunov function to show that the agent will
leave that specified set.

Remark 1 Notice that ∂Ci,j are contained in an affine
hyperplane. For the purpose of this remark, let ∂Ci,j be
the affine extension of the border between two adjacent
cells. The analysis holds for all configurations except for
the case where the target lies on the set with zero mea-
sure of the union of the affine hyperplanes ∪i,j∂Ci,j, al-
beit with arbitrarily highK. For that reason, we introduce

Assumption 2 so that we can find a bounded K. Theo-
retically, one should be able to obtain a finite value of k
without Assumption 2 by treating the union of adjacent
cells where the border is aligned with (x−x∗) as one cell.
In practice, one can consider perturbing the target loca-
tion within C0 until Assumption 2 holds and returning to
the original target location when the agent is sufficiently
close. As such, we choose to omit this formal discussion
because these are corner cases, and they have no effect
on the performance in practice.

4 Proof of Theorem 1

In this section, we present the proof of Theorem 1. Let
Nr(A) ,

⋃
p∈ABr(p), where Br(p) , {q : ‖q − p‖ < r}

be the open r-neighborhood of a set A. Further, consider
a subset of the free space outside the ε-neighborhood of
any obstacle, namely,

F>ε := F\
⋃
i

Nε(Oi). (19)

4.1 Invariance of the workspace

The following Lemma explains why it is possible to omit
β0 from the dynamics in (15). We define the following
constants

λ = min
i,x∈∪i,j∂Ci,j

βi, λ0 = min
i,x∈∂X

βi. (20)

Lemma 1 Let Kβ0
= mP0Λm−1

0 B/λm0 , where the m is
the number of obstacles and the constants P0,Λ0, λ0, and
B come from (7), (20), and (6). For k > Kβ0

, F is
invariant under (15).

proof. First consider the boundary of an obstacle ∂Oi,
for i = 1, . . . ,m. Evaluate ∇β>i ẋ with ẋ subject to βi =
0. We obtain

∇β>i ẋ
∣∣∣
βi=0

=
f0

k
∇β>i (x− xi), (21)

which is strictly positive by µimin > 0.

Next, consider the outer obstacle. Without loss of gen-
erality, let ∇2β0 = In. Consider the normal vector n =
(x− x∗)/‖x− x∗‖. Evaluate n>ẋ to obtain

n>ẋ = −β +
f0

k

m∑
i=1

β̄i · n>(x− xi). (22)
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Fig. 1. Visualization of the different regions of the spaces
described in the proof. The red region around the obstacle
in black is the ε neighborhood of the obstacle. The green
dashed lines and the green cylinder define the pyramid and
cylinder discussed in Section 4.5. The blue line describes Si,
which attracts the points in the Voronoi cell whose borders
shown by the dashed gray lines.

Recalling the bounds (6) and (7), n>ẋ is strictly negative
when k > Kβ0

defined by

Kβ0
:=

mP0Λm−1
0 B

λm0
. (23)

We invoke Nagumo’s Theorem (Blanchini, 1999) to
complete the proof.

4.2 Isolating obstacles analysis with Voronoi cells

Recall from Assumption 2 that ni,j is a unit vector per-
pendicular to the border ∂Ci,j such that n>i,j(x− x∗) >
δi,j for some positive δi,j > 0. Our next lemma estab-
lishes a relative ordering on adjacent obstacles.

Lemma 2 Let Assumption 2 hold. Further, let Ki,j =

mP0Λm−1
0 Bδ−1

i,j λ
−m, where m is the number of obstacles

and the constants P0, Λ0, λ, B, and δi,j come from (7),
(20), (6), and Assumption 2. Then, for all k > Ki,j,
n>i,j ẋ < 0.

proof. Evaluate n>ẋ

n>ẋ = −βn>(x− x∗) +
f0

k

m∑
j=1

β̄jn
>(x− xi). (24)

By the definition of the Voronoi cell, ∂Cji does not in-
tersect with any obstacle. Invoke (6), (7), and (20) to

obtain the bound

βn>(x− x∗) ≥ δi,jλm. (25)

We also bound the expression

f0

m∑
j=1

β̄jn
>(x− xj) ≤ mP0Λm−1

0 B. (26)

Using these bounds, we define

Ki,j :=
mP0Λm−1

0 B

δi,jλm
. (27)

It holds that n>ẋ is negative for all k > Ki,j

In fact, for any hyperplane section that is ε-bounded
away from the targets, we can establish a similar traver-
sal property. We formalize this with the following corol-
lary.

Corollary 1 Let H be a hyperplane section that is con-
tained in F>ε. Let n be a normal vector to the hyper-
plane section such that n>(x − x∗) > δ for some δ > 0
and for any a, b ∈ H, n>(a − b) = 0. Then for any
k > mP0Λm−1

0 Bδ−1λm, it holds that n>ẋ < 0 for the
flow given in (15).

proof. The proof follows identically from Lemma 2.

Lemma 2 induces a relative ordering on adjacent obsta-
cles. Indeed, this ordering is such that once an agent
leaves the Vornonoi cell of an obstacle Oi, it will never
return to that cell. Eventually, the agent will be in C0
where it will converge to the target (see Section 4.4). We
will first formally define the ordering, then we will prove
the claim.

4.3 Ordering on the obstacles

We will construct the ordering ρ(0), . . . , ρ(m) on the
Voronoi cells Ci, for i = 0, . . . ,m. First assign 0 to ρ(0),
that is the Voronoi cell containing the target.

Next, define the Voronoi cells for the remaining obstacles
Ci(`), where ` denotes the number of obstacles removed.

For brevity in notation, we let ρ` denote {ρ(i)}`i=0. We
define

Ci(`) :=

{
x ∈ F

∣∣∣∣∀ j /∈ρ`
j 6=i
∀p∈Oi∀q∈Oj‖x− p‖ ≤ ‖x− q‖

}
.

(28)
Where Ci(`) is defined only for i = 1, . . . ,m such that
i /∈ ρ` and ` = 0, . . . ,m − 2. By Assumption 2, there

6



exists an i /∈ ρ` such that x∗ ∈ Ci(`). Assign this i to
ρ(`+ 1). This process is repeated for all ` until there are
are just two cells. Assign i /∈ ρm−1 to ρ(m) to complete
the ordering. This process is shown visusally in Figure 2.
The following lemma establishes that the union∪ni=0Cρ(i)
is invariant for all n = 0, . . . ,m.

Lemma 3 Let Kρ = maxi,j Ki,j, where Ki,j is defined
as in (27). Let ρ be the ordering defined in Section 4.3.
Then, for all k > Kρ, it holds that ∪ni=0Cρ(i) is invariant
under the flow (15) for all n = 0, . . . ,m.

proof. We prove the lemma by induction. That C0 is
invariant comes directly from applying Lemma 2 on ∂C0
via Nagumo’s Theorem (Blanchini, 1999).

Next, we will establish that

Cρ(`+1)(`) ∪
(
∪`i=0Cρ(i)

)
= ∪`+1

i=0Cρ(i). (29)

It suffices to show equivalence on the set difference

Cρ(`+1)(`)\
(
∪`i=0Cρ(i)

)
= Cρ(`+1)\

(
∪`i=0Cρ(i)

)
= Cρ(`+1)\ ∪j∈ρ` ∂C

j
ρ(`+1),

(30)

where the second equality holds because the intersection
of two adjacent Voronoi cells only contains the border.

Consider the left hand side of (30). By definition, it must
be that both

∀ j /∈ρ`
j 6=ρ(`+1)

∀p∈Oρ(`+1)
∀q∈Oj‖x− p‖ ≤ ‖x− q‖, (31)

by (28), and

∀j∈ρ`∀p∈Oρ(`+1)
∀q∈Oj‖x− p‖ < ‖x− q‖, (32)

by (16). This is precisely the definition for the right
hand side of (30). By the induction hypothesis, and by
the fact that x∗ ∈ int(Cρ(` + 1)(`)) by the construction
of ρ, it follows from Lemma 2 and Nagumo’s theorem
that ∪`+1

i=0Cρ(i) is invariant.

Given Lemma 3, we can define a Directed Acyclic Graph
(DAG) on the Voronoi cells which necessarily defines
the order in which the target will visit obstacles. Let G
be the graph whose nodes consist of the Voronoi cells
Ci. We build the DAG by adding an edge to the graph
G between i, j whenever ρ(i) < ρ(j).

4.4 Stability of the target

Because the obstacles are compact and disjoint, there
exists ε0 such that all Nε(Oi) are contained in their cor-
responding Voronoi cell Ci and x∗ ∈ int(F>ε) for all

ε < ε0. Formally, let

ε0 = arg max
ε

ε

subject to Nε(Oi) ⊂ Ci,∀i = 1, . . . ,m

Nε(x
∗) ⊂ C0

(33)

Then, within Nε(Oi), consider the points on the same
side of the obstacle as the target. Formally, define

Si :=

{
x ∈ Ci

∣∣ (x− x∗)>(x− xi)
‖x− x∗‖ · ‖x− xi‖

= −1

}
(34)

On the union of these sets, we define a global Lyapunov
function candidate V : F>ε ∪ (∪iSi)→ R by

V (x) =
1

2
‖x− x∗‖2. (35)

Note that the Lyapunov function candidate can be se-
lected to be f0. Without loss of generality and for sim-
plicity, we consider the from in (35). By definition, V
is always positive, and it is equal to zero only when
x = x∗. In the following lemma, we show that V̇ < 0 in
F>ε ∪ (∪iSi). Before we present the lemma, we define
the following constants.

Similar to (20), we define the following constants

λε := min
i,x∈F>ε

βi and λ0 := min
i,x∈Nε0 (x∗)

βi. (36)

Lemma 4 Choose ε ∈ (0,min
{
λ0m

−1B−1Λ−1
0 , ε0

}
),

where B and Λ0 come from (6) and (7), and ε0 comes
from (33). Let Kε := Bλεm. Then, for all k > Kε and

x ∈ F>ε ∪i Si, V̇ < 0 for V defined in (35).

proof. See Appendix A

Lemma 4 shows that V̇ < 0 for all x ∈ F>ε∪(∪iSi). The
red region in Figure 1 shows the set close to an obstacle
where V̇ < 0 does not necessarily hold. The blue region
represents the set Si.

What remains to be shown is that the agent will navigate
around the obstacle toward the goal in each cell.

4.5 Navigating around the obstacle

We show that the agent will navigate around an obsta-
cle Oi in two steps. First, we consider the angle between
the vectors x − xi and xi − x∗ is increasing using a lo-
cal Lyapunov function candidate. Second, we show that

7



(a) (b) (c)

Fig. 2. Let the red ∗ represent the location of the target. (a) The cell containing the target is invariant by Lemma 2, as shown
with the dashed border. The red cell is the next obstacle we will add to the invariant set. (b) Consider removing the yellow cell
from Fig 2a, and reconstruct the Voronoi diagram. The obstacle lies in the new Voronoi cell corresponding to the red Voronoi
cell. The dashed borders are the same in the original Voronoi diagram, and by Lemma 2, the agent can only enter the red cell
from the white neighboring cells. (c) As shown in Lemma 3, the union of the two cells is invariant.

there is an unstable equilibrium on the side of the ob-
stacle opposite the target. Before we formalize this with
the necessary lemmas, we must introduce the following
definitions.

We begin by writing x−xi as the sum of its parallel and
perpendicular components to xi − x∗. In particular, we
let

x− xi = a(xi − x∗) + p, (37)

where p>(xi−x∗) = 0 and a ∈ R. Consider the following
set

Ui(δ⊥) :=
{
x ∈ Ci

∣∣ a > 0, ‖p‖∞ ≤ δ⊥
}
, (38)

where δ⊥ is strictly positive. Because a > 0, it follows
that this set is defined on the side of the obstacle opposite
the target. Next, consider a right regular pyramid with
a vertex at ξ := γxi + (1 − γ)x∗ for some γ. For the
purpose of this proof, we choose γ to be equal to 3/4.
Define Pi to be

Pi := arg min
P∈Ξ

A(P)

subject to Ui(δ⊥) ⊆ P,
(39)

where A(·) denotes the volume of the set and Ξ is the
set of regular right pyramids whose vertex is ξ. By the
definition of the infinity norm ‖ · ‖∞, the right regular
pyramid will have 2(n−1) faces, where we recall n is the
dimension of X .

Given Pi, we can consider the ε-frustum, which is the
intersection Pi ∩ F>ε. First consider the faces of the
ε-frustum. By choice of ξ, it follows that there ex-
ists a δi > 0 such that for each normal vector ni,`
to the face ∂Pi,` satisfies n>i,`(x − x∗) > δi for all

` = 1, . . . , 2(n− 1). Further, since we are bounded away
from ∪iNε(Oi), we can apply Corollary 1 so that when
Ki,` > mP0Λm−1

0 Bδ−1
i λ−m, it follows that the agent

can only traverse the faces of the pyramid by exiting Pi.

Next we consider the ε-boundary of the obstacle, and
show that the agent can only traverse the boundary by
entering Nε(Oi). We formalize this with the following
corollary.

Corollary 2 Let K = P0B(ε−1 + (m− 1)λε). Then on
the set Pi∩∂F>ε, when k > K, (x−x∗)>ẋ/‖x−x∗‖ < 0

proof. The proof follows the arguments made in
Lemma 1 with the substitution of ε for βi and the bound
(36) instead of (20) for βj , for j 6= i.

The analysis is broken into two steps. First we consider
the region outside the pyramid, namely Ci\Pi. We define
a local Lyapunov Function Candidate Vi : Ci → R

Vi := 1 +
(x− xi)>(xi − x∗)
‖x− xi‖ · ‖xi − x∗‖

(40)

With the following lemma, we establish that Vi acts as
a local Lyapunov function candidate by showing that
V̇i is strictly negative on Pci . In particular, Vi describes
that the agent will asymptotically converge to the points
where x− xi and xi − x∗ are pointing in opposite direc-
tions. This is precisely the region Si defined in (34) (i.e.
the blue line in Figure 1), where we know from Lemma 4
that x∗ is asymptotically stable. Before we present the
lemma, consider the following bounds,

‖x− xi‖2
∣∣
x∈Ci

≥ θi, (41)

which holds because xi /∈ F , and

λi,⊥ = min
j 6=i,x∈Ci

βj , (42)

which holds because we are bounded away from the other
obstacles.

8



Lemma 5 Given δ⊥ > 0, let K⊥i := 2P0λi,⊥δ
−2
⊥ (1 +

1/θi)(a
2B + δ2

⊥), where θi and λi,⊥ come from (41) and
(42), P0 and B come from (7) and (6), and a comes from

(37). Then, for all k > K⊥i , V̇i < 0 defined on Ci\Pi (i.e.
outside the pyramid).

proof. See Appendix B

Next we consider Pi. In particular, there are three op-
tions for the agent in this region. (i) The agent will
remain in Pi and away form Nε(Oi). (ii) The agent will
move toward Pi ∩ Nε(Oi). (iii) The agent will enter
Ci\Pi.

(i) is impossible because V̇ < 0 as a consequence of
Lemma 4. (iii) means that the region enters Ci\Pi and
follows the behaviour described in Lemma 5. Note also
that by Corollory 2, the agent will not be able to return to
the pyramid. That leaves us with (ii). For small enough
ε, the dynamics in the small region of Pi ∩ Nε(Oi) can
be approximated by the linear system with dynamics

ẋ = J(gnew)
∣∣
xs

(x− xs), (43)

where xs is a critical point and J is the Jacobian. To
complete the proof of Theorem 1, what remains to be
shown is that there is an unstable equilibrium inside this
region. We formalize this with the following lemma.

Lemma 6 Choose δ⊥ > 0. There exists a Kp,i such
that for all k > Kp,i, following the flow (15) induces an
unstable equilibrium onPi∩Nε(Oi) (i.e. inside the cone).

proof. See Appendix C

To conclude the proof of Theorem 1, we first select
ε ∈ (0,min

{
λ0m

−1B−1Λ−1
0 , ε0

}
), from Lemma 4. Then

select K = maxi
{
Kβ0 ,Kε,Kρ,K

⊥
i ,Kp,i

}
, from Lem-

mas 1, 3-6.

5 Numerical Results

In this section, we compare the performance of our pro-
posed dynamics gnew to the performance of navigation
function dynamics gnav. We consider a discrete approxi-
mation for the flow ẋ = g(x). In practice, the norm of the
dynamics is generally very small. This may cause prob-
lems numerically when computing the direction as well
as taking taking a long time for the agent to reach its
target. Hence, what is often used in practice is to normal-
ize the gradient by scaling it by a factor of (ε+ ‖g(x)‖),
where ε > 0 (Whitcomb and Koditschek, 1991). As such
the dynamics will be

xt+1 = xt + η
g(xt)

‖g(xt)‖+ ε
(44)

where η is a constant step size. We set ε = 10−4 and
η = 0.01 in (44) for all simulations.

First, we consider a world with eight ellipsoidal obsta-
cles, and we compare the trajectories from several dif-
ferent initial positions. Then, we explore the effect of
increasing the number of obstacles of randomly gener-
ated ellipsoidal worlds. The obstacles are generated such
that condition (11) might fail. Therefore, increasing the
number of obstacles results in fewer trajectories follow-
ing gnav successfully reaching the target. In contrast, the
corrected dynamics performs well even when the num-
ber of obstacles is large.

5.1 Correcting the Field

In this section, we show an ellipsoidal world with eight
obstacles and several different initialization points. We
designed the world such that condition (11) does not
necessarily hold, thereby eliminating the guarantee that
the Rimon Koditschek potential is a navigation function.
The maximum to minimum ratio of the eigenvalues of
the eight obstacles range between 2 and 50. The radius
of the outer obstacle β0 is equal to 20. The objective
value of the function is chosen to be f0(x) = ‖x‖2.

Figure 3 (a) shows the vector field and some trajectories
for the navigation function dynamics ẋ = gnav. Indeed,
condition (11) is violated. As such, four of the trajec-
tories converge to local minimum appearing behind the
obstacles which violate the condition instead of to the
target. We selected k = 15 because this was the max-
imum value for k considered in the analysis for worlds
which violate the condition (Paternain et al., 2018).

We compare the trajectories of our proposed dynamics
to the navigation function dynamics where the condition
is violated. The Figure 3 (b) shows that with the same
value of k = 15, all of the trajectories converge to the
target. The vector field plots show that there is only
one stable point, the target located at the origin. This
is consistent with Theorem 1.

5.2 Obstacles in R2

In this section, we explore the effect of increasing the
number of obstacles on the percentage of successful tra-
jectories. We define the external shell to be the a sphere
with center (0, 0) and radius r0. The center of each ellip-
soid is drawn uniformly from [−r0/2, r0/2]2. The maxi-
mum semiaxis ri is drawn uniformly from [r0/10, r0/5].
The positive definite matrices Ai have eigenvalues 1 and
µi, where µi is drawn randomly from [1, r0/2]. The ob-
stacles are then rotated by θi where θi is drawn ran-
domly from [−π/2, π/2]. The obstacles are redrawn if
they overlap. For the objective function, we consider a
quadratic cost given by

f0(x) = (x− x∗)>Q(x− x∗). (45)
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Fig. 3. (a)Trajectories generated by following the negative gradient of the RK Potential – that is ẋ = gnav – which is not
a navigation function as condition (11) is violated. (b)Trajectories generated by following our proposed dynamics, that is
ẋ = gnew. Trajectories which converge to a local minimum of ϕ(x) end in a red square. We set k = 15 and x∗ is the origin.
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Fig. 4. (a) Uncorrected Dynamics: Regardless of the value k, the ratio of successful simulations decreases as the number of
obstacles increases. (b) Proposed Dynamics: By increasing k, the ratio of successful simulations remains high regardless of the
number of obstacles

where Q ∈ M2×2 is a diagonal matrix with eigenvalues
eig(Q) = {1, λ} where λ is drawn from [0, r0]. The min-
imizer of the objective function x∗ is drawn uniformly
from [−r0/2, r0/2]2. The minimizer x∗ is redrawn if it is
not in the free space. Finally, the initial position is drawn
uniformly from [−r0, r0]2 and is redrawn if it is not in
the interior of the free space. For our experiments, we
set r0 = 20. We then vary number of obstacles m from
two to seven. For tuning parameters k = {20, 40, 60} we
run 100 simulations for each m ∈ {2, . . . , 7}. Each sim-

ulation is terminated successfully when the norm of the
difference of xt and x∗ is less than the step size η = 0.01.
A simulation is terminated unsuccessfully if the agent
collides with an obstacle - including the outer boundary
- or the number of steps reaches 5× 104.

Figure 4 (a) shows the the results of the simulation for
the uncorrected dynamics. For all values of k, the ratio of
successful trajectories decreases as the number of obsta-
cles increases. This is due to the fact that the increased
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number of obstacles increases the probability that there
an obstacle violates condition (11). In contrast, Figures
4 (b) shows that as k increases the ratio of successful
trials increases. For k = 40, the success percentage is al-
ways above 85%. For k = 60, the success percentage is
always above 95%.

The poor performance of k = 20 in the corrected dy-
namics is due to the fact that we do not consider the
outer obstacle β0 in the dynamics – see Section 1. Be-
cause gnav includes β0 as part of the dynamics, the agent
is repelled away from the boundary thereby avoiding col-
lision. In contrast, the correction dynamics avoid this
collision by assuming that k is large enough such that
the agent is always moving inward when it is close to the
outer boundary. As expected, the performance improves
significantly with larger values of k.

6 Conclusions

We considered the problem of a point agent navigat-
ing to a target with a finite number of ellipsoidal obsta-
cles of arbitrary eccentricity. In particular, we directly
proposed dynamics which guarantee asymptotic conver-
gence to the target from almost every initial condition
given mild conditions on the target. We corroborated our
theoretical results with numerical simulations on worlds
in R2.

There are a number of possible extensions to this work.
Apart from the generalizations to the case of disc robots,
nonstationary obstacles, multiple agents, and online tun-
ing of the parameter k, the ellipsoidal condition itself
may be lifted. Given that the exact form of our proposed
dynamics relies on estimating the distance and direction
to both the target and obstacle, this approach may be
used to extend convergence guarantees to not only con-
vex obstacles, but non convex star obstacles as well. In
fact, the explicit ellipsoidal form of the obstacles was
used in the calculation of the Jacobian of the dynamics
evaluated at a critical point only. Therefore, these re-
sults can be extended to convex obstacles by considering
a general version of these proofs on the gradients of the
obstacle-defining functions instead of the x− xi term.

In a related work, we have shown empirically that the
same approach can be used for star obstacles (Kumar
et al., 2020). Extending the convergence results to the
case of star obstacles requires generalizing the proof of
Theorem 1. Specifically, Lemmas 2 and 3 no longer hold
due to the lack of separating hyperplanes between star
obstacles. Borders between adjacent cells are not neces-
sarily hyperplanes. Instead, Corrolary 1 would need to
be used to describe a finite number of transitions be-
tween the two adjacent cells. This immediately breaks
the directed acyclic graph on the obstacles. Instead, ob-
stacles should be considered in pairs where the hyper-
plane does not exist between them, similar to the pro-
cedure described in Remark 1. Such a direction would

close the gap between navigation with global informa-
tion by allowing star worlds to be navigated without the
need of a diffeomorphism.
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A Proof of Lemma 4

We have

V̇ = (x− x∗)>ẋ. (A.1)

Substituting (15) for ẋ,

V̇ = −β‖x− x∗‖2− f0

k

m∑
j=1

β̄j(x− x∗)>(x− xj). (A.2)

First consider the setF>ε\Nε(x∗). Since we are bounded
away from x − x∗, we can factor it out of (A.2). Invok-

ing the bounds of (7) and (36), it holds that V̇ < 0

when K > Bλεm/2. Next, consider evaluating V̇ on
Si∪Nε(Oi) for any i. Split the summation term of (A.2)
into

V̇ = −β‖x− x∗‖2 +
f0

k
β̄i(x− x∗)>(x− xi)

+
f0

k

∑
j 6=i

β̄j(x− x∗)>(x− xj)

≤ −β‖x− x∗‖2 +
f0

k
β̄i‖x− x∗‖ · ‖x− xi‖

+
f0

k

∑
j 6=i

β̄j(x− x∗)>(x− xj)

, (A.3)

where the inequality comes from applying Cauchy
Schwartz. It holds that forK > Bλε(m−1)/2−β−1

i ‖x−
x∗‖ · ‖x − xi‖, V̇ < 0. This is trivially satisfied when
K > Bλεm/2, as established earlier.

Finally, consider Nε(x
∗). By Cauchy Schwartz and the

bounds (6) and (7), we bound

V̇ ≤ −β‖x− x∗‖2 +
‖x− x∗‖3

2k
mBΛ0. (A.4)

V̇ is negative when ‖x − x∗‖ < λεm
−1B−1Λ−1

0 . This
concludes the proof.

B Proof of Lemma 5

Evaluate

V̇i =

(xi − x∗)>ẋ
‖x− xi‖ · ‖xi − x∗‖

− (x− xi)>(xi − x∗)(x− xi)>ẋ
‖x− xi‖3 · ‖xi − x∗‖

Because x, x∗ ∈ F and xi /∈ F , ‖x− xi‖ · ‖xi − x∗‖ and
βj for all j are strictly positive. Replace ẋ with (15) to
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obtain

V̇i =

β

‖x− xi‖ · ‖xi − x∗‖

(
− (xi − x∗)>(x− x∗)

+
(x− xi)>(xi − x∗)(x− xi)>(x− x∗)

‖x− xi‖2

+
f0

k

m∑
j=1

1

βj

(
(xi − x∗)>(x− xj)

− (x− xi)>(xi − x∗)(x− xi)>(x− xj)
‖x− xi‖2

))

Using the fact that x − x∗ = (x − xi) + (xi − x∗) and
the decomposition (37), the first two terms are strictly
negative. Namely, we obtain the bound

− ‖xi − x∗‖2 · ‖p‖2

a2‖xi − x∗‖2 + ‖p‖2
≤ − Bδ2

⊥
a2B + δ2

⊥
< 0, (B.1)

where B comes from (6), and we can invoke ‖p‖ ≥ δ⊥ by
the fact that we are in Ci\Pi. The terms in the summa-
tion where j = i cancel each other out. The summation
terms can be upper bounded by invoking (6), (7) (41),
(42), namely

f0

∑
j 6=i

(
·
)
≤ 2P0λi,⊥B ·

(
1 +

1

θi

)
. (B.2)

Selecting

K⊥i := 2P0λi,⊥δ
−2
⊥

(
1 +

1

θi

)(
a2B + δ2

⊥
)

(B.3)

completes the proof.

C Proof of Lemma 6

By x ∈ Nε(Oi), we have that βi ≤ ε.

In the case of one obstacle, there is a critical point where

βi(x− x∗) =
f0

k
(x− xi). (C.1)

This is when x − x∗ is aligned with x − xi, when the
obstacle is between the agent and the target. Let xs be
the point where (C.1) holds. Then we can write for a > 1

xs − x∗ = a(xs − xi). (C.2)

This with (C.1) gives the following criterion for the crit-
ical point

βi(xs) =
f0(xs)

ak
. (C.3)

To show that the point xs is an unstable equilibrium,
consider the Jacobian of (15) J(gnew),

J(xs) = −βI −∇β(x− x∗)>

+
1

k
∇
(
f0β̄i

)
(x− xi)> +

1

k
f0β̄iI

+
1

k
βiJ

f0

∑
j 6=i

∏
` 6=j

β`(x− x`)


+

1

k
∇βi

f0

∑
j 6=i

(x− xj)

>
(C.4)

Define E to be the set of normal vectors that are orthog-
onal to (xs − xi)

E :=
{
v ∈ Rn

∣∣‖v‖ = 1, v>(xs − xi) = 0
}
. (C.5)

The rank of E is n − 1. Let {v1, . . . , vn−1} be a basis.
Consider any vi and evaluate the Jacobian at xs where
(C.1) holds,

v>i J(gnew)vi
∣∣
xs

= −β +
1

k
f0β̄i

+
1

k
v>i βiJ

f0

∑
j 6=i

∏
` 6=j

β`

 (x− xj)

 vi

= − β̄if0

ak
+

1

k
f0β̄i

+
1

ak2
v>i J

f0
2
∑
j 6=i

∏
6̀=j

β`

 (x− xj)

 vi

(C.6)

We because of (7) and (6), for any unit vector n, we can
bound the final term as∥∥∥∥∥∥n>J

f0
2
∑
j 6=i

∏
` 6=j

β`(x− x`)

n

∥∥∥∥∥∥ ≤ C1 (C.7)

Let p0 := minx/∈C0
f0(x) and recall (20). As such, for

Kp,i1 =
C1

pεm−1
· a

a− 1
,

with any k > Kp,i1 , we know that v>i J(xs)vi is positive
rendering that direction unstable.

Now consider the unit vector w aligned with (xs − xi).
In particular, we set w = (xs − xi)/‖xs − xi‖. Consider
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evaluating w>J(gnew)w at xs,

w>J(gnew)w

∣∣∣∣
xs

= −β − w>∇β(x− x∗)>w +
1

k
f0β̄i

+
1

k
w>∇

(
f0β̄i

)
(x− xi)>w

+
βi
k
w>J

f0

∑
j 6=i

∏
6̀=j

β`

w

+
1

k
w>∇βi

f0

∑
j 6=i

∏
6̀=j

β`

 (x− xj)

w

(C.8)

Split the second term using (14), and apply the relations
(C.1) and (C.2) to obtain

w>J(gnew)w

∣∣∣∣
xs

= −a−1β̄i

+
1

k

(
f0β̄i

(
1− a−1

)
− f0a

−1w>
(∑
j 6=i

∏
` 6=j

β`∇β`
)
(x− x∗)>w

+ f0a
−1
∑
j 6=i

(x− xj)>w

+ w>∇(f0β̄i)(x− xi)>w

)

+
1

k2

(
f0a
−1w>J

(
f0

∑
j 6=i

∏
6̀=j

β`(x− xj)
)
w

)
≤ −β̄ia−1 + C2k

−1 + C3k
−2,

(C.9)

where

∥∥∥∥∥f0β̄i
(
1− a−1

)
+ f0a

−1
∑
j 6=i

(x− xj)>w

− f0a
−1w>

(∑
j 6=i

∏
` 6=j

β`∇β`
)
(x− x∗)>w

+ w>∇(f0β̄i)(x− xi)>w

∥∥∥∥∥ ≤ C2,

(C.10)

and

∥∥∥∥∥f0a
−1w>J

(
f0

∑
j 6=i

∏
` 6=j

β`(x− xj)
)
w

∥∥∥∥∥ ≤ C3. (C.11)

C2 and C3 are finite by (6) and (7). Then, for

Kp,i2 := max

C2 ±
√
C2

1 + 4C3β̄i(xs,i)a−1

a
β̄i(xs,i)

 ,

with any k > Kp,i2 , we know that w>J(gnew)w is nega-
tive. ChooseKp,i = max{Kp,i1 ,Kp, i2} to complete the
proof.
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