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Abstract

In this paper, we propose an approach for computing invariant sets of discrete-
time nonlinear systems by lifting the nonlinear dynamics into a higher dimensional
linear model. In particular, we focus on the maximal admissible invariant set con-
tained in some given constraint set. For special types of nonlinear systems, which can
be exactly immersed into higher dimensional linear systems with state transforma-
tions, invariant sets of the original nonlinear system can be characterized using the
higher dimensional linear representation. For general nonlinear systems without the
immersibility property, approximate immersions are defined in a local region within
some tolerance and linear approximations are computed by leveraging the fixed-point
iteration technique for invariant sets. Given the bound on the mismatch between the
linear approximation and the original system, we provide an invariant inner approxi-
mation of the maximal admissible invariant set by a tightening procedure.

Keywords— Invariant sets, nonlinear systems, state immersion, fixed-point algorithms

1 Introduction

Set invariance theory is an important tool for system analysis and controller design of constrained
dynamical systems, see for instance [1, 2] and the references therein. In particular, it is widely
used in Model Predictive Control (MPC) [3] for systems with hard state and input constraints.
In view of this, computing invariant sets becomes an active area of research and the literature
is large with many different approaches developed for handling different types of systems and
constraints. Since the concepts of infinite-time reachability and recursive set propagation were first
introduced in [4], the fixed-point iteration technique becomes a popular framework for computing
invariant sets. The early literature has been devoted to tractable fixed-point algorithms for linear
systems with polyhedral constraints, see, e.g., [5, 1] and the references therein. In the presence
of bounded disturbances in linear systems, robust invariant sets are defined and corresponding
fixed-point algorithms have been developed, see, e.g., [6, 7, 8, 9]. Recently, the authors in [10,
11] have proposed a fixed-point algorithm for linear systems subject to a class of non-convex
constraints. See also [12, 13, 14, 15, 16] for fixed-point algorithms computing invariant sets of
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nonlinear systems. The fixed-point iteration technique by its nature is only applicable to discrete-
time systems. For continuous-time systems, there also exist algorithms for computing invariant
sets, see, e.g., [17, 18]. However, obtaining an exact invariant set remains a challenging problem for
general nonlinear systems. The aforementioned algorithms for nonlinear systems focus on inner or
outer approximations of invariant sets except for special systems. However, these approximations
are not necessarily invariant. In this paper, we attempt to characterize invariant sets by using a
lifted linear model of the nonlinear system.

Computing linear equivalents or approximations of nonlinear systems is one of the most well-
known research topics in systems and control. Classic linearization methods like Jacobian lin-
earization and feedback linearization can be found in [19]. A more advanced linearization method
is the state immersion method, which immerses a nonlinear system into a linear system in a higher
dimension, see, e.g., [20, 21, 22]. Although the immersion method is equivalent to the feedback
linearization method in the special case where the immersion is a diffeomorphism, they are in
general different as an immersion does not necessarily preserve the dimension of the system. Suc-
cessful applications of state immersion can be found in observer design and output regulation of
nonlinear system [23, 24, 25]. Recently, a new immersion technique has been proposed in [26] for
continuous-time systems by the use of polyflows. While a nilpotency property is required for the
exact immersion or linearization, the approximation by polyflows often outperforms the Taylor
approximation in practice. Inspired by the polyflows approximation, we have developed a similar
immersion method [27] for discrete-time systems. In this paper, we use such a method to obtain a
high-dimensional linear model for the characterization of invariant sets of discrete-time nonlinear
systems. Let us add that, while the goal is quite different, the immersion method in [27] bears
some similarities with classic identification techniques [28]. For example, it is similar to multivari-
ate autoregressive modeling [29] except that we provide the connection between the linear model
and the immersibility property of the system.

Operator-theoretic approaches like the Carleman linearization [30] and the Koopman approach
(see, e.g., [31] and the references therein) are also promising frameworks to provide an (infinite-
dimensional) linear representation of nonlinear systems. For numerical analysis, the infinite-
dimensional linear operator is often truncated into finite-dimensional approximations, which then
can be used for (global) system analysis and prediction. For instance, in [32], Koopman eigenfunc-
tions are computed to characterize invariant sets of the system. While these characterizations are
quite useful for stability analysis, they are in general not optimal with respect to the constraint
set. In particular, the maximal admissible invariant set, which is the maximal invariant set con-
tained in a given constraint set, can not be easily computed from Koopman eigenfunctions. In
this paper, we explicitly take the constraint set into account in two ways: First, the fixed-point
iteration technique for invariant sets is used in the computation of the lifted linear model. Second,
a fixed-point algorithm in the lifted space is designed to ensure set invariance inside the constraint
set with a tightening procedure that circumvents mismatch error of the immersion.

Inspired from many different linearization techniques in different fields, including the Koopman
approach [31], Carleman linearization [30], polyflow approximation [26] and embedding theorems
like Taken’s theorem [33], we derive an immersion-based approach for invariant set computation
of nonlinear systems. The basic idea of our approach is illustrated in Figure 1. When an exact
immersion is available, invariant sets of the original nonlinear system can be computed using the
lifted linear model. This paper focuses on the maximal admissible invariant set contained in some
given constraint set. Our contribution is threefold. First, we formally introduce the concept of
approximate immersions for general nonlinear systems and use it for characterizing invariant sets.
While this concept seems quite natural, it has not been formally mentioned in the literature. Most
importantly, it allows us to construct invariant inner approximations of the maximal admissible
invariant set, provided that a bound on the mismatch error between the original system and
the lifted linear system is computed. Second, we leverage the fixed-point iteration technique for
invariant sets to compute approximate immersions and derive convergence properties. Third, we
show that, for special classes of nonlinear systems, this approach produces the exact maximal
admissible invariant set.

The rest of the paper is organized as follows. This section ends with the notation, followed by
the next section on the review of preliminary results on invariant sets. In Section 3, we will discuss
the immersibility property and the immersion method using the the fixed-point iteration technique
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Figure 1: Invariant set computation via immersion: a linear representation of the nonlin-
ear system enables tractable characterizations of invariant sets.

for invariant sets. Section 4 presents the proposed immersion-based method for computing the
maximal invariant set of nonlinear systems. Some computational aspects of the proposed method
will be discussed in Section 5. Numerical examples are provided Section 6. The last section
concludes the work.

A preliminary version of this paper appears as a conference paper in [34], which relies on the
assumption that the system is asymptotically stable at the origin. This assumption is now relaxed
in this paper, which leads to significant changes in the proofs of the main results. In addition, we
provide a special family of polynomial systems in which an exact immersion can be obtained.

Notation. The non-negative real number set and the non-negative integer set are indicated
by R

+ and Z
+ respectively. In is the n × n identity matrix and 000n×m is the n × m matrix of

all zeros (subscript omitted when the dimension is clear). Bn is the unit closed ball in Rn. ‖x‖p
denotes the ℓp-norm of x(‖x‖ = ‖x‖2 by default) and ‖x‖F is the Frobenius norm. Given a set S
and a vector x, 111S denotes the indicator function of S and dist(x, S) denotes the distance from x
to S, defined by dist(x, S) = infy∈S ‖x− y‖. For two set X and Y , X ⊖ Y denotes the Minkowski
difference. Given a map T , let T (X) denote {T (x) : x ∈ X} and T−1(Y ) denote the preimage of
the set Y under the map T , i.e., T−1(Y ) := {x : T (x) ∈ Y } (T is not necessarily invertible). A
function α : R+ → R+ is of class K if it is continuous and strictly increasing with α(0) = 0. Given
a list of column vectors {xi}Ni=1, (x1, x2, · · · , xN ) denotes the stacked vector [x⊤

1 x⊤
2 · · · x⊤

N ]⊤.

2 Preliminaries

We consider discrete-time dynamical systems of the form

x(t+ 1) = f(x(t)), t ∈ Z
+. (1)

where x(t) ∈ Rn is the state vector and f : Rn → Rn is a continuous function. The system is
subject to state constraints:

x(t) ∈ X ⊆ R
n, t ∈ Z

+. (2)

The goal of this paper is to compute an invariant set of System (1) inside X . The formal definition
of invariant sets is given below, see, e.g., [1, 2].
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Definition 1 A nonempty set Z ⊆ Rn is a positively invariant set for System (1) if x ∈ Z implies
f(x) ∈ Z.

Invariant sets throughout the paper are all positively invariant sets. Computing an invariant
set can be a difficult even for linear systems, depending on the constraint set X , see,e.g., [11].
For nonlinear systems, the computation is more difficult and complicated. For instance, let us
consider the computation of the maximal admissible invariant set [5, 6], which is defined below.

Definition 2 A nonempty set S is the maximal admissible invariant set for System (1) if S is
an invariant set and contains all the invariant sets inside X.

The maximal admissible invariant set can be determined by the following fixed-point iteration
(see, e.g., [4, 5])

O0 := X,Ok+1 := Ok

⋂

{x : f(x) ∈ Ok}, k ∈ Z
+. (3)

Thus, the maximal admissible invariant set is given by

O∞ := lim
k→∞

Ok. (4)

While the set O∞ can be computed efficiently for linear systems with linear constraints by solving
linear optimization problems, see, e.g., [1, 5], in general, it is challenging because one has to solve
non-convex optimization problems. In this paper, we attempt to tackle the issue of nonlinearity
via state immersion. More precisely, we propose to use a lifted linear model to compute invariant
sets.

The following assumptions are made. (A1) The function f(x) is Lipschitz continuous in X
with a Lipschitz constant Lf . (A2) The set X is compact and contains an invariant set with a
non-empty interior. (A3) There exist a set A and a class KL function β such that A+ǫBn ⊂ X for
some ǫ > 0 and |f t(x)|A ≤ β(|x|A, t), ∀t ∈ Z+, ∀x ∈ X, where f t(x) = f(f t−1(x)) with f0(x) = x.
The last assumption means that System (1) is uniformly asymptotically stable with respect to A
in X . We refer the reader to [35, 36] for definitions of uniform asymptotic stability and class KL
functions.

With the assumptions above, the convergence properties of the fixed-point iteration in (3) are
stated in the following proposition.

Proposition 1 Consider System (1) with the constraint set X as defined in (2), let Ok be defined
in (3) for any k ∈ Z+. Suppose (A1) & (A2) hold, then the following properties hold. (i) O∞
contains a non-empty interior.(ii) For any k ∈ Z+, Ok is compact. (iii) If (A3) also holds, there
exists a finite k∗ such that Ok = Ok∗ for all k ≥ k∗ and O∞ = Ok∗ .

Proof: The proof is adapted from Proposition 3 in [11]. (i) This is a direct consequence of (A1) and
(A2). (ii) From (3), for all k ∈ Z+, Ok can be written as Ok = {x : f ℓ(x) ∈ X, ℓ = 0, 1, · · · , k}. As
f(x) is continuous in X and X is compact, Ok is also compact for any k ∈ Z+. (iii) (A3) implies
that there exists k′ such that fk′

(x) ∈ X for all x ∈ X , as A+ǫBn is contained in X for some ǫ > 0.
Hence, Ok′ = {x : f ℓ(x) ∈ X, ℓ = 0, 1, · · · , k′} = {x : f ℓ(x) ∈ X, ℓ = 0, 1, · · · , k′ − 1} = Ok′−1.
Following the same arguments in Proposition 3 in [11], Property (ii) can be proved with k∗ = k′−1.
�

Property (iii) of Proposition 1 is called the finite determinability property, which means that
O∞ can be computed in a finite number of steps. This property is first introduced in [4] and is
formalized later in [5]. More discussions on this property can be also found in [13] for certain
nonlinear systems.

3 Immersion and approximate immersion

This section discusses the computation of linear equivalents and approximate linear equivalents of
nonlinear systems via immersion.
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3.1 State immersion

First, we recall the definition of immersibility of nonlinear systems, see, e.g., [20, 21].

Definition 3 System (1) is immersible into a linear system in the form of

ξ(t+ 1) = Aξξ(t), y(t) = Cξξ(t), t ∈ Z
+, (5)

where ξ ∈ R
nξ , y(t) ∈ R

n, Aξ ∈ R
nξ×nξ and Cξ ∈ R

n×nξ , if there exists a map T : Rn → R
nξ

such that T (f(x)) = AξT (x), CξT (x) = x, ∀x ∈ Rn. For notational simplicity, let us denote the
linear system in (5) by Π(Aξ, Cξ).

This definition means that, when the original system in (1) is immersible to some linear system,
the trajectory can be considered as a linear projection of this high-dimension linear system under
some transformation map. A necessary and sufficient condition for immersibility is given in the
following proposition.

Proposition 2 System (1) is immersible into a linear system in the form of (5) if and only if
there exist M and a sequence of matrices {γℓ ∈ Rn×n}Mℓ=0 such that

fM+1(x) =

M∑

ℓ=0

γℓf
ℓ(x), ∀x ∈ R

n (6)

The proof can be found in [27] and similar arguments can also be found in [20, 21]. With the
integer M and the matrices γγγM := {γℓ ∈ Rn×n}Mℓ=0 satisfying (6), we can immediately construct
a linear system Π(Γ(γγγM ), [In 000n×Mn]), where

Γ(γγγM ) :=








000 In 000 · · · 000
...

...
...

...
...

000 000 · · · 000 In
γ0 γ1 · · · γM−1 γM








. (7)

The condition in (6) implies that System (1) is immersible into Π(Γ(γγγM ), [In 000n×Mn]) with the
transformation map

FM (x) :=
(
x, f(x), · · · , fM (x)

)
(8)

However, there may exist redundancy in such a transformation. To remove redundancy, we will
use linearly independent transformations, defined below.

Definition 4 Given a nonempty set S ⊆ Rn, a map T : Rn → Rm is called linearly independent
in S if span{T (x) : x ∈ S} = Rm.

With a linearly independent transformation, a tight linear model can be obtained, as stated
in the following theorem.

Theorem 1 Suppose (A1) & (A2) hold and System (1) is immersible into a linear system in
the form of (5). Let O∞ be defined as in (4). Then, there always exist a continuous linearly
independent map T : Rn → Rm in O∞ and an observable pair (C,A) such that AT (x) = T (f(x))
and CT (x) = x for all x ∈ O∞, and the trajectories of Π(A,C) are always bounded, i.e.,
supt∈Z+ ‖At‖ < ∞. Moreover, if A3 also holds with A = {0} and f(0) = 0, A is Schur sta-
ble.

Proof: From Proposition 2, when System (1) is immersible to a linear system, there exist M and
matrices γγγM := {γℓ ∈ Rn×n}Mℓ=0 such that (6) is satisfied. This implies that

FM (f(x)) = Γ(γγγM )FM (x) (9)

where Γ(γγγM ) is defined in (7). Suppose there are m linearly independent functions that form a
basis for the span of {x1, · · · , xn, · · · , fM

1 (x), · · · , fM
n (x)} in O∞, let T (x) be the stacked vector

5



of these functions. As all the functions {x1, · · · , xn, · · · , fM
1 (x), · · · , fM

n (x)} can be expressed as
linear combinations of T (x), there exists a full column rank matrix P ∈ R(M+1)n×m such that
FM (x) = PT (x),FM (f(x)) = PT (f(x)). Hence, from (9), T (f(x)) = P+Γ(γγγM )PT (x), where P+

denotes the pseudo inverse of P . Letting A = P+Γ(γγγM )P and C = [In 000n×Mn]P , we can get
AT (x) = T (f(x)) and CT (x) = x. When T (x) = FM (x), A = Γ(γγγM ) and C = [In 000n×Mn]. From
the definition of Γ(γγγM ), it can be immediately verified that ([In 000n×Mn],Γ(γγγM )) is observable.
Now, we will show that (C,A) is observable for the case where T (x) is not the whole FM (x).
As T (x) is linearly independent in O∞, we can choose m points {x̃1, x̃2, · · · , x̃m} inside O∞ such
that span{T (x̃1), T (x̃2), · · · , T (x̃m)} = Rm. Hence, for any z ∈ Rm, there exist {α1, α2, · · · , αm}
such that z =

∑m
i=1 αiT (x̃

i). Thus, with some manipulations, it can be shown that CAℓz =
(In 000n×Mn)Γ(γγγM )ℓPz for all ℓ = 0, 1, · · · ,M , which implies that






Cz
...

CAM z




 =






(In 000n×Mn)Pz
...

(In 000n×Mn)Γ(γγγM )MPz




 = Pz

Since P is full column rank, the vector z can be also uniquely determined by the output sequence
{Cz,CAz, · · · , CAM−1z}. This holds for any z ∈ Rm. Therefore, we conclude that (C,A) is
observable. Now, we show that At is bounded for any t ∈ Z

+. Since, given any z ∈ R
m, it

can be written as z =
∑m

i=1 αiT (x̃
i) for some {α1, α2, · · · , αm}. Then, Atz =

∑m
i=1 αiA

tT (x̃i) =
∑m

i=1 αiT (f
t(x̃i)) for any t ∈ Z+. From the invariance of O∞, f t(x̃i) ∈ O∞ for any i = 1, 2, · · · ,m

and t ∈ Z+, which implies the boundedness of Atz. Hence, At is bounded any t ∈ Z+. When A3

holds with A = {0}, limt→∞ f t(x̃i) = 0 for any i = 1, 2, · · · ,m. Hence, limt→∞ Atz = 0, implying
that A is asymptotically stable and thus Schur stable. �

3.2 A special family of polynomial systems

For certain classes of nonlinear systems, exact finite-dimensional immersions are guaranteed, see,
e.g., a few classes of continuous-time nonlinear systems given in [24, 37]. In this section, we exhibit
another class of discrete-time polynomial systems which admit finite-dimensional immersions.
Consider polynomial systems in the form of

η(t+ 1) = Aηη(t) + ϕ(z(t)) (10a)

z(t+ 1) = Azz(t), t ∈ Z
+ (10b)

where η ∈ Rnη , z ∈ Rnz , Aη ∈ Rnη×nη , Az ∈ Rnz×nz , and ϕ : Rnz → Rnη is a polynomial function
of degree d ∈ Z+. Let us consider the the algebraic lifting in [38, 39]. Given any z ∈ Rnz and
d ∈ Z+, let z[d] denote the d-lift of z which consists of all possible monomials of degree d, indexed

by all the possible exponents α of degree d z
[d]
α =

√
α!zα where α = (α1, · · · , αn) with

∑n
i=1 αi = d

and α! denotes the multinomial coefficient α! := d!
α1!···αn!

. The d-lift of the matrix Az ∈ Rnz×nz is

defined as: A
[d]
z : zd → (Azz)

[d]. With a slight abuse of notation, let

z[ddd] :=






z[1]

...
z[d]




 , A[ddd]

z :=






A
[1]
z

. . .
A

[d]
z




 (11)

where ddd := {1, 2, · · · , d}. With these definitions, ϕ(z) can be expressed as ϕ(z) := F1z
[1] +

· · · + Fdz
[d] = Fz[ddd] with Fi ∈ R

nξ×(nz+i−1

i ) for i = 1, 2, · · · , d and F := [F1 F2 · · · Fd]. The
immersibility property of System (10) is then stated in the following theorem.

Theorem 2 Consider System (10) with ϕ : Rnz → Rnη being a polynomial function of degree
d ∈ Z+, given by ϕ := Fz[ddd], where z[ddd] is defined as in (11). With the transformation map

T (η, z) =
(
η, z[ddd]

)
, System (10) is globally immersible into Π(

(
Aη F

000 A
[ddd]
z

)

,
(
Inη+nz

000
)
).

Proof: This is a direct consequence of the construction of the algebraic lifting above. �
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Remark 1 It is worth noting that the algebraic lifting procedure can be also considered as Car-
leman linearization [30]. In other words, for such systems, Carlement linearization is exact and
finite.

Nonlinear systems in the form of (10) can often arise in the presence of a polynomial exogenous
input generated from a Wiener system [40, 41], which consists of a linear dynamic model and
a nonlinear output model due to nonlinear sensors. Consider the output regulation problem
(see, e.g., Chapter 1 of [42]) of a linear system in the form of η(t + 1) = Aηη(t) + Bηu(t) +
Bvṽ(t), e(t + 1) = Cηη(t) + Cv v̄(t), t ∈ Z+, where η ∈ Rnη is the state, u ∈ Rnu is the control
input, ṽ and v̄ are the exogenous inputs, which include disturbances (to be rejected) and/or
references (to be tracked), e is an error variable, and Aη, Bη, Bv, Cη, and Cv are some given
matrices. The exogenous inputs ṽ and v̄ are generated from a linear exogenous system given by
z(t + 1) = Azz(t), ṽ(t) = ϕ̃(z(t)), v̄(t) = ϕ̄(z(t)), t ∈ Z+, where z ∈ Rnz is the state of the
generator, ϕ̃(·) and ϕ̄(·) are polynomial functions, and Az is some given matrix. This extends the
formulation of the output regulation problem in Chapter 1 of [42] to Wiener exogenous systems.
Consider output regulation with full information (see [42] for details), the controller takes the form
of u = Kx + φ(z), where φ(·) is a polynomial function. Hence, the closed-loop system becomes
η(t+ 1) = (Aη +BηK)η(t) +Bηφ(z) +Bvϕ̃(z), z(t+ 1) = Azz(t), t ∈ Z

+.

3.3 Approximate immersion

Since linear equivalents exist only for very particular classes of systems, we now introduce an
approximate version of state immersion. In general cases, we want to find a transformation map
T : Rn → Rm such that T (f(x)) − AT (x) is within some given tolerance for all x inside some
subset of Rn. The formal definition of approximate immersions is given below.

Definition 5 Given a subset S ⊆ Rn, a transformation map T : Rn → Rm, matrices A ∈
Rm×m, C ∈ Rn×m and a bounded set ∆ ⊂ Rm, System (1) is (S,∆)-approximately immersible
into Π(A,C) with T (x) if ∀x ∈ S, T (f(x))−AT (x) ∈ ∆, CT (x) = x.

To rigorously compute a bounded set of an approximate immersion, the following definition
is also needed.

Definition 6 Given a compact set S ⊂ Rn and a subset ω ⊂ S, ω is called an ǫ-covering of S if
S ⊆ ω + ǫBn.

We now present the construction of approximate immersions in a specific subset of X . Since
our goal is to compute an invariant set inside X , it is sufficient to consider approximate immersions
in the maximal admissible invariant set O∞. However, what is available is Ok for any k ∈ Z+ but
not O∞ itself. For this reason, we define the following problem for any given M ∈ Z+:

δ∗M := min
δ,γγγM

δ (12a)

s.t.‖fM+1(x) −
M∑

ℓ=0

γℓf
ℓ(x)‖∞ ≤ δ, ∀x ∈ OM+1. (12b)

where γγγM := [γ0 γ1 · · · γM ]. An additional assumption is made to discuss the properties of
Problem (12).

(A4) For some k ∈ Z+, there exists a class K function c such that ‖f t(x)−f t(y)‖ ≤ c(‖x−y‖)
for all t ∈ Z+ and x, y ∈ Ok.

A sufficient condition for (A4) is that System (1) is incrementally stable (see, e.g., [35] for
the definition) in Ok for some k ∈ Z+. However, this condition is more relaxed in the sense that
it only requires that the distance of any two trajectories remains bounded by a class K function
c of the initial distance. We then present properties of Problem (12) in the following lemma.

Lemma 1 Suppose (A1) & (A2) hold. Let δ∗M be defined in (12) for all M ∈ Z+. Then, the
following properties hold: (i) δ∗M+1 ≤ δ∗M for all M ∈ Z+. (ii) Moreover, limM→∞ δ∗M = 0 when
(A3) & (A4) are also satisfied.
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Proof: (i) For any M ∈ Z+, let δ∗M be the optimal solution to Problem (12) with γγγ∗
M :=

{γ∗
ℓ ∈ Rn×n}Mℓ=0. Hence, ‖fM+1(x) −∑M

ℓ=0 γ
∗
ℓ f

ℓ(x)‖∞ ≤ δ∗M , ∀x ∈ OM+1. From the defini-
tion of {Ok}k∈Z+ in (3), x ∈ OM+2 ⇒ f(x) ∈ OM+1. Hence, for any x ∈ OM+2, ‖fM+2(x) −
∑M

ℓ=0 γ
∗
ℓ f

ℓ+1(x)‖∞ = ‖fM+1(f(x)) −∑M
ℓ=0 γ

∗
ℓ f

ℓ(f(x))‖∞ ≤ δ∗M , which means δ∗M is a feasible
solution to Problem (12) for M + 1. Thus, Property (i) holds.
(ii) Now we show that, for any ǫ > 0, there exists M such that δ∗M < ǫ with (A3) & (A4). From
Proposition 1, there exists k∗ such that Ok = O∞ for any k ≥ k∗, which under (A4), implies that
there exists a class K function c such that ‖fk(x)−fk(y)‖ ≤ c(‖x−y‖) for all x, y ∈ Ok∗ . Given any
ε > 0, we can select N points ωN := {x1, x2, · · · , xN} such that ωN is a ε-covering of Ok∗ (or O∞).
We consider the N-ary Cartesian power of O∞, denoted by ON

∞ := O∞ ×O∞ × · · · ×O∞
︸ ︷︷ ︸

N

⊂ RnN .

Let us divide ON
∞ into disjoint subsets using a regular grid in which the diameter of each sub-

set is less than ε. The number of the disjoint subsets is denoted by Nε (an upper bound
can be easily obtained as ON

∞ is bounded). From the invariance of O∞, the stacked vector
(fk(x1), f

k(x2), · · · , fk(xN )) is contained in ON
∞ for any k ∈ Z+. Then, the pigeonhole principle

suggests that at least two points in {(fk(x1), f
k(x2), · · · , fk(xN ))}Nε

k=0 fall into the same subset, say
(fk1(x1), f

k1(x2), · · · , fk1(xN )) and (fk2(x1), f
k2(x2), · · · , fk2(xN )) with k2 > k1 ≥ k∗. Hence,

‖fk2(x)−fk1(x)‖∞ ≤ ‖fk2(x)−fk1(x)‖2 ≤ ε for any x ∈ ωN . Since ωN is a ε-covering of O∞, for
any x ∈ O∞, there exists x′ ∈ ωN such that ‖x−x′‖ ≤ ε, which implies that ‖fk2(x)−fk1(x)‖∞ ≤
‖fk2(x)−fk1(x)‖2 = ‖fk2(x)−fk2(x′)‖+‖fk1(x′)−fk1(x)‖+‖fk2(x′)−fk1(x′)‖2 ≤ c(ε)+c(ε)+ε,
where the last inequality follows from A4. Let ε be chosen such that 2c(ε) + ε = ǫ. Then, we
conclude that δ∗k2−1 ≤ ǫ. Hence, from (i), δ∗M ≤ ǫ for any M ≥ k2 − 1. This completes the proof.
�

From the convergence of {δ∗M}M∈Z+ , the following statement can be made.

Theorem 3 Suppose (A1)–(A4) hold. Let O∞ be defined as in (4). For any given δ > 0, there
exist a finite m ∈ Z+, a continuous linearly independent map T : Rn → Rm, an observable
pair (C,A) with C ∈ R

n×m and A ∈ R
m×m, and a matrix B ∈ R

m×n such that System (1) is
(O∞, B∆δ)-approximately immersible into Π(A,C) with T (x), where

∆δ := {v ∈ R
n : ‖v‖∞ ≤ δ}. (13)

Proof: From Lemma 1, for any δ > 0, there always exist M ∈ Z
+ and matrices {γℓ ∈ R

n×n}Mℓ=0

such that (12b) holds. Hence, FM (f(x)) − Γ(γγγM )FM (x) ∈
(

000Mn×n

In

)

∆δ for all x ∈ O∞.

Let T (x) be the m linearly independent functions that form a basis for the spanning set of
{x1, x2, · · · , fM

n (x)} in O∞. We can find a full column rank matrix P ∈ R(M+1)n×m such

that T (f(x)) − P+Γ(γγγM )PT (x) ∈ P+

(
000Mn×n

In

)

∆δ, ∀x ∈ O∞. Letting A = P+Γ(γγγM )P,C =

[In 000n×(M+1)n]P and B = P+

(
000Mn×n

In

)

yields the approximate immersibility property. When

(C,A) is observable, the statement holds. Otherwise, we consider the observable subspace and get
a new pair of C and A. This completes the proof. �

In practice, it is not realistic to solve Problem (12) exactly as there are infinitely many con-
straints. Instead, we solve a sampled problem with a finite sample. For any M ∈ Rn, given a
sample ω ⊂ OM+1, the following sampled problem is defined

δM (ω) := min
δ,γγγM

δ (14a)

s.t.‖fM+1(x)−
M∑

ℓ=0

γℓf
ℓ(x)‖∞ ≤ δ, ∀x ∈ ω. (14b)

When the sample ω is an ǫ-covering of OM+1 for some ǫ > 0, an approximate immersion can be
obtained, as stated in the following proposition.

Proposition 3 Suppose (A1) & (A2) hold. For any k ∈ Z+, let us define Ok as in (3) with
O∞ being as in (4). Given any M ∈ Z+ and an ǫ-covering of OM+1 for some ǫ > 0, denoted
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by ω, let δM (ω) be defined as in (14). Then, there exist a Lipschtiz continuous map T : Rn →
Rm in O∞ with the Lipschitz constant LT > 0 and matrices (A,B,C) such that Π(A,C) is
(O∞, B∆δM (ω) + LT (Lf + ‖A‖)ǫBm)-approximately immersible to System (1), where ∆δM (ω) is
given as in (13).

Proof: Following the same arguments in the proof of Theorem 3, there exist T (x) and matrices
(A,B,C) such that T (f(x))−AT (x) ∈ B∆δM (ω) for all x ∈ ω, where T (x) is chosen to be a subset
of {x1, x2, · · · , fM

n (x)}. From the Lipschitz continuity of f(x) in X with the Lipschitz constant
in (A1), a Lipschitz constant of T (x) can be easily obtained, denoted by LT . Since ω is an ǫ-
covering of OM+1, for any x ∈ OM+1, there exists x′ ∈ ω such that ‖x − x′‖ ≤ ǫ, which implies
that T (f(x))−AT (x) ∈ T (f(x′))−AT (x′) +LT (Lf + ‖A‖)ǫBm ∈ B∆δM (ω) +LT (Lf + ‖A‖)ǫBm.
This completes the proof. �

3.4 Sampling and finite-sample guarantees

In the rest of this section, we discuss the sampling procedure in (14) with formal guarantees. We
first select a raw data set on X (or a box enclosing X), denoted as D, and generate a trajectory
with a sufficiently long horizon from each point. Given k ∈ Z

+, to sample points on the set Ok, we
then pick the points inside Ok as follows: ω = D∩Ok = {x ∈ D : f ℓ(x) ∈ X, ℓ = 0, 1, · · · , k}. More
details of this sampling procedure can be found in [43]. However, in general, without regularity
conditions, it is difficult to estimate a compact set from sampled points, see, e.g., [44]. In this
paper, we tackle this problem by enlarging the sampling region. To this end, we extend the
continuity condition in A1 as follows: (A1’) The function f(x) is Lipschitz continuous in X+ρBn

with a Lipschitz constant Lf for some ρ > 0.
To derive formal guarantees on ǫ-covering, we need the following lemma.

Lemma 2 Given some ρ > 0, suppose A1’ holds. Let {Ok}k∈Z+ and {Oρ
k}k∈Z+ be defined by the

iteration in (3) with O0 = X and Oρ
0 = X + ρBn. Then, it holds that

Ok +min{1, 1

Lk
f

}ρBn ⊆ Oρ
k, ∀k ∈ Z

+. (15)
Proof: From the iteration in (3), it can be verified that Oρ

k = {x ∈ Rn : f ℓ(x) ∈ X + ρBn, ℓ =
0, 1, · · · , k}. For any k ∈ Z+, we consider any x ∈ Ok +min{1, 1

Lk
f

}ρBn, which can be expressed

as x = y + min{1, 1
Lk

f

}ρs for some y ∈ Ok and s ∈ Bn. We can show recursively that f ℓ(x) ∈
f ℓ(y)+Lℓ

f min{1, 1
Lk

f

}ρBn ⊆ X+ρBn for any ℓ = 0, 1, · · · , k from the fact that Lℓ
f min{1, 1

Lk
f

} ≤ 1

for any ℓ ≤ k. Hence, x ∈ Oρ
k. This completes the proof. �

Let us also recall the definition of ǫ-packing of a set, see, e.g., [45, Chapter 27].

Definition 7 Given a compact set S ⊂ Rn and ǫ > 0, a (finite) subset P of S is called an ǫ-
packing if minx∈P,y∈P,x 6=y ‖x − y‖ > ǫ. The packing number, denoted by N (S, ǫ), is the maximal
cardinality of any ǫ-packing of S.

We first consider the case that the sample in (14) is obtained from a uniform grid defined
below:

ηGn := {c ∈ R
n : ci = kiη, ki ∈ Z, ∀i} (16)

where η ∈ R+ is the grid parameter. We then claim that the sample obtained from a fine grid is
a concrete ǫ-covering, as stated in the following proposition.

Proposition 4 Consider the same conditions in Lemma 2. For any η ∈ R
+, let ηGn be defined

as in (16). Given any k ∈ Z+, if η ≤ min{1, 1
Lk

f

}ρ, ηGn ∩Oρ
k is a η

√
n-covering of Ok.

Proof: For any x ∈ R
n, it can be verified that minc∈ηGn ‖x− c‖2 ≤

√
nminc∈ηGn ‖x− c‖∞ ≤ η

√
n

2 .

Hence, x + η
√
n

2 Bn ∩ ηGn 6= ∅ for any x ∈ Rn. For any k ∈ Z+, we consider the maximal
η
√
n

2 -packing of Ok, denoted by Pη. From Definition 7, Pη is also a η
√
n

2 -covering of Ok. Suppose
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η ≤ 2√
n
min{1, 1

Lk
f

}ρ, we have that Ok ⊆ Pη+
η
√
n

2 Bn ⊆ Ok+
η
√
n

2 Bn ⊆ Oρ
k where the last inclusion

is from Lemma 2. Since, for any x ∈ Pη, x + η
√
n

2 Bn contains at least one point in ηGn ∩ Oρ
k,

Pη ⊆ ηGn ∩Oρ
k +

η
√
n

2 Bn. Therefore, Ok ⊆ Pη +
η
√
n

2 Bn ⊆ Gn ∩Oρ
k + η

√
nBn. This completes the

proof. �
We also consider the case of random sampling, in which probabilistic guarantees on ǫ-covering

can be derived.

Proposition 5 Consider the same conditions in Lemma 2. Given any k ∈ Z+, suppose ω is
independent and identically distributed (i.i.d.) with respective to the uniform distribution over Oρ

k

with |ω| = N , then, for any η ≤ min{1, 1
Lk

f

}ρ, with probability no smaller than 1 −N (Ok, η)(1 −
vol(ηBn)

vol(X+ρBn)
)N , ω is a 2η-covering of Ok, where vol(·) denotes the volume and N (Ok, η) is given in

Definition 7.

Proof: For any η ≤ min{1, 1
Lk

f

}ρ, we consider the maximal η-packing of Ok, denoted by Pη.

From Lemma 2, we know that Ok + ηBn ⊆ Oρ
k. The probability that x + ηBn ∩ ω = ∅ is

(1− vol(ηBn)
vol(Oρ

k
)
)N ≤ (1− vol(ηBn)

vol(X+ρBn)
)N for any x ∈ Pη. Hence, the probability that x+ ηBn ∩ ω 6= ∅

for any x ∈ Pη is no smaller than 1 − N (Ok, η)(1 − vol(ηBn)
vol(X+ρBn)

)N (as |Pη| = N (Ok, η) from the

definition). Finally, since x+ ηBn ∩ ω 6= ∅ for any x ∈ Pη implies that Pη + ηBn ⊆ ω + 2ηBn, we
conclude the statement. �

Remark 2 For any k ∈ Z+ and any η ∈ R+, N (Ok, η) can be bounded from above as N (Ok, η) ≤
vol(Ok+

η
2
Bn)

vol(η
2
Bn)

≤ vol(X+ η
2
Bn)

vol( η
2
Bn)

.

It is worth noting that there also exist asymptotic probabilistic bounds for random covering
problems, see, e.g., [46]. However, these bounds are not applicable because we consider a finite
number of points. With the discussions above, we also want to mention that the result in Propo-
sition 3 remains the same with the enlarged sampling region except that ω is contained in Oρ

M+1

but not necessarily in OM+1 and the Lipschitz constant LT of the map T (x) is valid in Oρ
M .

4 Invariant set computation via immersion

In this section, based on the discussion on immersion, we present the proposed immersion-based
approach for computing invariant sets of nonlinear systems.

4.1 Set invariance under immersion

For systems that are immersible into a linear system (see Definition 3), we can also establish the
immersion on invariant sets of the nonlinear system and its linear equivalent, as shown in the
following proposition.

Proposition 6 Given the constraint set X ⊆ Rn, suppose there exist a continuous map T : Rn →
Rm in X and matrices A ∈ Rm×m, C ∈ Rn×m such that AT (x) = T (f(x)) and CT (x) = x for
all x ∈ X. Let Z ⊆ X be an invariant set for System (1) and Ξ ⊆ {ξ ∈ Rm : Cξ ∈ X} be an
invariant set for Π(A,C). Then, (i) T−1(Ξ) := {x ∈ Rn : T (x) ∈ Ξ} ⊆ X is invariant for System
(1); (ii) T (Z) ⊆ {ξ ∈ R

m : Cξ ∈ X} is invariant for Π(A,C).

Proof: The proof can be found in Proposition 3 of [34]. It is not repeated due to page limitation.
�

The results in Proposition 6 allow to use the lifted linear system to compute the maximal
admissible invariant set O∞ of the system (1). Once the maximal admissible invariant set of the
lifted linear system is computed, a closed-form (nonlinear) expression of O∞ can be obtained.
Given any pair (A,C) with A ∈ Rm×m and C ∈ Rn×m, let us define

OL
∞(A,C) := {x ∈ R

m : CAkx ∈ X, ∀k ∈ Z
+} (17)
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From Theorem 4.1 in [5], OL
∞(A,C) exists and can be finitely determined when (C,A) is observable

and A is Schur stable. From the understanding on set invariance under immersion, the following
theorem can be obtained.

Theorem 4 Suppose (A1) & (A2) hold, let O∞ be defined as in (4) for System (1) with the
constraint set X. Assume that System (1) is immersible into a linear system Π(Aξ , Cξ) in (5).
Then, there exist a continuous linearly independent map T : Rn → Rm in O∞ and an observable
pair (C,A) such that OL

∞(A,C) is compact and O∞ = T−1(OL
∞(A,C)), where OL

∞(A,C) is defined
in (17).

Proof: From Theorem 1, there always exist a continuous linearly independent map T : Rn →
Rm in O∞ and an observable pair (C,A) such that AT (x) = T (f(x)) and CT (x) = x for any
x ∈ O∞. From Theorem 2.1 in [5], OL

∞(A,C) is compact as (C,A) is observable. Now, we need to
show that O∞ = T−1(OL

∞(A,C)). From Proposition 6, T (O∞) ⊆ {ξ ∈ R
m : Cξ ∈ X} is invariant

for Π(A,C) and T−1(OL
∞(A,C)) ⊆ X is invariant for System (1). Since O∞ and OL

∞(A,C) are the
maximal admissible invariant sets for System (1) and Π(A,C) respectively, T (O∞) ⊆ OL

∞(A,C)
and T−1(OL

∞(A,C)) ⊆ O∞, which implies that O∞ = T−1(OL
∞(A,C)). �

4.2 An inner approximation

As mentioned in Section 3.3, for general nonlinear systems, we can only achieve approximate
immersions. Suppose a (O∞,∆)-approximately immersion Π(A,C) is available with some trans-
formation map T (x), as defined in Definition 5. To account for the mismatch between System (1)
and the linear system Π(A,C), we compute a tightened subset of OL

∞(A,C), instead of OL
∞(A,C).

Given (A,C) and ∆, let us define

OL,∆
∞ (A,C) := {x ∈ R

m :

CAkx ∈ X ⊖
k−1∑

ℓ=0

CAℓ∆, ∀k ∈ Z
+} (18)

From [6], the set OL,∆
∞ (A,C) is nonempty when

∑∞
ℓ=0 CAℓ∆ ⊆ X and it is the maximal admissible

robust invariant set for the disturbed system x+ = Ax+w where the disturbance w is constrained
in ∆. From the set defined in (18), an inner approximation of Ø∞ can be obtained, as stated in
the following theorem.

Theorem 5 Suppose (A1) & (A2) hold. Let O∞ be defined as in (4) for System (1). Consider a
continuous linearly independent map T : Rn → R

m in O∞, an observable pair (C,A) and ∆ ⊂ R
m

such that System (1) is (O∞,∆)-approximately immersible to Π(A,C), the following results hold:
(i) T−1(OL,∆

∞ (A,C)) ⊆ O∞; (ii) T−1(OL,∆
∞ (A,C)) is invariant for System (1), where OL,∆

∞ (A,C)
is defined as in (18).

Proof: (i) First, we show that T−1(OL,∆
∞ (A,C)) ⊆ O∞. For any x ∈ T−1(OL,∆

∞ (A,C)), we know

that CAkT (x) ∈ X ⊖∑k−1
ℓ=0 CAℓ∆ for all k ∈ Z+. Since CT (x) = x, it is obvious that x ∈ X .

From the fact that T (f(x)) − AT (x) ∈ ∆, we know that f(x) = CT (f(x)) ∈ CAT (x) + C∆ ⊆
X ⊖ C∆ + C∆ ⊆ X , where the last inclusion follows from the properties of the Minkowski
difference, see, e.g., Theorem 2.1 in [6]. Hence, it holds that x ∈ O1. The proof goes by induction.
Suppose x ∈ Ok for some k ∈ Z

+. We can see that T (f(f ℓ(x))) − AT (f ℓ(x)) ∈ B∆ for all
ℓ = 0, 1, · · · , k because f ℓ(x) ∈ X . Hence, fk+1(x) = CT (fk+1(x)) ∈ CAT (fk(x)) + C∆ ⊆
CA2T (fk−1(x)) + CA∆ + C∆ ⊆ · · · ⊆ X ⊖∑k

ℓ=0 CAℓ∆ +
∑k

ℓ=0 CAℓ∆ ⊆ X This implies that
x ∈ Ok+1. Therefore, we conclude that x ∈ O∞. (ii) To prove the invariance of T−1(OL,∆

∞ (A,C)),

we need to show that f(x) ∈ T−1(OL,∆
∞ (A,C)), which means that CAkT (f(x)) ∈ X⊖∑k−1

ℓ=0 CAℓ∆
for all k ∈ Z+. Since T (f(x)) ∈ AT (x) + ∆, it holds that CAkT (f(x)) ∈ CAk+1T (x) + CAk∆ ⊆
X ⊖∑k

ℓ=0 CAℓ∆+ CAk∆ ⊆ X ⊖∑k−1
ℓ=0 CAℓ∆, for any k ∈ Z+. �

Remark 3 In the presence of additive (bounded) disturbances in System (1), we also have to take
both the mismatch error and the disturbances into consideration in the tighteed set in (18).

11



5 Computational aspects

This section discusses some computational aspects of the proposed method.

5.1 Numerical solution for approximate immersion

To characterize invariant sets, we first need to compute an approximate immersion with a mis-
match bound. As shown in Section 3.3, this can be done by solving Problem (12). However, this
problem has infinite number of constraints. For this reason, we solve the sampled problem (14).
We follow the sampling procedure in Section 3.4 to get a sample ω for some given M ∈ Z+ and
formulate Problem (14). As |ω| is usually quite large, it is expensive to solve Problem (14) exactly.
Instead, for numerical efficiency, we solve the following least squares regression problem,

min
γγγM

∑

x∈ω

‖fM+1(x) − γγγMFM (x)‖22 (19)

where FM (x) is defined as in (8). For numerical stability, a regularized problem is solved. Let the
solution of Problem (19) be denoted by γ̂γγM . With this solution, we can compute

δ̂M = max
x∈ωN∩OM+1

‖fM+1(x)−
M∑

ℓ=0

γ̂ℓf
ℓ(x)‖∞. (20)

From γ̂γγM , a linear system Π(Γ(γ̂γγM ), [In 000n×(M+1)n]) can be obtained with the transformation
FM (x). By checking and removing the redundancy, we get a linearly independent transformation
map T : Rn → Rm in ωN ∩ OM+1 and a full column rank matrix P ∈ R(M+1)n×m such that
FM (x) = PT (x), ∀x, which implies that

T (x) = P+FM (x) (21)

where P+ denotes the pseudo inverse of P . Then, we can get a linear system Π(AM , CM ) with

AM = P+Γ(γγγM )P and CM = [In 000n×(M+1)n]P , and a matrix BM = P+

(
000Mn×n

In

)

. Then, let

∆̂M = BM∆
δ̂M

be the bound on the mismatch. Note that FM (x) is already linearly independent
in many real applications.

Remark 4 With Propositions 4 & 5 in Section 3.4, we can also compute a concrete mismatch
error with the Lipschitz constant Lf .

5.2 Computing the invariant set

From the computations above, we can obtain an approximate mismatch bound ∆̂M and the
linearized system Π(AM , CM ) for the given M ∈ Z

+. When ∆̂M is sufficiently small, we compute

OL,∆̂M∞ (AM , CM ) using the standard fixed-point algorithm [6]. Let

ΩM := OL,∆̂M
∞ (AM , CM ). (22)

If ΩM is empty, we will have to increase M and repeat the computations above again. After a
non-empty ΩM is obtained, we can immediately compute its preimage T−1(ΩM ). The overall
procedure is summarized in the following algorithm.

6 Numerical examples

Example 1 We first show an example in which the immersibility property holds exactly as
described in Definition 3. We consider output regulation (see Chapter 1 of [42]) of polynomial
exogenous input. The plant is a linear system given as follows: η+ = Aηη+Bu, e = Cηη−v, where
Aη = [1.1 1; 0 1.3], B = [1; 1], Cη = [1 0] and v is an exogenous input from an exosystem given by:
z+ = Azz, y = Czz, v = y+0.3y2−0.5y3 where Az = [0.6 0.8;−0.8 0.6] and Cz = [1 −1]. The plant
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Algorithm 1 Invariant set computation via immersion

Input: f(x), X, δ > 0, and tf
Output: M , ΩM and T (x)

Initialization: Set M ← 0, take N points ωN inside X by gridding (or random
sampling) and generate the trajectory with the horizon tf for each point;

1: Solve Problem (19) and obtain γ̂γγM ;
2: Compute δ̂M from (20);
3: if δ̂M < δ then

4: Obtain T (x) from (21);

5: Let AM ← P+Γ(γγγM )P , CM ← [In 000n×(M+1)n]P , BM ← P+

(
000Mn×n

In

)

, and

∆̂M = BM∆
δ̂M

;

6: Let M̂ ←M and compute ΩM defined in (22);
7: if ΩM is empty then

8: Reduce the given δ, set M ←M + 1 and return to Step 1;
9: else

10: Terminate and return ΩM and T (x).
11: end if

12: else

13: Set M ←M + 1 and return to Step 1;
14: end if

is controllable and the exosystem is marginally stable (the spectral radius is 1). As mentioned
in Section 3.2, this exosystem can be called a Wiener system. Based on the algebraic lifting in
(11) and the internal model principle condition in Theorem 1.3.1 of [42], output regulation can be
achieved using the following full-state feedback controller u = Kx+L1z

[1]+L2z
[2]+L3z

[3] where
K = [−3.5 0], L1 = [2.2521 −2.4055], L2 = [1.1677 −0.3187 0.9580], and L3 = [−1.7681 1.0619 −
0.8383 1.7924]. Thus, the closed-loop system is in the form of (10) with a polynomial function of
degree 3. To verify this closed-loop system, we randomly generate several initial states and the
curves of output regulation error e are shown in Figure 2.

Now, we consider the problem of computing the maximal admissible invariant set of the
closed-loop system. The system is subject to the following constraints: ‖η‖∞ ≤ 5, |u| ≤ 2, ‖z‖∞ ≤
3, |e| ≤ 3. Under the transformation map T (η, z) =

(
η, z[1], z[2], z[3]

)
, we obtain the lifted linear

system Π(

(
Aη +BK BL

000 Addd
z

)

,
(
I4 000

)
) where Addd

z is defined as in (11) with ddd = {1, 2, 3} and

L = [L1 L2 L3]. Let OL
∞ be the maximal admissible invariant set of the lifted linear system.

Then, as shown in Theorem 4, O∞ = T−1OL
∞ is the maximal admissible invariant set of the

original system. To visualize this 4-dimensional set, we plot out its projections on to η and z,
denoted by Pη(O∞) and Pz(O∞) respectively, in Figure 3.

Example 2 Consider the following double-Zone building thermal model [47]: ciṪi = Tj−Ti

Rij
+

To−Ti

Ro
i

+ uicp(T s
i − Ti) + qi, j 6= i, i = 1, 2, where Ti is the temperature of zone i, To is the

temperature of outside air, ci is the thermal capacitance of the air in zone i, Rij denotes the
thermal resistances between zone i and zone j, Ro

i denotes the thermal resistance between zone i
and the outside environment, cp is the specific heat capacity of air, T s

i is the temperature of the
supply air delivered to zone i, ui is the flow rate into zone i and qi is the thermal disturbance from
internal loads like occupants and lighting. As the temperature of the supply air is usually constant
over short intervals of time, it is assumed to be fixed and known. The outside air temperature
here is To = 38 °C. The thermal disturbance is bounded as: qi ∈ [0.7, 0.13], i = 1, 2. Other system
parameters are given in the following table.
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Figure 2: Curves of output regulation error with different initial states.

(a) Pη(O∞) (b) Pz(O∞)

Figure 3: Visualization of O∞ of Example 1.

Symbol Value Units

c1 = c2 1.375 × 103 kJ/K

cp 1.012 kJ/(kg ·K)

R12 = R21 1.5 K/kW

Ro
1 = Ro

2 3 K/kW

T s
1 = T s

2 16 °C

Table 1: Parameters of the building system

In the simulation, the temperature set-points of zone 1 and zone 2 are 23 °C and 24 °C respec-
tively. Hence, the steady state is Ts = (24, 25) and the steady control input is us = (0.8140, 0.5064)
for q1 = q2 = 0.1. The control constraints are: 0 ≤ u1 ≤ 1.5, 0 ≤ u2 ≤ 1.5, u1 + u2 ≤ 2, and the
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temperature constraints are: 16 ≤ Ti ≤ 38, i = 1, 2. We discretize the continuous-time system
by the zero-order-hold method with the sampling time ∆t = 10min and consider the stabilizing
control law u = K(x − Ts) + us with K = [0.0633 − 0.0756;−0.0768 0.0935]. Let the state be
x = T −Ts and the disturbance be di = qi− 0.1, i = 1, 2. The closed loop system becomes a poly-
nomial system of degree 2: x+

1 = −0.0279x2
1+0.0334x1x2 +0.0086x1+0.5246x2+0.4364d1;x

+
2 =

−0.0413x2
2+0.0339x1x2+0.5624x1+0.0097x2+0.4364d2. From the constraints on the temperature

and the input, the state constraint set become X = {x ∈ R2 : −7 ≤ x1 ≤ 15,−8 ≤ x2 ≤ 14, 0 ≤
Kx+ us ≤ 1.5, [1 1](Kx+ us) ≤ 2}. The Lipschitz constant Lf of the nominal dynamics f(x) in
X can be computed by solving a semidefinite program, see the appendix for details. We obtain
that Lf = 1.5401. All the assumptions (A1)-(A4) are also verified formally in the appendix.

First, we compute the lifted linear system for the nominal system x+ = f(x) following the
procedure in Section 5. We sample 1.3× 104 points over X by gridding, solve Problem (19) and

compute δ̂M for different values of M as shown in Figure 4. As we can see from this Figure, δ̂M
is already close to 0 when M ≥ 5. We set δ to be 0.01 in Algorithm 1. The output is M = 5 and

ΩM = OL,∆̂M
∞ (AM , CM ) with ∆̂M = BM∆

δ̂M
. To account for the disturbance, we also compute

Ω̃M = OL,∆̃
∞ (AM , CM ) with ∆̃ = ∆̂M + L̃MD‖G‖B12, where L̃M =

L
M+1

f
−1

Lf−1 and D = 0.0131 is an

upper bound on the disturbance of the discretized system. With the transformation T (x) = F5(x),
we can immediately obtain the sets SM = T−1(ΩM ) and S̃M = T−1(Ω̃M ), which are shown in
Figure 5.

M

0 2 4 6 8 10

δ̂
M

0

0.5

1

1.5

2

2.5

Figure 4: Mismatch errors between the lifted system and the original system for different
values of M for the double-zone building system.

7 Conclusions

We have proposed an immersion-based method for computing themaximal admissible invariant set
of discrete-time nonlinear systems in a given constraint set. It characterizes themaximal admissible
invariant set using a lifted linear model. For certain nonlinear systems, exact immersion can be
achieved and hence this characterization is also exact. For general cases, the lifted linear system
is not exactly equivalent to the nonlinear system and we use the fixed-point iteration technique
for invariant sets to compute an approximate immersion in a local region of interest. Provided
that an upper bound on the mismatch error is available, the proposed characterization can be only
considered as an inner approximation of the actualmaximal admissible invariant set. Nevertheless,
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Figure 5: Visualization of the sets obtained from Algorithm 1 with M = 5 for the the
double-zone building system.

we have shown that this inner approximation is an invariant set itself due to a tightening procedure.
Finally, the proposed method is demonstrated on two nonlinear examples.

Appendix: Computational details of Example 2

The nominal system is given below:

x+
1 = −0.0279x2

1 + 0.0334x1x2 + 0.0086x1 + 0.5246x2

x+
2 = −0.0413x2

2 + 0.0339x1x2 + 0.5624x1 + 0.0097x2.

For convenience, let

A =

(
0.0086 0.5246
0.5624 0.0097

)

, Ā(x) =

(
−0.0279x1 + 0.0334x2 0

0 0.0339x1 − 0.0413x2

)

.

The system above can then be rewritten as

(
x1

x2

)+

= f(x) :=
(
A+ Ā(x)

)
(
x1

x2

)

The constraint set is X = {x ∈ R2 : −7 ≤ x1 ≤ 15,−8 ≤ x2 ≤ 14, 0 ≤ Kx+ us ≤ 1.5, [1 1](Kx+
us) ≤ 2}, where K = [0.0633 − 0.0756;−0.0768 0.0935] and us = [0.8140 0.5064]. This set is
plotted in Figure 6.

We first show that A1 is satisfied. This assumption can be easily verified by checking the
gradient of f(x):

∇f(x) = A+

(
−0.0558x1 + 0.0334x2 0.0334x1

0.0339x2 −0.0826x2 + 0.0339x1

)

.

As X is compact, ‖∇f(x)‖ is also bounded for any x ∈ X . This proves the Lipschitz continuity
of the dynamics in X . In fact, an explicit bound can be computed by solving maxx∈X ‖∇f(x)‖.
Note that ∇f(x) is affine in x and X is a (convex) polytope. The maximum is reached at the
vertices ofX , i.e., maxx∈X ‖∇f(x)‖ = maxx∈V(X) ‖∇f(x)‖, where V(X) denotes the set of vertices
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Figure 6: The constraint set X for the double-zone building system.

(or extreme points) of X . In fact, the maximum of a convex quadratic function over a (convex)
polytope is always reached at a vertex. To be self-contained, we provide a proof for this elementary
result.

The problem maxx∈X ‖∇f(x)‖ can be rewritten as a single-variable robust optimization

min
γ≥0

γ

s.t. ‖∇f(x)‖ ≤ γ, ∀x ∈ X,

which is equivalent to

min
γ≥0

γ

s.t. (∇f(x))⊤∇f(x) ≤ γ2I, ∀x ∈ X.

Using the Schur complement to the problem above yields

min
γ≥0

γ

s.t.

(
γ2I ∇f(x)⊤
∇f(x) I

)

� 0, ∀x ∈ X.

As ∇f(x) is affine in x,
(

γ2I ∇f(x)⊤
∇f(x) I

)

� 0, ∀x ∈ V(X)⇐⇒
(

γ2I ∇f(x)⊤
∇f(x) I

)

� 0, ∀x ∈ X.

Thus, the problem above with an infinite number of constraints reduces to

min
γ≥0

γ

s.t.

(
γ2I ∇f(x)⊤
∇f(x) I

)

� 0, ∀x ∈ V(X).

Again, using the Schur complement, we arrive at

min
γ≥0

γ

s.t. (∇f(x))⊤∇f(x) ≤ γ2I, ∀x ∈ V(X),
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which is equivalent to

min
γ≥0

γ

s.t. ‖∇f(x)‖ ≤ γ, ∀x ∈ V(X).

With this, we conclude that maxx∈X ‖∇f(x)‖ = maxx∈V(X) ‖∇f(x)‖.
Finally, we compute the the Lipschitz constant

Lf = max
x∈V(X)

‖∇f(x)‖ = 1.5401.

We then show that A2 is satisfied. The compactness of X is obvious from Figure 6. We
only need to show that there exists an invariant set with a non-empty interior in X . This is done
by analyzing reachable sets of the dynamics x+ = f(x) from the constraint set X . Given any
Z ⊆ R2, the one-step forward reachable set from Z is defined as

R(Z) := {f(x) : x ∈ Z}.

For any (convex) polytope Z ⊆ R
2, we also define the following operator:

R(Z) := conv{(A+ Ā(v))x : x ∈ V(Z), v ∈ V(Z)}.

Note that Ā(x) is affine in x, which means that, ∀x ∈ Z, A+ Ā(x) ∈ conv{A+ Ā(v) : v ∈ V(Z)}.
Hence, ∀x ∈ Z, f(x) = (A + Ā(x))x ∈ conv{(A + Ā(v))x : v ∈ V(Z)}. It can thus be verified
that R(Z) ⊆ R(Z) for any (convex) polytope Z. Hence, R(Z) can be considered as an over-
approximation of R(Z).

Starting from X , we then define the following iteration:

R0 = X,Rk+1 = R(Rk), k ≥ 0.

The computation of {Rk} is not easy as f(x) is nonlinear. Instead, we use the following iteration:

R0 = X,Rk+1 = R
(
Rk

)
, k ≥ 0.

Repeating the same argument above inductively, we conclude that Rk ⊆ Rk for all k ≥ 0. The
sets {Rk} are plotted in Figure 7. It can be seen from this figure that R6 ⊆ R5 ⊆ X . Note that
R(R5) ⊆ R(R5) = R6 ⊆ R5. Hence, from Figure 7, we have the following two observations:

• R5 is an invariant set contained in X .

• f t(x) ∈ R5 ⊆ X for any t ≥ 5 and any x ∈ X .

Therefore, A2 is satisfied.
We now show that A3 is also satisfied with A = {0}. More precisely, we want to show

that there exists a class KL function β such that ‖f t(x)‖ ≤ β(‖x‖, t), ∀t ∈ Z+, ∀x ∈ X . First, we
compute an upper bound of the norm of A+Ā(x) for all x ∈ R5 by solving maxx∈R5

‖A+Ā(x)‖. As
Ā(x) is affine in x and R5 is a (convex) polytope, following the arguments above, the maximum
is maxx∈V(R5)

‖A + Ā(x)‖, denoted as ρ(R5). We obtain that ρ(R5) = 0.5822, which means

that ‖A + Ā(x)‖ ≤ 0.5822 for any x ∈ R5. By the invariance of R5, we know that ‖f t(x)‖ ≤
0.5822t−5‖f5(x)‖ for any x ∈ X and any t ≥ 5. Similarly, we also compute ρ(Ri) for i = 0, 1, · · · , 4.
Finally, we obtain that, for any x ∈ X and t ≥ 5,

‖f t(x)‖ ≤ 0.5822t−5‖f5(x)‖
≤ 0.5822t−5ρ(R4)‖f4(x)‖
≤ 0.5822t−5ρ(R4)ρ(R3)‖f3(x)‖
≤ 0.5822t−5ρ(R4)ρ(R3)ρ(R2)‖f2(x)‖
≤ 0.5822t−5ρ(R4)ρ(R3)ρ(R2)ρ(R1)‖f(x)‖
≤ 0.5822t−5ρ(R4)ρ(R3)ρ(R2)ρ(R1)ρ(R0)‖x‖.
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Figure 7: Over-approximations of the reachable sets.

Thus, there exists a constant c such that ‖f t(x)‖ ≤ c0.5822t‖x‖ for any x ∈ X and t ≥ 0.
Finally, we show that A4 is satisfied. We compute the Lipschitz constant of f(x) in

ρ(R5) by solving maxx∈V(R5)
‖∇f(x)‖. Let the solution be denoted as L(R5). We obtain that

L(R5) = 0.6546. We can also compute L(Ri) in the same way for any i = 0, 1, · · · , 4. Thus, for
any x, y ∈ X and t ≥ 6,

‖f t(x)− f t(y)‖ ≤ 0.6546t−5‖f5(x)− f5(y)‖
≤ 0.6546t−5L(R4)‖f4(x)− f4(y)‖
...

≤ 0.6546t−5L(R4)L(R3)L(R2)L(R1)L(R0)‖x− y‖

We then conclude that there exists a constant c such that ‖f t(x) − f t(y)‖ ≤ c‖x − y‖ for any
x, y ∈ X and any t ≥ 0.
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