
Big Graph Mining: Frameworks and Techniques

Sabeur Aridhi
Aalto University, School of Science, P.O. Box

12200, FI-00076, Finland.
sabeur.aridhi@aalto.fi

Engelbert Mephu Nguifo
LIMOS - UBP - Clermont University, BP 10125,

63173, Clermont Ferrand, France.
mephu@isima.fr

ABSTRACT
Big graph mining is an important research area and it has at-
tracted considerable attention. It allows to process, analyze,
and extract meaningful information from large amounts of
graph data. Big graph mining has been highly motivated not
only by the tremendously increasing size of graphs but also
by its huge number of applications. Such applications in-
clude bioinformatics, chemoinformatics and social networks.
One of the most challenging tasks in big graph mining is
pattern mining in big graphs. This task consists on using
data mining algorithms to discover interesting, unexpected
and useful patterns in large amounts of graph data. It aims
also to provide deeper understanding of graph data. In this
context, several graph processing frameworks and scaling
data mining/pattern mining techniques have been proposed
to deal with very big graphs. This paper gives an overview
of existing data mining and graph processing frameworks
that deal with very big graphs. Then it presents a survey
of current researches in the field of data mining / pattern
mining in big graphs and discusses the main research issues
related to this field. It also gives a categorization of both
distributed data mining and machine learning techniques,
graph processing frameworks and large scale pattern mining
approaches.

Keywords
Big graphs; data mining; pattern mining; graph processing
frameworks

1. INTRODUCTION
Over the last decade, big graph mining has attracted con-
siderable attention. This field has been highly motivated,
not only by the increasing size of graph data, but also by its
huge number of applications. Such applications include the
analysis of social networks [14, 34], Web graphs [3], as well
as spatial networks [29]. It has emerged as a hot topic that
consists on the deliver of deeper understanding of the graph

data. Frequent pattern mining is a main task in this con-
text and it has attracted much interest. Several algorithms
exist for frequent pattern mining. However, they are mainly
used on centralized computing systems and evaluated on rel-
atively small databases [40]. Yet, modern graphs are grow-
ing dramatically which makes the above cited approaches
face the scalability issue. Consequently, several parallel and
distributed solutions have been proposed to solve this prob-
lem [26] [36] [6] [23] [16] [25]. In addition to that, many
distributed frameworks have been used to deal with the ex-
isting deluge of data. These distributed frameworks abstract
away most of the challenges of building a distributed system
and offer simple programming models for data analysis [20].
Most of them are quite simple, easy to use and able to cope
with potentially unlimited datasets.

In this paper, we first study existing works on the field of
big data analytics. Thus, we present a survey on distributed
data mining and machine learning approaches. Then, we
study existing graph processing frameworks and we high-
light pattern mining solutions in big graphs. With refer-
ence to the literature we can identify many different types
of distributed graph mining techniques, with respect to the
format of the input data, to produce many different kinds
of patterns. We also give a categorization of both tech-
niques for big data analytics, graph processing frameworks
and large scale pattern mining approaches. Techniques for
big data analytics are described according to their related
programming model and the supported programming lan-
guage. Graph processing frameworks are described accord-
ing to their related programming model, the type of re-
sources used by each framework and whether the framework
allows asynchronous execution or not. Pattern mining ap-
proaches are described according to the input, the output of
each approach and the used programming model.

The remainder of the paper is organized as follows. In the
following section, we present existing works on big data ana-
lytics. In Section 3, we present an overview of graph process-
ing frameworks and graph processing related approaches.
Specifically, we present works that deal with pattern mining
techniques in big graphs. Finally, we discuss the presented
approaches in Section 4.

2. BIG DATA ANALYTICS
In this section, we review related works on MapReduce and
distributed data mining and machine learning techniques in
the context of Big Data.

ar
X

iv
:1

60
2.

03
07

2v
1

 [
cs

.D
C

]
 9

 F
eb

 2
01

6

Figure 1: An overview of the software architecture of NIM-
BLE.

2.1 MapReduce
MapReduce [8] is a framework for processing highly dis-
tributable problems across huge datasets using a large num-
ber of computers. It was developed within Google as a mech-
anism for processing large amounts of raw data, for exam-
ple, crawled documents or web request logs. This data is so
large, it must be distributed across thousands of machines
in order to be processed in a reasonable amount of time.
This distribution implies parallel computing since the same
computations are performed on each CPU, but with a dif-
ferent dataset. MapReduce is an abstraction that allows to
perform simple computations while hiding the details of par-
allelization, data distribution, load balancing and fault tol-
erance. The central features of the MapReduce framework
are two functions, written by a user: Map and Reduce. The
Map function takes as input a pair and produces a set of in-
termediate key-value pairs. The MapReduce library groups
together all intermediate values associated with the same
intermediate key and passes them to the Reduce function.
The Reduce function accepts an intermediate key and a set
of values for that key. It merges these values together to
form a possible smaller set of values.

Hadoop is the open-source implementation of MapReduce.
It is composed of two components. The first component
is the Hadoop Distributed File System (HDFS) for data
storage. The second one is the wide spread MapReduce
programming paradigm [8]. Hadoop provides a transpar-
ent framework for both reliability and data transfers. It is
the cornerstone of numerous systems which define a whole
ecosystem around it. This ecosystem consists of several
packages that runs on top of Hadoop including PIG [28],
a high level language for Hadoop, HBase [11], a column-
oriented data storage on top of Hadoop, and Hive [38], a
framework for querying and managing large datasets resid-
ing in distributed storage using a SQL-like language called
HiveQL.

2.2 Distributed machine learning and data
mining techniques

Data mining and machine learning hold a vast scope of us-
ing the various aspects of Big Data technologies for scaling
existing algorithms and solving some of the related chal-
lenges [2]. In the following, we present existing works on

distributed machine learning and data mining techniques.

2.2.1 NIMBLE
NIMBLE [12] is a portable infrastructure that has been
specifically designed to enable the implementation of par-
allel machine learning (ML) and data mining (DM) algo-
rithms. The NIMBLE approach allows to compose par-
allel ML-DM algorithms using reusable (serial and paral-
lel) building blocks that can be efficiently executed using
MapReduce and other parallel programming models. The
programming abstractions of NIMBLE have been designed
with the intention of parallelizing ML-DM computations and
allow users to specify data parallel, iterative, task parallel,
and even pipelined computations. The NIMBLE approach
has been used to implement some popular data mining al-
gorithms such as k-Means Clustering and Pattern Growth-
based Frequent Itemset Mining, k-Nearest Neighbors, Ran-
dom Decision Trees, and RBRP-based Outlier Detection al-
gorithm. As shown in Figure 1, NIMBLE is organized into
four distinct layers:

1. The user API layer, which provides the programming
interface to the users. Within this layer, users are able
to design tasks and Directed Acyclic Graphs (DAGs)
of tasks to express dependencies between tasks. A task
processes one or more datasets in parallel and produces
one or more datasets as output.

2. The architecture independent layer, which acts as the
middleware between the user specified tasks/DAGs,
and the underlying architecture dependent layer. This
layer is responsible for the scheduling of tasks, and de-
livering the results to the users.

3. The architecture dependent layer, which consists of
harnesses that allow NIMBLE to run portably on var-
ious platforms. Currently, NIMBLE only supports ex-
ecution on the Hadoop framework.

4. The hardware layer, which consists of the used cluster.

2.2.2 SystemML
SystemML [13] is a system that enables the development of
large scale machine learning algorithms. It first expresses a
machine learning algorithm in a higher-level language called
Declarative Machine learning Language (DML). Then, it ex-
ecutes the algorithm in a MapReduce environment. This
DML language exposes arithmetical and linear algebra prim-
itives on matrices that are natural to express a large class
of machine learning algorithms. As shown in Figure 2, Sys-
temML is organized into four distinct layers:

• The Language component: It consists of user-defined
algorithms written in DML.

• The High-Level Operator Component (HOP): It ana-
lyzes all the operations within a statement block and
chooses from multiple high-level execution plans. A
plan is represented in a DAG of basic operations (called
hops) over matrices and scalars.

• The Low-Level Operator Component (LOP): It trans-
lates the high-level execution plans provided by the

Figure 3: An overview of the software architecture of
PARMA.

Figure 2: An overview of the software architecture of Sys-
temML.

HOP component into low-level physical plans on
MapReduce.

• The runtime component: It executes the low-level
plans obtained from the LOP component on Hadoop.

2.2.3 Mahout
The ApacheâĂŹs Mahout project [10] provides a library of
machine learning implementations. The primary goal of Ma-
hout is to create scalable machine-learning algorithms that

are free to use under the Apache license. It contains im-
plementations for clustering, categorization, and evolution-
ary programming and it uses the Apache Hadoop library
to scale effectively in the cloud. In addition, Mahout uses
the Apache Hadoop library to scale effectively in the cloud.
Mahout’s primary features are:

• Scalable machine learning libraries. The core libraries
of Mahout are highly optimized for good performance
and for non-distributed algorithms.

• Several MapReduce enabled clustering implementa-
tions, including k-Means, fuzzy k-Means and Mean-
Shift.

• Distributed Naive Bayes implementation and dis-
tributed Principal Components Analysis (PCA) tech-
niques for dimensionality reduction.

2.2.4 PARMA
PARMA [31] is a parallel technique for mining frequent item-
sets (FI’s) and association rules (AR’s). PARMA is built on
top of MapReduce.

As stressed in Figure 3, PARMA creates multiple small ran-
dom samples of the transactional dataset and runs a mining
algorithm on the samples independently and in parallel. Re-
sults from each sample are aggregated and filtered to provide
a single collection in output. The final result of PARMA is
an approximation of the exact solution since it mines ran-
dom subsets of the input dataset.

Table 1 presents the most popular data mining and ma-
chine learning techniques. For each technique, we list the
programming model, the implemented techniques and the
programming language. We notice that the input and the
output of the above presented approaches are user-defined.

3. BIG GRAPH ANALYTICS
In this section, we first present some graph processing frame-
works. Then, we highlight related works on big graph mining
techniques.

3.1 Graph processing frameworks
3.1.1 Pregel

Pregel [26] is a computational model suitable for large-scale
graph processing problems. Pregel is vertex-centric model in
which message exchanges occur among vertices of the input
graph. The model has been designed for efficient, scalable,
and fault-tolerant implementation on cluster of machines.
Pregel’s programming model is inspired by the Bulk Syn-
chronous Parallel (BSP) model. Each vertex is associated
to a state that controls its activity (see Figure 4). Each ver-
tex can decide to halt its computation, but can be woken
up at every point of the execution by an incoming message.
At each superstep of the computation a user defined ver-
tex program is executed for each active vertex. The user
defined function will take the vertex and its incoming mes-
sages as input, change the vertexâĂŹs value and eventu-
ally send messages to other vertices through the outgoing
edges. As defined by the BSP model, a synchronization bar-
rier makes sure that all vertices have executed their instance
of the user defined function. Pregel’s implementation is not

Table 1: Overview of data mining and machine learning techniques.

Approach Programming language Programming model
NIMBLE JAVA MapReduce, OpenCL, MPI
Mahout JAVA MapReduce

SystemML JAVA and DML MapReduce
PARMA JAVA MapReduce

Figure 4: Vertex’s state machine in Pregel.

available to companies outside of Google, but Giraph [15],
an open source implementation of the module was quickly
introduced. Giraph offers a very similar API to pregel’s.

3.1.2 Blogel
Blogel [42] is a block-centric graph processing framework in
which a block refers to a connected subgraph of the input
graph, and message exchanges occur among blocks. It al-
lows to execute both vertex-centric algorithms, block-centric
algorithms and hybrid algorithms, in which all vertices ex-
ecute before the entire block. These features allow Blogel
to offer a very fast implementation of many graph algo-
rithms. Blogel also offers readily available implementations
of specialized partitioning algorithms, such as URL parti-
tioning algorithms or 2D spatial partitioning, which can lead
to much faster execution of the framework when additional
data about vertices is available. Blogel operates in one of
the following three computing modes, depending on the ap-
plication:

• B-mode. In this mode, only block-level message ex-
changes are allowed. A job terminates when all blocks
voted to halt and there is no pending message for the
next superstep.

• V-mode. In this mode, only vertex-level message ex-
changes are allowed. A job terminates when all vertices
voted to halt and there is no pending message for the
next superstep.

• VB-mode. In this mode, V-mode is first activated
and then B-mode is activated. A job terminates only
if all vertices and blocks voted to halt and there is no
pending message for the next superstep.

3.1.3 GraphLab
GraphLab [24] share the same motivation with Pregel. It
has been designed to support large scale graph computation.
While pregel targets GoogleâĂŹs large distributed system,
GraphLab addresses shared memory parallel systems which
means that there is more focus on parallel access of memory
than on the issue of efficient message passing and synchro-
nization. GraphLab’s programming model is simple. Users

must define an update function that, given as input a node
and its entire neighborhood, can change all data associated
to the scope of that node (its edges or its neighbors). Figure
5 shows the scope of a vertex: an update function called
on that vertex will be able to read and write all data in its
scope. It is important to notice that scopes can overlap, so
simultaneously executing two update functions can result in
a collision. Consequently, GraphLab offers three consistency
models (a Fully Consistent, a Vertex Consistent or an Edge
Consistent model), allowing users to trade off performance
and consistency as appropriate for their computation.

3.1.4 PEGASUS
PEGASUS [22] is an open source graph mining library which
performs typical graph mining tasks such as computing the
diameter of a graph, computing the radius of each node and
finding the connected components. The main idea of PE-
GASUS is the GIM-V primitive, standing for Generalized
Iterative Matrix-Vector multiplication, which consists of a
generalization of normal matrix-vector multiplication. PE-
GASUS customizes the GIM-V primitive and uses MapRe-
duce in order to handle with important large scale graph
mining operations. It also provides several optimizations
such as block-multiplication and diagonal block iteration.

3.1.5 GraphX
GraphX [41] is an Application Programming Interface
(API) provided by Spark [45], a generic distributed pro-
gramming framework implemented as an extension of the
mapreduce model. Spark introduces Resilient Distributed
Datasets (RDD), that can be split in partitions and kept in
memory by the machines of the cluster that is running the
system. These RDD can be then passed to of predefined
meta-functions such as map, reduce, filter or join, that will
process them and return a new RDD. In GraphX, graphs
are defined as a pair of two specialized RDD. The first
one contains data related to vertices and the second one
contains data related to edges of the graph. New operations
are then defined on these RDD, to allow to map vertices’s
values via user defined functions, join them with the edge
table or external RDDs, or also run iterative computation.

Table 2 presents the most popular graph processing frame-
works. For each framework, we list the programming model,
the type of resources used by the framework and whether the
framework allows for asynchronous execution or not.

3.2 Pattern mining in big graphs
In this section, we first present graph patterns and their
associated tasks and applications. Then, we present the fre-
quent subgraph mining (FSM) task and we survey some re-
cent FSM approaches in the context of big graphs.

Figure 5: View of the scope of a vertex in GraphLab.

Table 2: Overview of graph processing frameworks.

Framework Asynchronous execution Resources Programming model
PEGASUS No Distributed system Matrix operations

Pregel No Distributed system Vertex-centric
Blogel No Distributed system Graph-centric

GraphX No Distributed system Edge-centric
GraphLab Yes Parallel systems Vertex-centric

(a) A chemical compound

(b) A graph representation of a chemical compound

Figure 6: Graph representation of a chemical compound.

3.2.1 Applications of graph patterns
Graph patterns aim to characterise complex graphs. They
help finding properties that distinguish real-world graphs
from random graphs and detect anomalies in a given graph.
Graph patterns are important for many applications such as
chemoinformatics, bioinformatics and machine learning.

Chemical patterns: Chemical data is often represented
as graphs in which the nodes correspond to atoms, and the
links correspond to bonds between the atoms [27, 30, 39].
In some cases, chemical patterns may be used as individual
nodes. In this case, the individual graphs are quite small,
though there are significant repetitions among the different
nodes. This leads to isomorphism challenges in applications
such as graph matching. The isomorphism challenge is that
the nodes in a given pair of graphs may match in a variety of
ways. The number of possible matches may be exponential
in terms of the number of the nodes. Figure 6 illustrates the
graph representation of a real chemical compound.

Biological patterns: From a computer science point of
view, the protein structure can be viewed as a set of ele-
ments. Each element can be an atom, an amino acid residue
or a secondary structure fragment. Hence, several graph
representations have been developed to preprocess protein
structure, ranging from coarse representations in which each
vertex is a secondary structure fragment [5, 47] to fine repre-
sentations in which each vertex is an atom [33, 32]. Indeed,
a protein interaction network can be represented by a graph
where an edge links a couple of proteins when they partici-
pate in a particular biological function. Biological patterns
may correspond to important functional fragments in pro-
teins such as active sites, feature positions and junction sites.

Computer networked and Web data patterns: In the
case of computer networks and the web, the number of nodes
in the underlying graph may be massive [9]. Since the num-
ber of nodes is massive, this can lead to a very large number
of distinct edges. This is also referred to as the massive do-
main issue in networked data. In such cases, the number of
distinct edges may be so large, that it may be hard to hold
in the available storage space. Thus, techniques need to be

designed to summarize and work with condensed representa-
tions of the graph data sets. In some of these applications,
the edges in the underlying graph may arrive in the form
of a data stream. In such cases, a second challenge arises
from the fact that it may not be possible to store the incom-
ing edges for future analysis. Therefore, the summarization
techniques are especially essential for this case. The stream
summaries may be leveraged for future processing of the un-
derlying graphs.

Figure 7 depicts the pipeline of graph applications built on
frequent patterns.

In this pipeline, frequent patterns are mined first; then sig-
nificant patterns are selected based on user-defined objective
functions for different applications.

3.2.2 FSM problem formulation
There are two separate problem formulations for FSM: (1)
graph transaction based FSM and (2) single graph based
FSM. In graph transaction based FSM, the input data com-
prises a collection of medium-size graphs called transactions.
In single graph based FSM the input data, as the name im-
plies, comprise one very large graph.

Let DB be a graph database. Each graph G = (V,E) of DB,
is given as a collection of nodes V and edges E. We denote
by |V | the number of nodes of G and by |E| the number of
edges of G (also called graph size). If two nodes u ∈ V and
v ∈ V and {u, v} ∈ E then u and v are said to be adjacent
nodes.

Definition 1 (Graph). A graph is denoted as G =
(V,E), where:

• V is a set of nodes (vertices).

• E ⊆ V × V is a set of edges (links).

Definition 2 (Graph isomorphism). An isomor-
phism of graphs G and H is a bijection f : V (G) −→ V (H)
such that any two vertices u and v of G are adjacent in G
if and only if f(u) and f(v) are adjacent in H.

Definition 3 (Subgraph). A graph G′ = (V ′, E′) is
a subgraph of another graph G = (V,E) iff:

• V ′ ⊆ V , and

• E′ ⊆ E ∩ (V ′ × V ′).

Definition 4 (Subgraph isomorphism). A graph
G′(V ′, E′) is subgraph-isomorphic to a graph G(V,E) if
there exists an injective function f : V ′(G′) −→ V (G)
such that (f(u), f(v)) ∈ E holds for each (u, v) ∈ E′. The
function f represents an embedding of G′ in G, G′ is called
subgraph of G, and G is called supergraph of G′.

The definitions of subgraph support, graph transaction
based FSM and single graph based FSM are given as fol-
lows.

Definition 5 (Subgraph relative support).
Given a graph database DB = {G1, . . . , GK}, the relative
support of a subgraph G′ is defined by

Support(G′, DB) =

∑k
i=1 σ(G′, Gi)

k
, (1)

where

σ(G′, Gi) =

{
1, if G′ has a subgraph isomorphism with Gi,

0, otherwise.

Definition 6 (Graph transaction based FSM).
Given a minimum support threshold θ ∈ [0, 1], the fre-
quent subgraph mining task with respect to θ is finding
all subgraphs with a support greater than θ, i.e., the set
SG(DB, θ) = {(A,Support(A,DB)) : A is a subgraph of
DB and Support(A,DB) ≥ θ}.

In single graph based FSM, the most intuitive way to mea-
sure the support of a subgraph G′ in a graph G is to count
its isomorphisms.

3.2.3 Properties of FSM techniques
Frequent subgraph mining approaches perform differently
in order to mine frequent subgraphs from a graph dataset.
Such differences are related to the search strategy, the gen-
eration of candidate patterns strategy and the support com-
puting method.

Search strategy There are two basic search strategies em-
ployed for mining frequent subgraphs [19, 35]: the depth first
search (DFS) strategy and the breadth first search (BFS)
strategy. The DFS strategy is a method for traversing or
searching tree or graph data structures. It starts at the root
(selecting a node as the root in the graph case) and explores
as far as possible along each branch before backtracking.
The BFS strategy is limited to essentially two operations:

1. Visit and inspect a node of a graph,

2. Gain access to visit the nodes that neighbor the cur-
rently visited node.

The BFS begins at a root node and inspects all the neigh-
boring nodes. Then for each of those neighbor nodes in turn,
it inspects their neighbor nodes which were unvisited, and
so on.

Generation of candidate patterns The generation of
candidate patterns is the core element of the frequent sub-
graph discovery process. Here, we consider two types of ap-
proaches: Apriori-based and pattern growth-based. Figure
8 shows the difference between the two approaches.

Apriori-based approaches share similar characteristics with
Apriori-based frequent itemset mining algorithms [1]. The

Figure 7: Graph patterns application pipeline.

(a) Apriori-based ap-
proach

(b) Pattern growth-based approach

Figure 8: Apriori-based vs pattern growth-based approach.

search for frequent graphs starts with graphs of small size,
and proceeds in a bottom-up manner. At each iteration,
the size of the newly discovered frequent substructures is
increased by one (see Figure 8b). These new substructures
are first generated by joining two similar but slightly differ-
ent frequent subgraphs that were discovered already. The
frequency of the newly formed graphs is then checked. The
Apriori-based algorithms have considerable overhead when
two size-k frequent substructures are joined to generate size-
(k+1) graph candidates. Typical Apriori-based frequent
substructure mining algorithms are discussed in the follow-
ing paragraphs.

The pattern-growth mining algorithm extends a frequent
graph by adding a new edge, in every possible position as
shown in Figure 8b. A potential problem with the edge
extension is that the same graph can be discovered many
times.

Support computing Several methods are used for graph
counting. Some frequent subgraph mining algorithms use
transaction identifier (TID) lists for frequency counting.
Each frequent subgraph has a list of transaction identifiers
which support it. For computing frequency of a k subgraph,

the intersection of the TID lists of (k−1) subgraphs is com-
puted. Also, DFS lexicographic ordering can be used for fre-
quency evaluation. Here, each graph is mapped into a DFS
sequence followed by construction of a lexicographic order
among them based on these sequences, and thus a search
tree is developed. The minimum DFS code obtained from
this tree for a particular graph is the canonical label of that
graph which helps in evaluating the frequency. Embedding
lists are used for support computing. For all graphs, a list
is stored of embedding tuples that consist of (1) an index of
an embedding tuple in the embedding list of the predecessor
graph and (2) the identifier of a graph in the database and
a node in that graph. The frequency of a structure is deter-
mined from the number of different graphs in its embedding
list. Embedding lists are quick, but they do not scale very
well to large databases. The other approach is based on
maintaining a set of active graphs in which occurrences are
repeatedly recomputed.

Types of patterns Several kinds of subgraph patterns
can be mined with existing frequent subgraph mining al-
gorithms.

• Frequent subgraphs A frequent subgraph is a sub-
graph whose support is no less than a minimum sup-
port threshold. Algorithms including gSpan [43] and
FFSM [17] aim to mine frequent subgraphs.

• Closed frequent subgraphs A set of closed sub-
graph patterns has the same expressive power as the
full set of subgraph patterns under the same minimum
support threshold, because the latter can be generated
by the derived set of closed graph patterns. CloseG-
raph method [44] is a well known algorithm for mining
closed frequent subgraphs.

• Maximal frequent subgraphs The maximal pat-
tern set is a subset of the closed pattern set. It is usu-
ally more compact than the closed pattern set. How-
ever, we cannot use it to reconstruct the entire set of
frequent patterns. Although the set of closed or maxi-
mal subgraphs is much smaller than the set of frequent
ones, real-world graphs contain an exponential number
of subgraphs. Algorithms like SPIN [18] and MARGIN
[37] aim to mine maximal frequent subgraphs.

Figure 10: An overview of the system overview of Hill etal.’s
approach.

Figure 9: An overview of the software architecture of MRPF.

3.2.4 FSM techniques in big graphs
With the exponential growth in both the graph size and
the number of graphs in databases, several distributed solu-
tions have been proposed for pattern mining on a single large
graphs and on massive graph databases. Specifically, these
works focus of subgraph patterns and describe frequent sub-
graph mining (FSM) approaches for big graphs [23] [4] [25]
[16].

MRPF. In [23], the authors propose the MRPF algorithm
for finding patterns from a complex and large network. As
illustrated in Figure 9, the algorithm is divided into four
steps: (1) distributed storage of the graph, (2) neighbor
vertices finding and pattern initialization, (3) pattern ex-
tension, and (4) frequency computing. Each step is imple-
mented by a MapReduce pass. In each MapReduce pass,
the task is divided into a number of sub-tasks of the same
size and each sub-task is distributed to a node of the cluster.
MRPF uses an extended mode to find the target size pat-
tern. That is trying to add one more vertex to the matches
of i-size patterns to create patterns of size i + 1. The ex-
tension does not stop until patterns reach the target size.
The proposed algorithm is applied to prescription network
in order to find some commonly used prescription network
motifs that provide the possibility to discover the law of
prescription compatibility.

Hill etal.’s approach. The work presented in [16] presents
an iterative MapReduce-based approach for frequent sub-
graph mining. As stressed in Figure 10, Hill etal.’s approach
generates the set of frequent subgraphs by performing two
heterogeneous MapReduce jobs per iteration: (1) gather-
ing subgraphs for the construction of the next generation of
subgraphs, and (2) counting these structures to remove irrel-
evant data. The first MapReduce job aims to construct the
next generation of subgraphs. Its associated Map function
sends the subgraph to the correct reducer using the graph
identifier as a key. All the subgraphs of size k − 1 with the
same graph identifier are gathered for the Reduce function.
Single edges in these subgraphs are used to generate the next
generation of possible subgraphs of size k. The subgraph is
encoded as a string. All labels alphabetized are kept and the
special markers are used to designate different nodes with
the same labels. The results of this step are subgraphs of
size k and graph identifiers. The second MapReduce job
aims to output the frequent subgraphs. The map function
of this job has the responsibility of taking in the encoded
strings representing subgraphs of size-k and corresponding
graph identifiers as well as outputting the subgraph as a key
and the node identification numbers and graph identifiers
as values. The reduce function gathers (per iteration) on
label only subgraph structures. The main task of the reduce
function is to compute the support of these subgraphs. The
label markers are removed at this point. The outputs of it-
eration k are all subgraphs of size k that meet the given user
defined support.

Aridhi etal.’s approach. In [4], the authors propose a
novel approach for large-scale subgraph mining, using the
MapReduce framework.

As shown in Figure 11, Aridhi et al’s approach works as
follows:

Figure 12: An overview of Luo et al.’s approach.

Figure 11: An overview of the software architecture of Aridhi
et al.’s approach.

1. Input graph database is partitioned into N partitions.
Each partition will be processed by a mapper machine.

2. Mapper i reads the assigned data partition and gener-
ates the corresponding locally frequent subgraphs, i.e.,
frequent subgraphs inside each partition.

3. The reducer uses the sets of locally frequent subgraphs
as input and computes for each subgraph its support
in the whole graph database. Then, it outputs the set
of globally frequent subgraphs, i.e., subgraphs that are
frequent in the whole graph database.

The proposed approach provides a data partitioning tech-
nique that consider data characteristics [4]. It uses the den-
sities of graphs in order to partition the input data. Such
a partitioning technique allows a balanced computational
loads over the distributed collection of machines and replace
the default arbitrary partitioning technique of MapReduce.

Luo etal.’s approach. In [25], the authors propose an
approach to subgraph search over a graph database under
the MapReduce framework. The main idea of the proposed
approach is first to build inverted edge indexes for graphs
in the database, and then to retrieve data only related to
the query subgraph by using the built indexes to answer the
query.

As shown in Figure 12, Luo etal.’s approach performs two
MapReduce jobs to build inverted indexes. The first MapRe-
duce job is responsible for building inverted indexes for each
unique edge in the graph database, the second one aims to
build indexes over the inverted indexes for each unique edge
built in the first phase. In order to process queries, two
MapReduce jobs are launched. The first MapReduce job is
to retrieve the candidate results by using indexing informa-
tion, the second one is to evaluate the final query results by
employing set intersection operations.

Table 3 presents the most popular approaches of distributed
graph mining techniques. It describes the input, the out-
put of each approach and indicates the used programming
model.

3.2.5 Global graph pattern mining in big graphs
Global graph patterns are similar in spirit to the charac-
teristic measures used in descriptive statistics (like mean,
variance and skew). In the work of [7], the authors give
an investigation into the feasibility of decomposing useful
graph operations into a series of MapReduce processes. Such
a decomposition could enable implementing the graph algo-
rithms on a cloud, in a streaming environment, or on a single
computer. In [21], the authors propose HADI algorithm, a
solution for mining diameter in massive graphs on the top
of MapReduce. HADI have been used to analyze the largest
public web graph, with billions of nodes and edges. In Zhao
etal.’s approach [46], the authors propose solutions for com-
puting eigenvalue in massive graphs.

4. CONCLUSION
In this work, we presented a survey on frameworks and
techniques for Big Data analytics with a focus on graph
data. We first presented large scale data mining and ma-
chine learning techniques. Then, we presented graph pro-
cessing frameworks and current pattern mining techniques
in big graphs. With reference to the literature several graph
processing frameworks have been proposed and many pat-
tern mining approaches have been proposed with respect to
several types of input data, to produce many different kinds
of patterns. We have also adopted a categorization of both
distributed data mining and machine learning techniques,
graph processing frameworks and large scale pattern min-
ing approaches. Data mining and machine learning tech-
niques were described according to their related program-
ming model and the used programming language. Graph

Table 3: Summary of popular pattern mining techniques in big graphs.

Approach Input Output Programming model
Aridhi etal.’s approach [4] Graph database Frequent subgraphs MapReduce

PARMA [31] Transactional database Frequent itemsets MapReduce
HADI [21] Graph database Diameter of each graph MapReduce

Zhao etal.’s approach [46] Graph database Eigenvalue of each graph MPI/OpenMPI
MRPF [23] Single graph + subgraph model Frequent subgraphs MapReduce

Luo etal.’s approach [25] A graph database Frequent subgraphs MapReduce
Hill etal.’s approach [16] A graph database + subgraph model Frequent subgraphs MapReduce

processing frameworks were described according to their re-
lated programming model, the type of resources used by each
framework and whether the framework allows asynchronous
execution or not. Pattern mining approaches were described
according to the input, the output of each approach and the
used programming model.

5. REFERENCES
[1] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules in large databases. In Proceedings of
the 20th International Conference on Very Large Data
Bases, VLDB ’94, pages 487–499, San Francisco, CA,
USA, 1994. Morgan Kaufmann Publishers Inc.

[2] O. Y. Al-Jarrah, P. D. Yoo, S. Muhaidat, G. K.
Karagiannidis, and K. Taha. Efficient machine
learning for big data: A review. Big Data Research,
2(3):87 – 93, 2015.

[3] J. I. Alvarez-Hamelin, A. Barrat, A. Vespignani, and
et al. k-core decomposition of internet graphs:
hierarchies, self-similarity and measurement biases.
Networks and Heterogeneous Media, 3(2):371, 2008.

[4] S. Aridhi, L. d’Orazio, M. Maddouri, and
E. Mephu Nguifo. Density-based data partitioning
strategy to approximate large-scale subgraph mining.
Information Systems, 48:213 – 223, 2015.

[5] P. E. Auron, W. P. Rindone, C. P. Vary, J. J.
Celentano, and J. N. Vournakis. Computer-aided
prediction of rna secondary structures. Nucleic Acids
Research, 10(1):403–419, 1982.

[6] B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest
subgraph in streaming and mapreduce. Proc. VLDB
Endow., 5(5):454–465, Jan. 2012.

[7] J. Cohen. Graph twiddling in a mapreduce world.
Computing in Science and Engg., 11(4):29–41, July
2009.

[8] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. Commun. ACM,
51(1):107–113, Jan. 2008.

[9] K. Erciyes. Distributed Graph Algorithms for
Computer Networks. Springer Publishing Company,
Incorporated, 2013.

[10] A. S. Foundation, I. Drost, T. Dunning, J. Eastman,
O. Gospodnetic, G. Ingersoll, J. Mannix, S. Owen,
and K. Wettin. Apache mahout, 2010.

[11] N. Garg. HBase Essentials. Packt Publishing, 2014.

[12] A. Ghoting, P. Kambadur, E. Pednault, and
R. Kannan. Nimble: a toolkit for the implementation
of parallel data mining and machine learning
algorithms on mapreduce. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge

discovery and data mining, KDD ’11, pages 334–342,
New York, NY, USA, 2011. ACM.

[13] A. Ghoting, R. Krishnamurthy, E. Pednault,
B. Reinwald, V. Sindhwani, S. Tatikonda, Y. Tian,
and S. Vaithyanathan. Systemml: Declarative machine
learning on mapreduce. In Proceedings of the 2011
IEEE 27th International Conference on Data
Engineering, ICDE ’11, pages 231–242, Washington,
DC, USA, 2011. IEEE Computer Society.

[14] C. Giatsidis, D. Thilikos, and M. Vazirgiannis.
Evaluating cooperation in communities with the
k-core structure. In Advances in Social Networks
Analysis and Mining (ASONAM), 2011 International
Conference on, pages 87–93, July 2011.

[15] M. Han and K. Daudjee. Giraph unchained:
Barrierless asynchronous parallel execution in
pregel-like graph processing systems. Proc. VLDB
Endow., 8(9):950–961, May 2015.

[16] S. Hill, B. Srichandan, and R. Sunderraman. An
iterative mapreduce approach to frequent subgraph
mining in biological datasets. In Proceedings of the
ACM Conference on Bioinformatics, Computational
Biology and Biomedicine, BCB ’12, pages 661–666,
New York, NY, USA, 2012. ACM.

[17] J. Huan, W. Wang, and J. Prins. Efficient mining of
frequent subgraphs in the presence of isomorphism. In
Proceedings of the Third IEEE International
Conference on Data Mining, ICDM ’03, pages 549–,
Washington, DC, USA, 2003. IEEE Computer Society.

[18] J. Huan, W. Wang, and J. Prins. Spin: Mining
maximal frequent subgraphs from graph databases. In
In KDD, pages 581–586, 2004.

[19] C. Jiang, F. Coenen, and M. Zito. A survey of
frequent subgraph mining algorithms. Knowledge Eng.
Review, 28(1):75–105, 2013.

[20] X. Jin, B. W. Wah, X. Cheng, and Y. Wang.
Significance and challenges of big data research. Big
Data Research, 2(2):59 – 64, 2015.

[21] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos,
and J. Leskovec. Hadi: Fast diameter estimation and
mining in massive graphs with hadoop, 2008.

[22] U. Kang, C. E. Tsourakakis, and C. Faloutsos.
PEGASUS: A Peta-Scale Graph Mining System
Implementation and Observations. In Proceedings of
the 2009 Ninth IEEE International Conference on
Data Mining, ICDM ’09, pages 229–238, Washington,
DC, USA, 2009. IEEE Computer Society.

[23] Y. Liu, X. Jiang, H. Chen, J. Ma, and X. Zhang.
Mapreduce-based pattern finding algorithm applied in
motif detection for prescription compatibility network.

In Proceedings of the 8th International Symposium on
Advanced Parallel Processing Technologies, APPT ’09,
pages 341–355, Berlin, Heidelberg, 2009.
Springer-Verlag.

[24] Y. Low, J. E. Gonzalez, A. Kyrola, D. Bickson,
C. Guestrin, and J. M. Hellerstein. Graphlab: A new
framework for parallel machine learning. CoRR,
abs/1408.2041, 2014.

[25] Y. Luo, J. Guan, and S. Zhou. Towards efficient
subgraph search in cloud computing environments. In
Proceedings of the 16th international conference on
Database systems for advanced applications,
DASFAA’11, pages 2–13, Berlin, Heidelberg, 2011.
Springer-Verlag.

[26] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In Proceedings
of the 2010 international conference on Management
of data, SIGMOD ’10, pages 135–146, New York, NY,
USA, 2010. ACM.

[27] Y. Miyashita, M. Ishikawa, and S.-I. Sasaki.
Classification of brandies by pattern recognition of
chemical data. Journal of the Science of Food and
Agriculture, 49(3):325–333, 1989.

[28] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: A not-so-foreign language for
data processing. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of
Data, SIGMOD ’08, pages 1099–1110, New York, NY,
USA, 2008. ACM.

[29] R. Patuelli, A. Reggiani, P. Nijkamp, and F.-J. Bade.
The evolution of the commuting network in germany:
Spatial and connectivity patterns. Journal of
Transport and Land Use, 2(3), 2010.

[30] S. Ranu and A. K. Singh. Indexing and mining
topological patterns for drug discovery. In Proceedings
of the 15th International Conference on Extending
Database Technology, EDBT ’12, pages 562–565, New
York, NY, USA, 2012. ACM.

[31] M. Riondato, J. A. DeBrabant, R. Fonseca, and
E. Upfal. Parma: a parallel randomized algorithm for
approximate association rules mining in mapreduce. In
Proceedings of the 21st ACM international conference
on Information and knowledge management, CIKM
’12, pages 85–94, New York, NY, USA, 2012. ACM.

[32] R. Saidi, S. Aridhi, E. Mephu Nguifo, and
M. Maddouri. Feature extraction in protein sequences
classification: a new stability measure. In Proceedings
of the ACM Conference on Bioinformatics,
Computational Biology and Biomedicine, BCB ’12,
pages 683–689, New York, NY, USA, 2012. ACM.

[33] R. Saidi, M. Maddouri, and E. Mephu Nguifo. Protein
sequences classification by means of feature extraction
with substitution matrices. BMC Bioinformatics,
11:175, 2010.

[34] S. B. Seidman. Network structure and minimum
degree. Social Networks, 5(3):269 – 287, 1983.

[35] S. J. Suryawanshi and S. M. Kamalapur. Algorithms
for frequent subgraph mining. International Journal of
Advanced Research in Computer and Communication

Engineering, 2(3):1545–1548, 2013.

[36] S. Tatikonda and S. Parthasarathy. Mining
tree-structured data on multicore systems. Proc.
VLDB Endow., 2(1):694–705, Aug. 2009.

[37] L. T. Thomas, S. R. Valluri, and K. Karlapalem.
Margin: Maximal frequent subgraph mining. ACM
Trans. Knowl. Discov. Data, 4(3):10:1–10:42, Oct.
2010.

[38] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy. Hive:
A warehousing solution over a map-reduce framework.
Proc. VLDB Endow., 2(2):1626–1629, Aug. 2009.

[39] J. K. Wegner, A. Sterling, R. Guha, A. Bender, J.-L.
Faulon, J. Hastings, N. O’Boyle, J. Overington,
H. Van Vlijmen, and E. Willighagen.
Cheminformatics. Commun. ACM, 55(11):65–75, Nov.
2012.

[40] M. Wörlein, T. Meinl, I. Fischer, and M. Philippsen.
A quantitative comparison of the subgraph miners
mofa, gspan, ffsm, and gaston. In Proceedings of the
9th European conference on Principles and Practice of
Knowledge Discovery in Databases, PKDD’05, pages
392–403, Berlin, Heidelberg, 2005. Springer-Verlag.

[41] R. S. Xin, J. E. Gonzalez, M. J. Franklin, and
I. Stoica. Graphx: A resilient distributed graph
system on spark. In First International Workshop on
Graph Data Management Experiences and Systems,
GRADES ’13, pages 2:1–2:6, New York, NY, USA,
2013. ACM.

[42] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A
block-centric framework for distributed computation
on real-world graphs. Proc. VLDB Endow.,
7(14):1981–1992, Oct. 2014.

[43] X. Yan and J. Han. gSpan: Graph-Based Substructure
Pattern Mining. In Proceedings of the 2002 IEEE
International Conference on Data Mining, ICDM ’02,
pages 721–724, Washington, DC, USA, 2002. IEEE
Computer Society.

[44] X. Yan and J. Han. Closegraph: mining closed
frequent graph patterns. In Proceedings of the ninth
ACM SIGKDD international conference on Knowledge
discovery and data mining, KDD ’03, pages 286–295,
New York, NY, USA, 2003. ACM.

[45] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma,
M. McCauley, M. J. Franklin, S. Shenker, and
I. Stoica. Resilient distributed datasets: A
fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’12, pages 2–2, Berkeley, CA,
USA, 2012. USENIX Association.

[46] Y. Zhao, X. Chi, and Q. Cheng. An implementation of
parallel eigenvalue computation using dual-level
hybrid parallelism. In Proceedings of the 7th
international conference on Algorithms and
architectures for parallel processing, ICA3PP’07, pages
107–119, Berlin, Heidelberg, 2007. Springer-Verlag.

[47] M. Zuker and D. Sankoff. Rna secondary structures
and their prediction. Bulletin of Mathematical Biology,
46(4):591–621, 1984.

	1 Introduction
	2 Big Data Analytics
	2.1 MapReduce
	2.2 Distributed machine learning and data mining techniques
	2.2.1 NIMBLE
	2.2.2 SystemML
	2.2.3 Mahout
	2.2.4 PARMA

	3 Big graph analytics
	3.1 Graph processing frameworks
	3.1.1 Pregel
	3.1.2 Blogel
	3.1.3 GraphLab
	3.1.4 PEGASUS
	3.1.5 GraphX

	3.2 Pattern mining in big graphs
	3.2.1 Applications of graph patterns
	3.2.2 FSM problem formulation
	3.2.3 Properties of FSM techniques
	3.2.4 FSM techniques in big graphs
	3.2.5 Global graph pattern mining in big graphs

	4 Conclusion
	5 References

