
Fast Gaussian Process Regression for Big Data

Sourish Das1, Sasanka Roy2, Rajiv Sambasivan1,∗

Abstract

Gaussian Processes are widely used for regression tasks. A known limitation in the
application of Gaussian Processes to regression tasks is that the computation of the
solution requires performing a matrix inversion. The solution also requires the storage
of a large matrix in memory. These factors restrict the application of Gaussian Process
regression to small and moderate size data sets. We present an algorithm that combines
estimates from models developed using subsets of the data obtained in a manner similar
to the bootstrap. The sample size is a critical parameter for this algorithm. Guidelines
for reasonable choices of algorithm parameters, based on detailed experimental study, are
provided. Various techniques have been proposed to scale Gaussian Processes to large
scale regression tasks. The most appropriate choice depends on the problem context.
The proposed method is most appropriate for problems where an additive model works
well and the response depends on a small number of features. The minimax rate of
convergence for such problems is attractive and we can build effective models with a
small subset of the data. The Stochastic Variational Gaussian Process and the Sparse
Gaussian Process are also appropriate choices for such problems. These methods pick a
subset of data based on theoretical considerations. The proposed algorithm uses bagging
and random sampling. Results from experiments conducted as part of this study indicate
that the algorithm presented in this work can be as effective as these methods.

Keywords: Big Data, Gaussian Process, Regression
2010 MSC: 00-01, 99-00

1. Introduction

Gaussian Processes (GP) are attractive tools to perform supervised learning tasks on
complex datasets on which traditional parametric methods may not be effective. They
are also easier to use in comparison to alternatives like neural networks ([1]). Gaussian
Processes offer some practical advantages over Support Vector Machines (SVM) ([2]).
They offer uncertainty estimates with predictions. The kernel and regularization param-
eters can be learned directly from the data instead of using cross validation. Feature
selection can be incorporated into the learning algorithm. For regression, exact inference

∗Corresponding author
Email address: rsambasivan@cmi.ac.in (Rajiv Sambasivan )
1Chennai Mathematical Institute
2Indian Statistical Institute

Preprint submitted to Journal of LATEX Templates August 22, 2017

ar
X

iv
:1

50
9.

05
14

2v
6 

 [
cs

.L
G

] 
 1

9 
A

ug
 2

01
7



is possible with Gaussian Processes. To apply Gaussian Processes to classification, we
need to resort to approximate inference techniques such as Markov Chain Monte Carlo,
Laplace Approximation or Variational Inference. Even though exact inference is possible
for Gaussian Process regression, the computation of the solution requires matrix inver-
sion. For a dataset of size n, the time complexity of matrix inversion is O(n3). The
space complexity associated with storing a matrix of size n is O(n2). This restricts the
applicability of the technique to small or moderate sized datasets.

In this paper we present an algorithm that uses subset selection and ideas borrowed
from bootstrap aggregation to mitigate the problem discussed above. Parallel implemen-
tation of this algorithm is also possible and can further improve performance.

The rest of this paper is organized as follows: In section 2, we discuss the problem
context. In section 3, we present our solution to the problem. Our solution is based
on combining estimators developed on subsets of the data. The selection of the sub-
sets is based on simple random sampling with replacement (similar to what is done in
the bootstrap). The size of the subset selected is a key aspect of this algorithm. This
is determined empirically. We present two methods to determine the subset size. We
present the motivating ideas leading to the final form of the algorithm. When the model
is an additive structure of univariate components, this has attractive implications on the
convergence rate ([3]). An additive model worked well for the datasets used in this study.
Relevant facts from Minimax theory for non-parametric regression, that are consistent
with the experimental results reported in this work, are presented. In section 4, we
present a brief summary of related work. Applying Gaussian Processes to large datasets
has attracted a lot of interest from the machine learning research community. Connect-
ing ideas to research related to the algorithm reported in this work are presented.
Selecting parameters for an algorithm is an arduous task. However this algorithm has
only two important parameters, the subset size and the number of estimators. We pro-
vide guidelines to pick these parameters based on detailed experiments across a range of
datasets. In section 5 we provide experimental results that provide insights into the effect
of the parameters associated with the algorithm. In section 6, we illustrate the applica-
tion of our algorithm to synthetic and real world data sets. We applied the algorithm
developed in this work to data sets with over a million instances. We compare the perfor-
mance of the proposed method to the Sparse Gaussian Process ([4]) and the Stochastic
Variational Gaussian Process ([5]). The inputs required by these algorithms are similar
to the inputs required for the proposed method and therefore are applicable in a similar
context. We compare the estimates obtained from the reported algorithm with two other
popular methods to perform regression on large datasets - Gradient Boosted Trees (using
XGBoost, [6]) and the Generalized Additive Model (GAM)([7]).Results from experiments
performed as part of this study show that accuracies from the proposed method are com-
parable to those obtained from Gradient Boosted Trees or GAM’s. However there are are
some distinct advantages to using a Gaussian Process model. A Gaussian Process model
yields uncertainty estimates directly whereas methods like Gradient Boosted Trees do not
provide this (at least directly). A Gaussian Process model is also directly interpretable
in comparison to methods like Gradient Boosted Trees or Neural Networks. Therefore,
the proposed method can yield both explanatory and predictive models. It is possible to
use stacking ([8]) to combine the estimates from the proposed model with those obtained
from a competing model (like Gradient Boosted Trees) and obtain higher accuracies.
Combining a Gaussian Process solution with XGBoost has been used by [9].

2



In section 7, we present the conclusions from this work. The contribution of this work
is as follows. The proposed method to perform Gaussian Process regression on large
datasets has a very simple implementation in comparison to other alternatives, with sim-
ilar levels of accuracy. The algorithm has two key parameters - the subset size and the
number of estimators. Detailed guidelines to pick these parameters are provided. The
choice of a method to scale Gaussian Process regression to large datasets depends on the
characteristics of the problem. This is discussed in section 4. The proposed method is
most effective for problems where the response depends on a small number of features
and the kernel characteristics are unknown. In such cases, exploratory data analysis can
be used to arrive at appropriate kernel choices [10]. Additive models may work well
for these problems. Appropriate preprocessing like principal component analysis can be
used if needed to create additive models. The rate of convergence for additive models
is attractive ([11]). This implies that we can build very effective models with a small
proportion of samples. Sparse Gaussian Processes see [12] and Stochastic Variational
Gaussian Processes [5] are also appropriate for such problems. These require a more
complex implementation and may require extensive effort to tune the optimization com-
ponent of the algorithm (see [5]). Results of the experiments conducted as part of this
study show that the proposed method can match or exceed the performance of these
methods.

2. Problem Formulation

A Gaussian Process y with additive noise can be represented as:

y = f(x) + η. (1)

Here :

• y represents the observed response.

• x represents an input vector of covariates.

• η represents the noise. The noise terms are assumed to be identical, independently
distributed (IID) random variables drawn from a normal distribution with variance
σ2
n.

• f represents the function being modeled. It is a multivariate normal with mean
function µ(x) and covariance function K(x).

If we want to make a prediction for the value of the response at a test point X∗, then
the predictive equations are given by (see [13]):

f∗|X, y,X∗ ∼ N
(
f∗, cov(f∗)

)
, (2)

f∗ = E[f∗|X, y,X∗],

= K(X∗, X)[(K(X,X) + σ2
nI]

−1y,
(3)

V(f∗) = K(X∗, X∗)−K(X∗, X)[K(X,X) + σ2
nI]

−1K(X,X∗). (4)

Here:
3



• f∗ is the value of the function at the test point X∗.

• K(X∗, X) represents the covariance between the test point and the training set.

• K(X,X) represents the covariance matrix for the training set.

• I is the identity matrix.

Equation (3) is the key equation to make predictions. An inspection of equation (3)
shows that this equation requires the computation of an inverse. For a training dataset
of size n, computation of the inverse has O(n3) time complexity. This is one of the bottle
necks in the application of Gaussian Processes. Calculation of the solution also requires
the storage of the matrix (K(X,X) +σ2

nI). This is associated with a space complexity of
O(n2). This is the other bottle neck associated with Gaussian Processes. The uncertainty
associated with our prediction is provided by Equation 4. The covariance K(X,X) is
expressed in terms of a kernel that is appropriate for the modeling task. The kernel
is associated with a set of hyper-parameters. These may be known for example if the
modeling task has been well studied or unknown if the problem has not been well studied.
In this work we treat these kernel parameters as unknown. When the kernel parameters
are unknown, these are estimated using maximum likelihood estimation. The marginal
log likelihood is given by (see [13]):

log
(
y|X

)
=

1

2
yT
(
K + σ2

n.I
)−1

.y − 1

2
log
∣∣K + σ2

n.I
∣∣− n

2
log
(
2π
)
. (5)

Using an appropriate optimization technique with Equation (5) as the objective func-
tion, the hyper-parameters of the kernel (K) can be determined.

3. Proposed Solution

Since GP regression is both effective and versatile on complex datasets in comparison
to parametric methods, a solution to the bottlenecks mentioned above will enable us
to apply GP regression to large datasets that are complex. We run into such datasets
routinely in this age of big data. Our solution to applying Gaussian Process regression
to large data sets is based on developing estimators on smaller subsets of the data.
The size of the subset and the desired accuracy are key parameters for the proposed
solution. The accuracy is specified in terms of an acceptable error threshold, ε. We pick
K smaller subsets of size Ns from the original data set (of size N) in a manner similar to
bootstrap aggregation. We develop a Gaussian Process estimator on each subset. The
GP fit procedure includes hyper-parameter selection using the likelihood as the objective
function. We want a subset size such that when we combine the estimators developed on
the K subsets, we have an estimator that yields a prediction error that is acceptable. The
rationale for this approach is based on results from Minimax theory for non-parametric
regression that are presented later in this section. To combine estimators, we simply
average the prediction from each of the K estimators.

The time complexity for fitting a Gaussian Process regression on the entire dataset
of size N is O(N3). The algorithm presented above requires the fitting of K Gaussian
Process regression models to smaller size datasets (Ns). Therefore, the time complexity
is O(K.N3

s ).
We present two methods to determine the subset size:

4



1. Estimating the subset size using statistical inference. For a dataset of size N , the
subset size is expressed as:

Ns = Nδ, where (0 < δ < 1). (6)

δ is a random variable and is determined based on inference of a proportion using
a small sample. The details of this method are presented in the next subsection.

2. Estimating the subset size using an empirical estimator. We use the following
observations to derive this empirical estimator:

(a) The subset size Ns, should be proportional to the size of the dataset, N :

Ns ∝ N.

We posited that as the size of the dataset increases, there is possibly more
detail or variations to account for in the model. Therefore larger datasets
would require larger sample sizes.

(b) The sample size Ns, should be a decreasing function of the desired error rate
(ε). This means that decreasing the desired error rate should increase the
sample size.

Ns ∝
1

g(ε)
,

where g(ε) is an increasing function. Application of the above observations yields
the following estimator for sample size:

Ns =
Nδ(N)

g(ε)
. (7)

Here:

δ(N) is a function that characterizes the fact that an increase in N should increase
the sample size Ns.

g(ε) is a function that characterizes the fact that sample size should increase as ε
(desired error level) decreases.

The algorithm is summarized in Algorithm 1
The proposed algorithm is based on model averaging as described in [14, Chapter 14].

This is similar to combining estimates from regression trees in the Random Forest([15])
algorithm. Given i = {1, 2, . . . ,K} models, the conditional distribution of the response
at a point Xj is obtained from:

p(Y |Xj) =

i=K∑
i=1

p(Y |i,Xj).p(i). (8)

If each of the models is equally probable, then p(i) =
(

1
K

)
. If each of p(Y |i,Xj) is a

Gaussian N (µi,Σi), as would be the case when each of the estimators is a GP based on
Equation 1, then we have the following:

p(Y |Xj) ∼ N (µC(Xj), σ2
C(Xj)), (9)

Where:
5



input : A dataset D of size N, δ, K
output: An estimator f that combines the estimators fitted from resampling

for i← 1 to K do
/* select a sample from D. Two ways of selecting the sample

size are presented */

Ns ←SampleWithReplacement(D, δ);
/* A kernel is fit for each sample. Hyper-parameter selection

is done for each sample. This computation can be

parallelized. */

f̂i ←FitGP(Ns);

end
/* the estimate for a point x ∈ Dtest (the test dataset) is the

average of the estimates from the K estimators fitted above.

*/

fresampled(x) ← 1
K

∑i=K
i=1 f̂i(x)

Algorithm 1: Gaussian Process Regression Using Resampling

µC(Xj) = 1
K .
∑i=K
i=1 µi(Xj),

σ2
C(Xj) = 1

K2

∑i=K
i=1 σ2

i (Xj).

Model combination is an alternative approach to combining estimates from a set of
models. The product of experts model is an example of this approach. In the product of
experts approach, each model is considered to be an independent expert. The conditional
distribution of the response at a point Xj is obtained from:

p(Y |Xj) =
1

Z

i=K∏
i=1

pi(Y |Xj), (10)

where Z is the normalization constant. [16] report a study where the individual experts
are Gaussian Processes. In this case, each of pi(Y |Xj) are N (µi(Xj), σ

2
h(Xj)). The

mean and variance associated with p(Y |Xj) are:

µPOE(Xj) = σ2
POE(Xj).

(
i=K∑
i=1

µi(Xj)Ti(Xj)

)
, (11)

TPOE(Xj) =

i=K∑
i=1

Ti(Xj), (12)

σ2
POE(Xj) = (TPOE(Xj))

−1
. (13)

Here Ti(Xj) is the precision of the expert i at point Xj . The results from using a product
of experts model are also included in this study (see section 6).

Model averaging and model combination (Equation (9) and Equation (11)) are simply
ways to combine estimates from the component estimators used in Algorithm 1. They
do not specify any information about the character of the estimator developed using
Algorithm 1. To do this, we need the following preliminaries:

6



Assumption 1. The function being modeled is in the Reproducing Kernel Hilbert Space
of the kernel (σ) of the estimator. The reproducing property of the kernel can be expressed
as:

f(t) =< f(.), σ(., t) > ∀t ∈ T.

Here T represents the index set to select the predictor instances.

Algorithm 1 makes use of K estimators, f1, f2, . . ., fK . The reproducing kernels
associated with the estimators are σ1, σ2, . . ., σK . We show that the estimator resulting
from combining these K estimators is a Gaussian Process.

Lemma 1. The estimator frm obtained from the individual estimators f1, f2, . . ., fK
using:

frm(t) =
1

K

i=K∑
i=1

fi(t),

is associated with the following kernel:

σrm =
1

K

i=K∑
i=1

σi . (14)

Proof. From Assumption 1, the kernel associated with each estimator has the reproduc-
ing property. So the following equation holds:

< f(.), σ1(., t) >=< f(.), σ2(., t) >= . . . =< f(.), σK(., t) >= f(t) .

Consider the kernel σrm = 1
K

∑i=K
i=1 σi and the inner product < f(.), σrm >. The inner

product can be written as:

< f(.), σrm > =
1

K

K times︷ ︸︸ ︷
[< f(.), σ1(., t) > + . . .+ < f(.), σK(., t) >]

=
1

K

K times︷ ︸︸ ︷
[f(t) + . . .+ f(t)]

=
1

K
K f(t)

= f(t) .

Using Lemma (1), the estimator developed using Algorithm 1 is a Gaussian Process.
This Gaussian Process is associated with a kernel defined by Equation (14). This kernel
is defined as a mixture of the kernels used by the individual estimators. The uncertainty
estimate at any point X can be obtained using Equation (4).

Consistency of estimators is concerned with the asymptotic properties of the devel-
oped estimator as we increase the sample size. Consistency of Gaussian Processes has
been widely studied (see [1, Chapter 7, Section 7.1]) for details. The convergence rate
for the algorithm is a characteristic of great interest. This characteristic tells us the rate
at which we can drop the error as we increase the sample size. Minimax theory provides
a framework to assess this (see [17] or [18]) . A famous result by [11] states the min-

imax rate of convergence for non-parametric regression is n−
α

(2α+d) , where α describes
7



the smoothness of the function being modeled and d represents the dimensionality of
the feature space. This suggests that the rate of convergence is affected by the curse
of dimensionality. However as noted by [19], the following factors usually mitigate the
curse of dimensionality:

1. The data lie in a manifold of low dimensionality even though the dimensionality of
the feature space is large. [20] reports a method for such problems.

2. The function being modeled depends only on a small set of predictors. All datasets
reported in this study had this characteristic. Feature selection can be performed
in Gaussian Processes using Automatic Relevance Determination (see [1, Chapter
5, Section 5.1]).

3. The function being modeled admits an additive structure with univariate compo-
nents. The minimax rate of convergence for this problem is very attractive (see
[3]). For all datasets reported in this study such an additive model yielded good
results.

Feature Selection is therefore a critical first step. This is discussed in section 6. The
additive structure and the dependence on a very small set of predictors suggest that
we can get reasonable models with a small subset of the data. This was consistent
with the experimental results reported in this work. Simple preprocessing like Principal
Component Analysis (PCA) could be used to reduce the number of relevant features.
PCA also makes the features independent. The data for this study came from public
repositories and from very diverse application domains. This suggests that datasets with
these characteristics are not uncommon. When data lie in a manifold, methods such as
[20] may be more appropriate.

[21] investigate the minimax interpolation error under certain conditions (known co-
variance, stationary Gaussian Process) . As noted in this recent study, theoretical work
in estimating the convergence rate using minimax theory is an active area of research.
In this work we investigated empirical estimation of the sample size. We describe two
methods to determine the sample (subset) size.

3.1. Estimating Subset Size on the Basis of Inference of a Proportion

Since δ takes values between 0 and 1, it can be interpreted as a proportion. We treat
it as a random variable that can be inferred from a small sample. To estimate δ, we do
the following: We pick a small sample of the original dataset by simple random sampling.
We start with a small value of δ and check if the prediction error with this value of δ
is acceptable. If not we increment δ until we arrive at a δ that yields an acceptable
error. This procedure yields the smallest δ value that produces an acceptable error on
this sample. Since the size of this dataset is small, the above procedure can be performed
quickly. This technique yielded reliable estimates of δ on both synthetic and real world
datasets.

3.2. Empirical Estimation of the Subset Size

Equation 7 provides the functional form for the second empirical estimator of the
subset size Ns. Appropriate choices for δ(N) and g(ε) are based on observations from
the experimental evaluation of the parameters of Algorithm 1. Choices that provided
good results are provided in section 5.2.

8



4. Related Work

[13, Chapter 8] provides a detailed discussion of the approaches used to apply Gaus-
sian Process regression to large datasets. [22] is another detailed review of the various
approaches to applying Gaussian Processes to large datasets. The choice of a method
appropriate for a regression task is dependent on the problem context. Therefore we dis-
cuss the work related to scaling Gaussian Process regression taking the problem context
into consideration.

If the data associated with the problem has been well studied and kernel methods
have been successfully applied to the problem, then we may have reasonable insights
into the nature of the kernel appropriate for the regression task. We may be able to
arrive at the kernel hyper-parameters quickly from a small set of experiments. On the
other hand if the problem and data is new, then we may not have a lot of information
about the kernel. In general, scaling Gaussian Process regression to large datasets has
two challenges:

1. Finding a kernel that has good generalization properties for the dataset.

2. Overcoming the computational hurdles - O(N3) for training and O(N2) for storage.

Learning a kernel that has good generalization properties is a related area of re-
search in Gaussian Processes (see [23], [24]. When a good kernel representation has been
learned, there are many techniques to overcome the computational hurdles. The Nystrom
method to approximate the Gram matrix ([25]) and the Random Kitchen Sinks ([26])
are probably the most well known. The Random Kitchen Sinks approach maps the data
into a low dimensional feature space and learns a linear estimator in this space. It should
be noted that these methods work well when the problem needs a stationary kernel for
which we know the hyper-parameters. Using ”sensible defaults” for hyper-parameters
and applying these techniques to problems that require a non-stationary kernel may
yield poor results. For example with the airline dataset, described later in this study
(see section 5.1), the Random Kitchen Sinks cannot be used directly and would require
suitable preprocessing (like removing simple trends or using a mean function) so that a
stationary kernel would be applicable. Using the Random Kitchen Sinks directly with
no preprocessing and using default kernel choices provided with the scikit-learn [27] im-
plementation yielded poor results (RMSE of 31.49 as opposed to 8.75 with the proposed
method).
Using a kernel learning approach to determine a good kernel representation and then
solving the computational hurdles independently is one way to approach scaling Gaus-
sian Process regression to large datasets. Another approach to determine the appropriate
kernel is to use exploratory data analysis. Guidelines to pick kernels based on exploratory
analysis of the data is provided in [10]. This is a practical approach when the number of
relevant features is not too many, as was the case with the datasets used in this study.
It should be noted that hyper-parameters for these choices still need to be specified. We
may be able to build additive models using this approach. Appropriate preprocessing
could help, for example principal component analysis can be applied to make the features
independent. Minimax theory for non-parametric regression indicates that the conver-
gence rate for additive models is very attractive. We can build effective models with a

9



small proportion of the data.
The choice of kernel hyper-parameters is critical and can affect the performance. When
datasets are large and the kernel hyper-parameters are unknown, we need algorithms
that can address both these issues. Ideally, the algorithm should be able to work with
both stationary and non-stationary kernels. The proposed algorithm is one such can-
didate. Sparse Gaussian Processes ([4]) and Stochastic Variational Gaussian Processes
([5]) are two others. Like the proposed algorithm, these algorithms require the spec-
ification of a input size. A subset of points is selected from the dataset for training.
The criteria for subset selection is different in each case. These algorithms do not re-
quire the specification of the kernel hyper-parameters. These are estimated from the
data. Stochastic Variational Gaussian Processes can require considerable manual tun-
ing of the optimization parameters. Typical implementations (like [28]) for Sparse GP
and Stochastic Variational GP use stochastic gradient descent for hyper-parameter opti-
mization. This explores the entire dataset in batch size increments. [5] report the details
associated with picking the parameters for the optimization task (learning rates, momen-
tum, batch sizes etc.). In contrast, sample sizes with the proposed algorithm even for
datasets with over million instances are typically small (order of few hundred instances).
Learning hyper-parameters over small datasets is considerably easier. The experiments
reported in this work required no tuning effort. We report the performance of Sparse
Gaussian Process, Stochastic Variational Gaussian Process and the proposed method on
a variety of datasets in section 6

The proposed algorithm uses ideas that have proven effectiveness with other machine
learning techniques. Bagging has been used to improve performance using regression
trees (Random Forests, [15]). Like with Random Forests, the algorithm uses model av-
eraging to combine estimates from component Gaussian Process Regressions. Dropout
([29]) is a technique used in neural networks to prevent over fitting. Dropping random
units achieves regularization in neural networks. In the proposed algorithm, selecting a
sample can be viewed as dropping random instances from the training dataset. Sparse
Gaussian Processes and Stochastic Variational Gaussian Processes use theoretical ideas
to select a small subset of points to develop a Gaussian Process regression model. This
study suggests that combined with model averaging, random selection of the subset can
also work well.

For datasets with a Cartesian product structure, by imposing a factorial design of
experiment scheme on the dataset and decomposing the covariance matrix as a Kronecker
product [30] discuss an approach to scaling Gaussian Process regression. This approach
also uses a prior on the hyper-parameters to deal with anisotropy. So the implementation
is quite complex. Using a divide an conquer strategy is another theme in scaling Gaussian
Process regression to large datasets. The Bayesian Committee Machine (BCM) ([31]), is
an idea related to the algorithm presented in this work. The BCM proposes a partition
of the dataset into M parts. An estimator is developed on each partition. The BCM
does not choose a subset of the partition. It uses the entire partition for developing the
estimator. This is the key difference between the method proposed in this work and
the BCM. The estimates from each estimator are assumed to be independent. The BCM
assumes that computing a GP solution on the partitions of the dataset is computationally
tractable because the partition sizes are small. Datasets encountered today are much

10



larger than those reported in [31]. In present day datasets the partitions of the dataset
based on guidelines provided in [31] would be very big and computing a full Gaussian
Process solution on them may not be computationally tractable. Even when the partition
size is not big enough to create computational hurdles, using all the data may result in
over fitting. Using a hierarchical model as in [32] or [33] are possible ways to work around
the size of the partitions, however this requires a complex implementation to partition
and recombine computations.

The Locally Approximate Gaussian Process [34] fits a local Gaussian Process for a
prediction point using a local neighborhood and local isotropy assumption. This method
too requires some tuning, the size of neighborhood and method to choose the neighbors
are important parameters. For datasets where the local isotropy assumption works well
and when the size of the test set is small, this method might be useful. When prediction
is required at a large number of test points, this method might be slow if we use a large
neighborhood. For example with the airline dataset, described in section 5.1, using the
defaults provided with the laGP ([35]) package did not yield good results on the airline
delay dataset (RMSE of 24.89 as opposed to 8.75 with the proposed method). The run-
ning time for laGP was also considerably longer. Scoring the test set in batches of 15000
rows, the test set prediction took about 50 minutes for the airline delay dataset. The
proposed algorithm builds a single model that is used to score the entire test set and
completed in about 6.5 minutes.
In summary, there are several ways to scale Gaussian Process regression to large datasets.
The choice of a particular method should be guided by the characteristics of the problem.
The method proposed in this work is appropriate for large datasets that have a small
number of important features for which the kernel characteristics are unknown. In such
cases exploratory data analysis can be used to determine appropriate kernel types. Addi-
tive models may work well for such datasets. Preprocessing such as principal component
analysis can be used if needed to make features independent (so that we can use additive
models). Stochastic Variational Gaussian Processes and Sparse Gaussian Processes are
also good candidates for such problems. Kernel hyper-parameters are learned from the
data by these methods. Results of the experiments conducted as part of this study show
that the proposed method can match or exceed the performance of the Sparse Gaussian
Process or the Stochastic Variational Gaussian Process.

5. Effect of the Parameters

Selection of algorithm parameters appropriate for a machine learning task is an ar-
duous task for all practitioners. To alleviate this difficulty, we provide guidelines for
parameter selection based on detailed experimentation. The proposed algorithm has
three parameters:

1. The dataset size

2. The subset size

3. The number of estimators

Accordingly, three sets of experiments were performed to capture the effect of each of
these parameters on the performance of the algorithm. These experiments are described
in this section.

11



5.1. Datasets

The following datasets were used in this study:

1. Combined Cycle Power Plant: This dataset was obtained from the UCI Ma-
chine Learning repository ([36]). This dataset has 9568 instances. The target
variable is the net hourly electrical power output from a power plant. The dataset
has four features.

2. Ailerons: This dataset was obtained from the LIAD(Laboratory of Artificial In-
telligence and Decision)([37]). The target variable for this dataset is the control
action associated with the control of a F-16 aircraft. The dataset has 40 features
and 7154 instances.

3. Elevators: This dataset was obtained from the LIAD repository ([37]). This
dataset is also related to the control of a F-16 aircraft. The target for this dataset
is the control action variation for the elevators of the aircraft. The dataset has 6
features and 9517 instances.

4. California Housing: This dataset was obtained from the LIAD repository ([37]).
The target variable for this dataset is the median house price. The dataset has 8
features and 20460 instances

5. Individual Household Electric Power Consumption: This dataset was ob-
tained from the UCI Machine Learning repository ([36]). It captures the electric
power consumption in a single household over a four year period at a one minute
sampling rate. For the experiments in this study, the Voltage was treated as the
target variable. Seasonality and periodicity are important characteristics of this
dataset (identified during exploratory data analysis of this dataset). For this rea-
son, minute and hour attributes were created out of the time stamp attribute.
Similarly, day of week and day of month attributes were created out of the date
attribute. This dataset has over 2 million instances and 12 features.

6. Airline Delay:This dataset was obtained from the US Department of Transporta-
tion’s website ([38]). The data represents arrival delays for US domestic flights
during January and February of 2016. This dataset had 12 features and over two
hundred and fifty thousand instances. Departure delay is included as one of the
predictors while [5] does not include it. Also the raw data includes a significant
amount of early arrivals (negative delays). For all regression methods considered in
this study, better models were obtained by limiting the data to the delayed flights
only (arrival delays were greater than zero). This suggests that arrival delays and
early arrivals are better modeled separately.

7. The Sinc Function: This is a one dimensional synthetic dataset where the re-
sponse variable is the sine cardinal function otherwise called the sinc function (noise
free). The sinc function is a complex function to learn and is therefore a candidate
for this as well as many other machine learning research studies. The dataset had
one hundred thousand instances.

12



5.2. Effect of Dataset Size

These experiments study the effect of the size of the dataset (N) on the subset size (δ).
For each dataset, we pick a fraction of the data elements and determine the subset size
(Nδ) required to achieve a target accuracy. The target accuracy is an input parameter
for the experiment. We repeat this procedure for various settings of the fraction of the
dataset selected (0.1 through 1). The number of estimators for these experiments was
maintained at 30. The rationale for this choice is provided in section 5.4. The results
are shown in Figure 1 through 7.

Figure 1: Delta Elevators Figure 2: California Housing

Figure 3: Airline Delay Figure 4: Combined Cycle Power Plant

13



Figure 5: House Hold Power Consumption Figure 6: Ailerons

Figure 7: Sinc Function (Synthetic Data)

The key observation from these experiments was that the δ required to maintain a
preset accuracy decreases very slowly as N increases. This set of experiments was used to
identify candidate choices for the parameters of Equation 7. Since we wanted a function
δ(N), that decreases slowly as N increases, we considered { 1√

N
, 1
log(N) ,

1
log(log(N))}. These

are slowly decreasing functions of N in decreasing order of slowness. After a rigorous
empirical study we found that if we choose δ(N) = 1

log(log(N)) then it works well on all

real world datasets and synthetic data. As discussed in section 3, the time complexity
of the proposed algorithm is O(K.N3

s ) or O(K.N3.δ(N)). The exponent of N decreases
monotonically as N increases. Since N can be expressed as 22

x

, for N > 22
x

, the
running time is < O(K.N

3
x ). The number of estimators K, determined empirically, is

a constant (about 30) for all experiments. The rationale for this choice is explained in

section 5.4. The time complexity of the GP computation is therefore O(K.N
3
x ). So when

N is large enough (such that x > 3), the GP computation is sub-linear. For example,

when N = 22
4

, the time complexity is O(K.N
3
4 ). g(ε) is a monotonically increasing

function that characterizes the fact that sample size should increase as the acceptable

14



error threshold ε decreases (e.g. g(ε) = ε,
√
ε, ε

1
10 , . . .). An optimal choice of g(ε) is an

area of future work. For the experiments reported in this work, g(ε) = Cε
1
10 with C = 1

for low noise datasets (RMSE << 1) and C = 0.5 for noisy datasets (RMSE > 1),
worked well.

Figure 8: Delta Elevators Figure 9: California Housing

Figure 10: Airline Delay Figure 11: Combined Cycle Power Plant

15



Figure 12: House Hold Power Consumption Figure 13: Ailerons

5.3. Effect of Subset Size

Figure 14: Sinc Function (Synthetic Data)

These experiments explore the effect of the sub-
set size, captured by the parameter δ, on the ac-
curacy (ε), for a fixed dataset size (N). For each
dataset, a fraction of the dataset is picked for this
experiment. This represents the data for the exper-
iment (N). We pick N such that N1.0 (i.e, δ = 1.0)
is computationally tractable (about 2000). The
subset Ns, used for Gaussian Process model devel-
opment was Nδ. We fix the number of estimators
to be 30 (see section 5.4 for rationale). For each
δ value in a range of values, we record the RMSE
(ε). The key insight from these experiments was
that complex functions, like the Sinc function (see
Figure 14) needed a larger subset size to produce
a given level of accuracy. Note that we can expect
the δ to drop with the increase in dataset size be-
cause of the effect reported in section 5.2. Section 6.3 provides the δ values associated
with the full dataset. The results for these experiments are shown in Figure 8 through
14.

5.4. Effect of Number of Estimators

These experiments capture the effect of the number of estimators (K) on the accuracy
of the algorithm (ε), for a particular set of δ and N values.

16



Figure 15: Delta Elevators Figure 16: California Housing

Figure 17: Airline Delay Figure 18: Combined Cycle Power Plant

17



Figure 19: House Hold Power Consumption Figure 20: Ailerons

Figure 21: Sinc Function (Synthetic Data)

For each dataset the following experiment was
performed. The fraction of the dataset to use for
the experiment (N) and the subset size (δ) are se-
lected. For eachK in a range of values, Algorithm 1
is applied and the error (ε) is recorded. The key in-
sight from this set of experiments was that given a
subset size(Ns), there is a point upto which increas-
ing the number of estimators (K) drops the error,
but once a threshold value is reached (around 30,
for all the datasets), there is little benefit in increas-
ing the number of estimators. A plausible explana-
tion for this behavior could be that increasing the
number of estimators reduces the variance compo-
nent of the error in the bias-variance decomposition
of the error(ε). The results for these experiments
are shown in Figure 15 through 21.

6. Application of the Algorithm

In this section we describe the results of applying the algorithm reported in this work
to the datasets described in section 5.1.

6.1. Independent Performance Assessments

It may of interest to see how the estimates from Gaussian Progress regression compare
to estimates from other methods for large regression tasks. We report the performance of
two methods. XGBoost ([6]) is a recent tree based algorithm using the gradient boosting
framework that is very scalable and gaining adoption among practitioners. Trees par-
tition the predictor space and can account for interaction. This method uses boosting
instead of bagging. Difference in accuracy estimates between XGBoost and the proposed

18



method for a particular dataset could be attributed to the influence of boosting or ef-
fects of interaction among variables. In most cases the estimates from XGBoost were
comparable to the estimates from the proposed method. As discussed in 6.4, it is possi-
ble to combine estimates from XGBoost with the estimates from the proposed method
using stacking. The Generalized Additive Model (GAM) ([7]) is a scalable regression
technique. As the name suggests, it fits an additive model in terms of smooth non-
parametric functions (typically splines) of the predictor variables. The GAM estimate
serves as an independent performance estimate from another non-parametric regression
algorithm based on an additive model. In most cases the accuracy obtained from GAM’s
were similar to those obtained from Gaussian Process regression.

6.2. Feature Relavance

As discussed in section 3, an additive model worked well for the datasets used in
this study. Further, in all these datasets, the response depended only a small number of
attributes. XGBoost can report feature importance. This summarized in Table 1 below.
The response depends on a small subset of predictors in all the datasets reported in
this study. GPy, ([28]) the package used to implement the experiments reported in this
work, implements the Automatic Relevance Determination (see [1, Chapter 5]) feature.
Features that are not relevant are dropped from the model.

6.3. Accuracy

Dataset Features Important Features
1 Airline Delay 11 1
2 Ailerons 40 3
3 Power Plant 4 2
4 Delta Elevators 6 2
5 California Housing 8 3
6 House Hold Power 12 4 3

Table 1: Feature Importance

As discussed in section 4, the
choice of a GP method to use for
a regression task depends on the
problem context. The algorithm
presented in this work does not
require the hyper-parameter val-
ues to be specified. In terms of
the inputs to the algorithm, the
algorithm presented in this work
is similar to the Sparse Gaussian Process and the Stochastic Variational Gaussian Pro-
cess. These algorithms only require the dataset, kernel and the subset size as input. We
report the performance of the Sparse Gaussian Process, Stochastic Variational Gaussian
Process and the proposed algorithm for each dataset. These algorithms are good choices
to begin the knowledge discovery process in large datasets. The results of applying Al-
gorithm 1 to all the datasets listed in section 5.1 are shown in Table 2. For each dataset,
Table 2 includes the following columns:

1. BM1 (Bagging Method 1): This is the result of applying Algorithm 1 using the
method specified in section 3.1 to select the subset.

2. BM2 (Bagging Method 2): This is the result of applying Algorithm 1 using the
method specified in section 3.2 to select the subset.

3timestamp is counted as a feature. Variables derived from timestamp are not included in this count.

19



Dataset BM1 BM2 POE SVGP SPGP XGBoost GAM SD
Ailerons 0.000214 0.000208 0.000220 0.000220 0.000220 0.000220 0.000200 0.000410
Delta Elevators 0.001510 0.001450 0.001547 0.001460 0.001460 0.001432 0.001444 0.002370
CCPP 4.32 4.24 4.27 5.19 4.10 3.73 4.11 17.07
Cal Housing 0.293 0.294 0.293 NA NA 0.240 0.281 0.569
Airline Delay 8.75 8.75 8.74 8.85 10.94 8.74 9.45 31.31
HPC 2.039 1.992 2.120 NA NA 1.63 2.18 3.24
Sinc Function 0.0267 0.0200 0.0132 0.0627 0.0170 NA NA 0.0634

Table 2: Performance Accuracy

3. POE: This is the result of applying the Product of Experts Algorithm (Equation 11)
instead of bagging. The subset size used is the same as that for Bagging (method
1).

4. SVGP: This is the result of applying the SVIGP algorithm.

5. SPGP: This is the result of applying the Sparse GP algorithm.

6. XGBoost: This is the result obtained from the XGBoost algorithm.

7. GAM: This is the result obtained from GAM.

8. SD: This is the standard deviation of the response. If we use a model that simply
predicts the mean response for each test point, then the standard deviation repre-
sents the error associated with such a model. For regression models to be useful,
they must perform better than this model.

For all datasets the split between the training and the test sets was 70% - 30%. The
reported accuracies are on the test set. The subset sizes required for each dataset is
captured by the δ parameter. The δ values associated with Table 2 are presented in
Table 3. The δ values for the bagging methods and POE correspond the most accurate
estimates we could obtain for the datasets on a laptop with 16 GB of RAM. The SVGP
and the SPGP columns of Table 3, represent the δ at which the best performance was
obtained for the Stochastic Variational GP and the Sparse GP methods. For the airline
dataset, the best performance for Stochastic Variational GP was obtained at a smaller
subset size than the one used for the proposed method. For the airline dataset, Sparse
GP showed no improvement in performance for δ greater than 0.33

Dataset BM1 BM2 POE SPGP SVGP

Ailerons 0.30 0.30 0.30 0.30 0.30
2 Delta Elevators 0.30 0.30 0.30 0.30 0.30
3 CCPP 0.6 0.6 0.6 0.6 0.6
4 Cal Housing 0.625 0.625 0.625 NA NA
5 Airline Delay 0.56 0.49 0.0.56 0.33 0.523
6 HPC 0.43 0.38 0.43 NA NA
7 Sinc Function 0.50 0.50 0.50 NA NA

Table 3: δ Requirements for the Datasets

The kernels used for the
datasets are shown in Table 4.
The experiments reported in this
work used [28] for implementa-
tion. The Sparse GP implemen-
tation in this package is based
on the Variational Sparse GP
method (see [4]). The Stochastic
Variational GP implementation is
the one used in [5]. Both these
methods use Stochastic Gradi-
ent Descent for hyper-parameter
learning. Kernel support for these methods is also limited to simple kernels and kernels

20



like the Brownian Motion Kernel or the Periodic Matern kernel are not supported. For
this reason, we do not report accuracy for SVIGP or the Sparse GP for datasets that
required these complex kernels (Household Power Consumption and California Housing
). This also highlights the fact that Algorithm 1 may be a good candidate for datasets
with the desired characteristics described earlier but requiring a complex kernel to model
the underlying function.

Dataset Kernel
1 Ailerons sum of linear and RBF
2 Delta Elevators sum of linear and RBF
3 CCPP sum of linear and RBF
4 California Hous-

ing
sum of Periodic-
Matern32, Linear,
RBF and a product ker-
nel of Linear and RBF
on the medianIncome
attribute

5 Airline Delay sum of BF, linear and
White Noise

6 HPC sum of Bias, Cosine,
RBF, Linear and Brow-
nian Motion

7 Sinc Function RBF

Table 4: δ Kernels for the Datasets

An analysis of Table 2 shows that
the proposed method performs as well
as XGBoost or GAM’s in most cases.
In some cases, XGBoost does marginally
better. In these cases we explored if it
is possible to construct a better estima-
tor using both these estimators. This is
discussed next.

6.4. Combining Estimators

Combining estimators is not a new
idea [8]. More recently, [9] has combined
gradient boosted tree models with Gaus-
sian Process models. This prompted us
to explore combining estimators for the
data sets where the Gaussian Process
model produced a slightly lower accuracy. There were three datasets where the per-
formance of the Gaussian Process model was slightly lower than the XGBoost model.
These were the Combined Cycle Power Plant, California Housing and the Household
Power Consumption dataset. To combine estimators, the output of the XGBoost mod-
els and the GP models were used as the inputs to a classifier (the stacking classi-
fier). The response from the classifier was the best model for a given set of XG-
Boost and GP model responses. A K-nearest neighbor classifier was used for this
purpose. The best value of K was determined through experimentation. Given a
test point, the estimates from the XGBoost model and the GP model can be ob-
tained. The classifier then predicts best model for this set of estimates. This model
is then used to provide the estimate for the test point. This procedure improved the
accuracy for the California Housing and Combined Cycle Power Plant datasets. A
K-nearest neighbor regression performed better than the K-nearest neighbor classifier
for the Household Power Consumption dataset. The results are shown in Table 5

Dataset RMSE
1 California Housing 0.211
2 CCPP 2.943
3 HPC 1.610

Table 5: δ Accuracy using XGBoost and bagged
GP models

A comparison of Table 5 with Ta-
ble 2 shows that combining estimators
yields solutions that are more accu-
rate. The idea of combining estima-
tors can be refined in many ways. We
have not included the Sparse GP and
Stochastic Variational GP in this solu-
tion. The choice of the classifier or re-
gression model to combine estimates from the component models is another modeling
decision. The intent here is to show that it is possible to combine the GP model developed

21



using the method presented in this work with other regression models to produce solu-
tions that are better than the individual solutions. An optimal choice of the estimators
and the method used for stacking is beyond the scope of this work.

7. Conclusion

There are many methods to scale Gaussian Process regression to large datasets. The
appropriate choice depends on the problem context. The proposed method is appropriate
for large datasets with a small set of important features for which the kernel character-
istics are unknown. Kernel choices can be determined through exploratory data analysis
[10]. Kernel hyper-parameters can be learned from the data. The data for the experi-
ments reported in this work came from diverse application areas and in a wide range of
sizes (few thousand to two million). In these datasets, the target variable depended on
a small set of variables and an additive model matched the performance of models that
permit interaction like XGBoost. This suggests that datasets with these characteristics
are not uncommon. Results from Minimax theory for non-parametric regression indicate
that additive models that depend on a small set of predictors have an attractive rate of
convergence. This suggests that we can develop adequate regression models with a small
subset of samples from the dataset. This was consistent with results observed in the
experiments conducted as part of this study. The Stochastic Variational Gaussian Pro-
cess and the Sparse Gaussian Process are also good candidates for problems with these
characteristics. The results of this study show that the proposed algorithm can match
or exceed the performance of the Sparse Gaussian Process or the Stochastic Variational
Gaussian Process. The results of this study also show that Gaussian Processes can be as
effective as ensemble methods like Gradient Boosted Trees on large datasets. Gaussian
Processes are based on a probabilistic frame work and can provide uncertainty estimates
directly as compared to other tools for large regression tasks like XGBoost. This could
very important for some applications. For example, an analyst may be interested in
the probability of a particular amount of delay given information for a particular flight.
The regression function is also interpretable in the case of Gaussian Process models in
contrast to methods like gradient boosted trees. Therefore Gaussian Process models can
be good explanatory models as well as good predictive models. An important feature of
this algorithm is the simplicity of implementation. In Internet applications that process
continuous streams of data, frequent model development and deployment is needed. An
algorithm that is simple but effective may fit these applications well. Finally it should be
noted that it is possible to combine this algorithm with other algorithms like Gradient
Boosted Trees using model stacking to achieve performance gains.

8. References

References

[1] C. E. Rasmussen, Gaussian processes for machine learning, MIT Press, 2006.
[2] Z. Ghahramani, A tutorial on gaussian processes (or why i dont use svms), mLSS Workshop talk

by Zoubin Ghahramani on Gaussian Processes [Accessed: 2016 07 19] (2011).
URL http://mlss2011.comp.nus.edu.sg/uploads/Site/lect1gp.pdf

[3] C. J. Stone, Additive regression and other nonparametric models, The annals of Statistics (1985)
689–705.

22

http://mlss2011.comp.nus.edu.sg/uploads/Site/lect1gp.pdf
http://mlss2011.comp.nus.edu.sg/uploads/Site/lect1gp.pdf


[4] M. K. Titsias, Variational learning of inducing variables in sparse gaussian processes., in: AISTATS,
Vol. 12, 2009, pp. 567–574.

[5] J. Hensman, N. Fusi, N. D. Lawrence, Gaussian processes for big data, in: Conference on Uncer-
tainty in Artificial Intellegence, auai.org, 2013, pp. 282–290.

[6] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, arXiv preprint arXiv:1603.02754.
[7] J. Friedman, T. Hastie, R. Tibshirani, The Elements of Statistical Learning, Vol. 1, Springer series

in statistics Springer, Berlin, 2001.
[8] D. H. Wolpert, Stacked generalization, Neural networks 5 (2) (1992) 241–259.
[9] J. R. Lloyd, Gefcom2012 hierarchical load forecasting: Gradient boosting machines and gaussian

processes, International Journal of Forecasting 30 (2) (2014) 369–374.
[10] D. Duvenaud, Automatic model construction with gaussian processes, Ph.D. thesis, University of

Cambridge (2014).
[11] C. J. Stone, Optimal global rates of convergence for nonparametric regression, The annals of statis-

tics (1982) 1040–1053.
[12] E. Snelson, Z. Ghahramani, Sparse gaussian processes using pseudo-inputs, in: Advances in neural

information processing systems, 2005, pp. 1257–1264.
[13] C. E. Rasmussen, C. K. I. Williams, Gaussian Processes for Machine Learning (Adaptive Compu-

tation and Machine Learning), The MIT Press, 2005.
[14] C. M. Bishop, Pattern recognition, Vol. 128, 2006.
[15] L. Breiman, Random forests, Machine learning 45 (1) (2001) 5–32.
[16] Y. Cao, D. J. Fleet, Generalized product of experts for automatic and principled fusion of gaussian

process predictions, arXiv preprint arXiv:1410.7827.
[17] A. B. Tsybakov, Introduction to nonparametric estimation. revised and extended from the 2004

french original. translated by vladimir zaiats (2009).
[18] L. Györfi, M. Kohler, A. Krzyzak, H. Walk, A distribution-free theory of nonparametric regression,

Springer Science & Business Media, 2006.
[19] Y. Yang, S. T. Tokdar, et al., Minimax-optimal nonparametric regression in high dimensions, The

Annals of Statistics 43 (2) (2015) 652–674.
[20] Y. Yang, D. B. Dunson, et al., Bayesian manifold regression, The Annals of Statistics 44 (2) (2016)

876–905.
[21] A. Zaytsev, E. Burnaev, Minimax approach to variable fidelity data interpolation, in: Artificial

Intelligence and Statistics, 2017, pp. 652–661.
[22] J. Quiñonero-Candela, C. E. Rasmussen, C. K. Williams, Approximation methods for gaussian

process regression, Large-scale kernel machines (2007) 203–224.
[23] A. G. Wilson, Covariance kernels for fast automatic pattern discovery and extrapolation with gaus-

sian processes, Ph.D. thesis, University of Cambridge (2014).
[24] A. Wilson, R. Adams, Gaussian process kernels for pattern discovery and extrapolation, in: Pro-

ceedings of the 30th International Conference on Machine Learning (ICML-13), 2013, pp. 1067–1075.
[25] P. Drineas, M. W. Mahoney, On the nyström method for approximating a gram matrix for improved

kernel-based learning, journal of machine learning research 6 (Dec) (2005) 2153–2175.
[26] A. Rahimi, B. Recht, Random features for large-scale kernel machines, in: Advances in neural

information processing systems, 2008, pp. 1177–1184.
[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pret-

tenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of Machine Learning Research 12
(2011) 2825–2830.

[28] GPy, GPy: A gaussian process framework in python, http://github.com/SheffieldML/GPy (2012–
2014).

[29] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way
to prevent neural networks from overfitting., Journal of Machine Learning Research 15 (1) (2014)
1929–1958.

[30] M. Belyaev, E. Burnaev, Y. Kapushev, Computationally efficient algorithm for gaussian process
regression in case of structured samples, Computational Mathematics and Mathematical Physics
56 (4) (2016) 499–513.

[31] V. Tresp, A bayesian committee machine, Neural Computation 12 (11) (2000) 2719–2741.
[32] M. P. Deisenroth, J. W. Ng, Distributed gaussian processes, in: International Conference on Ma-

chine Learning (ICML), Vol. 2, 2015, p. 5.
[33] S. Park, S. Choi, Hierarchical gaussian process regression., in: ACML, 2010, pp. 95–110.
[34] R. B. Gramacy, D. W. Apley, Local gaussian process approximation for large computer experiments,

23

http://github.com/SheffieldML/GPy


Journal of Computational and Graphical Statistics 24 (2) (2015) 561–578.
[35] R. B. Gramacy, laGP: Large-scale spatial modeling via local approximate gaussian processes in R,

Journal of Statistical Software 72 (1) (2016) 1–46. doi:10.18637/jss.v072.i01.
[36] M. Lichman, UCI machine learning repository (2016).

URL http://archive.ics.uci.edu/ml

[37] L. Targo., Large regression datasets (2016).
URL http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236

[38] B. USDOT, Rita airline delay data download (2016).
URL http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236

24

http://dx.doi.org/10.18637/jss.v072.i01
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236
http://www.transtats.bts.gov/DL_SelectFields.asp?Table_ID=236

	1 Introduction
	2 Problem Formulation
	3 Proposed Solution
	3.1 Estimating Subset Size on the Basis of Inference of a Proportion
	3.2 Empirical Estimation of the Subset Size

	4 Related Work
	5 Effect of the Parameters
	5.1 Datasets
	5.2 Effect of Dataset Size
	5.3 Effect of Subset Size
	5.4 Effect of Number of Estimators

	6 Application of the Algorithm
	6.1 Independent Performance Assessments
	6.2 Feature Relavance
	6.3 Accuracy
	6.4 Combining Estimators

	7 Conclusion
	8 References

