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Abstract. This paper develops a new mathematical-statistical approach to analyze a class of

Flajolet-Martin algorithms (FMa), and provides analytical confidence intervals for the number

F0 of distinct elements in a stream, based on Chernoff bounds. The class of FMa has reached
a significant popularity in bigdata stream learning, and the attention of the literature has

mainly been based on algorithmic aspects, basically complexity optimality, while the statistical

analysis of these class of algorithms has been often faced heuristically. The analysis provided
here shows deep connections with mathematical special functions and with extreme value

theory. The latter connection may help in explaining heuristic considerations, while the first
opens many numerical issues, faced at the end of the present paper. Finally, the algorithms

are tested on an anonymized real data stream and MonteCarlo simulations are provided to

support our analytical choice in this context.
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1. Introduction

Data streams [8] are sequences of objects that cannot be available for random access but must
be analyzed sequentially when they arrive and immediately discharged. Streaming algorithms
process data streams and have reached a very rich audience since the last decades. Typically,
these kinds of algorithms have a limited time to complete their processes and have access to
limited amount of memory, usually logarithmic in the quantity of interest.

One of the main applications in streaming algorithms concerns the problem of counting the
number F0 of distinct elements in a stream. Different solutions have been developed to estimate
F0 conserving memory space.

State of the art. In [14], the authors develop the first algorithm for approximating F0 based
on hash functions. This algorithm was then formalized and made popular in [6], where it was
presented the forefather of the class of algorithms that takes the name of Flajolet-Marin algo-
rithms (here, FMa). Three extensions in FMa were presented in [9], together with a complete
description of the drawback and of the strength of the previous attempts. The first optimal (in
complexity) algorithm has been proposed and proved in [19] and, nowadays, the FMa covers a lot
of applications. As only an example, in [17], an application with multiset framework is developed
from one of the most recent versions of FMa, and it estimates the number of “elephants” in a
stream of IP packets (see also [26]). To summarize the state of the art, the typical sketch-based
algorithms include PCSA [14], LinearCounting [25] (and MultiResBitmap as a generalization
[13]), MinCount [9], LogLog [11], and HyperLogLog [15] (see also a recent generalization in [23]).

The FMa class of algorithms is essentially based on the following concept. When an object
arrives from the stream, one (or more, independent) hash functions are applied to it, and then
the object is immediately discharged. The results of these hash functions are melted with what
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saved in memory (that has a comparable size). The memory is updated, if necessary, with the
result of this procedure, and then the process is ready for the next object. The estimate of F0

may be queried when necessary, and it is a function of the memory content only.
The key point is the fact that the central operation is made with a function which must be

associative, commutative and idempotent, so that multiple evaluations on the same object do not
affect the final outcome, which results in the combination of the hash values of the F0 distinct
objects. A good candidate for such a function is the max function applied to a “signature” of
each object, that is the core of such streaming algorithms. The same idea has recently used
for other distributed algorithms (see [4] for simulation of discrete random variables), where new
entries or single changes should not make all the algorithm starts afresh.

Original Contribution. As stated before, the main contributions in the study of FMa have con-
cerned complexity problems, and a deep mathematical-statistical approach has not yet developed,
even if this class of algorithm is probabilistic. This paper is a first attempt in this direction.
The main contribution here is the analytical and numerical control of FMa based on a pure
mathematical statistic approach, while we leave the measure of the goodness of the FMa to
other studies (see [12] for a continuously updated work). In particular, we give here analytical
confidence intervals for the quantity of interest F0. More precisely, we analyze an extension of
the algorithms given above, and given the significance level α > 0, we will find a, b > 0, function
of the memory content, such that

(1) P (a ≤ f(F0) ≤ b) ≥ α,

where f is a given, strictly increasing, special function. It is important to note that the ap-
proximations for F0 as in (1) given in literature are not satisfactory. In some situations, the
asymptotic behavior of the interval is calculated through a Central Limit Theorem (see [15]),
but the huge skewness implicit in the algorithm variables (even in logarithmic scale) makes the
Central Limit Theorem questionable. To overcome this observation, Chebichev and Markov
bounds are sometimes used to compute confidence intervals (see the papers cited in [19]), where
the results are analyzed in terms of optimal complexity (in space and time) without exploiting
possible benefits in reducing the magnitude of the interval length.

These facts suggest us to not base the confidence interval on statistical asymptotic properties,
but to build analytical confidence intervals based on concentration inequalities. In particular,
we use here Chernoff bounds, and we give suitable approximations of the resulting inequalities.
We show with MonteCarlo simulations that the analytical approximation does not affect the
result significantly. Moreover, we show that the same result derives from the use of the Chernoff
bounds on the limiting distribution that would be obtained with extreme value theory.

It is not surprising that some new analytical special functions appear in the analysis of the
algorithm. A particular modification of the analytical extension h1(x) of the harmonic numbers
function arises here as the mean value of a crucial quantity, so that hp(ln(2)F0) is a quantity
that appears in the paper.

In addition, we discuss a numerical implementation of the analytical confidence intervals that
can be run in real time. To do so, we analyze deeply all the relevant nonlinear problems that
must be solved to build such confidence intervals. Then we provide the necessary numeric bounds
to apply a new algorithm with a cubic rate of convergence, that has been tested successfully on
a real anonymized data stream. As a byproduct, we give the algorithm that calculates the
log-shortest confidence interval for F0 based on the previous bounds.

Organization of the paper. The paper is structured in the following way. In the next Section 2 we
provide the quantities (parameters and statistics) used in the paper. The description of both the
streaming and the querying algorithms is given in the Section 3. The main result, Theorem 4.1, is
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given at the beginning of the Section 4, together with the connection with the asymptotic results
of the extreme value theory in Section 4.1. The Section 5 shows the goodness in the choice of
the analytical approximations given in the proof of the main theorem. The algorithms given in
this paper are tested on Twitter data and on a real anonymized data stream in Section 6. In
Section 7 we face numerically some nonlinear equations related to the querying phases of the
algorithm. The mathematical properties of the special functions used in this paper, the details
of the proof of the main results, and the technicalities needed to find lower and upper bounds
contained in Section 7 are left to Supplementary Material [5]. When necessary, the reference to
the Supplementary Material are proceeded with a S, so that (S:A.1) will refer to the equation
[5, (A.1)].

2. Description of the parameters and statistics of this paper

The quantity F0 denotes here the quantity of interest. It gives the unknown number of distinct
elements in a real-time stream of possible repeating objects, and it is set as unknown parameter.
The stream data is defined here as a sequence of objects {o1, o2, . . .}.

We recall that FMa bases the F0 estimate by counting the maximum number of leading zeros
in the hash values of the stream objects. One needs log2(F0)+k bits in the hash function, where
the constant k ensures a probability of the order of exp(−2k) of having all bits equal to 0 in some
hash values.

In this paper the estimation is based on c0 given independent hash functions {Hc, c =
1, . . . , c0}. The main statistics of the first real-time phase are extracted from the values that
are resulting in applying these functions on each object o of the data stream. The results of the
hash mapping {Hc(o), c = 1, . . . , c0} are used to fill in-memory matrices X and Z of common
size 2r0 rows and c0 columns (the total size of such matrices will be denoted by a0 = 2r0c0).
The content of X and Z are then used during the querying phase to provide the confidence in-
terval. This memory data structure is a generalization of a HyperLogLog data structure (see
[11, 19, 12]). The experimenter may choose the non-negative integer number r0, together with
another non-negative integer number z0, to increases the accuracy of the estimates, at the cost
to be sure that each hash function provides a sequence of bits longer than r0 + z0 + log2(F0) + k,
with k as above.

Guiding example. In a word count streaming problem, the word pippo is analyzed and is mapped
by first hash function H1 to H1(pippo) = 0xd012f681 (hexadecimal), that has a binary represen-
tation given by

H1(pippo) = 110100000001001011110110100000012.

Then, with r0 = 4 and z0 = 6,

• the first r0 = 4 bits 11012 = 13 of H1(pippo) are used to build the first “random” number
R = 1 + 13 ∈ {1, . . . , 2r0},

• the successive z0 = 6 bits 0000002 = 0 set the second quantity Z = 0 ∈ {0, . . . , 2z0},
• the remaining bits 0100101 . . . are used to extract the number of the position of the first

bit-one: X = 2 ∈ {1, 2, . . .}.
The values of R, X and Z for the distinct objects of two datasets are plotted in Figure 4.

Summing up, we denote by Hc(o) the value of the c-th hash function applied to the object o,
and it will consist of a sequence of bits: Hc(o) = (s1, s2, . . .). On this sequence, three statistics
are extracted: R = R(o, c) (from the first r0 bits), Z = Z(o, c) (from the subsequent z0 bits)
and X = X(o, c) (from the remaining bits). The quantities X(o, c) and Z(o, c) will update the
elements XR,c and ZR,c, respectively, and then R,X,Z are discharged.

During the second querying phase we build the confidence intervals. In this phase, the central
mathematical object are the statistics {Yr c, r = 1, . . . , 2r0 , c = 1, . . . , c0}. Each variable Yr c is
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Data: Data Stream of Objects {o1, o2, . . . , }
Input: c0 hash functions, r0 ≥ 0 and z0 ≥ 0 small integers

Output: Two matrices X and Z with r0 = 2r0 rows and c0 columns

Set X ≡ 0, Z ≡ 2z0 − 1 (binary);

foreach o in Stream do
for c← 1 to c0 do

/* compute the c-hash function on o, obtaining a sequence (s1, s2, . . .) of 0 and 1 */

(s1, s2, . . .)← Hc(o);

R← 1 +
∑r0

r=1 sr2r−1 ; . R ∈ {1, . . . , 2r0}
Z ←

∑z0
z=1 sr0+z2z0−z ; . Z ∈ {0, . . . , 2z0 − 1}

X ← inf{n ≥ 1: sr0+z0+n = 1} ; . P (X + r0 + z0 > length of hash)� 1

if X > XRc then
XRc ← X;

ZRc ← Z;

else if X = XRc then
ZRc ← min(Z,ZRc);

end

discharge o, R, X, Z;

end

Algorithm 1: Streaming algorithm to store the data in memory. X is an integer-valued
matrix, whose values are of the order of log2(F0), while Z has values in 0, . . . , 2z0 − 1

a measurable function of the quantities Xr,c and Zr,c, and the confidence interval at level α is
made on the mean value Y of these statistics.

3. Description of the algorithm

The streaming algorithm that updates X and Z in memory is given in Algorithm 1.
The flow of information is as follows. An object o arrives in the stream data. Each hash

function Hc applied to o produces a sequence (s1, s2, . . .) of bits, from which we extract R =
1 +

∑r0
r=1 sr2

r−1, Z =
∑z0
z=1 sr0+z2

z0−z and X = inf{n ≥ 1: sr0+z0+n = 1}:

(2) Hc(o) =
r0 bits

01 · · · 101︸ ︷︷ ︸
R∈{1,...,2r0}

z0 bits
10 · · · 01︸ ︷︷ ︸

Z

X bits
00 · · · 0001︸ ︷︷ ︸
X∈{1,2,...}

01101000 · · ·︸ ︷︷ ︸
not used

The data are then updated according to the following procedure:

if X < XRc: do nothing;
if X > XRc: set XRc = X and ZRc = Z;
if X = XRc: set ZRc = min(ZRc, Z).

Guiding example (Continued). With the guiding example started in the previous section, the
result of the c = 1-st hash function applied to the word pippo (R = 14, Z = 0 and X = 2) will
cause a comparison with the content of XR=14,c=1 and ZR=14,c=1, and then

if 2 < X14,1: do nothing;
if 2 > X14,1: set X14,1 = 2 and Z14,1 = 0;
if 2 = X14,1: set Z14,1 = min(Z14,1, 0).

The querying algorithm first produces the matrix Y = {Yr c, r = 1, . . . , 2r0 , c = 1, . . . , c0}
with the contents of X and Z:

(3) Yr c = Xr c − log2(1 + 2−z0Zr c),
see Algorithm 2. Then the arithmetic mean Y of the a0 = c02r0 entries of Y is evaluated to build
a α confidence interval. As an example, in Algorithm 3, we compute a α-confidence interval for
F0 of the form (0,upper), based on the Theorem 4.1.
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Input: X and Z, output of Algorithm 1

Output: Y = {Yr c, r = 1, . . . , 2r0 , c = 1, . . . , c0}
Set Ỹ = 0;

for c← 1 to c0 do
for r ← 1 to 2r0 do

y ← 2−z0Zr c ; . y ∈ [0, 1− 2−z0 ] ⇒ (1 + y) ∈ [1, 2)

Yr c ← Xr c − log2(1 + y) ; . Xr c − log2(1 + y) ∈ (Xr c − 1,Xr c]

end

end

return Y = (Yr c)r=1,...,2r0 ,c=1,...,c0 ;

Algorithm 2: Querying algorithm to extract Y, starting from the memory content X and Z
given in Algorithm 1

Guiding example (Continued). Again, if we use the guiding example and we suppose that X14,1 =
2 and Z14,1 = 0, we obtain the quantity Y14,1 = 2 − log2(1 + 2−6 · 0) = 2. Note that we always
have that 1 ≤ 1 + 2−z0Zr c < 2 which implies that Xr c − 1 < Yr c ≤ Xr c. The values of Yr c for
two datasets are plotted in Figure 4 (bottom-right).

Input: 1) Y = {Yr c, r = 1, . . . , 2r0 , c = 1, . . . , c0}, output of Algorithm 2.

2) the confidence α ∈ (0, 1) -usually α ∈ [0.9, 0.995]-
Output: A α confidence interval for F0 of the form (0, upper)

Set y = − log(1− α)/(2r0c0);

Set x← InvAlphaMinus(y) ; /* Solve (in x) the problem y − ((x− γ)t− − ln(Γ(1 + t−))) = 0, with

ψ(1 + t−) = x− γ */

Set ŷ ← 0;

for c← 1 to c0 do
for r ← 1 to 2r0 do

ŷ ← ŷ + Yr c.

end

end

Y ← ŷ/(2r0c0);

Set z ← Y log(2) + x+ 2−z0 ;

Set p0 ← 2−r0 ;

return upper = invHpM(z, p0) ; . Solve (in x) the problem z − hp0 (x) = 0

Algorithm 3: Querying algorithm that builds a α-confidence interval for F0 of the form
(0,upper), based on the Theorem 4.1

Finally, note that the data structure becomes that of [12] when c0 = 1 and z0 = 0 (the content
of Z is not significant and the update reduces to XRc ← max(X,XRc), without the if-else loop).
When, in addition, r0 = 0 the data structure reduces to the original one [16].

3.1. Mathematical and Statistical analysis of the algorithm. Given any object o in the
data stream, the streaming algorithm given in Algorithm 1 extracts three measurable statistics
R, X and Z. The first one is used to augment artifically the number of recorded statistics as in
[12], while the latter ones deserve a more accurate explanation. Take two objects o1 and o2, and
assume that we collect (R1, X1, Z1) from the first object, (R2, X2, Z2) from the second one with
the c-th hash function. If, by chance, R1 = R2 = r, then the contribution of these two objects
to Y in the subsequent Algorithm 2 will be

Yr c = max
(
X1 − log2(1 + 2−z0Z1), X2 − log2(1 + 2−z0Z2)

)
as a consequence of (3) and of the definition of X and Z. The max function here is the core of
this algorithm, being a binary operation that has associativity, commutativity, and idempotence
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properity. Algebraically speaking, a set S with such a binary operation ◦ is called semilattice.
The key point is that semilattices (S, ◦) are one-to-one related to partially ordered relations
(S,≥): a ≥ b ⇐⇒ a ◦ b = a, so that they induce set operation instead point ones. In other
simpler words, when you evaluate the semilattices operator on different, even repeated objects,
the result is independent of the order and of the repetitions of the objects (as the max function
does). This fact is a mathematical key point when you want to estimate a function of the different
objects without registering the different objects you have seen so far. As a direct consequence,
the Algorithm 1 may be thought as applied only once to each of the F0 different objects.

From a statistical point of view, we will assume that each hash function generates an inde-
pendent sequence of bits that are equally distributed among all the possible outcomes. In other
words, we assume that the set {Hc(o), c = 1, . . . , c0, o different objects} is made by a sequence
of independent and identically distributed vectors of bits, each vector having bit components
independent and equally distributed on {0, 1}. The sequence of bits si in (2) is hence distributed
as a Bernoulli of parameter 1/2, and it is independent from the others.

Summing up, for each hash function Hc and any object o belonging to data stream, the three
statistics R = R(c, o), X = X(c, o) and Z = Z(c, o) are collected, and the matrices X and Z
updated. Then, during the querying phase, the statistics

(4) Yr c = max
o : R(c,o)=r

(
X(c, o)− log2(1 + 2−z0Z(c, o))

)
is computed.

We now recall that, by definition, 2−z0Z(c, o) = 2−z0
∑z0
z=1 sr0+z2

z0−z =
∑z0
z=1 sr0+z2

−z.
This quantity may be seen as a truncated series. We complete the bit sequence (sr0+1, . . . sr0+z0)
and we form an i.i.d. sequence of equally distributed bits (s∗1, . . . s

∗
z0 , s

∗
z0+1 . . .), where s∗z = sr0+z

if z ≤ z0. With this notation

2−z0Z(c, o) =

z0∑
z=1

s∗z2
−z,

the random variable

Z̄(o, c) =

∞∑
z=1

s∗z2
−z

is uniformly distributed on (0, 1) and 0 ≤ Z̄(o, c) − 2−z0Z(o, c) < 2−z0 . More remarkable, if we
denote by

Ȳ (o, c) =
(
X(c, o)− log2(1 + Z̄(o, c)),

then the random variable

Ū(o, c) = 2−Ȳ (o,c) = 2−X(c,o)
(
1 +

∞∑
z=1

s∗z2
−z) = 2−X(c,o) + 2−X(c,o)

∞∑
z=1

s∗z2
−z

=

X(c,o)∑
x=1

sr0+z0+x2−x +

∞∑
z=1

s∗z2
−z+X(c,o),

is uniformly distributed on (0, 1), which immediately implies that Ȳ (o, c) = − log2(Ū(o, c)) =

− log(Ū(o,c))
log(2) is an exponential random variable with parameter λ0 = log(2). The fact here is

that, instead of measuring Ȳ (o, c), we can only collect X(c, o) − log2(1 + 2−z0Z(c, o)), due to
computational limitations, and this introduces a further bias. If we could have measured Ȳ (o, c),
the quantity (4) would have been

Ȳr c = max
o : R(c,o)=r

(
X(c, o)− log2(1 + Z̄(c, o))

)
= max
o : R(c,o)=r

(
Ȳ (o, c)

)
6



that is not too far from Yr c, since we always have that 0 < Yr c − Ȳr c <
2−z0

λ0
(see [5, Sec-

tion S:B.1]). Finally, since

Ȳr c = max
o : R(c,o)=r

(
Ȳ (o, c)

)
= max

o : R(c,o)=r
o different objects

(
Ȳ (o, c)

)
,

the independence of the hash functions and of their results on different objects implies that
{Ȳr c, r = 1, . . . , 2−r0 , c = 1, . . . , c0} are a collection of independent random variables, each of one
being distributed as the maximum of a random number mr c of independent exponential random
variables, where

mr c = #
{
o ∈ {F0 different objects} : R(o, c) = r

}
.

It is obvious that, for any fixed c,
∑2r0

r=1mr c = F0 and, moreover, since R = R(o, c) is uniformly
distributed on 1, . . . , 2r0 , then the c0 random vectors {mc = (m1 c, . . . ,m2r0 c), c = 1, . . . , c0} are
distributed as multinomial vectors of parameters F0 and 2−r0 , and independent of each other.

We have proved the following result.

Lemma 3.1. There exists a family{
Ȳ (o, c), o ∈ {F0 different objects}, c ∈ {1, . . . , c0}

}
of independent and identically distributed random variables with exponential distribution of pa-
rameter λ0 = log 2, such that, if we define,

Ȳr c = max
{o : R(o,c)=r}

(Ȳ (o, c)),

then, uniformly in r and c,

0 < Yr c − Ȳr c ≤ 2−z0

λ0
,

where each Yr c is defined in (4). Moreover, for any fixed c ∈ {1, . . . , c0}, define

mr c = #
{
o ∈ {F0 different objects} : R(o, c) = r

}
.

Then the random vectors {mc = (m1 c, . . . ,m2r0 c), c = 1, . . . , c0} are i.i.d, distributed as multi-
nomial vectors of parameters F0 and 2−r0 . Conditioned on mc, the random variables {Ȳr c, r =
1, . . . , 2r0} are independent.

4. Confidence interval for F0

The main result of this section is the construction of a analytic confidence interval for F0,
based on Y explained in the previous section. This interval is based on some special functions.
The interested reader may find details in [5, Section A].

Theorem 4.1. Let Y be collected as in Section 3, and define

Y =

∑2r0

r=1

∑c0
c=1 Yr c

2r0c0
.

Then (
h
−1
p0 (λ0Y − hd),+∞

)(
0,h−1

p0 (λ0Y + hu + 2−z0

λ0
)
)

(
h
−1
p0 (λ0Y − hd),h−1

p0 (λ0Y + hu + 2−z0

λ0
)
)

are confidence intervals for the unknown parameter F0, where

• p0 = 2−r0 , λ0 = log(2);
7



• the function hp0 : R+ → R+ is defined as

hp(x) =

∫ 1

0

1− (1− p+ pt)x

1− t
dt,

• the levels of confidence are α+, α−, and (α+ + α−) respectively, where

α+ = 1− exp
(
− 2r0c0

[
(hd + γ)t+ − ln Γ(1− t+)

])
, t+ = 1− ψ−1(−hd − γ);

α− = 1− exp
(
− 2r0c0

[
(hu − γ)t− − ln Γ(1 + t−)

])
, t− = ψ−1(hu − γ)− 1;

γ is the Euler constant and ψ is the digamma function.

Sketch of the proof of Theorem 4.1. We first note that, by Lemma 3.1, if we define

(5) Ȳ =

∑2r0

r=1

∑c0
c=1 Ȳr c

2r0c0
,

then 0 ≤ Y − Ȳ < 2−z0

λ0
, and then it is sufficient to prove that(

h
−1
p0 (λ0Ȳ − hd),+∞

)(
0,h−1

p0 (λ0Ȳ + hu)
)(

h
−1
p0 (λ0Ȳ − hd),h−1

p0 (λ0Ȳ + hu)
)

are confidence intervals for the unknown parameter F0 at the same levels given in the theorem.
To prove this last assertion, we prove the following conditions that result sufficient:

P
(
h
−1
p0 (λ0Ȳ − hd) ≥ F0

)
≤ 1− α+ ;

P
(
h
−1
p0 (λ0Ȳ + hu) ≤ F0

)
≤ 1− α− .

Observe that, since the function hp0 is invertible with continuous inverse (see [5, Section S:A]),
we get

P
(
h
−1
p0 (λ0Ȳ − hd) ≥ F0

)
= P

(
Ȳ ≥ hp0(F0) + hd

λ0

)
;

P
(
h
−1
p0 (λ0Ȳ + hu) ≤ F0

)
= P

(
Ȳ ≤ hp0(F0)− hu

λ0

)
;

and hence the final result is a consequence of the following steps, that are proved in [5, Sec-
tion S:B.2].

First step: the following two inequalities

P
(
Ȳ ≥ E(Ȳ) +

hd
λ0

)
≤ 1− α+;

P
(
Ȳ ≤ E(Ȳ)− hu

λ0

)
≤ 1− α−

are consequence of Chernoff bound inequalities;
Second step: the special function hp0 is such that

E(Ȳ) =
hp0(F0)

λ0
. �
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4.1. Connection with extreme value theory. The main result of this paper is based on the
the fact that the random variables (Ȳr c)r,c are independent, conditioned on mc, see Lemma 3.1.
As discussed in Section 3.1 and used in [5, (S:B.1)], these variables are given as the maximum
of a random number of independent exponentially distributed random variables

Ȳr c = max
o1,...,omr c : R(c,oj)=r
oj different objects

(
Ȳ (oj , c)

)
,

A natural question is the relation of such considerations with the extreme value theory. The
well-known Fisher–Tippett–Gnedenko theorem [18] provides an asymptotic result, and it shows
that, when F0 → ∞, if there are sequences aF0

and bF0
such that (Ȳr c − aF0

)/bF0
converges in

law to a random variables Z, then Z must be Gumbel, Fréchet or Weibull (Type 1,2 or 3). In
the proof of Theorem 4.1, we can recognize that

E(es(Ȳr c−E(Ȳr c))) =

mr c∏
j=1

e
− s
jλ0

1− s
jλ0

−→
F0→∞

(
Γ(1− s

λ0
)e
−γ s

λ0

)
= E(eZ),

from which we can recognize that Z has a Gumbell law. Since the Chernoff bounds on the mean
of such variables gives the same concentration inequalities as in Theorem 4.1, our result gives
also the confidence interval based on the Chernoff bounds of the asymptotic distribution based
on the extreme value theory. In addition, note that E(es(Ȳr c−E(Ȳr c))) ↗ E(eZ), meaning that
the limit bounds is a analytic upper bound for the concentration inequality, that is the key point
in the proof of Theorem 4.1.

5. Analytical asymptotic discussion

In this section we discuss the accuracy of the analytical approximation given in the main
result to show the appropriateness in this context.

The confidence intervals in this paper are based on the uniform bounds given in the proofs of
Theorem 4.1 with the following inequalities:

(6)

for α+ :

mr c∏
j=1

e−
t
j

1− t
j

≤
( ∞∏
j=1

e−
t
j

1− t
j

)
= Γ(1− t)e−γt, t ∈ (0, 1);

for α− :

mr c∏
j=1

e
t
j

1 + t
j

≤
( ∞∏
j=1

e
t
j

1 + t
j

)
= Γ(1 + t)eγt, t > 0.

We recall that mr c is the (random) number of object assigned to register r by the hash function
c. In Figure 1 we underline that this approximation is good for small values of t and big mr c.
To show that the uniform bound in this paper does not affect significantly the Chernoff bounds,
we compare for different values of hu and hd:

(7)

for α+ : min
t∈(0,1)

( c0∏
c=1

2r0∏
r=1

e−thd
mrc∏
j=1

e−
t
j

1− t
j

)
vs.

(
Γ(1− t+)e−(γ+hd)t+

)c02r0

;

for α− : min
t>0

( c0∏
c=1

2r0∏
r=1

e−thu
mrc∏
j=1

e
t
j

1 + t
j

)
vs.

(
Γ(1 + t−)e(γ−hu)t−

)c02r0

.

For r0 ∈ {0, . . . , 4}, c0 ∈ {1, . . . , 4}, and α ∈ {.9, .95, .975, .99}, we choose the values of hu and
hd for which (

Γ(1− t+)e−(γ+hd)t+
)c02r0

= 1− α± =
(

Γ(1 + t−)e(γ−hu)t−
)c02r0

.
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Figure 1. Ratio between the finite products and the series quantities given in
(6), for different values of mr c and t, expressed as percentage of Γ(1 ∓ t)e∓γt

given by
∏ma

1
e
∓ t
j

1∓ tj
. The different lines refer to different values of mr c, given in

the legend. Left: percentage of approximation for Γ(1−t)e−γt, t ∈ (0, 1). Right:
percentage of approximation for Γ(1 + t)e+γt, t ∈ (0, 5).

Figure 2. Accuracy in the use of the analytical limit in (7) (MonteCarlo
simulation of {mc, c = 1, . . . , c0}). Each point refers to a different choice
of α+ (light blue) or α− (light red), r0 ∈ {0, . . . , 4}, c0 ∈ {1, . . . , 4} and
F0 ∈ {50, 100, 500, 1000, 5000, 10000, 50000, 100000}. Left: linear dependence
in log-log scale (y = 1.91 + 1.88x) between the precision in using the exact for-
mula (x is the length of the 3σ confidence interval of A±) and the accuracy of
the estimation of α with gamma function instead of the exact formula (y is the
distance between α calculated with the gamma function and the farthest end-
point of the 3σ exact confidence interval). Rigth: dependence in log-log scale of
y/x2 with respect to x as function of different α±.

Then, for any F0 ∈ {50, 100, 500, 1000, 5000, 10000, 50000, 100000}, with a MonteCarlo procedure,
we estimate the mean value and the standard deviation of the random quantities

A− = min
t∈(0,1)

( c0∏
c=1

2r0∏
r=1

e−txd
mrc∏
j=1

e−
t
j

1− t
j

)
and A+ = min

t>0

( c0∏
c=1

2r0∏
r=1

e−txu
mrc∏
j=1

e
t
j

1 + t
j

)
10



by simulating different values of the multinomial vectors {mc, c = 1, . . . , c0}. As expected, all
the simulated quantities above result smaller than 1 − α. Then, for each r0, c0, α, F0 we have
built a 3σ confidence interval [al−, a

u
−] and [al+, a

u
+] for A− and A+, respectively. All the results

are presented in Figure 2. On the left-hand side, it is drawn the scatter-plot of

x = range of confidence interval = au+ − al+ (au− − al−, respectively);

y = maximum imprecision = a+ − al+ (a− − al−, respectively);

which shows a good linear dependence in a log-log scale. As the linear coefficient is close to 2,
on the right-hand side, the scatterplot of y/x2 vs. x confirms this scale of dependence, and it
suggests that the variability of the constant depends mainly on α, firstly on the choice of the
sign (α+ or α−), and then on its value.

A finer analysis shows that, when F0 ≥ 500, the maximum imprecision is less than 0.00683
(with r0 = 4, c = 1, p− = 0.1, N0 = 500), becoming less than 6.7 · 10−5 for F0 ≥ 50000 (again,
r0 = 4, c = 1, p− = 0.1 but N0 = 50000). In other words, the uniform bounds given in (7)
appear adequate in this context.

6. Application on a real data-stream

We test the algorithms described above on Twitter data (with unique user IDs F0 = 454, 176)
and on an anonymized real time data stream, made by 196, 432, 300 objects, of which F0 =
1, 407, 593 distinct.

The distribution of the occurrences of the second bigger database may be seen as a power law
distribution, as shown by the log-log frequency rank plot (see Figure 3).

Figure 3. Frequency rank plot of the frequency count of the F0 = 1, 407, 593
distinct objects in the real data stream. The log-log linear plot indicates the
good fit to the power law distribution.

The data are divided into compressed files (100 for Twitter data and 1, 000 for real time),
and analyzed with Apache Spark on R. The SHA256 function sha2(Id, 256) has been applied
to each object, and the 256-bits output has been divided into 4 equal parts, each of one being
certified to be a sequence of i.i.d. Bernoulli random variables (see [20, 21, 22]). With such a
division, we analyze our data-stream with c0 = 4 hash functions. Moreover, since Spark codes
sha2 output as a hexadecimal string, we used the first character (4 bits) to define r0 = 4,
so that we have a0 = 4 · 24 = 64 registers where we store the values of Y and Z during the
streaming algorithm, and the last 2 characters to define z0 = 8, noticing that the remaining 13
characters (52 bits) are sufficient for the definition of X in this application. These 13 hexadecimal

11



characters are converted into a binary string and the number of leading 0s are computed with
52-length(binary string).

Figure 4. Randomness of hash generations in the first file (out of 1, 000). Top
left: check of theoretical uniform distribution of the quantity R evaluated only
on the different objects (domain made by 24 = 16 possible different outcomes).
Top right: check of theoretical uniform uniform distribution of the quantity Z
evaluated only on the different objects (domain made by 28 = 256 possible dif-
ferent outcomes). Bottom left: check of theoretical distribution of the quantity
X evaluated only on the different objects compared with the expected geomet-
ric distribution. Bottom right: spread of the quantities Y divided by the hash
function: each boxplot groups {Yr c, r = 1, . . . , 24} for different c = 1, 2, 3, 4.

Goodness of fit of statistical distributions. Before giving the overall results, we analyze the
results of a single file for Twitter and “real time” datasets. The stream data {o1, o2, . . .} is made
by 49, 999 objects (resp. 196, 433), made by 15, 999 different repeated objects (resp. 18, 094). Each
object is signed with 4 hash functions. We check the uniform distribution on the distinct objects
for the random values of r ∈ {1, . . . , 2r0 = 16} (Twitter: χ2 = 17.608, df = 15, p-value = 0.2838)
(real time: χ2 = 10.597, df = 15, p-value = 0.7808) and of z ∈ {1, . . . , 2z0 = 256} (Twitter:
χ2 = 298.91, df = 255, p-value = 0.03062, read data: χ2 = 286.51, df = 255, p-value = 0.08521),
and of the geometric distribution of X (Twitter: χ2 = 8.7522, df = 12, p-value = 0.7239,
real time: χ2 = 7.1689, df = 12, p-value = 0.8463). We plot the corresponding histograms
in Figure 4, together with the boxplots of the registers Y = Yr c grouped by c, the hash key
(ANOVA test: Twitter F3,60 = 0.437, p-value = 0.728, real time F3,60 = 1.095, p-value = 0.358).
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Accuracy of the algorithm. We then analyze each of the compressed files, that contains a
different value of distinct object F0. The distribution of the true F0 is plotted in Figure 5 (top-

left). For each of this file, we also estimate F0 with F̂0 = h
−1
p0 (λ0Y), and we compute the relative

accuracy of each estimation with F̂0/F0. The distribution of the relative accuracy is plotted
in Figure 5 (top-center) for both the databases. In Figure 5 (top-rigth), the scatterplot of the

accuracy F̂0/F0 vs. F0 shows that there is not association between these two variables (Twitter
R2 = 0.008839, p-value = 0.3754, real time R2 = 0.0004698, p-value = 0.494).

Figure 5. Analysis of accuracy of the estimations. Top-left: histogram of the
number F0 of distinct object in each file. Top-center: histogram of the percent
accuracy F̂0/F0 of the estimates of F0 made on each file. Top-right: scatterplot

of the relative accuracy F̂0/F0 vs. the number F0 of distinct object in each file.
Bottom-left: evolution of the confidence interval for F0 during the analysis of
the data in the first file (in black: true value of F0). Bottom-right: evolution of
the confidence interval for F0 during the analysis of all the streaming data (in
black: true value of F0).

Finally, we analyze the data sequentially as a data stream. We check that the 90% confidence
interval is consistent all along the process. In Figure 5 it is shown the evolution of the confidence
interval at the beginning of the stream (during the first file, bottom left) and its consistency
as the number of files increases (log-scale, bottom left). As expected, the cold-start effect is
mitigated since the approximation is not made on asymptotic properties.

7. Theoretical resolution of computational aspects

We recall that we build confidence intervals for F0 based on the output Y of Algorithm 2.
For example, Algorithm 3 shows how to compute the confidence interval of the form (0,upper)
and it faces two nonlinear problems. Analogous procedures can be used to compute confidence
intervals of other forms. The key computational point is the necessity of numerically solving
some nonlinear equations that involve mathematical special functions.

13



In the following sections, we state the relevant inequalities that can be used to find the root
of f(x) = 0 in our context, with the Halley’s method [24]. This iterative method is given by

xn+1 = xn −
2f(xn)f ′(xn)

2
(
f ′(xn)

)2 − f(xn)f ′′(xn)
,

it is essentially the Newton method applied to the function g(x) = f(x)√
|f ′(x)|

, and it achieves a

cubic rate of convergence in the neighborhood of the solution, see [3].
In addition, we give accurate lower and upper bounds for the solution, that can be shown to

be contained in the basin of attraction of the solution. Note that these bounds can be used also
with a much simpler and robust bisection method, which has as the counterpart a linear rate of
convergence.

7.1. The problem ψ(x)− y = 0. We recall here that the digamma function ψ : (0,∞)→ R is
defined as the logarithmic derivative of the Γ function, see [1, §6.3], and it satisfies the relation

(8) ψ(x+ 1) = ψ(x) + 1
x .

In addition ψ is a strictly monotone, concave function, with limt→0+ ψ(t) = −∞, ψ(1) = −γ and
ψ(t) = log(t) + o(1) when t → ∞ (see, for example, [10]). Finally, it is implemented in all the
recent math packages together with its first and second derivative functions ψ1 and ψ2.

As shown in Section S:C.1, we have

(9) ln(x− 1
2 ) < y < ln(x), ey < x < ey + 1

2 , ∀x > 1
2 ,∀y = ψ(x).

7.2. The problem hp(x)−y = 0. First note that hp(x),h′p(x) and h′′p(x) may be computed with
with arbitrary precision, because of (S:A.2) and (S:A.3) and the fact that a quad-double precision
algorithm to calculate Lerch’s transcendent of real arguments have been already developed, see
[2].

For p ∈ (0, 1), as shown in [5, Section S:C.2], we have

(10)
ey−γ

p
− 1

2
≥ x ≥

{
ey−γ

p − e+ 1
ln(1−p) if y > log

(
γ + p( 1

2 −
1

(e−1) ln(1−p) )
)
;

ey−γ − 1 otherwise.

7.3. The problem y = (x− γ)t(x)− ln Γ(1 + t(x)), where t(x) = ψ−1(x− γ)− 1. Note that,
if g(x) = (x− γ)t(x)− ln Γ(1 + t(x)), then

(11) g′(x) = t(x) + t′(x)(x− γ − ψ(1 + t(x))) = t(x),

since, by definition of t(x), ψ(1 + t(x)) = x−γ. Then the formula of the derivative of the inverse
function gives

g′′(x) = t′(x) =
1

ψ1(ψ−1(x− γ))
=

1

ψ1(1 + t(x))
.

As shown in [5, Section S:C.3], we have

(12)

√
1

50
y < x < π

√
2

3
y, if y < 3;

2

3

(
log
(
y +

1

2

)
+ γ
)
< x < 2

(
log
(4

3
y + 1

)
+ γ
)
, if y ≥ 3.
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7.4. The problem y = (x+ γ)t(x)− ln Γ(1− t(x)), where t(x) = 1−ψ−1(−x− γ). Note that,
if g(x) = (x+ γ)t(x)− ln Γ(1− t(x)), then

(13) g′(x) = t(x) + t′(x)(x+ γ − ψ(1− t(x))) = t(x),

since, by definition of t(x), ψ(1 − t(x)) = −x − γ. Then the formula of the derivative of the
inverse function gives

g′′(x) = t′(x) =
1

ψ1(ψ−1(−x− γ))
=

1

ψ1(1− t(x))
.

As shown in [5, Section S:C.4], we have

(14) max
(
− ln(1− C)− γ, π

2

6
C
)
< x < 2

√
(y + 1)2 − 1,

where

C =

√√√√√1−
−(y2 −

6+π2

12 ) +
√

(y2 −
6+π2

12 )2 + 4 18−π2

12

2 18−π2

12

∈ (0, 1).

7.5. Minimum log-length interval. In this section, we show how to numerically compute the
minimum length interval, in log-scale, for a given confidence α, based on the inequalities given
in Theorem 4.1. The probem is set as follows: given α ∈ (0, 1), r0 ≥ 0, c0 ≥ 1, we want to solve
the nonlinear minimization problem:

min(hd + hu)

subject to
α+ = 1− exp

(
− 2r0c0

[
(hd + γ)t+ − ln Γ(1− t+)

])
, t+ = 1− ψ−1(−hd − γ);

α− = 1− exp
(
− 2r0c0

[
(hu − γ)t− − ln Γ(1 + t−)

])
, t− = ψ−1(hu − γ)− 1;

α+ + α− ≥ 1 + α;

hd, hu ≥ 0.

The two values α+ and α− are monotone functions of hd and hu, respectively, as a consequence
of (13) and (11). As a consequence, the minimum is attained when α+ + α− = 1 + α. Then,
if we set x = 1 − α+, the problem above may be rewritten in terms of x: given α ∈ (0, 1) and
a0 = 2r0c0 ∈ {1, 2, . . .}, find

min(g(x)) = min
(
y−1

+ (− log x
a0

) + y−1
− (− log(1−α−x)

a0
)
)

subject to 
y+(h) = (h+ γ)t+ − ln Γ(1− t+), t+ = 1− ψ−1(−h− γ);

y−(h) = (h− γ)t− − ln Γ(1 + t−), t− = ψ−1(h− γ)− 1;

0 ≤ x ≤ 1− α.

Differentiating g with respect to x, since y′±(h) = t±(h) by (13) and (11), we obtain,

g′(x) = − 1

a0x

1

t+

(
y−1

+

(
− log x

a0

)) +
1

a0(1− α− x)

1

t−

(
y−1
−

(
− log(1−α−x)

a0

))
which is null when the following equation is zero

f(x) = xt+

(
y−1

+

(
− log x

a0

))
− (1− α− x)t−

(
y−1
−

(
− log(1− α− x)

a0

))
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Call

t̂+ = t̂+(x) = t+

(
y−1

+

(
− log x

a0

))
, t̂− = t̂−(x) = t−

(
y−1
−

(
− log(1− α− x)

a0

))
,

ψ1(x) = dψ(x)
dx and ψ2(x) = dψ1(x)

dx , then

d
t̂+(x)

dx
= − 1

a0x

1

t̂+ψ1(1− t̂+)
, d

t̂−(x)

dx
= +

1

a0(1− α− x)

1

t̂−ψ1(1 + t̂−)
.

The problem is then to find the solution for the nonlinear problem f(x) = 0 that may be solved
with the Halley’s method that involves the problems seen above, noticing that

f(x) = xt̂+ − (1− α− x)t̂−,

f ′(x) = t̂+ −
1

a0t̂+ψ1(1− t̂+)
+ t̂− −

1

a0t̂−ψ1(1 + t̂−)

f ′′(x) = t′+

(
1 +

ψ1(1− t̂+)− t̂+ψ2(1− t̂+)

a0(t̂+ψ1(1− t̂+))2

)
+ t′−

(
1 +

ψ1(1 + t̂−) + t̂+ψ2(1 + t̂−)

a0(t̂−ψ1(1 + t̂−))2

)
.

and that a good starting point is given by x0 = 1−α
2 .

8. Conclusions

In this paper, we provide analytical confidence intervals for the number F0 of distinct elements
in data streams by analyzing a class of FMa. While the major concern of the state of the art
is algorithm’s complexity, here the new mathematical-statistical approach permits a extensive
analysis of such classes of algorithms. The HyperLogLog data structure (called X in this paper)
is enriched with a new data matrix of fized size (Z) that helps to bound uniformly the estimators
during the querying counting phase. In this phase, the Chernoff bounds may be applied analyt-
ically and gives asymptotically efficient estimators that are related to the extreme value theory.

In addition, the relation E(Ȳ) =
hp0

(F0)

λ0
introduces a new class of special functions hp0 used to

find the confidence interval.
Since the new theoretical results are based on some analytical, computational and numerical

assumptions, we have shown that these assumptions are always satisfied in real situations. First,
the analytical asymptotic approximation made on Chernoff bounds is shown to be irrelevant
when F0 is large. Then, statistical assumptions on the distributions of the quantities of interests
are shown to be satisfied on a real dataset and the accuracy of the methodology is provided.
Finally, the computational solution of the problems related to the new special functions is solved
by showing the basins of attraction for a Newton based method with cubic rate of convergence.
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[15] P. Flajolet, É. Fusy, O. Gandouet, and F. Meunier. HyperLogLog: the analysis of a near-optimal cardinal-
ity estimation algorithm. In 2007 Conference on Analysis of Algorithms, AofA 07, Discrete Math. Theor.

Comput. Sci. Proc., AH, pages 127–145. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2007.

[16] P. Flajolet and G. N. Martin. Probabilistic counting algorithms for data base applications. Journal of Com-
puter and System Sciences, 31(2):182–209, 1985.

[17] O. Gandouet and A. Jean-Marie. LogLog counting for the estimation of IP traffic. In Fourth Colloquium

on Mathematics and Computer Science Algorithms, Trees, Combinatorics and Probabilities, Discrete Math.
Theor. Comput. Sci. Proc., AG, pages 119–128. Assoc. Discrete Math. Theor. Comput. Sci., Nancy, 2006.

[18] B. Gnedenko. Sur la distribution limite du terme maximum d’une serie aleatoire. Annals of Mathematics,

44(3):423–453, 1943.
[19] D. M. Kane, J. Nelson, and D. P. Woodruff. An optimal algorithm for the distinct elements problem. In

Proceedings of the Twenty-ninth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database

Systems, PODS ’10, pages 41–52, New York, NY, USA, 2010. ACM.
[20] National Institute of Standards and Technology (NIST). CRYPTOGRAPHIC TOOLKIT. online at http:

//csrc.nist.gov/groups/ST/toolkit/rng/.
[21] National Institute of Standards and Technology (NIST). Guide to NIST’s tests. online at http://csrc.nist.

gov/groups/ST/toolkit/rng/stats_tests.html.

[22] National Institute of Standards and Technology (NIST). References. online at http://csrc.nist.gov/

groups/ST/toolkit/rng/references.html.

[23] P. Jia, P. Wang, J. Zhao, J. Tao, Y. Yuan and X. Guan. Erasable virtual hyperloglog for approximating

cumulative distribution over data streams. IEEE Transactions on Knowledge and Data Engineering, 2021.
[24] T. R. Scavo and J. B. Thoo. On the geometry of halley’s method. The American Mathematical Monthly,

102(5):417–426, 1995.

[25] K.-Y. Whang, B. T. Vander-Zanden and H. M. Taylor. A linear-time probabilistic counting algorithm for
database applications. ACM Trans. Database Syst., 15(2):208—229, 1990.

[26] Q. Xiao, S. Chen, Y. Zhou, M. Chen, J. Luo, T. Li and Y. Ling. Cardinality estimation for elephant flows:
a compact solution based on virtual register sharing. IEEE/ACM Transactions on Networking, 25(6):3738–
3752, 2017.

17

http://arxiv.org/abs/1909.11564
http://oertl.github.io/hyperloglog-sketch-estimation-paper/
http://oertl.github.io/hyperloglog-sketch-estimation-paper/
http://csrc.nist.gov/groups/ST/toolkit/rng/
http://csrc.nist.gov/groups/ST/toolkit/rng/
http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html
http://csrc.nist.gov/groups/ST/toolkit/rng/stats_tests.html
http://csrc.nist.gov/groups/ST/toolkit/rng/references.html
http://csrc.nist.gov/groups/ST/toolkit/rng/references.html


Supplementary Material

In this document we collect some technical results useful for [3]. Therefore, the notation and
the assumptions used here are the same as those used in that paper. The reference to that paper
are proceeded with a M, so that (M:1) will refer to the equation (1) in [3].

Supplementary Material A. Special functions used in the paper

Modification of the harmonic numbers and Lerch transcendent function. For any
integer number m, we denote by h(m) the m-th harmonic number. We recall here that

(A.1) h(m) = ψ(m+ 1) + γ =

m∑
j=1

1

j
=

m−1∑
j=0

∫ 1

0

tj dt =

∫ 1

0

1− tm

1− t
dt,

where ψ is the derivative of the logarithm of gamma function (also called digamma function).
The constant γ is the Euler–Mascheroni constant throughout the whole paper. The function

h can be extended therefore to the real non-negative numbers, by setting h1(x) =
∫ 1

0
1−tx
1−t dt,

which is known as the integral representation given by Euler.

Definition A.1. For 0 ≤ p ≤ 1, x ≥ 0, we define the p-modification of the harmonic numbers
hp(x), where

hp(x) =

∫ 1

0

1− (1− p+ pt)x

1− t
dt,

The function hp(x) has the following properties

• hp(0) = 0, h0(x) = 0, hp(1) = p and h1(x) = h(x) by definition;
• with two changes of integration variable z = (1 − p(1 − t)) and z = (1 − p)e−w, we we

may rewrite hp(x) as

(A.2)

hp(x) =

∫ 1

1−p

1− zx

1− z
dz = ψ(x+ 1) + γ −

∫ 1−p

0

1− zx

1− z
dz

= ψ(x+ 1) + γ + log p+

∫ 1−p

0

zx

1− z
dz

= ψ(x+ 1) + γ + log p+ (1− p)x+1

∫ ∞
0

e−w(x+1)

1− (1− p)e−w
dw

= ψ(x+ 1) + γ + log p+ (1− p)x+1 Φ(1− p, 1, x+ 1),

where Φ is the Lerch transcendent function, see [6], and the last equality is a consequence
of the following equation, valid for m ∈ N and z = (1− p):

Φ (z, s, a) = zmΦ (z, s, a+m) +

m−1∑
n=0

zn

(a+ n)s
.

• By (A.2), hp(x) is strictly increasing and continuous, both as a function of x and p. In
addition, for any p > 0, limx→∞ hp(x) = +∞, and hence hp : [0,+∞) → [0,+∞) is
an isomorphism (continuous invertible function, with continuous inverse function). Its
inverse function (hp)

−1 : [0,+∞) → [0,+∞) is hence well-defined and it is used in the
paper.

The Lerch transcendent function appears also in the derivatives of hp. Denote by

Φ1 = Φ(1− p, 1, x+ 1), Φ2 = Φ(1− p, 2, x+ 1), Φ3 = Φ(1− p, 3, x+ 1),
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and note that Φn+1 = −n∂ Φn
∂x ; by (A.2) we get

(A.3)

h
′
p(x) = ∂

ψ(x+ 1) + γ + log p+ (1− p)x+1 · Φ(1− p, 1, x+ 1)

∂x

= ψ1(x+ 1) + (1− p)x+1(log(1− p) · Φ1 − Φ2)

h
′′
p(x) = ψ2(x+ 1) + (1− p)x+1((log(1− p))2 · Φ1 − 2 log(1− p) · Φ2 + 2Φ3).

Product representation and incomplete Gamma function. For what concerns the infinite
product representation of the Gamma function

Γ(z) = lim
K→∞

e−γz

z

K∏
k=1

(
1 +

z

k

)−1

e
z
k , z 6= −1,−2, . . . ,

given by Schlömilch in 1844 and Newman in 1848, if we evaluate it in z = ±t, we obtain

(A.4) Γ(1− t)e−γt =

∞∏
j=1

e−
t
j

1− t
j

, t ∈ (0, 1), Γ(1 + t)eγt =

∞∏
j=1

e
t
j

1 + t
j

, t > 0.

Finally, for x > 0, we denote by E1(x) the exponential integral (or incomplete gamma func-
tion). As shown in [1, p. 229, 5.1.20], we have that

(A.5) E1(x) =

∫ ∞
x

e−t

t
dt < e−x ln

(
1 +

1

x

)
.

Note that, if p ∈ (0, 1) and t = − ln(1− p)w,

E1(x) =

∫ ∞
x

e−t

t
dt =

∫ ∞
− x

ln(1−p)

(1− p)w

w
dw.

We will make use of the very well known formula − ln(p) =
∑∞
j=1

(1−p)j
j . To bound the tail of

the series, we immediately obtain by (A.5) that, for any x > 0,

(A.6)

∞∑
j=0

(1− p)x+j+1

x+ j + 1
≤
∫ ∞
x

(1− p)w

w
dw = E1(−x ln(1− p))

< ex ln(1−p) ln
(

1− 1

x ln(1− p)

)
.

The next representation lemma is used both in the analytical and in the numerical part of the
paper.

Lemma A.2. Let x > 0 be fixed. Then the functions

g+(t) = (x+ γ)t− ln Γ(1− t), t ∈ (0, 1)

g−(t) = (x− γ)t− ln Γ(1 + t), t > 0

attain their (strictly positive) maxima at the points t+ = 1−ψ−1(−x−γ) and t− = ψ−1(x−γ)−1,
respectively.

Proof. We give the proof for g+, since the same arguments apply to g−. We have

• g+(t) is concave, since ln Γ(1− t) is a convex analytic function on (0, 1);
• g+(0) = ln Γ(1) = 0, g′+(0) = (x+ γ) + ψ(1) = x > 0;
• limt→1 g+(t) = −∞;

and hence the maximum of g+ on (0, 1) is strictly positive. The maximum point t+ is attained
when g′+(t+) = 0, that is when (x+ γ) + ψ(1 + t+) = 0. �
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Supplementary Material B. Proof of some technical results of [3]

B.1. Proof of 0 < Yr c − Ȳr c < 2−z0

λ0
in [3, Lemma 3.1]. We recall here that

2−z0Z(c, o) =

z0∑
z=1

s∗z2
−z, Z̄(o, c) =

∞∑
z=1

s∗z2
−z

and with

Y (o, c) = X(c, o)− log2(1 + 2−z0Z(c, o)), Ȳ (o, c) =
(
X(c, o)− log2(1 + Z̄(o, c)),

by definition of Yr c and Ȳr c, we get

Yr c − Ȳr c = max
{o : R(o,c)=r}

(Y (o, c)− Ȳ (o, c))

= max
{o : R(o,c)=r}

(
− log2(1 + 2−z0Z(c, o)) + log2(1 + Z̄(c, o))

)
= max
{o : R(o,c)=r}

log2

(
1 +

2−z0
∑∞
z=z0+1 s

∗
z2
−z

1 +
∑z0
z=1 s

∗
z2
−z

)
.

Now, note that

0 <

∑∞
z=1 s

∗
z2
−z

1 +
∑z0
z=1 s

∗
z2
−z < 1

and then, since ln(1 + x) < x for x > 0,

0 < log2

(
1 +

2−z0
∑∞
z=z0+1 s

∗
z2
−z

1 +
∑z0
z=1 s

∗
z2
−z

)
<

2−z0

ln(2)
=

2−z0

λ0
.

B.2. Detailed proof of [3, Theorem 4.1]. First step. By [3, Lemma 3.1], it is possible to
calculate the moment-generating function of Ȳ, conditioned on {mc, c = 1, . . . , c0}. In fact,
since

(B.1) Ȳr c = max
o1,...,omr c : R(c,oj)=r
oj different objects

(
Ȳ (oj , c)

)
,

it is well known [7] that the moment generating function of the max of exponential random
variables is

E(esȲr c |{mc, c = 1, . . . , c0}) =

mr c∏
j=1

(1− s
λ0j

)−1, 0 < s < λ0

which implies, for 0 < s < c02r0λ0,

E(esȲ |{mc, c = 1, . . . , c0}) = E
(
e
s
∑c0
c=1

∑2r0
r=1

Ȳr c
c02r0

∣∣∣{mc, c = 1, . . . , c0}
)

=

c0∏
c=1

2r0∏
r=1

mr c∏
j=1

(1− s
jc02r0λ0

)−1.

Again, by (B.1)

(B.2) E(Yr c|{mc, c = 1, . . . , c0}) =

mr c∑
j=1

1

jλ0

which means that

E(Ȳ|{mc, c = 1, . . . , c0}) =
1

c02r0λ0

c0∑
c=1

2r0∑
r=1

mr c∑
j=1

1

j
.
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Then, conditioned on {mc, c = 1, . . . , c0}, the Chernoff bound for the first inequality that con-
cerns α+ may be computed as

P
(
Ȳ ≥ E(Ȳ|{mc, c = 1, . . . , c0}) +

hd
λ0

∣∣∣{mc, c = 1, . . . , c0}
)

≤ min
s>0

e−s
(
E(Ȳ|{mc,c=1,...,c0})+

hd
λ0

)
E(esȲ |{mc, c = 1, . . . , c0})

= min
s>0

e
−hdλ0

s
c0∏
c=1

2r0∏
r=1

mr c∏
j=1

e
− s
jc02r0λ0

1− s
jc02r0λ0

.

Define t = s
c02r0λ0

. Since exp−t

1−t ≥ 1 for any t < 1, then for t ∈ (0, 1), the abobe relation continues
as

min
s>0

e
−hdλ0

s
c0∏
c=1

2r0∏
r=1

mr c∏
j=1

e
− s
jc02r0λ0

1− s
jc02r0λ0

= min
t>0

e−thdc02r0
c0∏
c=1

2r0∏
r=1

mr c∏
j=1

e
− tj

1− t
j

≤ min
t>0

e−thdc02r0
c0∏
c=1

2r0∏
r=1

∞∏
j=1

e
− tj

1− t
j

= min
t>0

e−thdc02r0
c0∏
c=1

2r0∏
r=1

(
Γ(1− t)e−γt

)
= exp

(
− c02r0 max

t∈(0,1)

[
(hd + γ)t− ln Γ(1− t)

])
.

The relevant aspect of the last expression is that it does not depend on {mc, c = 1, . . . , c0}, and
what remains to prove is that the maximum of (hd + γ)t − ln Γ(1 − t) on (0, 1) is attained at
t+ = 1−ψ−1(−hd− γ). This is obvious, since − ln Γ(1− t) is a concave function with derivative
in zero equal to −γ, its limit is −∞ as it approches 1− and the digamma function ψ is the
derivative of the logarithm of the gamma function.

The proof of the second inequality that concerns α− may be done with the same ideas. In
fact, the Chernoff bound may be uniformly bounded by

P
(
Ȳ ≤ E(Ȳ|{mc, c = 1, . . . , c0})−

hu
λ0

∣∣∣{mc, c = 1, . . . , c0}
)

≤ min
t>0

exp
(
− c02r0 max

t>0

[
(hu − γ)t− ln Γ(1 + t)

])
.

Now, it is sufficient to note that − ln Γ(1 + t) is a concave function with derivative in zero equal
to γ, its limit is −∞ as it approches +∞ and the digamma function ψ is again the derivative of
the logarithm of the gamma function.

Second step. Starting from (B.2), note that the mr c-armonic number may be represented in
the following way:

mr c∑
j=1

1

j
=

∫ 1

0

1− vmr c
1− v

dv = h1(mr c).

Recall that, by [3, Lemma 3.1], mr c is distributed as a binomial distribution, with F0 trials and
probability p0 = 2−r0 . Then

λ0E(Yr c) = λ0E(E(Yr c|{mc, c = 1, . . . , c0})) = E(h1(mr c))
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=

F0∑
m=0

h1(m)

(
F0

m

)
p0
m(1− p0)F0−m

=

F0∑
m=0

(∫ 1

0

1− vm

1− v
dv
)(F0

m

)
p0
m(1− p0)F0−m

=

∫ 1

0

1

1− v

( F0∑
m=0

(1− vm)

(
F0

m

)
p0
m(1− p0)F0−m

)
dv

=

∫ 1

0

1

1− v

( F0∑
m=0

(
F0

m

)
p0
m(1− p0)F0−m

−
F0∑
m=0

(
F0

m

)
(p0v)m(1− p0)F0−m

)
dv

=

∫ 1

0

1− (1− p0 + p0v)F0

1− v
dv = hp0(F0).

Then, by linearity, we conclude that E(Ȳ) =
hp0

(F0)

λ0
.

Supplementary Material C. Lower and upper bounds of some numerical
problems

C.1. Bounds of y = ψ(x). As shown in [4, Example 2.1], we may bound ψ from below in the
following way. The Jensen inequality for U ∼ U(x− 1

2 , x+ 1
2 ) shows that, for x > 1

2 ,

1

x
=

1

E[U ]
< E

[ 1

U

]
=

∫ x+
1
2

x− 1
2

1

t
dt = ln(x+ 1

2 )− ln(x− 1
2 ).

By (M:8), we than have that, for x > 1
2 ,

ψ(x)− ln(x− 1
2 ) > ψ(x+ 1)− ln(x+ 1

2 ) > · · · > lim inf
t→∞

(ψ(t)− ln(t− 1
2 )),

and since ψ(t) = log(t) + o(1) = log(t− 1
2 ) + o(1), the last expression is zero, and hence

y = ψ(x) > ln(x− 1
2 ), for any x > 1

2 .

With the same spirit of this example, since

ln(x+ 1)− ln(x) =

∫ x+1

x

1

t
dt <

1

x
, ∀x > 0,

we obtain that

ψ(x)− ln(x) < ψ(x+ 1)− ln(x+ 1) < · · · < lim sup
t→∞

(ψ(t)− ln(t)) = 0,

and hence, we may state that

ln(x− 1
2 ) < y < ln(x), ey < x < ey + 1

2 , ∀x > 1
2 ,∀y = φ(x).
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C.2. Bounds of y = hp(x). For what concerns the bounds for hp, by (A.2), we immediately
get

ψ(x+ 1) + γ + ln p ≤ hp(x) ≤ ψ(x+ 1) + γ,

and hence, by (M:9),

(C.1)
exp(hp(x)− γ)

p
− 1

2
≥ x ≥ exp(hp(x)− γ)− 1.

A better estimation for the lower bound can be found for x > − 1
(e−1) ln(1−p) . To simplify the

notations, set d0 = −ln(1− p), so that the assumption x > − 1
(e−1) ln(1−p) becomes the more

readable xd0 >
1
e−1 . We are going to show that, under this hypothesis, we have

(C.2)
A

p
− 1

2
≥ x ≥

{
A
p − e+ 1

ln(1−p) if A > p( 1
2 −

1
(e−1) ln(1−p) );

A− 1 otherwise;

where A = exp(hp(x)− γ). To prove (C.2), we use the relation 1
1−z =

∑∞
j=0 z

j , valid for |z| < 1,

in (A.2). We obtain

hp(x) = ψ(x+ 1) + γ + log p+

∫ 1−p

0

zx

1− z
dz

= ψ(x+ 1) + γ + log p+

∫ 1−p

0

∞∑
j=0

zx+j dz

= ψ(x+ 1) + γ + log p+

∞∑
j=0

(1− p)x+j+1

x+ j + 1
dz,

which can be combined with (A.6), yielding

(C.3) hp(x)− (ψ(x+ 1) + γ + log p) < ex ln(1−p) ln
(

1− 1

x ln(1− p)

)
< ex ln(1−p) ≤ 1

1− x ln(1− p)
,

where the last inequality is a consequence of the fact that exp(x) ≤ 1
1−x for x < 1.

Now, we define the positive quantity d1 = e − 1 + 1
d0

> 0 and we note that the function

g : [ 1
d0(e−1) ,∞)→ R so defined

g(x) =
d1

d1 + 1 + x
− 1

1 + xd0
=

x(d0d1 − 1)− 1

(d1 + 1 + x)(1 + xd0)

is strictly positive whenever x(d0d1 − 1) − 1 > 0, or, in other terms, when d1 >
1+x
d0x

. We now

prove that this fact implies that g(x) > 0 under our assumption x > 1
d0(e−1) .

In fact, since 1+y
d0y

is decreasing in y > 0, then, as x > 1
d0(e−1) we have

x > 1
d0(e−1) =⇒ d1 = d0(e−1)+1

d0
=

1 + 1
d0(e−1)

d0
1

d0(e−1)

> 1+x
d0x

=⇒ g(x) > 0,

or, in other terms,

x > 1
d0(e−1) =⇒ d1

d1 + 1 + x
>

1

1 + xd0
=

1

1− x log(1− p)
.

Since x
1+x < ln(1 + x) for x > 0, we then have that, when x > 1

d0(e−1) ,
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(C.4)
1

1− x ln(1− p)
<

d1

d1 + 1 + x
=

d1
x+1

1 + d1
x+1

< log
(

1 +
d1

x+ 1

)
= ln

(x+ 1 + d1

x+ 1

)
= ln(x+ e− 1

ln(1−p) )− ln(x+ 1).

By combining together (C.3) and (C.4) we obtain

hp(x)− (ψ(x+ 1) + γ + log p) < ln(x+ e− 1
ln(1−p) )− ln(x+ 1),

that together with (M:9) yields

hp(x)− γ − log p < ψ(x+ 1)− ln(x+ 1) + ln(x+ e− 1
ln(1−p) )

< ln(x+ e− 1
ln(1−p) ).

Set A = exp(hp(x)− γ). The above inequality, exponentiated, gives

A

p
− e+ 1

ln(1−p) < x,

that, again by (C.1), is valid at least when

x > − 1
(e−1) ln(1−p) =⇒ A > p(x+ 1

2 ) > p( 1
2 −

1
(e−1) ln(1−p) ).

C.3. Bounds of y = (x − γ)t(x) − ln Γ(1 + t(x)), where t(x) = ψ−1(x − γ) − 1. For what
concerns the bounds in this problem, we start by recalling that, as shown in [5] (see also [7,
Equation (3.112)]), for any t > 0,

(C.5) − γt < ln Γ(1 + t) < tψ(t+ 1).

When this chain of inequalities is evaluated in t = t(x), we obtain

−γt(x)− ln Γ(1 + t(x)) < 0 =⇒ y < xt(x)(C.6)

ln Γ(1 + t(x)) < tψ(ψ−1(x− γ)− 1 + 1) =⇒ y > 0.

The upper bounds for x may be found in the following way. We recall that Lemma A.2 states
that

y = max
t>0

[
(x− γ)t− ln Γ(1 + t)

]
.

Then, by (C.5),

(C.7) y > max
t>0

[
(x− γ − ψ(t+ 1))t

]
.

The second expression may be evaluated in t0 = ψ−1(−γ + x
2 )− 1, so that we get

y > (x− γ − ψ(t0 + 1))t0

=
x

2

(
ψ−1(−γ + x

2 )− 1
)

(C.8)

=
x

2

(
ψ−1(−γ + x

2 )− ψ−1(−γ)
)
.

The Mean Value Theorem ensures the existence of x0 ∈ (0, x2 ) such that

ψ−1(−γ + x
2 )− ψ−1(−γ) =

x

2
d
ψ−1(−γ + t)

dt

∣∣∣
t=x0

,

and by the the formula of the derivative of the inverse function, since the Trigamma function

ψ1(t) = dψ(t)
dt is a decreasing function with ψ1(1) = π2

6 ,

d
ψ−1(−γ + t)

dt

∣∣∣
t=x0

=
1

ψ1(ψ−1(−γ + x0))
>

1

ψ1(ψ−1(−γ))
=

1

ψ1(1)
=

1
π2

6

.
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Summing up,

(C.9) y >
x

2

(x
2

1
π2

6

)
=

3

2

x2

π2
=⇒ x < π

√
2

3
y.

For x ≥ 3
2 , which is always true if y ≥ 3

2 · t(
3
2 ) = 3 by (C.6), a better estimates may be found if

we bound the second part of (C.8). In fact, since x
2 ≥

3
4 , by (M:9) we obtain

y >
3

4

(
ψ−1(−γ + x

2 )− 1
)
>

3

4

(
e−γ+

x
2 − 1

)
which completes the upper bound for x given in (C.9), obtaining

(C.10) x <

{
π
√

2
3y, if y < 3;

2(log( 4
3y + 1) + γ), if y ≥ 3.

The upper bounds for x may be found with similar ideas in both the cases y ≥ 3 and y < 3. By
(C.6), the Mean Value Theorem ensures the existence of x0 ∈ (0, x) such that, when y < 3

0 < y < xt(x) = x(ψ−1(x− γ)− 1) = x2 1

ψ1(ψ−1(x0 − γ))
< x2 1

ψ1(ψ−1(π
√

2− γ))
,

the last inequality being a consequence of (C.10), since, for y < 3, we have x ≤ π
√

2. For y ≥ 3,
starting from (C.6), by (9), we obtain

0 < y < xt(x) = x(ψ−1(x− γ)− 1) < x
(

exp(x− γ)− 1

2

)
<
(

exp( 3
2x− γ)− 1

2

)
,

which gives the lower bound for x in (M:12) for y ≥ 3.

C.4. Bounds of y = (x+γ)t(x)− ln Γ(1− t(x)), where t(x) = 1−ψ−1(−x−γ). The inversion
formula for the Gamma function, valid for t ∈ (0, 1), gives

Γ(1− t)Γ(t)t =
π

sin (πt)
t ⇐⇒ ln Γ(1− t) = ln

( πt

sin (πt)

)
− ln Γ(1 + t),

that, together with (C.5), yealds

(C.11) − tψ(t+ 1) + ln
( πt

sin (πt)

)
< ln Γ(1− t) < ln

( πt

sin (πt)

)
+ γt.

We recall that Lemma A.2 states that

y = max
t∈(0,1)

[
(x+ γ)t− ln Γ(1 + t)

]
,

that, combined with the right-hand inequality of (C.11) gives

y > max
t∈(0,1)

[
xt+ ln

( sin(πt)

πt

)]
.

Since ln(y) > y−1
y and (see [2]),

π

sin(πt)
=

1

t
+

∞∑
n=1

(−1)n 2t

t2 − n2
,

then

y > max
t∈(0,1)

(
xt− 2t2

1− t2
)
.
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Let t0 = t0(x) ∈ (0, 1) be defined in the following way:

x

2
=

2t0
1− t20

⇐⇒ t0 = 2

√(
x
2

)2
+ 1− 1

x
,

then

y > xt0 − t0
2t0

1− t20
= x

t0
2

=

√(x
2

)2

+ 1− 1,

and hence

(C.12) x < 2
√

(y + 1)2 − 1.

For what concerns the lower bound for x, if we take into account the reflection formula for the
digamma function

ψ(1− t)− ψ(t) = π cotπt =⇒ ψ(1 + t) = ψ(t) +
1

t
= ψ(1− t)− π cot(πt) +

1

t

together with the left inequality in (C.11), we obtain

ln Γ(1− t) > −tψ(t+ 1) + ln
( πt

sin (πt)

)
= −t

(
ψ(1− t)− π cot(πt) +

1

t

)
+ ln

( πt

sin (πt)

)
.

We will make use of this inequality, motivated by the fact that our problem is

y = (x+ γ)t(x)− ln Γ(1− t(x)), −ψ(1− t(x)) = (x+ γ),

which implies

y = (x+ γ)t(x)− ln Γ(1− t(x))

= −ψ(1− t(x))t(x)− ln Γ(1− t(x))

< 1− πt(x) cot(πt(x)) + ln
( sin (πt(x))

πt(x)

)
.(C.13)

Now, for t ∈ (0, 1), the following identities hold

sin (πt)

πt
=

∞∏
1

(
1− t2

n2

)
, π · cot(πt) =

1

t
+

∞∑
n=1

2t

t2 − n2
,

(see [2]). The first identy may be used to bound the last term in (C.13):

ln
( sin (πt)

πt

)
= ln(1− t2) +

∞∑
n=2

ln
(

1− t2

n2

)
< ln(1− t2) + t2 −

∞∑
n=1

t2

n2

= ln(1− t2) + t2
(

1− π2

6

)
.

For what concerns the term 1− πt cot(πt) in (C.13), we obtain

1− πt cot(πt) = 2t2
∞∑
n=1

1

n2 − t2
= 2t2

( 1

1− t2
+

∞∑
n=2

1

n2 − t2
)

< 2t2
( 1

1− t2
+

∞∑
m=1

1

(m+ 1)2 − 1

)
= 2t2

( 1

1− t2
+

1

2

∞∑
m=1

2

m(m+ 2)

)
= 2t2

( 1

1− t2
+

1

2

∞∑
m=1

( 1

m
− 1

m+ 2

))
=

2t2

1− t2
+ 3t2.
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Combining these two last inequalities in (C.13), since log y ≤ y − 1, we obtain

y <
2t(x)2

1− t(x)2
+ 3t(x)2 + ln(1− t(x)2) + t(x)2

(
1− π2

6

)
<

2

1− t(x)2
− 2 + t(x)2

(
3− π2

6

)
,

and hence, if we define

z = 1− t(x)2 ∈ (0, 1), A =
3− π2

6

2
∈ (0, 1), B =

y

2
> 0

we obtain

Az2 + (B + (1−A))z − 1 < 0, z ∈ (0, 1)

which is solved for

0 < z <
−(B + (1−A)) +

√
(B + (1−A))2 + 4A

2A
.

Note that, for B ∈ (0,∞), the right-hand side of the inequality above belongs to (0, 1). Then, if
we define

C =

√
1−
−(B + (1−A)) +

√
(B + (1−A))2 + 4A

2A
∈ (0, 1),

we have t(x) =
√

1− z > C, or explicitely

(C.14) 1− ψ−1(−x− γ) > C.

Two inequalities on x are consequence of (C.14) as follows. By (M:9) we imediately obtain a
lower bound

1− exp(−(x+ γ)) > 1− ψ−1(−x− γ) > C =⇒ x > − ln(1− C)− γ,

which is meaningful only for C ≥ 1− exp(−γ). For smaller C, we make use of the Mean Value
Theorem, that ensures the existence of x0 ∈ (0, x) such that

t(x) = ψ−1(−γ)− ψ−1(−γ − x) = −x dψ
−1(−γ − t)

dt

∣∣∣
t=x0

.

The formula of the derivative of the inverse function gives

−dψ
−1(−γ − t)

dt

∣∣∣
t=x0

=
1

dψ(t)
dt

∣∣
t=ψ−1(−γ−x0)

<
1

dψ(t)
dt

∣∣
t=ψ−1(−γ)

=
1
π2

6

,

so that

x >
π2

6
C.

Summing up

(C.15) x > max
(
− ln(1− C)− γ, π

2

6
C
)
,

that completes (M:14) with the upper bounds for x given in (C.12).
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