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Protein folding and the robustness of cells
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bstract

The intricate intracellular infrastructure of all known life forms is based on proteins. The folded shape of a protein determines both
he protein’s function and the set of molecules it will bind to. This tight coupling between a protein’s function and its interconnections
n the molecular interaction network has consequences for the molecular course of evolution. It is also counter to human engineering
pproaches. Here we report on a simulation study investigating the impact of random errors in an abstract metabolic network of
00 enzymes. Tight coupling between function and interconnectivity of nodes is compared to the case where these two properties

re independent. Our results show that the model system under consideration is more robust if function and interconnection are
ntertwined. These findings are discussed in the context of nanosystems engineering.

enginee
2006 Elsevier Ireland Ltd. All rights reserved.
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. Nature’s nanoengineering

Nature’s astounding integration density has its
oots in an enormous number of macromolecular
tructures that implement a wide variety of highly
pecific functions. Most prominent among them are
roteins. These ubiquitous functional nanocomponents
re macromolecules consisting of several thousand
toms. Biomimicry in the field of materials sciences
s increasingly exploring the molecular and nanolevel
etail that yields the remarkable properties of animate
atter. A technology that would enable the deliberate

esign and fabrication of similar materials and systems
ould be highly desirable for a broad variety of applica-
ions (Lehn, 2002). Established engineering processes,
owever, are not well suited to the development of
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organic devices (Ball, 2002; Luo, 2003). In the context
of such a technology biological means of achieving
robust systems are of interest. In the following we
will explore a potential role of protein folding for the
robustness of networks of interacting proteins.

1.1. Protein folding

Proteins are linear chains of typically a few hundred
building blocks taken since two thousand million years
from the same set of about 20 amino acids. The lin-
ear chain is assembled according to an edited molecular
copy of the coding region of a gene on the DNA. In
principle the amino acids can be combined in arbitrary
order. This opens up a vast space of possible macro-
molecules that can be assembled from the amino acid
building blocks. During and following the assembly, the
protein will spontaneously curl up under the electrostatic
interaction of its atoms into a defined but agile three-

dimensional form.

In proteins function follows form. Folding of the
amino acid chain into a spacial structure is essential
to the capabilites of a protein. The resulting spatial

ed.
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structure typically fits in a sphere of 4–8 nm diameter
and is largely determined by the amino acid sequence.
Amino acids differ in geometry, electrostatic character-
istics, and chemical properties. Not all amino acid chains
readily fold (Sosnick et al., 2002), but many randomly
created sequences do (Davidson and Sauer, 1994). More
often than not, however, random sequences aggregate
and are insoluble in water (Prijambada et al., 1996).
Proteins that occur in cells have sequences that allow
them to fold under physiological conditions. Due to a
considerable energy gap between the native and any
competing fold, natural proteins fold in a cooperative
all-or-none transition. This energy gap is the key char-
acteristic that distinguishes a natural protein from a ran-
dom amino acid sequence (Finkelstein and Galzitskaya,
2004). Electrostatic interactions among amino acid
residues that approach closely in space facilitate correct
folding (Dobson, 2003; Lindorff-Larsen et al., 2005). An
important feature of the folded three-dimensional protein
structure is the coupling of amino acids distant on the lin-
ear sequence but in close proximity in space. Through
this coupling local changes in the protein are propagated
through the protein’s structure, a process common in the
transduction of signals (Luque et al., 2002).

The final folded protein has a characteristic compact
shape. A precise spatial placement and orientation of
specific amino acid residues gives rise to the broad spec-
trum of functions exhibited by proteins. The highly se-
lective and efficient catalytic properties of enzymes, for
instance, rely on the precise positioning of atom groups
in the catalytic centre. Furthermore, the shape of the pro-
tein is also crucial for its capability of interacting with
other molecules (Fischer, 1894; Friedrich, 1984). The
spatial conformation of the protein’s amino acid chain
thus determines both the function and the interactions of
the protein.

1.2. Networks of proteins

In the cell proteins are embedded in molecular net-
works. If two proteins have mutual compatible docking
surfaces, they can interact directly. Proteins can also in-
teract through exchange of molecular signals. Enzymes,
i.e. catalytically active proteins, can form metabolic
networks where the reaction product of one enzyme
serves as substrate for a following enzyme. In this paper
we focus on metabolic networks. Metabolic networks, in
contrast to signalling networks, are connected through

precise steric fit of enzymes and substrates and therefore
considered more difficult to evolve (Kirschner and
Gerhart, 1998). Our interest here is the robustness of
metabolic networks to faults in its components, i.e. in
ms 87 (2007) 289–298

the enzymes. The robustness of networks is frequently
discussed from a solely topological perspective, for
example, the connectedness of the network after random
deletion of nodes is considered (Barabási and Oltvai,
2004). On the contrary, the approach taken here is
concerned with dynamic properties of the metabolic
network. To simulate the network dynamics we use an
abstract artificial chemistry model (Dittrich et al., 2001)
described in detail in Section 2.

1.3. Faulty proteins

Proteins are complex molecular machines the func-
tion of which typically hinges on positioning of atomic
groups with Å-precision. This positioning is achieved
through the self-organisation of folding. A modification
of the amino acid sequence of a protein will affect the
cooperative folding process, the spatial arrangement
of atoms in the folded protein, and the conformational
dynamics of the protein structure. Over the course of evo-
lution the complex protein networks of cells are formed
through diversification and specialisation of protein
structures as a consequence of alterations in their amino
acid sequences. Changes to the DNA will lead to inher-
itable modifications of protein sequences that form the
basis of molecular evolution as well as genetic disease
(Wang and Moult, 2001). Errors can also be introduced
at later stages in the production of proteins. An erro-
neous transcription of DNA into mRNA, for instance,
will give rise to a “production run” of faulty proteins
over the lifetime of the incorrect mRNA molecule. If a
correct mRNA is incorrectly translated then individual
proteins with faults are produced. The cell employs an
elaborate molecular machinery for the quality control
of proteins (Netzer and Hartl, 1998) and eliminates
proteins that cannot fold correctly (Dobson, 2003).

Altering an amino acid in a protein can affect the
protein in three basic ways:

(1) It can derail the folding process, e.g. through steric
obstruction or electrostatic repulsion or attraction.

(2) It can destabilise the folded protein, e.g. by eliminat-
ing hydrogen bonds or salt bridges or by disrupting
the non-polar core area.

(3) It can eliminate a signal sequence pattern, e.g. a
recognition signal for protein targeting or post-
translational modification.
The first two mechanisms can impact ligand bind-
ing, catalytic activity, and regulation of the protein. De-
pending on the protein, the sequence position, and the
amino acid substituted, the effect can range in severity
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rom neutral to catastrophic (Wang and Moult, 2001).
nvestigations have shown that a single random amino
cid substitution will result with 30–40% probability
n a non-functional protein (Guo et al., 2004). On this
asis it may be considered as probable that the major-
ty of random amino acid changes can be absorbed on
he molecular level (Conrad and Volkenstein, 1981) and
esult in near neutral sequence variation (Kimura and
hta, 1974; Grishin, 2001). In the light of the discovery

hat the combination of substitutions with individually
ild effects causes, with high probability, catastrophic

oss of function (Axe, 2000), the question arises whether
he context sensitivity conferred on the sequence by the
olding process can impart an evolutionary advantage
eyond mutation buffering (Conrad, 1979). Perhaps, a
rotein with a fault and thus possibly with a subtly al-
ered function or regulation is more problematic than

protein that is altered drastically. The latter presum-
bly can be recognised much more readily by the quality
ontrol mechanisms of the cell (Netzer and Hartl, 1998).
urthermore, a faulty protein with a significantly altered
hape is likely to disengage from the molecular inter-
ction network with no ill effect as long as functional
opies of the protein are still available in the cell. In the
ollowing section we will describe an abstract model of
metabolic network developed to study such a scenario.

. A metabolic network model

An artifical chemistry model suitable for studying
he impact of random errors on enzymatic networks
as been developed. A key requirement for the model
s the ability to abstract the complex non-local inter-
ctions of protein folding process. The model assumes
erfect mixing of the metabolites through diffusion, a
easonable assumption for a cell of micrometre scale
nd enzyme turn-over rates in the ms-range (Adam and
elbrück, 1968). Metabolites, here interchangeably also

alled substrates, are represented as molecule types and
he count of molecules present in the cell for each such
ype. Similarly enzymes are represented as specific types
nd the count of enzymes present in the cell for each
ype of enzyme. In the following we will first describe
he representation used for the chemical compounds, fol-
owed by the stochastic reaction rules that govern the dy-
amics of the model, and then discuss the abstraction of
olding.
.1. Substrate representation

Each substrate type is represented as a bit string com-
osed of two parts. The first part describes the size of
ms 87 (2007) 289–298 291

the molecule and can be analogised to the carbon count
of an organic molecule. In our virtual chemistry, how-
ever, only one type of atom exists and is accounted for.
The remaining bits of the substrate’s bit string repre-
sent the configuration of the atoms. In all experiments
reported here the substrate types consist of 8 bit for the
size and 10 bit for the molecular structure, i.e. all sub-
strate types have representation 18 bit long. The number
of bits used should open up a large space of potential
molecules, however, the time required to generate con-
nected networks (Section 2.3) increases with the space
of potential molecules. The structure bits do not have
any specific interpretation other than that molecules of
identical size are different if and only if their structure
bits differ. All reactions will take heed of conservation
of mass and insure that the sum over the size (the bits
interpreted as binary number) of the reactants is equal to
the sum over the size of the products. Substrates with a
size of zero are not allowed.

2.2. Enzyme abstraction

In this model enzyme types come in two categories.
Either they process a single substrate or they catalyse bi-
nary reactions, accepting two substrates. An enzyme of
the former kind is specified by a bit string twice as long
as the bit string of a substrate type. This bit string can
be decomposed into two parts, a recognition part and an
operation part. The recognition part is identical to the bit
string of the substrate type on which the enzyme oper-
ates. The operation part is a bit string of the same length
and the same format as a substrate type but is interpreted
in a different way. The recognition and operation parts
of the enzyme type implicitly define the product of the
reaction catalyzed by the enzyme through the following
rule. If the size of the substrate is larger than the size
specified in the operation bits of the enzyme, the reac-
tion will have two products. One product will have the
size specified in the size bits of the enzyme’s operation,
the other product will have the remaining mass, i.e. the
difference between the size specified in the recognition
part of the enzyme and the size specified in the operation
part. The configuration part of both products are set to
the same bit string: the result of a bitwise exclusive-or
(XOR) between the configuration bits of the recognition
part and the configuration bits of the operation part. If
the substrate size is less than the size specified in the en-
zyme’s operation part, only one product of the same size

as the substrate is formed. The configuration of this prod-
uct is set to the XOR of the substrate configuration with
the configuration bits of the enzyme’s operation part.
The XOR operation is chosen because it is symmetric
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Fig. 1. Modelling of the folding process. The function of the wild type
enzyme (E) can be decomposed into two conceptually independent
parts, recognition (R) and operation (O); middle layer. Without the
folding process a locally damaged enzyme (E∗) in the sequence is
likely to affect only one of these parts; top layer. The folding process
292 G.J. Shawn Tan et al. / B

and hence does not constrain the possible structure of
products of long reaction chains.

Enzymes that catalyse binary reactions are specified
by bit strings three times as long as a substrate type. This
specification corresponds to the one described above ex-
tended by a second substrate recognition part. The sizes
of the products are determined by comparing the sum
of the sizes of the substrates with the enzyme’s opera-
tion size. If the operation size is larger than this sum,
one product is formed. Otherwise the reaction has two
products, one of which has the size specified by the en-
zyme’s operation part, the other receives the remaining
mass. To make this rule account for substrate and prod-
uct sizes correctly, enzyme types in this category have
to fulfil the condition sop > 1 + ss1 + ss2 − 2k, where
k is the number of bits used to express size (here 8),
and sop, ss1 and ss2 are the size of the enzymes’ oper-
ation, first substrate and second substrate, respectively.
The configuration bits of the products are set to the XOR
of the configuration bits of the two substrates if only one
product is formed. If two metabolites are produced, one
product has configuration bits formed with XOR from
the operation bits and the first substrate while the other
product is formed with the operation bits and the second
substrate.

With this enzyme specification, anabolic reactions
that combine two substrates into one product as well
as catabolic reactions that split substrates are possible.
For simplicity, in the simulations reported here all
enzymes are assumed to have identical rate constants.
Defects in enzymes (cf. Section 1.3) are modelled by
inverting bits in the bit string that describes the enzyme
type.

A fixed set of substrates is provided to the metabolic
network. This set comprises all substrates recognised by
the enzymes of the network minus all substrates pro-
duced by the enzymes of the network. Reactions com-
mence by selecting a random enzyme molecule from the
enzymes present in the cell. If the substrates for the re-
action are available, the reaction will proceed and the
molecule count for each metabolite participating in the
reaction is updated accordingly.

2.3. Abstraction of folding

The protein folding process referred to in Section 1.1
provides a mapping from sequence to spatial shape. At
present a computational prediction of this mapping is

in most cases not practical; this is also true for the re-
verse mapping (Pierce and Winfree, 2002). To capture
the multitude of non-local interactions among amino
acid residues during the folding process, we decided to
(FLD) spreads the effect of a local error (indicated as a black box)
throughout the three-dimensional structure; bottom layer.

simulate protein folding in our model by means of the
message digest algorithm MD5 (Rivest, 1992). The algo-
rithm takes an arbitrarily long digital input and determin-
istically produces a 128 bit response that is characteristic
of the input sequence. Every bit of this response can be
affected by any bit of the input. The concept is illustrated
in Fig. 1.

For the experiments reported here we would like to
compare the three cases indicated by the three layers in
Fig. 1. Such a comparison requires the output of the fold-
ing process of the wild type enzyme representation to be
a valid enzyme specification, i.e. it obeys the constraint
stated above. Because the MD5 process cannot be in-
verted, it is necessary to select enzymes that have a valid
representation from a pool created by applying MD5 to
random sequences. If interconnectedness is part of the
selection criterion, the generation process will yield a
network of enzymes specified by bit strings as described
in Section 2.2. For each enzyme in the network, a bit
string representation that can be used as input to MD5 in
order to obtain the bit string specification of the enzyme
will be known. The former is considered to be equiva-
lent to the amino acid sequence of a protein; the latter is
viewed as an analogue of the folded shape. The impor-
tant property of metabolic networks thus created is that
faults can be introduced into one and the same network
on either sequence level or shape level. We adopt the
convention that the bit string referring to the sequence

is termed representation and the bit string that abstracts
the protein shape is termed specification. In this sense,
the left side in Fig. 1 shows representations of enzymes
and the right hand side shows specifications. Only in the
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Fig. 2. Fault impact on a small sample network. Circles indicate 26 enzymes present in the wild type network, squares indicate faulty enzymes, and
triangles represent substrates. The centre graph (B) represents the wild type metabolism and a snapshot of the metabolite distribution in the wild
t nected
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ype cell (E). Without the folding process erroneous enzymes stay con
rom that of the wild type (D). Impact of the same error probability
solation of damaged enzymes (C) and concomitant small differences

ase where folding is modelled by MD5 (the bottom row
f Fig. 1), there is actually a difference between the bit
tring used as representation and the bit string used as
pecification.

. Evaluation of robustness and fault impact

To quantify the impact of random modifications to
n enzymatic network, we define the aberration (Δ) as
= ∑n

i (C∗
i − Ci)2, where n is the number of substrates

n the union of the set of substrates present in the wild
ype cell and the set of substrates present in the faulty
ell, C∗

i the count of molecules of substrate type i in
he faulty cell and correspondingly Ci is the count for
he wild type cell. This measure of the impact of al-
erations to the cell is rather conservative as the pres-
nce of even low concentrations of chemicals which are
ot part of the physiological conditions of the wild type
ell could be far more disruptive than what the above
xpression indicates. The aberration is determined at

fixed number of reaction steps after the metabolisms

as been initialised. Here we use 1000 times the num-
er of enzyme types present in the wild type cell. This
nsures that the initial supply of metabolites percolates
to the network (A) and the chemical composition differs significantly
), but with folding applied to the faulty representation, leads to the

bolite concentration compared to the wild type (F).

to the endpoints of the metabolic pathways. Note, that
the set of substrates supplied in the reactions is always
the set for the wild type cell. In other words, if a fault
in an enzyme alters the substrate recognition part of
the enzyme’s specification to a substrate not present
in the wild type cell, then this substrate will not be
supplied.

A small sample network shown in Fig. 2 illustrates the
topological and dynamical differences among the three
cases presented in Fig. 1. After 26,000 collisions, not
necessarily all resulting in reactions, the chemical com-
position of the well-stirred reaction medium is as shown
in panel E. This serves as a reference of the wild type
metabolism to which the chemical composition of net-
works with faulty enzymes can be compared. The fault
model assumes that the bits in the enzyme type repre-
sentation or specification flip with a certain probability.
One or more flipped bits in the type representation or
specification of an enzyme gives generally rise to a new
enzyme type. For all simulations described here, the ini-

tial molecule count for any enzyme is 50. If a new en-
zyme type appears, 25 molecules of the new type will be
added to the pool of enzymes present; no enzymes will be
removed. This study focuses on the difference between
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Fig. 3. Randomly generated metabolic network of 500 enzymes. Enzymes are indicated by black circles. Lines connect enzymes that catalyse
cept one
m gene
consecutive reaction steps. The network contains 325 enzymes that ac
products. The remaining 175 enzymes accept two substrates, 87 of the
is minimised in this graph for clarity.

two scenarios. In the first case bits are flipped directly
in the type specification bit string of enzymes. Under
these conditions the enzyme may aquire a new operation
or recognise a new substrate and both of these modi-
fications are independent. The resulting network topol-
ogy for an instance of this scenario is depicted in Fig.
2A. Panel D shows the difference in chemical compo-
sition that will develop with the network shown in A if
contrasted with the network shown in B. Note that four
new enzyme types (shown as squares) have appeared in
panel A. One of them is not connected to the network;
the other three are connected to the network. The sec-
ond scenario assumes that faults appear in a representa-
tion that has to self-organise into the functional form. To
model this situation, randomly flipped bits occur in the
bit string passed through MD5 to arrive at the enzyme
type specification. MD5 provides an abstraction of the
coupling among all bits in the representation that would
be provided by the physics of protein folding. As a con-
sequence, local (single bit) modifications are spread in

their effect globally across all of the enzyme type spec-
ification. A drastic change in the enzyme is thus very
likely and therfore the faulty enzyme is not likely to be
connected to the network. This is the case because the
substrate, 158 of which have one product and 167 enzymes have two
rate one product and 88 generate two products. The size of substrates

space of possible metabolites (218 with 18 bit long sub-
strates) is much larger than the number of substrates ac-
tually present in the cell (below 1000 in the 500-enzyme
network discussed below). In Fig. 2C four new types of
enzymes (shown as squares) appeared, but none of them
is connected. Under such circumstances, the effect on the
chemical composition of the cell is minor as is evident
in panel F, particularly in contrast to panel D.

We are now ready to consider a larger network. Fig.
3 shows a network of 500 enzymes that was generated
with the above described process of applying MD5 to
random bit strings and of selecting those that are valid
and connected. This network is defined by the type bit
strings of its enzymes, comprising 21,150 bit. To deter-
mine what chemical composition this network yields,
202 different substrates are provided at a level of 10,000
molecules each and the reaction dynamics is simulated
for 500,000 reaction possibilities (collisions). Subse-
quent to the reaction dynamics typically 600–800 dif-
ferent metabolites are present in the cell. The chemical

state of the cell after introducing radom faults in the net-
work is compared to the chemical state of the unaltered
network (here called wild type), using the aberration (Δ)
defined above. To introduce faults, it is assumed that any
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Fig. 4. Robustness of a metabolic network at low fault probabilities. Probability for a bit-flip in the enzyme representation increases from left to right.
In each panel, the higher curve shows the aberration without folding, and the lower curve with folding. Mean error probabilities for the complete
network are shown in (A) for 1–10 bit and (B) for 10–100 bit; 200 simulation runs were performed for each bar.
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in the 2
erration
Fig. 5. Robustness of a metabolic network. Probability for a bit-flip
flipped to a mean of 1500 bits flipped. The bars on the higher curve ab
runs were performed for each bar.

of the 21,150 bits will flip with a small probability to
its logic negation. We performed simulations for prob-
abilities ranging from equivalent to a mean of a 1-bit
change in the network up to a mean of 1500 bits being
changed.

The impact of random faults for the two different
cases we would like to contrast here is shown in Figs. 4
and 5. In the first case, the bits are flipped in the speci-
fication of the enzyme directly. In this case, no abstrac-
tion of the folding process is invoked. This case is in our
model equivalent to a hypothetical direct modification of
the enzymes shape by bending its surface. This could be
pictured like reshaping a loose ball of aluminium foil. In
the second case, the bits are flipped in the representation
of the enzyme and the MD5 algorithm is used to simu-
late the context sensitive interactions of self-organisation
that maps the amino acid sequence into a shape.

Panel A and B of Figs. 4 and 5 show how aberration
(Δ) increases with increasing probability of faulty bits.
There are two bars for each probability. For clarity in
Fig. 4A the two bars are drawn on separate but identical
scales. In all panels the bars located higher on the page
are for the case of introducing faults directly into the
specification of the enzyme and the lower bars are for

the case introducing faults on the representation level.
The bars extend from the first quartile (25% of sample are
lower) to the third quartile (75% samples are lower) with
the median marked by a white line. The whiskers show
1,150 enzyme representation bits increases from a mean of 100 bits
without folding, bars on the lower curve with folding; 200 simulation

the maximum and minimum values if they are within
1.5 times the size of the bar. Points outside this range are
shown individually as circles. Each bar shows the data of
200 simulation runs, each with a different set of random
faults. In this model, as the graphs show, the abstracted
folding process reduces the impact of random faults on
the chemical composition of the cell. The difference is
most drastic at low error rates.

4. Discussion

The results presented in the previous section point
towards the possibility that a reduction of modular-
ity at the component level may reduce constraints at
the system level, i.e. on the phenotype. Under suitable
conditions modularity in the genotype–phenotype map-
ping aids evolution (Jacob, 1977; Altenberg, 2004) and,
conversely, interdependency among modules require
more sophisticated evolutionary mechanisms (Watson
and Pollack, 2005). Conrad (1977, 1998) argued that in
the course of evolution gradualism, i.e. small changes in
genotype lead to small changes in phenotype, is adjusted
for efficient evolutionary behaviour. Our model illus-
trates that components highly sensitive to alterations can

increase gradualism at the network level by converting
interfering faults into pseudoneutral faults (Volkenstein,
1994). If the phenomenon manifest in the model is
present in nature, one may find a lack of robustness at
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ne layer of biological organisation that serves to in-
rease robustness at a higher level.

The primary interest here, however, is not natural evo-
ution but the engineering of complex artificial systems.
normous gains in raw computational power and com-
unication bandwidth over the past decade have led to

n explosion of complexity in information technology
n all levels from microprocessor chips, to software sys-
ems, to globally distributed data and services. It is in-
reasingly clear that the complexity of computing infras-
ructure is approaching a threshold beyond which cur-
ent engineering runs into difficulties. Progress towards
ngineering at nanometre scale exacerbates this situa-
ion. Many engineering difficulties across these scales
an be traced, at least to some extent, to a common
ause: the loss of detailed prescriptive control (Zauner,
005).

The current approach to compensate for the loss of
ontrol is the selection of functional systems from the
utput of the production process. To arrive at a robust
omplex system with an implementation paradigm
ased on selection is in practice atleast very hard and
rguably impossible. One reason is that the fraction of
ejects grows fast as the component count increases.
nother is that extensive testing becomes prohibitive.
hese two issues are interconnected by the feature of

obustness. More robust architectures will provide a
igher yield of functional systems, but at the same time
iminish the chance of discovering problems during a
on-exhaustive test. Nonetheless, these challenges are
ot unsurmountable as is exemplified by the marvellous
ass-produced nanoarchitecture of biological cells.
elf-organising processes ranging from self-assembly

o growth and development will play a central role in
imicking the high integration density of cells in artifi-

ial devices. Abstracting the principles of the fabrication
rocesses and quality control intrinsic to cells is a first
tep towards this goal. The results reported here hint
t one such principle: redundancy combined with self-
solation of faulty components by a design that insures
hat faults impact interconnection. On this basis, it can
e advantageous to amplify small errors to catastrophic
ailure. Self-organising processes, such as protein fold-
ng or development, provide the amplification in nature;
he same principle can also be designed into technical
ystems.

The question of how one can arrive at “Reliable Or-
anisms from Unreliable Components” (von Neumann,

956) is as pertinent today as it was at the outset of com-
uter science. With the benefit of half a century of in-
ights from molecular biology, we can now contemplate
he engineering paradigms necessary for narrowing the
ms 87 (2007) 289–298 297

gap in integration density between nature’s gadgets and
man-made devices.
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