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Abstract
In order to evaluate the feasibility of a combined evolutionary algorithm-information theoretic
approach to select the best model from a set of candidate invasive species models in ecology, and/
or to evolve the most parsimonious model from a suite of competing models by comparing their
relative performance, it is prudent to use a unified model that covers a myriad of situations. Using
Schnute’s postulates as a starting point, we present a single, unified model for growth that can be
successfully utilized for model selection in evolutionary computations. Depending on the parameter
settings, the unified equation can describe several growth mechanisms. Such a generalized model
mechanism, which encompasses a suite of competing models, can be successfully implemented in
evolutionary computational algorithms to evolve the most parsimonious model that best fits ground
truth data. We have done exactly this by testing the effectiveness of our reaction-diffusion-advection
(RDA) model in an evolutionary computation model selection algorithm. The algorithm was
validated (with success) against field data sets of the Zebra mussel invasion of Lake Champlain in
the United States.

Keywords
Schnute’s postulates; Unified growth model; Allee effect; Invasive species; Model selection;
Evolutionary computations; Zebra mussels

1. Introduction
Evolutionary algorithm-information theoretic formalism is a powerful approach for selecting
the best model from a suite of models. This approach is applicable to several fields of study,
one of which is invasive species modeling. These algorithms can be used to evolve the most
parsimonious model mechanism that describes an observed ecological trend through a
procedure similar to biological evolution. Thus, through a combination of the evolutionary
algorithm and information theoretic methods, a competition among a suite of candidate models
can be initiated, and the best model for describing an observed biological trend can be realized.
The process can be facilitated if one has the appropriate generalized differential equation model
for the automated search algorithm through which the most parsimonious model can be
realized.
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To evolve the most parsimonious model from a set of competing models by comparing their
relative performances, it is prudent to use a unified model that covers a myriad of situations.
In the ecological literature, for example, several growth models abound. Typical examples are
the Malthus (1798), Gompertz (1832), Verhulst (1838), Richards (1959), Blumberg (1968),
and Schnute (1981). In an attempt to unify some of these growth models, Turner et al.
(1976a) proposed a hyperlogistic model with four parameters but the biological significance
of all the parameters was not clearly evident. Oftentimes the model parameters are fraught with
uncertainties (Bentil et al., 2003). Quite recently, Tsoularis (2001) proposed a five-parameter
model, which encompasses most growth curves but some of the model parameters cannot also
be interpreted biologically. In another paper, Tsoularis and Wallace (2002) presented a
comparative study of a generalized logistic equation. In particular, they discussed a generalized
logistic growth function with several parameters, which may potentially have a wider
applicability than Schnute’s equations. The Tsoularis and Wallace (2002) model had several
parameters and it had limited use for our purposes.

We have successfully combined Schnute’s ordinary differential equation system into a single
(unified) model with the added advantage that this single, unified equation could be
incorporated into an evolutionary algorithm for studying the dynamics and spread of invasive
species, such as Zebra mussels in Lake Champlain situated in the Northeastern part of the USA.
A further extension to the unified model incorporates the Allee effect. The Allee effect
describes the scenario when a population cannot persist below a critical population density
known as Allee threshold (Allee, 1931,1938). When considered in its entirety, the generalized
equation (with Allee effect) could be an extremely useful model to adopt for invasive species
modeling via evolutionary computation techniques (see, for example, Hoffmann et al., 2004).
For completeness in this exposition, the paper is organized as follows: we give a brief
description of the derivation of the unified model from Schnute’s postulates. This is done in
Sections 2 and 3. We then allude to the generalized model in Section 4, and embody this model
in an evolutionary computation algorithm in Section 5. Discussions and concluding remarks
are given in Section 6.

2. Schnute’s postulates and the unified equation
In his classic paper, Schnute (1981) considered accelerated growth of fish populations from
the viewpoint of “relative growth rate of the relative growth rate.” In Schnute’s model
derivation, it was assumed that

i. the relative growth rate, k, of a population with density, N, was given by (1/N)(dN/
dt) = k;

ii. the relative growth rate, of the relative growth rate, k, was a linear quantity of the form
(1/k)(dk/dt) = -(a + bk).

Here, the parameter a defined a fixed growth rate, and a/b was the scaled growth rate. The
parameter b was assumed dimensionless. It was defined as a shape parameter, which
determined the point (on a population-time graph) at which an initial “accelerated” or “faster”
growth changed to a “slower” growth. Through this reasoning, Schnute (1981) considered the
accelerated growth rate of species, and solved the model system:

(1a)

where t1 and t2 are initial and final times and N1 and N2 are the initial and final population
densities, respectively. Model equation (1a) assumes a solution of the form:

(1b)
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For a given set of parameter values, the model system and associated solution (Eqs. (1a) and
(1b)) describe 10 growth equations (see Table 1).

Based upon Schnute’s postulates, the ensuing equations and their respective solutions, we can
derive a unified model for use in evolutionary computations. We motivate the derivation of
the unified model from the reasoning given below. Suppose for some fixed positive growth
rate a of Eq. (1b), the time difference, t2 - t1, is large enough. Then,

. Given that, in theory, the final population density, N2,
cannot exceed the carrying capacity, in the limit where , we obtain:

(2)

where Kb is the b-dependent carrying capacity. Following Schnute’s assumptions, the
parameter b modulates the shape and form of the growth curve and its corresponding carrying
capacity. Indeed, if the population grows long enough, the final population can approach the
b-dependent carrying capacity Kb. Using assumption (ii) and differentiating Eq. (1b), after a
little bit of algebra and rearrangement, one obtains a single differential equation of the form:

(3)

This (single) differential equation, which we term the unified model, describes all of the growth
models given in Table 1.

The beauty of Eq. (3) is that it has fewer parameters, that is (a, b, K), and it allows for a more
realistic interpretation of the parameters biologically. For example, differentiating Eq. (3) and
equating to zero, one can examine the behavior of the parameter b at the point of inflexion.
Fig. 1 illustrates this relationship.

Here, a gradual increase of b from -∞ to 1 corresponds to a nonlinear decrease in the point of
inflexion from the value of K to 0, which implies a gradual decrease in the intensity of density
dependence. Thus, as the population grows and the number of individuals increase, the relative
growth rate decreases, which clearly illustrates the effect of population size on itself.
Biologically, we can restate the problem as follows:

Without intra-specific competition, that is, the negative feedback of density dependence, there
is only exponential growth, i.e. b = 1. Intra-specific competition increases with decreasing b.
Therefore, the parameter b determines the strength of density dependence indeed. In addition,
b also scales the relative growth rate, r, in which case we can assume that b is a complex
parameter that modifies density dependence as well as the relative growth rate. Perhaps, it
should be emphasized, here, that growth rate is a demographic and/or ecological term; it
measures the rate at which the number of individuals in a population increases whereas the
relative growth rate is the growth rate per individual in the population. Fig. 2 illustrates the
behavior of typical growth curves.

3. Solution to the unified model equation
The exact solution to the unified model equation (Eq. (3)) can be obtained, in closed form, as

(4a)
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This is analogous to the solution (Eq. (1b)) to Schnute’s two model equation system (Eq. (1a)).
At any given initial time, t1 = 0, and corresponding initial population density N1 = N(0) = N0,
one obtains, after substituting these initial conditions in Eq. (4a), the solution:

(4b)

A rearrangement of Eq. (4a) yields:

(4c)

For the special case when b = 0 we have the limiting solution:

(4d)

We note, here, that these model solutions (Eqs. (4b-d)) have only three parameters, that is a,
b and K, while Schnute’s original model had six parameters. The parameters in our unified
model are indeed amenable to experimental interpretations.

Because the unified model has fewer parameters it has an inherent advantage over Schnute’s
model; it distinctly reduces the parameter search domain in evolutionary computation
algorithms. In the case of the exponential growth model where there is no carrying capacity,
the b-dependent parameter, Kb, is set to 0. Biologically, this means there is no limit to growth
since there is no carrying capacity. On the other hand, the Gompertz model is obtained by
taking the limiting value of the model (Eq.(4c)) as b → 0. Fig. 3 shows some typical behaviors
of the time variation in population density for various values of the shape parameter b. Table
2 below shows the parameter ranges for various models mimicked by the model.

4. Extension of unified equation to include Allee effect
In this section we extend the unified model (Eq. (3)) to include the Allee effect. We call this
the generalized model. The generalized model encompasses a myriad of models and
submodels, which are particularly useful in evolutionary computations. The Allee effect (Allee,
1938) occurs if the intrinsic growth rate decreases as density or abundance decreases to low
levels (see, for example, Robertson, 1921;Courchamp et al., 1999;McCarthy, 1997). This
implies that there exists a population threshold of size q, say, which for N0 < q, population
declines, perhaps due to harsh environmental conditions, and eventually becomes extinct,
whereas for N0 > q the population can grow to a certain level (and below the b-dependent
carrying capacity). This is illustrated in Fig. 4a and b.

Indeed, the functional form of the right-hand side (RHS) of the unified model (Eq. (3)) is a
quadratic equation with domain N ∈ [0,K], where from a linear analysis of the RHS, the steady
state N = 0 is unstable and N = K is stable. Here, the axiom of parenthood (Hutchinson,
1978) is naturally satisfied. Based upon biologically realistic assumptions for the occurrence
of the Allee effect (Allee, 1938) given above, a pragmatic extension of model Eq. (3) yields a
b-dependent cubic function for the RHS defined in the same population density domain, N ∈
[0,K], but with three steady states occurring at N = 0, q, K such that N = 0, K are stable and
N = q is unstable (see Fig. 4a).With a little bit of algebra and rearrangements, one obtains a
generalized model that encapsulates all of the growth models described earlier, and, in addition,
encapsulates the Allee effect. Such an equation is given by

(5)
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We also note, here, that if b = -1, a > 0 and q ≠ 0 one obtains a logistic growth model with
Allee effect. Also, for q = 0, one obtains the unified model (Eq. (3)).

We note that Eqs. (3) and (5) describe just the local phenomenon (i.e. time-dependence only).
Given the generalized model equations described above, we can then incorporate spatial effects
that encompass both dispersal (in the form of diffusion) and advection (in the form of
convective flow). This gives us a reaction-diffusion-advection (RDA) model. A prototype RDA
model, which incorporates some of the characteristics described above, can be written as

(6)

where D and vx, vy are the diffusion rates and advection velocities in the x and y directions,
respectively, and the other model parameters are as described in the text. Here, for simplicity,
we have assumed that the diffusion coefficient is constant but the model equation could easily
be extended to incorporate density-dependent diffusivity. We describe below an evolutionary
computational test of our unified RDA model and discuss its advantages.

5. Evolutionary computation test of the unified equation
As a test of the effectiveness of Eq. (6), we used this model in an evolutionary computation
model selection algorithm that was applied to field data set of the Zebra mussel invasion of
Lake Champlain (United States). Lake Champlain occupies a north-south geological fault zone
and is long (193 km) and narrow (19 km at its widest point). It is located at 44.50 latitude and
-73.25 longitude, and is the sixth largest lake in the United States. The predominant flow is
north into the Richelieu River in Quebec, Canada, and the mean hydrologic residence time is
3.3 years. Additional information can be found at
http://www.worldlakes.org/lakedetails.asp?lakeid=8518.

The Zebra mussel data consists of a 10-year time series of the densities of veliger larvae,
juveniles, and adult forms of this invasive species at 23 locations in the lake. Data are available
at (http://www.anr.state.vt.us/dec/waterq/lakes/htm/lp_lczebramon.htm). These data are
considered the best whole-lake Zebra mussel data set in existence due to the consistency of the
methods used in collecting them and the fact that the initial sampling occurred at the very
beginning of the invasion in 1993. Zebra mussels were first discovered in the extreme southern
portion of the lake and over the next 10 years spread northward throughout the entire lake. A
succinct summary of the life history of this invasive species is available at
http://nis.gsmfc.org/nis_factsheet.php?toc_id=131.

We note, here, that the hydrodynamic features of the lake are extremely crucial for modeling
the etiology of the spread of invasive species, hence the use of the unified model, the
characteristics and assumptions, some of which we describe below will be important here.
Indeed, the “true” model is unknown when using field data, so for these tests it is necessary to
use the known facts of the life history stages of Zebra mussels (specifically, the passively
dispersed veliger larval stage), and the known hydrodynamic features of Lake Champlain as
criteria for judging whether these tests can evolve the “correct” unified model. The larvae are
released by the adults in large numbers (∼106 per adult) from late spring to early fall (a period
of approximately 4 months when the water temperature of Lake Champlain is sufficiently warm
to allow spawning). This stage of their life history is planktonic for approximately 1 month
and occurs more or less continuously during this 4-month period. Thus, it is reasonable to
expect that the large-scale hydrodynamic features of the lake (predominant northward flow)
will dominate the passive dispersal of the veliger spread dynamics on an annual time scale.
Therefore, a “correct” model of their dynamics should show strong anisotropic advection in
the northern direction, and the magnitude of the advection should approximate the known
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average annual northward flow rate of the lake. There is also an extremely high fecundity of
the mussels and large-scale mixing of the planktonic larvae, so it suffices to use the generalized
growth term with or without the Allee effect, and negative density dependence (as the ground
truth data suggest) in the dynamics of the model.

To see if the evolutionary algorithm would evolve a model structure consistent with these three
expectations, namely reaction terms in the form of growth, diffusion and advection, we used
our RDA model on a gridded spatial domain of the lake with a cell size of approximately 1.4
km2. Despite the recognized high quality of the Lake Champlain data set, the observed veliger
larvae densities show considerable variability typical of field data, and furthermore constitute
a sparse data matrix in time and space. It was, therefore, necessary to process the data before
conducting these tests. First, the data were averaged over the 4-month spawning period for
each station in each year of the time series—this some-what smoothed and effectively
transformed the data to the appropriate time scale for comparison to the known large-scale
annual hydrodynamic features of the lake. Second, the original data were supplemented with
linearly interpolated values to fill in the empty grid cells, and then locally averaged to smooth
further the training data. Only the first 7 years of the 10-year time series were used for these
feasibility tests because this time period best depicts the onset and subsequent spread of the
invasion, whereas the more recent years show stagnation and possible decline in densities.
Local investigators are currently researching the cause of the stagnation and possible decline;
however, no consensus of causal factors has emerged yet.

The evolutionary (or specifically genetic) algorithm used a genome encoding for the complete
seven-parameter generalized model. The genome also included switch genes, which
determined the components of the generalized model that would be active for that individual.
To avoid over-fitting, the more complex models were given a higher fitness penalty as guided
by the Akaike (1973) information criterion. Specifically, the algorithm orchestrates a
competition among different models that ultimately results in the evolution of the most
parsimonious model that best describes the data. The evolutionary algorithm software package
used for these tests is a public domain, parallel genetic algorithm function library written in
ANSI C, known as PGAPack (Levine, 1996), and is available from the United States DOE
Argonne National Laboratory (ftp://ftp.mcs.anl.gov/pub/pgapack). The fitness function and
models were coded in C, optimized, and parallelized for SMP (symmetrical multiple
processors) in circumstances where global memory space was not an issue. We used NAG
(The Numerical Algorithms Group, Inc., Downers Grove, IL) numerical partial differential
equation solver, and optimized in FORTRAN for SMP. Computation times on dual-processor
Xeon workstations took approximately 6 h of CPU time. See Hoffmann et al. (2004) for more
specific details of this algorithm and method.

Our results have confirmed the potential for the use of this generalized model in evolutionary
computational algorithms. Fig. 5 shows the population density predictions of one typical
“correct”, evolved model of the spread dynamics of the veliger larvae compared to the field
data for Zebra mussel veliger densities in Lake Champlain. It is interesting to note that 29 of
36 experiments using the Lake Champlain veliger density data evolved the “correct” model
structure with appropriate parameter values (a “correct” model is defined as including the three
expectations of anisotropic northward advection, some negative density dependence, and no
Allee effect). The “correct” models had an average parameter value for the northward advection
of the larvae of 62.9 km/year (S.D. ± 2.5), which compared favorably with the independently
estimated average of 60 km/year calculated from the known hydrologic residence time and
length of Lake Champlain. The average value of the density-dependent parameter b in the
“correct” model was -1.67 (S.D. ± 0.16), and suggests a negative non-linear density
dependence. All of the “correct” models had evolved a model structure in which the switch for
the Allee effect gene was turned off, thus indicating no significant positive density dependence.
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Although this model over estimated the spread rate in years two and three of the invasion, the
general pattern of the predicted dynamics over the 7-year time period was consistent with the
observed field data.

6. Discussion and conclusion
The key to using mathematical models in ecology effectively lies in applying theoretical work
to experimental observations, and deriving a theory from experiment-driven hypothesis. To
make predictions from models, one should be able to estimate the important parameters that
govern the phenomenon under consideration.

By reducing Schnute’s model to a single differential equation, we have obtained a unified
model (Eq. (3)), and then a generalized model (Eq. (5)) with biologically meaningful
parameters. Our models describe as many as eleven known growth model equations, and other
growth models that are yet to be related to field data. In particular, we have included the Allee
effect and incorporated spatial effects into the unified model. It is clear that the unified model
includes both linear and non-linear density dependence, and spatial effects, and it is a novel
one. Also, it has fewer parameters that are verifiable experimentally.

Given the generalized model, we have incorporated it in an evolutionary computation model
selection algorithm to evolve the most parsimonious model that best fits ground truth data.
There is, however, the danger in blindly accepting the best model selected from any model
selection procedure, and often there is no single best model and the model parameters are
fraught with uncertainties (see, for example, Bentil et al., 2003; Hoffmann et al., 2004; Osei
et al., 2005). Since evolutionary algorithms are, in general, stochastic search procedures, many
replicate searches were conducted to produce several best evolved models out of which the
most parsimonious model was chosen. The major limitation of this approach to model selection
and fitting is the computational intensity and time needed to adequately search both model and
parameter spaces simultaneously. The use of ecologically realistic models with fewer
parameters indeed allowed for considerably less CPU time.

In conclusion, we note, here, that global warming is predicted to alter the range of species and
increase the number of disruptive invasions. Managing invasions in complex ecosystems
depends on good predictive models of invasive species dynamics. The use of this generalized
RDA model will directly benefit ecosystem scientists and environmental managers who need
better predictive tools and understanding of invasive species dynamics for directing their
control efforts.
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Fig. 1.
Normalized population density (at the point of inflexion) plotted as a function of the parameter
b. Points on curve indicate corresponding points of inflexion on the population time graph for
different models. Note that the graph asymptotes at K since that is the maximum point that the
inflexion point can attain. The value of b therefore determines the strength of density
dependence.
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Fig. 2.
A plot of population density (N) against time (t) for relative growth rate r = 0.69, and carrying
capacity K = 10. For b = 1 the growth is exponential and therefore there is no point of inflexion.
For b = -1 (logistic) the point of inflexion is at N = 5. Note that apart from b = 1, which is a
unique case, the point of inflexion moves up towards K as b decreases. Also note that changes
in b affect the relative growth rate. In this graph adjustments have been suitably made to make
sure that the relative growth rate is always the same (0.69).
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Fig. 3.
As b decreases the inflexion point moves up along the population-time graph, thus b determines
the change from accelerating growth to slow growth due to density dependence. For example
at b = 1 the point of inflexion is at 0 density. This means that for the population time graph
with an initial population N0 > 0, the growth has no inflexion point, whereas at b = -1 (logistic)
the inflexion point is halfway along the population time graph.
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Fig. 4.
(a) Functional form of the RHS of the generalized model with Allee effect for b = -1 (logistic
model) and a = 0.69. For the given choice of parameter values, the steady states for the
normalized population density were 0, 0.3 and 1. The threshold population, 0.3 is unstable and
allows for the occurrence of the Allee effect. (b) A qualitative solution of the generalized model
with the Allee effect. The threshold population, q, is 0.3 and carrying capacity is 1. The five
initial conditions are N0 = 0.1, 0.2, 0.4, 0.6, and 0.9. For initial populations less than 0.3, the
populations go extinct with time whereas for populations above 0.3 the populations can rise
up to some maximal population below the carrying capacity.
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Fig. 5.
Time series of the Zebra mussel veliger densities in Lake Champlain. The spatial domain of
the lake is graphically shown here as the set of 1.4 km2 grid cells used to model the veliger
larvae spread dynamics. The upper panel depicts the unified model predictions and the bottom
panel depicts the processed field data. The noticeable light area in the northern portion of the
lake in 1994 is due to the veliger larvae not reaching that region of the lake in that year. The
small square region in the northern portion of the lake represents islands.
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Table 1
A list of parameter ranges suggested by Schnute and their model types

Values of a and b Model type

a < 0, b = 1 Exponential
a > 0, b = -1 Logistic
a > 0, b = 0 Gompertz
a > 0, b < 0 Richards
a > 0, b = 1 Generalized von Bertalanfy: Putter No. 1
a > 0, b = 1/3 Generalized von Bertalanfy: Putter No. 2
a > 0, b > 0 Generalized von Bertalanfy
a = 0, b = 1 Linear
a = 0, b = 1/2 Quadratic
a = 0, b = 0 rth power

Biosystems. Author manuscript; available in PMC 2008 September 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Bentil et al. Page 15

Table 2
Parameter values for the unified equation and their model types

Values of a and b Model type

a < 0, b = 1, K = 0 Exponential
a < 0, b = 1, K > 0 Monomolecular
a > 0, b = -1, K > 0 Logistic
a > 0, b = 0, K > 0 Gompertz
a > 0, b < 0, K > 0 Richards
a > 0, b = 1, K > 0 Generalized von Bertalanfy: Putter No. 1
a > 0, b = 1/3, K > 0 Generalized von Bertalanfy: Putter No. 2
a > 0, b > 0, K > 0 Generalized von Bertalanfy
a = 0, b = 1, K > 0 Linear
a = 0, b = 1/2, K > 0 Quadratic
a = 0, b = 0, K > 0 rth power
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