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Abstract

This essay is designed to organize a rangeparimental findings and theoretical insights of the
past 25 years into a coherent view of the brain’s stylaraftion. The view that emerges places the brain
firmly into the conceptual framework of Nonlinear Dynamugserating at the brink of criticality which is
achieved and maintained by self-organization. Applicadfdhe twin concepts of scaling and
universality of the theory of non-equilibrium phase traosgiwill then be introduced as an approach to
elucidating the nature of underlying neural processes, notathiy&ference to the role of reentrant
activity in neural circuits of cerebral cortex and subcaltstructures.

1. Introduction

The relevance of the Dynamical System framework inrbecience has been foreseen by Turing
(1950) as a way of affording the nervous system the speedesitllitly required for instantaneous
reaction to novelty. Ashby (1952/1960) similarly suggested bifssth phenomena might best be
understood in terms of dynamic theory. More specificallycKalsky et al., (1974) stated that “...waves,
oscillations, macrostates emerging out of cooperativegsses, sudden transitions, patterning, etc. seem
made to order to assist in the understanding of integrateegses of the nervous system ...”. Haken
(1983, 2002) proposed to view the brain as a pattern formgigm that operates close to instability
points for flexible and rapid switching between cohereresidBasar (1983) was an early contributor to
the dynamical system neuroscience framework. Since 197%n&ndeas produced a steady flow of
studies of the dynamic principles of wave patterns in bratmich have yielded numerous relevant
findings, including characterizations of attractors, b#itians and critical phase transitions. (1975; citing
merely more recent publications: 2000,2003,2004; Freeman & H@0d@Es Freeman & Vitiello, 2006).
The investigations which | will discuss in the followingreayenerated several dynamical hypotheses of
brain processes which form a kind of “family resembé&nthough also differing in some important
aspects and —where applicable- in their respective computhtnmdels. Related issues have recently
been reviewed by McKenna et al, (1994), Le van Quyen (2008)Casmelli et al (2006)

For clarity of exposition, | will trace the various stds of conceptual development and
hypotheses separately, notwithstanding the many crossalingag them. My main objective is to distill
from these various strands a common theme, and to sitiratn intersection of Nonlinear Dynamics
and statistical Thermodynamics. This, | suggest, hokisategic place for gaining more detailed insight
into neural-mechanistic events and processes.

2: Background: Data and Models

2.1: Oscillatory activity and Coordination Dynamics

| take the remarkable discovery of stimulus induced osmilfeind synchronous neuronal activity with
the predominant frequency in the 40 Hz range (gamma wawégctis starting point. In sensory systems, the



phase synchronization of oscillation links neurons functigriatiether to groups that respond to identical
stimulus features (Gray and Singer, 1987,1989; Eckhorn et al.. Td&8junctional neuron assemblies thus
formed consist of elements which are distributed in spliat are ‘locked’ together by a common signal phase
The possibility of this synchronous activity of neuronaleasblies being a candidate for linking separate
stimulus features to objects of conscious perceptionntassively investigated (Engel et al. 1999, Lamme et
al. 2000; Lutz et al. 2002; Ribary et al. 1991, Singer et al.;IRglbn-Baudry and Bertrand, 1999). However,
here, | will direct attention to the two unusual propertiethis oscillatory activity as of principled signiince

for brain theory: first, virtual simultaneity and vestyort onset latency in the oscillating ensemble, implging
process on a faster time scale than conduction and sydelatics would permit (Singer, 1998; Roelfsema et a
1997); and second, their pattern of short oscillatoyuesgces interrupted by epochs of stochastic activity
(Murthy and Fetz, 1992).

Simulation studies of neural assemblies replicated hgaswitching between synchronous and
stochastic activity and attributed it to synaptic noedirity and fluctuations from peripheral input and/or
interaction with other assemblies (Bauer and Pawel&i®3). This justifies subsuming the cortical oscillatory
activity under the category of Kuramoto'’s (1984) “self-synchratnn transitions” as a paradigm for
synchronization phenomena and a mode of self-organizatiopuigiimns of interacting elements (Acebron et
al. 2005). A revealing aspect of the oscillatory neuravigtinder discussion is the already mentioned short
onset latency. The occurrence of abrupt changes of stapagarted through the system at short latency sugge
that the dynamics of the neuronal aggregates under considesatiothe brink of critical transitions. This line
of thought will be amplified in Section 3.2..

Activity in a wider frequency band than gamma oscdla reveals an intricate dynamics of surprisingly
long lasting activity patterns of appreciable spatial éxisitiated by a sensory event or in task situatidie
time course of signal distribution across the multipldicalrareas of the visual system extends over some 15(
msec from time of onset of stimulus, with the sequeheetovation departing drastically from what one would
expect if the cortical regions were activated sequigntima pure hierarchy: for example, local field poialst
(LFP) in Visual area V4 have a much longer latency ttaringtance, the temporal areas, although
geographically much closer to the cortical visual inputdréSchmolensky et al. 1998). A meta-analysis of
visual response latencies in the macaque cerebral catertained a complex pattern of feed-forward and
recurrent activity flow: for several hundred msec adtérief stimulus, the temporal sequence of activation
departs from the topological proximity of activated strudteamme and Roelfsema, 2000). A complicated
dynamics of activation and deactivation of cortical regiisnalso generally associated with the execution of
attention-demanding tasks, with some regions being adivetide others recede to relative quiescence. This
task-related regional dichotomy of activity is also dastmble in the resting state, suggesting a cortical
network of intrinsically anticorrelated components (Foale 2005). In perceptual tasks, synchronous local
field potentials (LFP) oscillating at frequencies fraghto about 80 Hz signal sequential patterns of co-
activation of different brain regions, extending up to 500 mssaccessful (but not failed) discrimination
performance (Bressler, 1995; Ding et al. 2000; BressleKatsb, 2001; Rodriguez et al., 1999) with different
neuronal assemblies evolving in different frequency rafges Stein and Sarntheim, 2000). Braeutigam et al.
(2004) demonstrated that the temporal course of decision makimg selection (construction) of preferences
reflected in magnetoecephalraphic activity, extends overadwendred msec. Finally, brain imaging during
natural viewing conditions reveal the temporal organizgtiomronoarchitecture”) of brain activity since
functionally different brain regions exhibit individually distt temporal activity patterns (Bartels and Zeki,
2004).

The conceptual and methodological implications of these dai@ddindings are consonant with the
principles of Coordination Dynamics (CD) of complex sysielhserves as a framework for studying the
manner in which interdependencies among a system’s compalyaaimically evolve in time, which will be
examined more closely in see Section 3.2. Sufficegayoat this point that it is concerned with the phase
relationship of LFP’s as the significant control paramnétollective variable) for ordering the sequence of



activation patterns in time and space (Varela et all;2Bfessler and Kelso, 2001). Unlike the msec and mm
range of local coordination, times extend up to several lednusec, and spatial interdependence may
encompass diverse cortical and subcortical zones, andainesbkem. High speed Elecroencephalography and
Magneto-Encephalography supplied data for a refined asatf/selationships between brain activity and
perceptual-cognitive behavior. A review by Bressler anddk@601) summarizes the essential results of
numerous studies which show that both behavior and braityandergo a sudden transition from one stable
state to another at some critical stimulus paramdike following sketch of a typical experimental paradigm
will illustrate the principle: the subject’s task is kexfa finger in response to tone stimuli of a certain
frequency, initially in a syncopated mode; neuromagnetid fictivity, reflecting the dendritic durrent flow in
the brain is recorded from the scalp. The repetitionafatiee tone is then stepwise increased. At a particular
critical frequency, a sudden transition from syncopatedymchronous responses is accompanied by an equa
abrupt transition of the brain’s electromagnetic field (Kelsal, 1992) from one to another stable pattern
occurs, for which the stimulus frequency is a controapaater. This phenomenon is thought to reflect the
brain’s universal property of complex systems operatirgynmetastable dynamics, presumably due to an
interplay between integrating and segregating tende(sgesSection 3.2). Signs for the brain’s metastability
are also evident in a recent study of Freeman & Hol2@35), based on the analysis of spatio-temporal
patterns in the 12-80 Hz band of the ElectroencephalogranierEBreeman and Barry (1994) had
demonstrated the propensity for dynamic instability, neshis rapid global state transitions in oscillatory
cortical activity. Metastability as basis for fornmtiand rapid switches among different operational modules |
the EEG is also the essential theme of the extensive WéiikgelKurts and Fingelkurts (2001, 2004), possibly
related to the succession of ‘microstates’ in the cof Low Resolution Electromagnetic Tomography
[LORETA] (Lehman et al, 1998, 2006). | will return to quess of origin and nature of metastability, and of
microstates in the Discussion section.

2.2: The Dynamic Core HypothesigDCH)

Plasticity of synapses and neuron connections affordsatlnk between the functional organization of
neuron assemblies and the world, adaptive to use and dishisd h&ory of Neuronal Group Selection
(TNGS), also referred to as the Darwinian Brainnspplication of this principle (Changeux, 1983; Edelman,
1987,1989, 1993; Tononi and Edelman, 2001]. A primary repertoireatdraical connections established
during development responds to experiential exposure totiimement with differential amplification of
synaptic populations. The spontaneous formation of neuramapbgican be attributed to the interplay between
spike time dependent plasticity (STDP) and conduction delalykévich et al. ,2004). The second central
notion is reentrant mapping: this is a dynamic processsiiaterently parallel and distributed. It consists of
ongoing signaling between separate neuronal groups in a retignoceecursive fashion over cortico-cortical,
cortico-thalamic and thalamo-cortical radiations. Neat group selection and reentrant mapping, together, ar
considered the prerequisite for establishing new and singtaristing statistical signal correlations between
groups of neurons. Neuronal groups thereby come to reflecotgpagpioral properties of signals arising in the
environment, and serviceable for perceptual categorization.

Generalization of this principle to cross-modal percdmategorization is accomplished by dynamic
structures that encompass multiple reentrant locpbr(®ensory and motor) and interaction with basal
ganglia, brain stem and cerebellum; the latter forgmimen-action coupling. Within such global mappings,
long-term changes in synaptic strength favor the formafiomenron groups with correlated activity as basis
for memory. Memory in global mappings is procedural, agiires dynamical re-assembly by rehearsal. Note
that each re-assembly of a global memory may be cotestiby different neuron populations: a consequence «
the degeneracy (redundancy) of neuronal groups.

Reentry is instrumental for generating oscillationthe simulated models: Sporns et al. (1991) and
Tononi et al. (1992)] established in their respective moteléiriking of stimulus features by reentrant
circuitry, within and between segregated corticaharét depends in these studies on the occurrence of rapid



changes in efficacy of reentrant connections, and &spact of segregation and integration of elementary
features into objects and background through temporedlation and phase relationships among neuronal
groups. In a very large computer model of 65,000 spiking neurons, tppagily organized into a primary
and secondary visual cortical area and two assodiaaémimic regions, synchronous oscillations emerged
spontaneously, even though the networks was not designed to pradyderm of specific dynamics (Lumer
et al. 1997)

Conscious experience is in this theory associatedghathal properties of large but distinct sets of
distributed neuronal groups: the Dynamic Core (DC). The yheessociates cognitive events with the formatior
of distributed clusters of neurons that are intensegraating with each other (i.e.: integrated) andhatsame
time, are quite distinct and differentiated fromitbgt of the system. Functional segregation is epitontiyed
stimulus feature detectors in cortical receiving arkasstional integration is expressed in temporal coriaist
and synchrony in the large-scale, reciprocally interconnetgtal network and thalamic regions. The
neuron clusters of DC achieve high integration within hundoédssec through reentrant interactions in the
thalamo-cortical system. DC must be viewed as a processing transiently the clusters of neurons which
reflect rapidly shifting functional connectivity among distramineuron groups, not constrained by anatomica
proximity.

Several measures have been proposed to characterizigagivaty the interplay between the seemingly
opposing tendencies of differentiation and integration. Toeioal (1994) defined a statistical measure of the
amount of ‘structure’ within a system’s dynamics, as esgiom of its “complexity” : its value is high for
systems with subsets of large mutual statistical dependeniciesuch systems, different parts can engage in
separate activity and yet remain interdependent (Tononi delindn, 1998). More recently, Tononi and
Sporns (2003) and Tononi (2004) proposed a measure of a systgratsty to integrate information, and Seth
(2005) defined the measure of Causal Density for the frastioausally significant interactions among a
system’s elements. It appears, however, that none of tessgures by themselves captures the temporal and
recursive aspects of the multidimensional complexity of neysiems that could account for conscious
experience (Seth et al., 2006).

The central role attributed in the DC theory to proesss integration and differentiation in neuronal
groups directed attention to whether (and if so, in whatmar) neuronal networks are equipped to support
these processes. In a remarkable convergence of resaft€smputational Neuroanantomy (Sporns and
Koetter, 2004), the statistical mechanics of networks (Abyed Barabasi, 2002) and computer simulations
(Sporns et al, 2000) ascertained that the particular foclusfered organization encountered in biological
(natural) cortical networks would indeed be supportive of lsyorous processing and efficient signal
exchange, and superior to other network topologies (feewe Sporns, 2004, and references cited therein).

2.3: Global workspace models
2.3.1: Baars’ Global workspace model

Partly in distinction from and partly overlapping with extpsychological theories of conscious
experience, Baars (1988) introduced and later extended (Baarsal'@@agnitive theory of Consciousness”.
The theory postulates a multitude of relatively small spgmirpose processes, almost always unconscious.
Coalitions of such processes gain access to a lirn#pdcity global workspace which serves to integrate
competing and cooperating input networks and is the gatea@ynsciousness. Messages from this global
workspace are broadcast to all the unconscious processexsit their participation for dealing with novel
situations or solving the current problem. All this occurs utite auspices of certain contexts, each being itse
a coalition of processes, jointly constraining consciousteve



In the original book of 1988 and in numerous subsequent pubiisaBaars illustrated that the three
main construct of the theory ( namely Global workspacepmstious special processors and contexts) and the
interaction pattern can be construed to be sufficientfast (possibly all) aspects of Cognition and
Consciousness. His original approach was informalyriggise and primarily appealing to psychological
intuition. Nonetheless, in a review published in 2002, Baarkl@te a large number of investigators
implicating one form or another of a ‘global workspacetognition and consciousness, however not
necessarily embracing Baars’ tripartite model. Theiralpoint appears to be the notion that some form of
“global workspace” is required for widespread interachetween otherwise independent brain functions: the
idea of a ‘global workspace’ had entered the discourserdciousness studies, albeit in a variety of shades o
meaning.

In subsequent publications, functional interpretations in péaysiological terms were introduced by
Baars and associates in a ‘neural global workspacetiihe and Baars 1993), primarily in relation to attentior
in schemas of neural network models (Newman et al. 198%),similar to those which Taylor and Alavi
(1993) had applied earlier. Franklin and Graesser (1999)ranélih (2003) took a different approach: they
implemented the global workspace concept in several sueeegsierations of software agent models in the
tradition of Artificial Intelligence. None of these efts addresses the dynamics of processing in the global
workspace and are, therefore, outside the scope ofsgay.e Although specifically designed this way, it now
appears that organization and function of DCH are collpatiith and accord satifactorily with the basic tenet:
of the Global Workspace Model (Seth and Baars, 2005).

2.3.2: Wallace’s dynamic global workspacehypothesis

In a series of recent publications Wallace (2005a) supplisth@mics to a Global Workspace. Here | will
offer an intuitive account of the formally developed pecdive taken in Wallace (2005 b) which applies
information theoretic considerations and draws on resotnmestheories of network structure and dynamics
(Erdos and Renyi, 1960; Newman, 2003).

To begin with, a loosely connected network of unconscimaslules is considered, corresponding
essentially to the unconscious processors of Baars'ythétext, the relation among them is characterized in
terms of their mutual information. Non-zero mutual infotior@among modules can formally be considered as
linkages among them which constitute fleetingly a (functioBédpal Network. Network theory now specifies
conditions under which sub-networks can become transiently or@mee of them can encompass the majority
of the network’s nodes, forming in network jargon a ‘Giaatponent’. In terms of network dynamics, this
can be considered a phase transition. The formation dBthet Component’ is considered to reflect a
collective cognitive phenomenon. One can readily imagine the complexniygof this model: a continuous
flux of mutual information among the special purpose procesabesch point giving rise to a fleeting network
which, at certain critical points, coalesces momentéoily Giant Component, only to be restructured by new
states of the information processors.

This sketch of the model is merely intended to convey aitiirg “feel” of the model’s dynamics and
fails to do justice to its formal sophistication aadhe numerous details in its successful applicatioroto, f
instance, Generalized inattentional blindness and indistaders Wallace (Wallace, 2005 c; 2006)

2.3.3: The Global Neuronal Workspace hypothesis (GNWH)

The Global Neuronal Workspace hypothesis was descrit@gtans by Changeux & Dehaene (1989) anc
Deahaene & Naccache (2001) and most recently summariZzedhiaene & Changeux (2004). It relates to
Baar’s cognitive theory of consciousness, but is distinguisload ifrby its particular and detailed functional
organization, and its implementations in dynamic computakimodels.



The hypothesis postulates two computational spaces ofctligéitierns of connectivity: 1) a collection of
subcortical, automatic processors, each specializedgarticular signal input which is provided via
encapsulated local and medium-length connections; and 2pa gleuronal workspace with the capacity for
wide-spread, long-range connections for reentrant signal #bween it and the specialized processors. The
workspace is a dynamic concept: workspace neurons areamptystielineated anatomically, but distributed
among distant association areas (Dehaene and Changeux, 199D&f@kene et al. 1998). The decisive event
is the activation of GNW (see Section 3.3). Betweerpdps of activation, the neurons of GNW are in a state o
permanent spontaneous activity which is sustained by ascemaingmodulatory input. When of sufficient
intensity, the network will display gamma oscillatiarighalamo-cortical origin and possibly sudden surges of
activation which may be identified with ‘vigilance’ (LS et al, 1998) : they enhance the activation of GNW by
sensory stimuli. Activation of GNW also occurs witkense sensory stimulation in the absence of fatdn.
GNWH postulates that global activation of a GNW is aisded with reportability of a subjective experience
(Deahaene and Changeux, 2004).

The basic design of GNW was implemented in several NB@tavork models, with McCulloch Pitts as
computational elements, and proved satisfactory for emglaspects of human performance in a variety of
(effortful) psychological-behavioral tasks (Deahaene e¢987,1998). To convey the operational flavor of the
theory, | will describe here briefly the most recent mdiyeDehaene et al. (2003) of a network of single
compartment model neurons with explicitly specified ionic catahces and synaptic currents for simulating
features of the cortical inter- and intra-columnar cotiviég and as cortico-cortical projections. The targethe
model was a modified attentional blink paradigm for which demu for reportability of presence or absence of
stimuli were determined in human trials: subjects senalbvisual presentation of distractors, interspersiga w
two targets T1 and T2; the task was to rate T2 Nityitand then to report T1 identity. Typically, repdsiiy of
T2 drops at for several hundred msec after T1 pres@mta

For the simulation of the human task, the model wagglaca regime of spontaneous thalamo-cortical
oscillations. The attentional blink test was simuldigdtimulating two groups of thalamic neurons, one coding
for T1, the other for T2. The index of model performaneas the degree and extent of activity across the oertic
thalamic hierarchy. As to be expected, network actimagvoked by T1 stimulation set a long-lasting dynamic
brain-state in motion. But the activation elicited bysIiznulation dependent tightly on its timing: T1 elicited
activity prevented T2 activation from propagating to higheticarlevels and abolished part of the top-down
amplification in reentrant circuitry, with the globaltwerk seemingly acting as a bottleneck (Sigman and
Deahaene, 2005). Selective lesions of the long distance connecttbeanodel corrupt the model performance.

3: Discussion

To varying degrees of explicitness, the observations andhfjadif the foregoing section implied
principles of nonlinear dynamics, notably the notion of sgstevolving in a phase space defined by their
independent variables, and capable of undergoing abrupt trassitibime observed brain events cited in
reference to Coordination Dynamics as well as the sioade for constituting the DC and The GNW in the
respective models occupy durations in the order of severatdainasc. While this may be surprising, recall
that it takes some 500 msec in human subjects for a g8rtmthe somatic sensory cortex to become
experienced, referenced to the short latency compon#me @fortical Evoked Potential (Libet, 2004). Pollen
(2004, 2006) attributes this delay to the time required for cetopl of recursive activity in feed-forward and
feedback neuronal circuits. With respect to the time cotineamicrogenetic approach in perception offers a
suggestive parallel: it is based on the idea of a ‘graduialrimg’ of the subjective perceptual experience in the
sequence of different components of the cortical evoked igemanging from the fast positive component at
20-60 msec to the negative component at 100-150 msec and the miediteetion at 300 msec (Bakhman,
2000). Plausibly, the time periods under discussion reflecinieeréquired for phase space evolution of



neuronal assemblies, in preparation for phase transitiotineré is any merit to this suggestion, it would have
significant consequences for the experimenter: rathersibeking a correspondence between subjective repo
or behavior with a punctate (in space and time) measurembrdin imaging , genuinely informative data on
brain processes would be obtained from following trajeetoof phase space evolution in brain space and tim
(Werner, 2004,2005).

In this and related situations omstrask the question whether a given system is intailhgic
dynamical, or whether it is merely the case that itmmterpreted and simulated as such. Since some of the
evidence in support of the former (see below) is framéerms of Self-Organized Criticality (SOC), | willsart
here a brief excursus to some of the essential feattites theory.

As is well known, Bak et al (1987/1988) introduced a theory@t $o designate the property of
systems to exhibit non-equilibrium phase transitionaa@mount of their intrinsic dynamics, without
requiring tuning of control parameters by external influenthis was thought to be the distinguishing
criterion from the conventional phase transitions in dguilm systems which require external tuning of
control parameters to attain critical state. Systeimiis former kind evolve spontaneously to a critical
state at which their responses to perturbations dispday ef characteristic properties: temporal and dpatia
scale invariance (i.e. absence of a characteristie s€dngth and time, associated with fractals and 1/f
noise), drastic reduction of the number of degrees of freedndhdivergence of correlation function as
signal for lack of characteristic length. ‘Scaling &elor’ refers to determining whether the temporal (or
spatial) pattern of an observable remains identical istdde transformation; ‘scale-free’ then signifies the
absence of any characteristic scale Processes basé&lCoar& characterized by a power law relation
between frequency bands and their respective frequerthg mecord, usually represented as 1/f relation.
This is generally taken as a signature of SOC. (Bak, 188&n extensive review on scale invariance in
Biology, see Gisinger, 2001). Flyvbjerg (1996 ) offered a minoheéihition of the essential features of
SOC as “ a self-organizing critical system is a drj\@issipative system consisting if of (1) a medium
which has (2) disturbances propagating through it, causingrni®ddication of the medium such that
eventually (4) the medium is in a critical state, andt{)medium is modified no more”. This definition
reflects the process of propagation of long-range interetased on local effects in the medium (as a
kind of domino effect) until the state of criticality ifaaned at which any further disturbance triggers an
abrupt, critical phase transitions. This sequence of sversustained by two concurrent processes with
different time constants: a faster disturbance of thamynstationary state, and a slower relaxation
towards its restoration, often referred to as awvdiarfa metaphor based on the sand pile of the original
model of SOC). This critical state is then maintaingtl replaced by circumstances that lead to indrat
of another process of the same kind.

With the foregoing criteria for self-organized critibain mind, it is now possible to examine whether
measurements of brain activity and structure comply thighstipulations of the theory. Linkenkaer-Hansen
(2001) unequivocally established that the amplitude fluctuatiotieit0-20 Hz frequency range obey power law
scaling behavior in humans. Scale-free neocortical digsawas also ascertained by Freeman (2005) in the
electroencephalogram of rabbits; a computer model also suggfesterodortex is stabilized in a scale free state
of self-organized criticality. Quantitative fMRI agais of functional connectivity (Eguiluz et al, 2005, Chialvo,
2004) and EEG analysis of functional connectivity (FingelkuntsFingelkurts, 2006) supply additional
evidence. Sporns et al (2004) reviewed recently the numkenasure sources which identify brain neural
networks as ‘scale free’. Finally, Beggs & Plenz (2003, 20&d9rted critical behavior in slices of corticaktis.

It is now possible to return to the issueacisarlier whether there is adequate justification toidenthe
brain as a complex dynamic system, with an affirmatiwsven From the evidence listed, it is in fact possible to
characterize the brain as a whole as being in a sta@fafrganized criticality.

3.1: On Coordination dynamics and metastability



The foundational notions of Coordination Dynamics wer@itytinspired by the principles of
Synergetics (Haken, 2002 ), and subsequently adapted to &pplicavarious experimental situations
(Kels0,1959; Bressler & Kelso, 2001; Kelso & Engstrom, 2006).cbimeepts of self-organizing Pattern
Formation and Pattern Dynamics are the essential compafehts approach. The former refers to the
spontaneous aggregation of multiple (possibly heterogenetmmgnts by non-linear interactions to functional
units with reduced degrees of freedom, whose behavior celmebacterized by merely a few relevant
coordination variables (order parameters). At certaiicalvalues, control parameters trigger qualitative
changes of behavior of the coordinated unit as a wholdlldiration, recall that in the example cited in
Section 2.1, the tone frequency is the control parametehwi a critical frequency, induced the transitions at
the level of behavior and brain activity from one staldéesto another. Pattern dynamics designates the
process of evolution of the coordination variables (in thengka cited above: the motor events underlying the
finger tapping frequency and the relevant neural eventeibriain) according to their respective dynamical
laws. Following the principles of Dynamical System Thetng relationship between control parameter and
values of the coordination variables can be representegpbasplane in phase space to delineate regions of
stability and zones of transition (bifurcation) betweemthe

At a neural-mechanistic level of analysis, Coordinabgnamics considers the oscillatory phase
relations among distributed brain regions as the prereqtositedynamic process of self-assembly (binding)
to coherent networks. The rapid creation and dissolution obhassemblies across distributed brain areas is
considered to constitute the non-equilibrium phase transitivhich are observable (for instance, as
neuromagnetic field) and determine the hyperplane of phase #pa#rinsic feature of this view is the
already mentioned duality between integration and separf system components which is also as measure
of complexity in the framework of the Neuronal Group S@yecTheory (Tononi et al, 1994, Sporns, 2004).

In the earlier section of this essay, melalgtadescriptively designated shifts and transitionswieen
stable states. It can now be given an operational meamaithgr than viewing integration-separation as polar
opposites, a continuous scale of tendencies for neural gimapsrdinate and segregate seems more
appropriate. At the level of neuronal dynamics, this continappears to be supported by the flexibility of
coupling coefficients among diverse neuron groups (Friston, 1997,:2080js, in the form of a continuum of
dynamically shifting, discrete configurations of neuron netwoffor review: see Fingelkurts and Fingelkurts,
2006). The expression of this is the meandering of the systeprssentation in phase space, dictated by its
intrinsic dynamics and external influences. Phaseitrans with epochs of stability will then occur along the
way, in accord with the shape of the system’s phassespa

3.2 Dynamics in the Dynamic Core and the Global Neuronal
Workspace Hypotheses

Here | direct attention to the nature of the reentratitity for the transient formation of the neural
functional complex described as “Reentrant Dynamic T@D) on the one hand, and “Global Neural
Workspace” (GNW) on the other. Although differing in maagpects, both models attribute an essential
role to the reentrant neuronal activity in circuits coningatortical with other cortical, thalamic and
peripheral processor regions. Dehaene et al (1998) speakstfibuted neurons with long distance
connectivity that provide a ‘global workspace’ that can pii#y interconnect multiple distributed and
specialized brain areas in a coordinated though vanmbfeer”, and Dehaene & Changeux (2003) refer to
“self-amplifying recurrent activity”. Edelman (2003) speaks‘dynamic reentrant interactions across
cortical circuits .. that allow synchronous linking and bindmtpke place among widely distributed brain
areas”, and considers reentry “a unique feature of higtaéns” (Tononi and Edelman, 2000). Both
groups of investigators emphasize the importance op#tiern of connectivity for generation of
oscillatory activity.



From their respective publications (see Section 2.2 and 2t3aBpears that DC and GNW have a
somewhat similar temporal pattern of evolving over a femdned msec, and persisting for several hundred
msec, prior to dissolving. Dehaene & Changeux (2004, 2005) whoaaeeexplicit about this than the
Edelman group describe this temporal course as suddenobesbierent synchronized neuron activity in
multiple distant cortical areas and peripheral processdrish is sustained for several hundred msec by
reentrant thalamocortical signal flow. They refefpioase transition in a metastable dynamic” and use also
the apt expression of “ignition” to convey the abruptness of #émsitron. It is of some historic interest that
neuronal modelers of the 1950s and 1960s were interested imthigares under which their neuronal
models would ‘ignite’ between stable states (e.g.: Rapd@&?2; Griffith ,1963). To assist with gaining an
intuitive grasp of the complex dynamics attributed to theirddyiec Core, Tononi & Edelman (2000) offer a
helpful model: envision a large cluster of tense sprir@sowsly connected to each other and surrounded by
another set springs, loosely coupled to the former clusisrthen easy to see that even a small perturbation
will spread rapidly and effectively throughout a systerthef kind.

The suggestion of Dehaene & Changeux to view the naturahhftthe formation and dissolution
of the neural complex that arises transiently in theiror@l models, and to which they attribute a role for
cognitive events, invites an exploration of its dynamic oriQiescriptively, the type of activity they
observe resembles the avalanches of neural activity notBedgs & Plenz (2003, 2004) in slices of
cortical tissue, reviewed by Vogels et al (2005). Taking &Tcount that this activity (and the presumed
counterpart in the models of the Edelman group) occursnifinear systems far from equilibrium directs
attention to the principle of Self-organized CriticaliSOC) of which avalanche formation is one of its
signatures.

In the nearly 20 years since introductibr8OC, critical examination of the claims of Baklet a
for universality of SOC have introduced some qualiita in the original theory, and circumscribed the
range of its validity (Dickman, 2000; Kadanoff et al, 1989séa, 1998; Grinstein, 1995). The conceptual
prototype of SOC was originally the ‘sand pile model’ imat stepwise addition of sand grains on the tope
leads in the critical state to propagation of avalanelsesss the pile, which exhibit the properties of scale
invariance. Numerous modifications of the original paradiggrevinstrumental to characterize the
boundary conditions under which the theory of SOC appliesewdml the other hand, the signatures of
SOC were identified in models not originally consideseth as for instance percolation models (Stauffer
& Aharony,1991/1994, Grimmett, 1989). Parenthetically, it istivooting that one of the extensions of
SOC, designed to replicate the sale invariance ofqaaites (Olami, et al, 1992 ), shares many features
with Tononi and Edelman’s’ (2000) spring model of reentratiwiag referred to earlier.

After the dust stirred by Bak’s original claim settlé is now firmly established by the work of
Bak’s own Group (Paszuski et al, 1996) and many others @@td®es not exclusively refer to
spontaneous, parameter free criticality, nor exclusivelgelistuning, but nevertheless remains a useful
concept for describing systems far from equilibrium th#itmanifest a phase transition when driven from
the outside, (Grinstein, 1995; Dickman at el, 2000; Frigg, 2008.donventional phase transitions, some
forms of SOC are amenable to analysis by Renormalizatatysis (Pietronero et al.1994; Vespignani et
al, 1996 ), that is: the computational technique that en#iidesxplicit computation of the critical
exponents for scale invariance and other critical pragge(Kadanoff et al, 1967; Wilson, 1979; McComb,
2004), thus blurring what was thought to be the radical dichpbetween SOC and ‘classical’ (tuning-
dependent) phase transitions.

The twin concepts of scaling and universality play an importae in description of dynamical
systems for elimination of degrees of freedom and $@bsformations at points near critical transition



(Kadanoff et al, 1989; Kadanoff, 1990). The significance ofltbssin the possibility of identifying
universality classes (Odor, 2004) to which | will return @ct®n 4. Although still lacking a comprehensive
theory of SOC, it is now firmly rooted in Dynamical SysgeTheory by characterizing (specifically in
some instances and in others, in principle) the crisitsik as the system’s attractor, and its fraatatsire
(Blanchard et al, 2000 ).

What evidence can be adduced that SOC may indeed bid anvaéluseful notion for neural
systems ? In the first place, there is abundant evideat@¢ural network models can converge to critical
states. Bienenstock & Lehman (1998) attribute this propettyet Hebbian covariance plasticity rule for
learning at the synaptic level. Kentridge (1993) reportgalibehavior in random neural nets at
appropriate levels of connectivity and under the influendevefintensity driving. Usher et al (1995)
generate metastable behavior, pattern formation ancatiehavior in networks of Integrate-and-Fire
neurons. Bornhold & Rohlf (2003) extend critical self-orgaizato the evolution of network topology.
Critical network models were also studied by Wakeling (2068) da Silva (1998). Referring to the
previously cited studies of Beggs & Plens (2003), HaldemaiBagds (2005) contribute the additional
important observation that branching network models v&turrent connectivity can account for power
law relations at critical points, and display metagtabhtes at branching parameters, intermediate between
sub- and supercritical values. Regionally localizedanetie behavior occurres in the self-organizing maps
of Zhao and Chen (2003). There is, thus considerable evitletceeural networks are apt to exhibit SOC
in a variety of forms and circumstances

In their totality, concepts and observations sketchéisrsection are intended to give credence to
the notion that the transient configurations of neuraVviagijdesignated respectively Reentrant Dynamic
Core by Edelman et al, and Global Neuronal Workspacedimaéne & Chanheux) are manifestation of
SOC in the neuronal reentry circuits of the respective mode such, they require several hundred msec
for constitution of their long-range connections to fullicaiity at which point the characteristic properties
of scale invariance, reduced dimensionality and long-raagelations come to obtain for critical state’s
duration. While still on the way to criticality, a mei#se regime is in effect. The next section will adsres
some implications of this view.

4. Discussion and Conclusions

The framework of Operational Architectonics of brain timt, described in several publications
by Fingelkurts and Fingelkurts (2001,2004,2005,2006, Fingelkurts et al, dié€ets attention to relations
between the activity of functional neuronal populations onsos@ale, and phasic epochs/segments in the
scalp EEG on the millisecond time scale. The latteaaseciated with rapid jumps in the EEG amplitude
(Kaplan et al, 1997; Fingelkurts and Fingelkurts , 2001). Thel tagmsition processes occurring in the
amplitude of continuous EEG activity mark the bounddretsveen quasi-stationary segments for this
activity. It is assumed that each homogenous segment wifartiaular EEG frequency band corresponds
to a temporary stable microstate in the brain’s agtivié. an ‘operation’ in the terminology of Fingelkurts
and Fingelkurts ( 2005). The transition from one segment tdhvenist thought to reflect the moment of
switching from one neuronal network to another. Moreoversyhehronization of these segments (i.e.
EEG structural synchrony) between different EEG chaweldd then indicate the synchronization of
different brain operations: this is the ‘operational $yany’ phenomenon of Fingelkurst and Fingelkurts,
2001). This process results in transient metastables stREEG activity in the form of so-called
‘operational modules’. In a different series of stad®ome of which were already mentioned in connection
with metastability in section 2.1, Lehman and assceigit®98, 2006) identified in the scalp EEG the
momentary whole brain intervals of quasistability (micatess), separated by sudden transitions in the
vector of the maximal EEG potential. Here | suggesttit@EEG manifestations in the work of
Fingelkurts and Fingelkurts, and those in the work of the laehgnoup may be abrupt manifestation of



neuronal events in the models of the Edelman group on the onedmandehaene & Changeux on the
other. If this conjecture has some validity, one might théar that the rapid EEG manifestations referred
to are the expression of phase transitions in SOC atésescopic level.

On a different score, | now turn to the notion of Univetgaliasses, mentioned in passing in
Section 3.2. Permitting oneself some levity, Universaligses may be viewed as God’s gift to the
physicist ! Universality refers in this context to the piraenon whereby dissimilar systems can exhibit
the same characteristic exponents that govern scalingoaradation functions (Binney, 1992). These are
the numerical indices that reflect the creation of lomgeacorrelations from local interactions, and the
manner in which disturbances propagate through the systene iflklegses are independent of physical
nature of the system’s components, and are solely detettmrine properties of the components’
interactions. It is empirically established that nonlirsiamamics systems, including those operating far
from equilibrium (Odor, 2004), can often be categorized byetueitical indices into distinct classes. This
means that having ascertained one or the other critiopéfy for a system under study, it is then possible
to predict all other critical properties of that systmerely on the basis of its class membership. Applying
this approach to the reentry circuitry in the neuronal maafdl¥XC and GNW would enable characterizing
the nature of their dynamics, and its relation to the pialeole in the Operational Architectonis of
Fingelkurts and Fingelkurts (2005). Among the various candidaaésome to mind is the type of
percolation studied by Kozma et al (2005) as model of the néuoojpine of its several variants.

I can now return to the introduction of this essay: theset but to explore evidence and conjectures
pertaining to the style of the brain’s function. Thistiedhe suggestive evidence for metastability and
phase transitions in self-organized criticality imsi&ntly formed neuronal assemblies constituted by
reentrant circuitry. | then pointed to the possiblatieh of the phase transitions in these mesoscopic
neuronal configurations to transient manifestations in #6,Eand adumbrated the status of metastability
in the context of SOC. Finally, | suggested that computdtimodels of Dynamic Core and the Global
Neuronal Workspace can serve as windows for gaining insigghthe dynamics of neuronal assemblies
with established functions in their respective models. Bog is thought, would substitute, at least at this
time, for the direct observation of neural assembiiestu, as it would reveal indirectly the total range of
their dynamic properties, at least in part on the bdsisigersality class membership.
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