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Abstract 
 

          This essay is designed to organize a range of experimental findings and theoretical insights of the 
past 25 years into a coherent view of the brain’s style of function. The view that emerges places the brain 
firmly into the conceptual framework of Nonlinear Dynamics, operating at the brink of criticality which is 
achieved and maintained by self-organization. Application of the twin concepts of scaling and 
universality of the theory of non-equilibrium phase transitions will then be introduced as an approach to 
elucidating the nature of underlying neural processes, notably with reference to the role of reentrant 
activity in neural circuits of cerebral cortex and subcortical structures.  
                                 

1. Introduction 
 

The relevance of the Dynamical System framework in Neuroscience has been foreseen by Turing 
(1950) as a way of affording the nervous system the speed and flexibility required for instantaneous 
reaction to novelty. Ashby (1952/1960)  similarly suggested  that brain phenomena might best be 
understood in terms of dynamic theory. More specifically, Katchalsky et al., (1974) stated that “…waves, 
oscillations, macrostates emerging out of cooperative processes, sudden transitions, patterning, etc. seem 
made to order to assist in the understanding of integrative processes of the nervous system …”. Haken 
(1983, 2002) proposed to view the brain as a pattern forming system that operates close to instability 
points for flexible and rapid switching between coherent states. Basar (1983) was an early contributor to 
the dynamical system neuroscience framework. Since 1975, Freeman has produced a steady flow of 
studies of the dynamic principles of wave patterns in brains which have yielded numerous relevant 
findings, including characterizations of attractors, bifurcations and critical phase transitions. (1975; citing 
merely more recent publications: 2000,2003,2004; Freeman & Holmes 2005; Freeman & Vitiello, 2006). 
The investigations which I will discuss in the following have generated several dynamical hypotheses of 
brain processes which form a kind of “family resemblance”, though also differing in some important 
aspects and –where applicable- in their respective computational models. Related issues have recently 
been reviewed by McKenna et al, (1994), Le van Quyen (2003), and Cosmelli et al (2006) 
 

For clarity of exposition, I will trace the various strands of conceptual development and 
hypotheses separately, notwithstanding the many cross links among them. My main objective is to distill 
from these various strands a common theme, and to situate it in an intersection of Nonlinear Dynamics 
and statistical Thermodynamics. This, I suggest, holds a strategic place for gaining more detailed insight 
into neural-mechanistic events and processes.  
 
 

2: Background: Data and Models 
 

2.1:  Oscillatory activity and Coordination Dynamics 
 

 I take the remarkable discovery of stimulus induced oscillatory and synchronous neuronal activity with 
the predominant frequency in the 40 Hz range (gamma wave activity) as starting point.  In sensory systems, the 



phase synchronization of oscillation links neurons functionally together to groups that respond to identical 
stimulus features (Gray and Singer, 1987,1989; Eckhorn et al. 1988). The functional neuron assemblies thus 
formed consist of elements which are distributed in space, but are ‘locked’ together by a common signal phase. 
The possibility of this synchronous activity of neuronal assemblies being a candidate for linking separate 
stimulus features to objects of conscious perception was intensively investigated (Engel et al. 1999, Lamme et 
al. 2000; Lutz et al. 2002; Ribary et al. 1991, Singer et al. 1997; Tallon-Baudry and Bertrand, 1999). However, 
here, I will direct attention to the two unusual properties of this oscillatory activity as of principled significance 
for brain theory:  first, virtual simultaneity and very short onset latency in the oscillating ensemble, implying a 
process on a faster time scale than conduction  and synaptic delays would permit (Singer, 1998; Roelfsema et al. 
1997); and second,  their pattern  of short oscillatory  sequences  interrupted by epochs of stochastic activity 
(Murthy and Fetz, 1992). 
  
 Simulation studies of neural assemblies replicated  the abrupt switching between synchronous and 
stochastic activity and  attributed it  to synaptic nonlinearity and fluctuations from peripheral input and/or 
interaction with other assemblies (Bauer and Pawelzik, 1993). This justifies subsuming  the cortical oscillatory 
activity under the category of Kuramoto’s (1984) “self-synchronization transitions” as a paradigm for 
synchronization phenomena  and a mode of self-organization in populations of interacting elements (Acebron et 
al. 2005).  A revealing aspect of the oscillatory neural activity under discussion is the already mentioned short 
onset latency. The occurrence of abrupt changes of state, propagated through the system at short latency suggest 
that the dynamics of the neuronal aggregates under consideration is on the brink of critical transitions. This line 
of thought will be amplified in Section 3.2.. 
 
 Activity in a wider frequency band than gamma oscillations reveals an intricate dynamics of surprisingly 
long lasting activity patterns of appreciable spatial extent, initiated by a sensory event or in task situations. The 
time course of signal distribution across the multiple cortical areas of the visual system extends over some 150 
msec from time of onset of stimulus, with the sequence of activation departing drastically from what one would 
expect if the cortical regions were activated sequentially in a pure hierarchy: for example, local field potentials 
(LFP) in Visual area V4 have a much longer latency  than, for instance, the temporal areas, although 
geographically much closer to the cortical visual input are V1 (Schmolensky et al. 1998). A meta-analysis of 
visual response latencies in the macaque cerebral cortex ascertained a complex pattern of feed-forward and 
recurrent activity flow: for several hundred msec after a brief stimulus, the temporal sequence of activation 
departs from the topological proximity of activated structures (Lamme and Roelfsema, 2000).  A complicated 
dynamics of activation and deactivation of cortical regions is also generally associated with the execution of 
attention-demanding tasks, with some regions being activated while others recede to relative quiescence.  This 
task-related regional dichotomy of activity is also demonstrable in the resting state, suggesting a cortical 
network of intrinsically anticorrelated components (Fox et al., 2005).  In perceptual tasks, synchronous local 
field potentials (LFP) oscillating at frequencies from 12 to about 80 Hz signal sequential patterns of co-
activation of different brain regions, extending up to 500 msec in successful (but not failed) discrimination 
performance (Bressler, 1995; Ding et al. 2000; Bressler and Kelso, 2001; Rodriguez et al., 1999) with different 
neuronal assemblies evolving in different frequency ranges (von Stein and Sarntheim, 2000). Braeutigam et al. 
(2004) demonstrated  that the temporal course of decision making in the selection  (construction) of preferences, 
reflected in magnetoecephalraphic activity, extends over several hundred msec.  Finally, brain imaging during 
natural viewing conditions reveal the temporal organization (“chronoarchitecture”) of brain activity since 
functionally different brain regions exhibit individually distinct temporal activity patterns (Bartels and Zeki, 
2004). 
 
 The conceptual and methodological implications of these and related findings are consonant with the 
principles of Coordination Dynamics (CD) of complex systems. It serves as a framework for studying the 
manner in which interdependencies among a system’s components dynamically evolve in time, which will be 
examined more closely in see Section 3.2.  Suffice it to say at this point that it is concerned with the phase 
relationship of LFP’s  as the significant control parameter (collective variable) for ordering the sequence of 



activation patterns in time and space (Varela et al., 2001; Bressler and Kelso, 2001).  Unlike the msec and mm 
range of local coordination, times extend up to several hundred msec, and spatial interdependence may 
encompass diverse cortical and subcortical zones, and the brain stem.  High speed Elecroencephalography and 
Magneto-Encephalography supplied data for a refined analysis of relationships between brain activity and 
perceptual-cognitive behavior. A review by Bressler and Kelso (2001) summarizes the essential  results of 
numerous studies which show that both behavior and brain activity undergo a sudden transition from one stable 
state to another at some critical stimulus parameter.  The following  sketch of a typical experimental paradigm  
will illustrate the principle: the subject’s task is to flex a finger in response to tone stimuli of a certain 
frequency, initially in a syncopated mode; neuromagnetic field activity, reflecting the dendritic durrent flow in 
the brain is recorded from the scalp. The repetition rate of the tone is then stepwise increased. At a particular  
critical frequency, a sudden transition from syncopated  to synchronous responses is accompanied by an equally 
abrupt transition of the brain’s electromagnetic field (Kelso et al, 1992) from one  to another  stable pattern 
occurs, for which the stimulus frequency is a control parameter.  This phenomenon is thought to reflect the 
brain’s universal property of complex systems operating in a metastable dynamics, presumably  due to an 
interplay between integrating and segregating tendencies (see Section 3.2). Signs for the brain’s metastability 
are also evident in a recent study of Freeman & Holmes (2005), based on the analysis of spatio-temporal 
patterns in the 12-80 Hz band of the Electroencephalogram.  Earlier, Freeman and Barry (1994) had 
demonstrated  the propensity for dynamic instability, manifest as  rapid global state transitions in oscillatory  
cortical activity. Metastability as basis for formation and rapid switches among different operational modules in 
the EEG is also the essential theme of the extensive work of FingelKurts and Fingelkurts (2001, 2004), possibly 
related to the succession of ‘microstates’ in the records of Low Resolution Electromagnetic Tomography 
[LORETA] (Lehman et al, 1998, 2006). I will return to questions of origin and nature of metastability, and of 
microstates in the Discussion section. 

 
2.2: The Dynamic Core Hypothesis (DCH) 

  
 Plasticity of synapses and neuron connections afford a causal link between the functional organization of 
neuron assemblies and the world, adaptive to use and disuse.  The Theory of Neuronal Group Selection 
(TNGS), also referred to as the Darwinian Brain, is an application of this principle (Changeux, 1983; Edelman, 
1987,1989, 1993; Tononi and Edelman, 2001].  A primary repertoire of anatomical connections established 
during development responds to experiential exposure to the environment with differential amplification of 
synaptic populations. The spontaneous formation of  neuronal groups can be attributed to the interplay between 
spike time dependent plasticity (STDP) and conduction delays (Izhikevich et al. ,2004). The second central 
notion is reentrant mapping: this is a dynamic process that is inherently parallel and distributed. It consists of 
ongoing signaling between separate neuronal groups in a reciprocal and recursive fashion over cortico-cortical, 
cortico-thalamic and thalamo-cortical radiations. Neuronal group selection and reentrant mapping, together, are 
considered the prerequisite for establishing new and sustaining existing statistical signal correlations between 
groups of neurons. Neuronal groups thereby come to reflect spatiotemporal properties of signals arising in the 
environment, and serviceable for perceptual categorization.  
 
 Generalization of  this principle to cross-modal perceptual categorization is accomplished by dynamic 
structures that encompass multiple reentrant  local maps (sensory and motor)  and interaction with basal 
ganglia, brain stem and cerebellum; the latter  for perception-action coupling. Within such global mappings, 
long-term changes in synaptic strength favor the formation of  neuron groups with correlated activity as basis 
for memory. Memory in global mappings is procedural, and requires dynamical re-assembly by rehearsal. Note 
that each re-assembly of a global memory may be constituted by different neuron populations: a consequence of 
the degeneracy (redundancy) of neuronal groups.   

  
  Reentry is instrumental for generating oscillations in the simulated models: Sporns et al. (1991) and 
Tononi et al. (1992)] established in their respective models the linking of stimulus features by reentrant 
circuitry, within and between segregated cortical areas. It depends in these studies on the occurrence of rapid 



changes in efficacy of reentrant connections, and is an aspect of segregation and integration of elementary 
features into objects and background  through temporal correlation and phase relationships among neuronal 
groups. In a very large computer model of 65,000 spiking neurons, topographically organized into a primary 
and secondary visual cortical area and two associated thalamic regions, synchronous oscillations emerged 
spontaneously, even though the networks was not designed to produce  any form of specific dynamics (Lumer 
et al. 1997)  

 
 Conscious experience is in this theory associated with global properties of large but distinct sets of 
distributed neuronal groups: the Dynamic Core (DC).  The theory associates cognitive events with the formation 
of distributed clusters of neurons that are intensely interacting with each other (i.e.: integrated) and, at the same 
time, are quite distinct and differentiated  from the rest of the system. Functional segregation is epitomized by 
stimulus feature detectors in cortical receiving areas; functional integration is expressed in temporal correlations 
and synchrony in the large-scale, reciprocally interconnected cortical network and thalamic regions.  The 
neuron clusters of DC achieve high integration within hundreds of msec through reentrant interactions in the 
thalamo-cortical system. DC must be viewed as a process, creating transiently the clusters of neurons  which 
reflect rapidly shifting functional connectivity among  distributed neuron groups, not constrained by anatomical 
proximity. 
 
 Several measures have been proposed to characterize quantitatively the interplay between the seemingly 
opposing tendencies of differentiation and integration. Tononi et al (1994) defined a statistical measure of the 
amount of ‘structure’ within a system’s dynamics, as expression of its “complexity” : its value is high for 
systems with subsets of large mutual statistical dependencies.  In such systems, different parts can engage in 
separate activity and yet remain interdependent (Tononi and Edelman, 1998).  More recently, Tononi and 
Sporns (2003) and Tononi (2004) proposed a measure of a system’s capacity to integrate information, and Seth 
(2005) defined the measure of Causal Density for the fraction of causally significant interactions among a 
system’s elements.  It appears, however, that none of these measures by themselves captures the temporal and 
recursive aspects of the multidimensional complexity of neural systems  that could account for conscious 
experience (Seth et al., 2006). 
 
 The central role attributed in the DC theory to processes of integration and differentiation in neuronal 
groups directed attention to whether (and if so, in what manner) neuronal networks are equipped to support 
these processes. In a remarkable convergence of results from Computational Neuroanantomy  (Sporns and 
Koetter, 2004),  the statistical mechanics of networks (Albert and Barabasi, 2002) and computer simulations 
(Sporns et al, 2000) ascertained that the particular form of clustered organization encountered in biological 
(natural) cortical networks would indeed be supportive of synchronous processing and efficient signal 
exchange, and superior to other network topologies (for review: Sporns, 2004, and references cited therein).  
 

 
 

2.3: Global workspace models 
 

2.3.1: Baars’ Global workspace model 
 
 Partly in distinction from and partly overlapping with extant psychological theories of conscious 
experience, Baars (1988) introduced and later extended (Baars,1997) a “Cognitive theory of Consciousness”.  
The theory postulates a multitude of relatively small special-purpose processes, almost always unconscious. 
Coalitions of such processes gain access to a limited capacity global workspace which serves to integrate 
competing and cooperating input networks  and is the gateway to consciousness.  Messages from this global 
workspace are broadcast to all the unconscious processors to recruit their participation for dealing with novel 
situations or solving the current problem. All this occurs under the auspices of certain contexts, each being itself 
a coalition of processes, jointly constraining conscious events. 



 
 In the original book of 1988 and in numerous subsequent publications, Baars illustrated that the three 
main construct of the theory ( namely Global workspace, unconscious special processors and contexts) and their 
interaction pattern can be construed to be sufficient for most (possibly all) aspects of Cognition and 
Consciousness.  His original approach  was informal, descriptive and primarily appealing to psychological 
intuition. Nonetheless, in a review published in 2002, Baars could cite a large number of investigators   
implicating one form or another of a ‘global workspace’ in cognition and consciousness, however not 
necessarily embracing Baars’ tripartite model.  The rallying point appears to be the notion that some form of 
“global workspace” is required for widespread interaction between otherwise independent brain functions: the 
idea of a ‘global workspace’ had entered the discourse of consciousness studies, albeit in a variety of shades of 
meaning.   
 
 In subsequent publications, functional interpretations in neurophysiological  terms were introduced by 
Baars and associates in a ‘neural global workspace’ (Newman and Baars 1993), primarily in relation to attention 
in schemas of neural network models (Newman et al. 1997),  and similar to those which Taylor and Alavi  
(1993) had applied earlier.  Franklin and Graesser (1999) and Franklin (2003) took a different approach: they 
implemented the global workspace concept in several successive generations of software agent models in the 
tradition of Artificial Intelligence.  None of these efforts addresses the dynamics of processing in the global 
workspace and are, therefore, outside the scope of this essay.  Although specifically designed this way, it now 
appears that organization and function of DCH are compatible with and accord satifactorily with the basic tenets  
of the Global Workspace Model (Seth and Baars, 2005).  
 

2.3.2:  Wallace’s dynamic global workspace hypothesis 
  
 In a series of recent publications Wallace (2005a) supplied a dynamics to a Global Workspace. Here I will 
offer an intuitive account of the formally developed perspective taken in Wallace (2005 b) which applies 
information theoretic considerations and draws on resources from theories of network structure and dynamics 
(Erdos and Renyi, 1960; Newman, 2003).  
 
 To begin with, a loosely connected network of unconscious  modules is considered, corresponding 
essentially to the unconscious processors of Baars’ theory.  Next, the relation among them is characterized in 
terms of their mutual information. Non-zero mutual information among modules can formally be considered as 
linkages among them which constitute fleetingly a (functional) Global Network.  Network theory now specifies 
conditions under which sub-networks can become transiently formed. One of them can encompass the majority 
of the network’s nodes, forming in network jargon a ‘Giant Component’.  In terms of network dynamics, this 
can be considered a phase transition. The formation of the ‘Giant Component’ is considered to reflect a 
collective cognitive phenomenon. One can readily imagine the complex dynamics of this model: a continuous 
flux of mutual information among the special purpose processors, at each point giving rise to a fleeting network 
which, at certain critical points, coalesces momentarily to a Giant Component, only to be restructured by new 
states of the information processors. 
 
 This sketch of the model is merely intended to convey an intuitive “feel” of the model’s dynamics and  
fails to do justice to its formal sophistication  and to the numerous details in its successful application to, for 
instance, Generalized inattentional blindness and  mental disorders Wallace (Wallace, 2005 c; 2006)  
 

2.3.3: The Global Neuronal Workspace hypothesis (GNWH) 
   

  The Global Neuronal Workspace hypothesis was described in details by Changeux & Dehaene (1989) and 
Deahaene & Naccache (2001) and most recently summarized by Dehaene & Changeux (2004).  It relates to 
Baar’s cognitive theory of consciousness, but is distinguished from it by its particular and detailed functional 
organization, and its implementations in dynamic computational models.  



 
  The hypothesis postulates two computational spaces of distinct patterns of connectivity: 1) a collection of 
subcortical, automatic  processors, each specialized for a particular signal input which is provided via 
encapsulated local and medium-length connections; and 2) a global neuronal workspace with the capacity for 
wide-spread, long-range connections for  reentrant signal flow between it and the specialized processors. The 
workspace is a dynamic concept: workspace neurons are not sharply delineated anatomically, but distributed 
among distant association areas (Dehaene and Changeux, 1997, 2005; Deahaene et al. 1998). The decisive event 
is the activation of GNW (see Section 3.3).  Between episodes of activation, the neurons of GNW are in a state of 
permanent spontaneous activity which is sustained by ascending neuromodulatory input.  When of sufficient 
intensity, the network will display gamma oscillations of thalamo-cortical origin and possibly sudden surges of 
activation which may be identified with ‘vigilance’ (Llinas et al, 1998) : they enhance the activation of GNW by 
sensory stimuli.  Activation of  GNW also occurs with intense sensory stimulation  in the absence of facilitation. 
GNWH postulates that global activation of a GNW is associated with reportability of a subjective experience 
(Deahaene and Changeux, 2004). 
 
  The basic design of GNW was implemented in several Neural Network models, with McCulloch Pitts as 
computational elements, and proved satisfactory for emulating aspects of human performance in a variety of  
(effortful) psychological-behavioral tasks (Deahaene et al. 1987,1998).  To convey the operational flavor of the 
theory, I will describe here briefly the most recent model by Dehaene et al. (2003) of a network of single 
compartment model neurons with explicitly specified ionic conductances and synaptic currents for simulating 
features of the cortical inter- and intra-columnar connectivity and as cortico-cortical projections. The target of the 
model was a modified attentional blink paradigm for which conditions for reportability of presence or absence of 
stimuli were determined in human trials: subjects saw serial visual presentation  of distractors, interspersed with 
two targets T1 and T2; the task was to rate T2 visibility and then to report T1 identity.  Typically, reportability of 
T2 drops at for several hundred msec after T1 presentation.   
 
  For the simulation of the human task, the model was placed in a regime of spontaneous thalamo-cortical 
oscillations.  The attentional blink test was simulated by stimulating two groups of thalamic neurons, one coding 
for T1, the other for T2.  The index of model performance was the degree and extent of activity across the cortico-
thalamic hierarchy.  As to be expected, network activation evoked by T1 stimulation set a long-lasting dynamic 
brain-state in motion. But the activation elicited by T2 stimulation dependent tightly on its timing:  T1 elicited 
activity prevented T2 activation from propagating to higher cortical levels and abolished part of the top-down 
amplification in reentrant circuitry, with the global network seemingly acting as a bottleneck (Sigman and 
Deahaene, 2005). Selective lesions of the long distance connections in the model corrupt the model performance.  

 
 

3: Discussion  
 

    To varying degrees of explicitness, the observations and findings of the foregoing section implied 
principles of nonlinear dynamics, notably the notion of systems evolving in a phase space defined by their 
independent variables, and capable of undergoing abrupt transitions.   The observed brain events cited in 
reference to Coordination Dynamics as well as the time scale for constituting  the DC and  The GNW in the 
respective models occupy durations in the order of several hundred msc. While this may be surprising, recall 
that it takes some 500 msec in human subjects for a stimulus to the somatic sensory cortex to become 
experienced, referenced to the short latency component of the Cortical Evoked Potential (Libet, 2004). Pollen 
(2004, 2006) attributes this delay to the time required for completion of recursive activity in feed-forward and 
feedback neuronal circuits. With respect to the time course, the microgenetic approach in perception offers a 
suggestive parallel: it is based on the idea of a ‘gradual maturing’ of the subjective perceptual experience in the 
sequence of different components of the cortical evoked potentials, ranging from the fast positive component at 
20-60 msec to the negative component at 100-150 msec and the positive deflection at 300 msec (Bakhman, 
2000).  Plausibly, the time periods under discussion reflect the time required for phase space evolution of 



neuronal assemblies, in preparation for phase transitions. If there is any merit to this suggestion, it would have 
significant consequences for the experimenter: rather than seeking a correspondence between  subjective report 
or behavior with a punctate (in space and time) measurement in brain imaging ,  genuinely informative data on 
brain processes would be obtained from following  trajectories of phase space evolution in brain space and time 
(Werner, 2004,2005).  

 
                  In this  and related situations one must ask the question whether  a given system is intrinsically 
dynamical, or whether it is merely the case that  it can be interpreted and simulated as such.  Since some of the 
evidence in support of the former (see below) is framed in terms of Self-Organized Criticality (SOC), I will insert 
here a brief excursus to some of the essential features of the theory. 
 

As is well known, Bak et al (1987/1988) introduced a theory of SOC to designate the property of 
systems  to exhibit non-equilibrium phase transitions on account of their intrinsic dynamics, without 
requiring tuning of  control parameters by external influences. This was thought to be the distinguishing 
criterion from the conventional phase transitions in equilibrium systems which require external tuning of 
control parameters to attain critical state.  Systems of this former kind evolve spontaneously to a critical 
state at which their responses to perturbations display a set of characteristic properties: temporal and spatial 
scale invariance (i.e. absence of a characteristic scale of length and time, associated with fractals and 1/f 
noise), drastic reduction of the number of degrees of freedom, and divergence of correlation function as 
signal for lack of characteristic length. ‘Scaling behavior’  refers to determining whether the temporal (or 
spatial) pattern of an observable remains  identical under scale transformation; ‘scale-free’ then signifies the 
absence of any characteristic scale Processes based on SOC are characterized by a power law relation  
between frequency bands and their respective frequency in the record, usually represented as 1/f relation. 
This is generally taken as a signature of SOC.  (Bak, 1996; for an extensive review on scale invariance in 
Biology, see Gisinger, 2001). Flyvbjerg (1996 ) offered a minimal definition of the essential features  of 
SOC as  “ a self-organizing critical system is a driven, dissipative system consisting if of (1) a medium 
which has (2) disturbances propagating through it, causing (3) a modification of the medium such that 
eventually (4) the medium is in a critical state, and (5) the medium is modified no more”.  This definition 
reflects the process of propagation of long-range interactions based on local effects in the medium (as a 
kind of domino effect) until the state of criticality is attained at which any further disturbance triggers an 
abrupt, critical phase transitions. This sequence of events is sustained by two concurrent processes with 
different time constants:  a faster disturbance of the dynamic stationary state, and a slower relaxation 
towards its restoration, often referred to as avalanche (a metaphor based on the sand pile of the original 
model of SOC).  This critical state is then maintained until replaced by circumstances that lead to initiation 
of another process of the same kind. 
 
  With the foregoing criteria for self-organized criticality in mind, it is now possible to examine whether 
measurements of brain activity and structure comply with the stipulations of the theory. Linkenkaer-Hansen 
(2001) unequivocally established that the amplitude fluctuations in the 10-20 Hz frequency range obey power law 
scaling behavior in humans. Scale-free neocortical dynamics was also ascertained by Freeman (2005) in the 
electroencephalogram of rabbits; a computer model also suggested that neodortex is stabilized in a scale free state 
of self-organized criticality. Quantitative fMRI  analysis of functional connectivity  (Eguiluz et al, 2005, Chialvo, 
2004) and EEG analysis of functional connectivity (Fingelkurts and Fingelkurts, 2006) supply additional 
evidence. Sporns et al (2004) reviewed recently the numerous literature sources which identify brain neural 
networks as ‘scale free’. Finally, Beggs & Plenz (2003, 2004) reported critical behavior in slices of cortical tissue.    
   
          It is now possible to return to the issue raised earlier whether there is adequate justification to consider the 
brain as a complex dynamic system, with an affirmative answer. From the evidence listed, it is in fact possible to 
characterize the brain as a whole as being in a state of self-organized criticality. 
 

3.1: On Coordination dynamics and metastability 



 
 The foundational notions of Coordination Dynamics were initially inspired by the principles of 
Synergetics (Haken, 2002 ), and subsequently adapted to application in various experimental situations 
(Kelso,1959; Bressler & Kelso, 2001; Kelso & Engstrom, 2006). The concepts of self-organizing Pattern 
Formation and Pattern Dynamics are the essential components of this approach. The former refers to the 
spontaneous aggregation of multiple (possibly heterogeneous) elements by non-linear interactions to functional 
units with reduced degrees of freedom, whose behavior can be characterized by merely a few relevant 
coordination variables (order parameters).  At certain critical values, control parameters trigger qualitative 
changes of behavior of the coordinated unit as a whole. For illustration, recall that in the example cited in 
Section 2.1, the tone frequency is the control parameter which, at a critical frequency, induced the transitions at 
the level of behavior and brain activity from one stable state to another.  Pattern dynamics designates the 
process of evolution of the coordination variables (in the example cited above: the motor events underlying  the 
finger tapping frequency and the relevant neural events in the brain) according to their respective dynamical 
laws.  Following the principles of Dynamical System Theory, the relationship between control parameter and 
values of the coordination variables can be represented as hyperplane in phase space to delineate regions of 
stability and zones of transition (bifurcation) between them.  
 
 At a neural-mechanistic level of analysis, Coordination Dynamics considers the oscillatory phase 
relations among distributed brain regions as the prerequisite for a dynamic process of self-assembly (binding)  
to coherent networks. The rapid creation and dissolution of neural assemblies across distributed brain areas is 
considered to constitute the non-equilibrium phase transitions which are observable (for instance, as 
neuromagnetic field) and determine the hyperplane of phase space. An intrinsic feature of this view is the 
already mentioned  duality between integration and separation of system components which is also as measure 
of complexity in the framework of the Neuronal Group Selection Theory (Tononi et al, 1994,  Sporns, 2004).   
 
        In the earlier section of this essay, metastability descriptively designated  shifts and transitions  between 
stable states. It can now be given an operational meaning: rather than viewing integration-separation as polar 
opposites, a continuous scale of tendencies for neural groups to coordinate and segregate seems more 
appropriate. At the level of neuronal dynamics, this continuum appears to be supported by the flexibility of 
coupling coefficients among diverse neuron groups (Friston, 1997, 2000): that is, in the form of a continuum of 
dynamically shifting, discrete  configurations of neuron networks  (for review: see  Fingelkurts and Fingelkurts, 
2006). The expression of this is the meandering of the system’s representation in phase space, dictated by its 
intrinsic dynamics and external influences.  Phase transitions with epochs of stability will then occur along the 
way, in accord with the shape of the system’s phase space. 

 
 

3.2 Dynamics in the Dynamic Core and  the Global Neuronal                                   
Workspace Hypotheses 

 
 Here I direct attention to the nature of the reentrant activity for the transient formation of the neural 
functional complex described  as “Reentrant Dynamic Core”  (DC) on the one hand, and “Global Neural 
Workspace”  (GNW) on the other. Although differing in many respects, both models attribute an essential 
role  to the reentrant neuronal activity in circuits connecting cortical with other cortical, thalamic and 
peripheral processor  regions. Dehaene et al (1998) speak of “ distributed neurons with long distance 
connectivity that provide a ‘global workspace’ that can potentially interconnect multiple distributed and 
specialized brain areas in a coordinated though variable manner”, and Dehaene & Changeux (2003) refer to 
“self-amplifying recurrent activity”.  Edelman (2003) speaks of  “dynamic reentrant interactions across 
cortical circuits .. that allow synchronous linking and binding to take place among widely distributed brain 
areas”,  and considers reentry “a unique feature of higher brains” (Tononi and Edelman, 2000).  Both 
groups of investigators emphasize the importance of this pattern of connectivity for generation of 
oscillatory activity.  



 
 

 From their respective publications (see Section 2.2 and 2.3.3), it appears that DC  and GNW have a 
somewhat similar temporal pattern of evolving over a few hundred msec,  and persisting for several hundred 
msec, prior to dissolving.  Dehaene & Changeux (2004, 2005) who are more explicit about this than the 
Edelman group describe this temporal course as sudden onset of coherent synchronized neuron activity in 
multiple distant cortical areas and peripheral processors, which is sustained for several hundred msec by 
reentrant thalamocortical signal flow. They refer to ‘phase transition in a metastable dynamic” and use also 
the apt  expression of “ignition” to convey the abruptness of the transition.   It is of some historic interest that 
neuronal modelers of the 1950s and 1960s were interested in the conditions under which their neuronal 
models would ‘ignite’ between stable states (e.g.: Rapoport,1952;  Griffith ,1963).  To assist with gaining an 
intuitive grasp of the complex dynamics attributed to their Dynamic Core, Tononi & Edelman (2000) offer a 
helpful model:  envision a large cluster of tense springs, variously connected to each other and surrounded by 
another set springs, loosely coupled to the former cluster; it is then easy to see that even a small perturbation 
will spread rapidly and effectively throughout a system of this kind.  

 
 
 The suggestion of Dehaene & Changeux to view the natural history of the formation and dissolution 
of the neural complex that arises transiently in their neuronal models, and to which they attribute a role for 
cognitive events, invites an exploration of its dynamic origin. Descriptively, the type of activity they 
observe resembles the avalanches of neural activity noted by Beggs & Plenz (2003, 2004) in slices of 
cortical tissue, reviewed by Vogels et al (2005).  Taking into account that this activity (and the presumed 
counterpart in  the models of the Edelman group) occurs in nonlinear systems far from equilibrium directs 
attention to the principle of Self-organized Criticality (SOC) of which avalanche formation is one of its  
signatures.   

 
               In the nearly 20 years since introduction of  SOC, critical examination of the claims of Bak et al 
for universality of SOC have introduced some qualifications in the original theory, and  circumscribed  the 
range of its validity (Dickman, 2000; Kadanoff et al, 1989; Jensen, 1998; Grinstein, 1995). The conceptual 
prototype of SOC was originally the ‘sand pile model’ in which stepwise addition of sand grains on the tope 
leads in the critical state to propagation of avalanches across the pile, which exhibit the properties of scale 
invariance. Numerous modifications of the original paradigm were instrumental to characterize the 
boundary conditions under which the theory of SOC  applies  while, on the other hand, the signatures of 
SOC  were identified in models not originally considered, such as for instance percolation models (Stauffer 
& Aharony,1991/1994, Grimmett, 1989).  Parenthetically, it is worth noting that one of the extensions of 
SOC, designed to replicate the sale invariance of earthquakes (Olami, et al, 1992 ), shares many features 
with  Tononi and Edelman’s’ (2000) spring model of reentrant activity, referred to earlier. 
 
 After the dust  stirred by Bak’s original claim settled, it is now firmly established by the work of 
Bak’s own Group (Paszuski et al, 1996) and many others that SOC does not exclusively refer to 
spontaneous, parameter free criticality, nor exclusively  to self-tuning, but nevertheless remains a useful 
concept for describing systems far from equilibrium  that will manifest a phase transition when driven from 
the outside, (Grinstein, 1995; Dickman at el, 2000;  Frigg, 2003). Like conventional phase transitions, some 
forms of SOC are amenable to analysis by Renormalization Analysis  (Pietronero et al.1994;  Vespignani et 
al, 1996  ), that is: the computational technique that enables the explicit computation of the critical 
exponents for scale invariance and other critical properties (Kadanoff et al, 1967; Wilson, 1979; McComb, 
2004), thus blurring what was thought to be the radical dichotomy between  SOC and ‘classical’  (tuning- 
dependent) phase transitions. 
 

 The twin concepts of scaling and universality play an important role in description of dynamical 
systems for elimination of degrees of freedom and scale transformations at points near critical transition 



(Kadanoff et al, 1989; Kadanoff, 1990). The significance of this lies in the possibility of identifying 
universality classes (Odor, 2004) to which I will return in Section 4. Although still lacking a comprehensive 
theory of SOC, it is now firmly rooted in Dynamical Systems Theory by characterizing (specifically in 
some instances and in others, in principle) the critical state as the system’s attractor, and its fractal structure  
(Blanchard et al, 2000 ). 
 
 What evidence can be adduced that SOC may indeed be a valid and useful notion for neural 
systems ? In the first place, there is abundant evidence that neural network models can converge to critical 
states.  Bienenstock & Lehman (1998) attribute this property to the Hebbian covariance plasticity rule for 
learning at the synaptic level.  Kentridge (1993) reports critical behavior in random neural nets at 
appropriate levels of connectivity and under the influence of low-intensity driving. Usher et al (1995) 
generate metastable behavior, pattern formation  and critical behavior in networks of Integrate-and-Fire 
neurons.  Bornhold & Rohlf (2003) extend critical self-organization to the evolution of network topology. 
Critical network models were also studied by Wakeling (2003) and  da Silva (1998). Referring to the 
previously cited studies of Beggs & Plens (2003), Haldeman and Beggs (2005) contribute the additional 
important observation that branching network models with recurrent connectivity can account for power 
law relations at critical points, and display metastable states at branching parameters, intermediate between 
sub- and supercritical values. Regionally localized avalanche behavior occurres in the self-organizing maps 
of Zhao and Chen (2003). There is, thus considerable evidence that neural networks are apt to exhibit SOC 
in a variety of forms and circumstances 
 
  
 In their totality, concepts and observations  sketched in this section are intended to give credence to 
the notion that the transient configurations of neural activity (designated respectively Reentrant Dynamic 
Core by Edelman et al, and Global Neuronal Workspace by Dehaene & Chanheux) are manifestation of 
SOC in the neuronal reentry circuits  of the respective models. As such, they require several hundred msec 
for constitution of  their long-range connections to full criticality at which point the characteristic properties 
of  scale invariance, reduced dimensionality and long-range correlations come to obtain for critical state’s 
duration. While still on the way to criticality, a metastable regime is in effect.  The next section will address 
some implications of this view. 
  

4. Discussion and Conclusions 
 
The framework of Operational Architectonics of brain function, described in several publications  

by Fingelkurts and Fingelkurts  (2001,2004,2005,2006, Fingelkurts et al, 2004) directs attention to relations 
between the activity of functional neuronal populations on a mesoscale, and phasic epochs/segments in the 
scalp EEG on the millisecond time scale. The latter are associated with rapid jumps in the EEG amplitude 
(Kaplan et al, 1997; Fingelkurts and Fingelkurts , 2001). The rapid transition processes occurring in the 
amplitude of continuous EEG activity mark the boundaries between quasi-stationary segments for this 
activity. It is assumed that each homogenous segment within a particular EEG frequency band corresponds 
to a temporary stable microstate in the brain’s activity, i.e. an ‘operation’ in the terminology of Fingelkurts 
and Fingelkurts ( 2005). The transition from one segment to another is thought to reflect the moment of 
switching from one neuronal network to another. Moreover, the synchronization of these segments (i.e. 
EEG structural synchrony) between different EEG channels would then indicate the synchronization of 
different brain operations:  this is the ‘operational synchrony’ phenomenon of Fingelkurst and Fingelkurts, 
2001).  This process results in transient metastable states of EEG activity in the form of so-called 
‘operational modules’. In a different series of studies, some of which were already mentioned in connection 
with metastability in section 2.1, Lehman and associates (1998, 2006) identified in the scalp EEG  the 
momentary whole brain intervals of quasistability (microstates), separated by sudden transitions in the 
vector of the maximal EEG potential. Here I suggest that the EEG manifestations in the work of  
Fingelkurts and Fingelkurts, and those in the work of the Lehman group may be abrupt manifestation of 



neuronal events in the models of the Edelman group on the one hand, and Dehaene & Changeux on the 
other. If this conjecture has some validity, one might then infer that the rapid EEG manifestations referred 
to are the expression of phase transitions in SOC at the mesoscopic level. 

 
On a different score, I now turn to the notion of Universality classes, mentioned in passing in 

Section 3.2.  Permitting oneself some levity, Universality classes may be viewed as God’s gift to the 
physicist !  Universality refers in this context to the phenomenon whereby dissimilar systems can exhibit 
the same characteristic exponents that govern scaling and correlation functions (Binney, 1992). These are 
the numerical indices that reflect the creation of long range correlations from local interactions, and the 
manner in which disturbances propagate through the system. These indices are independent of physical 
nature of the system’s components, and are solely determined by the properties of the components’ 
interactions.  It is empirically established that nonlinear dynamics systems, including those operating far 
from equilibrium (Odor, 2004), can often be categorized by these critical indices into distinct classes. This 
means that having ascertained one or the other critical property for a system under study, it is then possible 
to predict all other critical properties of that system merely on the basis of its class membership. Applying 
this approach to the reentry circuitry in the neuronal models of DC and GNW would enable characterizing 
the nature of their dynamics, and its relation to the potential role in the Operational Architectonis of 
Fingelkurts and Fingelkurts (2005).  Among the various candidates that come to mind is the type of 
percolation studied by Kozma et al (2005) as model of the neuropil, or one of its several variants.  

 
I can now return to the introduction of this essay: there I set out to explore evidence and conjectures 

pertaining to the style of the brain’s function.  This led to the suggestive evidence for metastability and 
phase transitions in self-organized criticality in transiently formed neuronal assemblies constituted by 
reentrant circuitry. I then pointed to the possible relation of the phase transitions in these mesoscopic 
neuronal configurations to transient manifestations in the EEG, and adumbrated the status of metastability 
in the context of SOC. Finally, I suggested that computational models of Dynamic Core and the Global 
Neuronal Workspace can serve as windows for gaining insight into the dynamics of neuronal assemblies 
with established functions in their respective models. This, so it is thought, would substitute, at least at this 
time, for the direct observation of neural assemblies in situ, as it would reveal indirectly the total range of 
their dynamic properties, at least in part on the basis of universality class membership.  
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