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Abstract

It is widely acknowledged that detailed timing of action potentials is used to encode information, for
example in auditory pathways; however the computational tools required to analyze encoding
through timing are still in their infancy. We present a simple example of encoding, based on a recent
model of time-frequency analysis, in which units fire action potentials when a certain condition is
met, but the timing of the action potential depends also on other features of the stimulus. We show
that, as a result, spike-triggered averages are smoothed so much they do not represent the true features
of the encoding. Inspired by this example, we present a simple method, differential reverse
correlations, that can separate an analysis of what causes a neuron to spike, and what controls its
timing. We analyze with this method the leaky integrate-and-fire neuron and show the method
accurately reconstructs the model's kernel.

The receptive field of a sensory neuron is defined as an area in the stimulus parameter space
in which the presence of a stimulus significantly affects the firing behavior of the neuron. For
example, visual neurons may fire when a stimulus at a given position in space and with a given
orientation or velocity is presented; in this case, the receptive field of that neuron will be a
region in the (5-dimensional) space of position, orientation and velocity.

Methods to reconstruct receptive fields are many, and the details of the receptive field thus
reconstructed are often dependent on which method is used, underscoring that the definition
of a receptive field given above is rather loose. For example, in primary visual cortex there is
adistinction between the “classical” receptive field (namely, the location and orientation where
asingle small line segment on a uniform background will, when presented by itself, elicit firing)
and various “non-classical” receptive fields, i.e. regions of stimulus space where the
presentation of a single segment can alter sub-threshold electrical activity, or where the
presentation of a second segment alters the firing rate elicited by a first segment located within
the classical receptive field [1]. This distinction dates back to Kuffler, who in 1953 observed
the effect of lateral inhibition by illuminating the retina with two spots of light instead of only
one, and consequently stated that “not only the areas from which responses can actually be set
up by retinal illumination may be included in a definition of the receptive field but also all
areas which show a functional connection, by an inhibitory or excitatory effect on a ganglion
cell” [2,3].

In order to accelerate the characterization of receptive fields, various approaches are often
employed in which stimuli are drawn at random from the stimulus parameter space and
presented to a given neuron, whereupon all those that elicit firing are averaged together. This
method is thus referred to as spike-triggered averaging of the stimuli [4]. While superficially
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resembling linear response theory, spike-triggered averages correlate a large input (a stimulus
strong enough to elicit firing by itself) with a large output (spike/no spike), and hence the exact
manner of implementation can change the reconstructed receptive field.

A particularly restrictive hidden assumption of spike-triggered methods is the existence of a
link between the features of the stimulus that cause the spike to happen with the timing of the
spike relative to the feature. For example, if neurons were performing linear filtering (with a
continuous filter) of the stimulus followed by a spike-generating nonlinearity, then “more of”
a feature that causes the neuron to spike will also cause it to spike earlier, and spike-trigger
averaging will give an appropriate reconstruction of the linear filter. At the other end of the
spectrum, the neuron could perform template-matching in a discrete stimulus space — as is
likely when the inputs are single spikes received from other neurons, and the spike-triggered
averaging will yield interpretable results only if the output neuron responds after a fixed time
lag relative to the time of a successful match. If the temporal placement of the spike depended
on some alternative set of features in the stimulus, possibly different from the features that
generated the spike in the first place, we would expect the spike-triggered averaging method
to run into difficulties.

While these assumptions that link spike timing with spike generation may be plausible for
primary sensory neurons, they are no longer tenable for neurons deeper in the network under
any reasonable notion of a “timing code,” as computing with spike timing evidently entails the
transformation (computing) of the information-bearing units (spike times), and therefore the
ability to change the spike times depending upon conditions in other parts of the network. When
the spike times are moved about by these other conditions, they may smear the spike-triggered
averages so that they do no longer reflect accurately the conditions that trigger the spike.

In this paper we first review spike-triggered averaging and its relation to Wiener kernel
analysis. We then present a simple model of an auditory neuron in which the “timing code”
smearing described above really does occur. Motivated by this example we introduce an
analysis method, which we call differential reverse correlations, that could probe timing
dependence on the stimuli directly. Finally, we explore in some detail a differential reverse
correlation analysis of the simplest dynamical spiking model, the leaky integrate-and-fire
neuron.

VOLTERRA AND WIENER EXPANSIONS

Let us assume that an information processing system is adequately described as performing a
transformation F that maps the input signal x(t) to an output y(t). If the functional F satisfies
(rather stringent) smoothness conditions, then we can think of the following expression, called
a Volterra series, as defining a Taylor series for F

y(©) =Flx1()=Ho+ [ Hi(s)x(t—5) ds
+f o Hy(r,s)x(t—r)x(t—s)dr ds
+[[ [ H:(q.r.)x(t-q)x(t—r)x(t—s)dg dr ds
Gsrs (1

where we have assumed that the functional is time-invariant and causal. (For acausal
functionals, the kernels are defined into the future as well as into the past). All the usual
problems of high-dimensional Taylor expansions afflict VVolterra series and ultimately derive
from our inability to estimate the radius of convergence of the series and thus to decide whether
a particular function x(t) is contained within it or not. A key problem here is not only to show
that the remainder of the series should approach zero, but also that all the derivatives of this
remainder should do so. Furthermore, it is frequently impossible to know if F has the
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smoothness conditions required for a proper Taylor expansion. Finally, estimation of the
kernels is often difficult because of their non-orthogonality [12].

A more general expansion is the Wiener series [11], in which smoothness is not assumed, and
convergence of the series is only expected in the mean square sense, with respect to a specific
family of inputs x, namely Gaussian white noise signals n(t) with correlator {n(tin(s)) = 225

(t—y9):

2625 (1 — 5)
Flnl() =Kot [(Ki()n—s) ds
+[[o K (ro)nt—n(—s)dr ds
[Tk @ryn - n-rnG-s)dg dr ds

+ (2)

The series is now almost perfectly orthogonal, save a minor detail: the white-noise correlators
(n(On(s)) = 2€25(t — s) cause the nth order Wiener functional to contain lower-order Volterra
kernels which are obtained by integration of the higher-order kernel with respect to pairs of
lag times [13]. Because of this almost-orthogonal property, estimation of the kernels becomes
straightforward. The kernels are given by the time averages of products of the response with
the input at various lags; for example,

Ks(q,r, )= GOnt-gnt-r)n-s)

o33!

where ¢ = Var n and the angular brackets represent averaging.

While the problems typical of Taylor expansions are alleviated, they have only been traded for
the problems of least-squares polynomial fitting. First and foremost, just like polynomial fit
coefficients change if the range over which a function is fitted changes, the Wiener kernels
may change upon changing o, the variance of n. For sufficiently smooth functionals F this
won't happen, such as those having only quadratic nonlinearities; a typical example for which
the kernels would depend on ¢ would be a functional involving thresholds through
discontinuities or discontinous derivatives.

The Wiener expansion allows a larger number of functionals to be analyzed, namely, all
systems whose response to white noise has (a) finite variance and (b) finite memory [12]. The
latter condition excludes, for example, multistable and chaotic systems: in multistable systems,
switching between stable attractors can be effected by the input, permitting arbitrarily long
memory; and in chaotic systems the memory of the initial condition increases, rather than
decreases, with time.

An alternative way to characterize the set of systems which can be expanded by the Wiener
method was given by Victor and Knight [14], who observed that if the input x(t) is a sum of
sinusoids whose frequencies are irrationally related, the kernels provide the expansion of all
combination tones. Therefore, if the Fourier spectrum of the response of the system to a finite
set of sinusoids is broad-band (i.e., finite support) then the expansion does not converge and
does not adequately represent the system. For example, to connect with the previous
characterization, when a nonlinear oscillator is forced with a single frequency and becomes
chaotic, its response becomes broadband; therefore such a nonlinear oscillator should not be
characterized by Wiener kernels.
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SPIKE-TRIGGERED METHODS

A method in widespread use to characterize the responses of neurons is the spike-triggered
average [4-8], also widely known as the “reverse correlation” method. In this method, the
snippet of the stimulus preceding each spike is time-shifted (so that the spike corresponds to
time 0) and then averaged. Any feature of the stimulus that causes the neuron to spike will then
stand out as long as the spike-triggered average is different from unconditioned stimulus
average. Another version, in wide use in visual neuroscience, is to present a series of images
—spatial (rather than temporal) stimuli—and then average those that cause spikes; the average
image causing spikes may contain information about the features that particular neuron
responds to. Spike-triggered averaging is usually employed in conjunction with “white noise”
stimuli, such as temporal white noise, or random checkerboards in the spatial variant. In this
case the method is transparently a variant of Wiener kernel methods.

For example, consider the spatial pattern obtained in a neurophysiology assay through the
following procedure: a set of random black-and-white checkerboards is presented to a cell in
the visual pathway, the checkerboards averaged with a weight representing the response of the
unit, and the unconditioned average checkerboard subtracted from this. If the unit is a primary
photoreceptor, then the spatial pattern thus obtained will be positive definite and reflect the
point-spread function of the optical system of the eye. If the unit is a retinal ganglion cell, the
spatial average will have a negative ring around a positive core, implicating inhibitory
interactions. If the cell is a “simple cell” in primary visual cortex, the average will not be
circularly symmetric, but will typically contain three elongated parallel and equally spaced
bars, the central one being positive and the two side ones negative, representing the sensitivity
of the cell to oriented line segments. Notice that there is a minuscule probability that a random
checkerboard actually contains a bitmap of an oriented line segment — the method is therefore
reconstructing the best stimulus without ever presenting one.

Because of the successful application in neuroscience of the spike-triggered average as an
approximation to the abstract notion of a “receptive field”, there is a widespread tendency to
confuse or identify the two. As we demonstrate below, this can be a source of problems both
in real and simulated neuronal systems.

In the auditory case the object being STA'ed varies. Considering the spikes in the auditory
nerve, for instance, one may average the sound stimulus itself; for white-noise stimulus, this
is a classic Wiener-kernel analysis [15]. The first (linear) kernel then represents an “analyzing
wavelet”, and for auditory nerve fibers tuned to frequencies below 3kHz this will be an
enveloped oscillation at the central frequency of the cell, with the temporal extent of the
envelope being inversely proportional to the bandwidth of the fiber. This kernel shows that the
fiber is phase-locked to that central frequency at the corresponding bandwidth. The second
(quadratic) Wiener kernel, or the “spike-triggered covariance”, is a function of two time delays
— it will look like a checkerboard if the fiber is phase-locked, or contain ripples if the fiber is
not phase-locked (e.g., above 5kHz). In this latter regime, the linear kernel typically vanishes.

Deeper in the auditory pathway, however, phase-locking is either lost or hard to demonstrate.
In this case researchers typically resort to characterizing the time-frequency characteristics of
the neuron by computing the spike-triggered average sonogram elicited by white noise. What
is presented in this case is indeed temporal white noise, but for the spike-triggered analysis the
input is first separated in frequency and time by some standard time-frequency analysis method
(such as a sonogram), and the result, not the waveform itself, is averaged through spike-
triggering. This introduces the added complication that the object being averaged is not the
signal, which is played as a stimulus, but rather a nonlinear functional of it that contains several
arbitrary parameters. As we shall show below, this procedure introduces serious artifacts, in
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addition to the problem that one now has to specify which “kind” of receptive field one is
discussing.

In addition to these problems, “receptive fields” characterized through reverse correlation
methods inherit all mathematical problems from Wiener kernels. In particular, because the
Wiener expansion is not a proper Taylor expansion of the functional, but rather a least-squares
fit, the kernels depend (like polynomial-fit coefficients) on the range over which they are fitted,
and thus, for example, on the amplitude of the noise. It becomes operationally impossible then
to distinguish an adaptive response of a neuron, e.g. a unit with gain-control, from such kernel
variation.

A particularly egregious example was analyzed in detail by Agueray Arcas and Fairhall [16],
who discuss one of the simplest dynamical models of action potential generation, the leaky
integrate-and-fire model (LIF). This model assumes as the most important dynamical
contribution to spike generation the voltage V across the neuronal membrane and as the most
important parameters the capacitance C of the membrane and its effective conductance 1/R
(the “leak™), abstracting all action-potential generation as being both fast and deterministically
stereotyped. The model contains a single equation for membrane voltage V, which is charged
through a current representing the input, and discharged through the effective conductance.
When the membrane potential reaches a threshold, a spike is “generated,” and the potential is
reset to its resting value regardless of the previous history:

v
Ay
CV=-x*® 3

The LIF model is thus controlled by the time constant of the membrane t = RC; I(t), the current
into the cell, is the input. One would naively expect that reverse-correlation methods would be
able to immediately pick up the “receptive field” of this model, i.e. an exponentially decaying
kernel which, when convolved with the past history of I(t), gives the current voltage. Moreover,
a spike-triggered analysis should be able to reliably and directly estimate 1, the timescale of
the decay. As shown in [16] this expectation is wrong, and the reason illustrates well the
problems with STAs and overly naive interpretations of them. Consider I(t) to be a realization
of white noise and label the times of the spikes as tj. After the neuron spiked at a particular
ti_1, the voltage V started at zero and evolved as follows up until the spike at t;:

cvn=/ :He""/’I(I —8)ds ty <t<t,

from where the kernel for this particular spike is indeed exp(—s/t), but only for t, —s > t—q; it
is zero for t, — s < t,—1. The spike-triggered average then will be an average of the functions

| exp(=t/7) 1<T

where T is the inter-spike interval (1SI), weighted by the probability distribution of said
intervals P(T). The latter is evidently a function of the parameters of the input, so that the
variance of the noise, a potential DC offset that may change the neuronal firing regime etc.,
all enter into the distribution. As a result, the value of t is irretrievably obscured. Furthermore,
as the STA changes with changing input parameters, one could be tempted to attribute these
changes to neuronal adaptation processes, which are self-evidently absent in Eq 3.
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As a solution to this problem Agiiera y Arcas and Fairhall proposed the following method.
Only spikes which are well-separated from the previous spike will be used for averaging; for
these, instead of a simple STA, they perform a spike-triggered PCA analysis, i.e., they compute
the spike-triggered covariance matrix and find its eigenvalues and eigenvectors (Figure 1). A
finite number of eigenvalues are expected to contribute if the “firing criterion” is finite
dimensional. The leading eigenvalue is, in this case, the exponential kernel with a decay time
of ©. There is, interestingly, a second nontrivial eigenvector, which represents the constraint
that the voltage is supposed to reach the threshold from below (otherwise, the neuron would
already have fired in the immediate past).

To summarize, it is risky to confuse the abstract notion of a “receptive field” with the concrete
operational definition of a spike-triggered average, as the latter depends on implementation
parameters unrelated to the neuron. In particular, the simplest definition of a STA applied to
the simplest dynamical model of spike generation, the LIF neuron, utterly fails to measure t,
the only internal parameter of the LIF model. A possible way to correct these issues is provided
in Ref [16], although it is somewhat subtle and requires collecting a large number of spikes.

A TIMING-BASED AUDITORY MODEL

It has recently been proposed that the auditory system could analyze rapid frequency
modulations using a method in the class of reassigned spectrograms [18]. The central idea in
this proposal is as follows. Any given nerve fiber in the auditory nerve carries (below central
frequencies of 3 kHz in mammals and 9 kHz in birds) nervous impulses which phase-lock to
frequencies close to the central frequency of the fiber. Even though a fair range of fibers will
be excited by a single sine wave at moderate volumes, each fiber will be phase-locked to the
stimulus and thus information about the frequency of the stimulus can be reconstructed from
temporal information in any given fiber. This temporal information can be used in two ways:
first, the time interval between consecutive action potentials in a single fiber gives information
about the instantaneous frequency of the stimulus; and second, the time difference between
“adjacent” action potentials in nearby fibers (i.e., nerve fibers with similar CFs) gives
information about salient times in the stimulus.

More specifically, the mapping is

_9¢
Wing (w’t)_E )

_,_ 99
bos (02, 1) =1 ow’ (5)

where the phase ¢ is given from the Gabor transform of the input x(t):

P (w’ I) :310gfeiw(l—1/)e—(l—l/)2/20'2x ([’) dur. ©
We shall abstract a neuronal unit to follow these rules: our model auditory neuron will fire
whenever the mj,s estimate is within a certain range ocg + A for some o in the range ocg + 1/

o. When this happens, our neuron fires at time t;,s, i.e., the time of firing is corrected by the
local group delay of the stimulus.
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It was shown in Ref [18] that the above estimators lead to a time-frequency representation
which is sparse, meaning that rather than appearing bloomed by the uncertainty principle, the
representation displays sharp lines and curves even for spectrally dense sounds such as white
noise. In view of such a result, one would expect the “receptive field” of our putative neuron
to be quite sharp. Such expectation would be met with a big surprise.

First, even though the original model is phase-locked and synchronous, because the time of
firing is continuously adjusted due to the time derivative of the local instantaneous frequency,
the lock to the underlying oscillation is destroyed — the spike-triggered average of the stimulus
simply vanishes.

Second, we could then try to reconstruct the receptive field as usual in auditory physiology,
i.e., as the spike-triggered sonogram. The outcome of this calculation is shown in Fig 2, where
one may see that this calculation only succeeded in reconstructing the analyzing wavelet of the
sonogram itself, rather than displaying the sharp features shown in the reassigned spectrograms
computed in Ref [18]. Furthermore it is to be noted that there is no inhibition in our model, yet
the spike-triggered sonogram has a central “on” feature surrounded by an inhibitory “off” halo.
This fake inhibitory halo is formed because the sonograms of white noise, rather than being
uncorrelated like white noise itself, are correlated objects. Only if we compute the spike-
triggered reassigned sonogram, or instagram, shown in Fig 3, do we see a sharp feature
comparable to the resolution observed in the reassigned spectrograms, which still retains some
of the fake “inhibitory” surround.

DIFFERENTIAL REVERSE CORRELATIONS

In neural pathways where the responses are adequately described by rates, in particular in
systems well approximated by the LNP model (linear-nonlinear-Poisson) [4], the STA can
adequately reconstruct useful features. We shall now focus on systems where the responses
are “reliable,” in the sense that repetition of the same stimulus elicits similar spike patterns, so
that a given spike occurs during some range of time with a fair probability. In other words,
individual spikes can be identified and tracked through a rasterplot. An attempt to characterize
such systems through Poisson spike rates would end up with extremely high rates for the spike
epochs and zero rates away from them.

Many of the caveats ascribed above to Wiener kernel methodology would simply go away if
we had a means of appropriately expanding a small deviation from a given outcome due to a
small deviation from a given input. To illustrate how this program can be carried out, let's
consider the following situation. We have a neuronal system F, and we have a continuous-time
input I(t) into this system, and the output of the system are a set of spike times t;:

{ti}=F[1(n]. (7)
The input I(t) is not assumed to have any structure other than the ability to elicit spikes from
this neuronal system. Let us now repeatedly perturb these responses, by slightly corrupting the
input I(t) with noise nl(t):
{t)=F| 10+’ ). ®
If, as assumed, our system F is such that — at least for some small window around tj and across

input perturbations j — we can identify and track the spikes homologous to the original spike
at tj, then we can define a time displacement At of a spike due to the corrupting noise nJ:
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and correlate these Ad with the n that caused the time displacement.

Recently, Dimitrov and Gedeon have studied the effects of “temporal spike jitter” on the
estimates of the statistical properties of the response-conditional ensemble [19]; if this jitter
really is just noise, uncorrelated with the stimulus, then the biases that it induces in e.g. spike-
triggered average and covariance should be studied and removed, as shown in that paper. In
contrast, here we purposefully induce the jitter with the perturbation n, with the hope that any
correlation between the jitter and the perturbation would reveal details about neuronal
processing.

An example calculation is shown in Fig 4 for the LIF model. The stimulus was repeated with
different realizations of the small corrupting noise 10000 times, and a rasterplot generated.
Sets of homologous spikes were isolated. The figure presents the reconstructed Wiener kernel
for a single one of this sets of spikes. The exponential decay of the kernel was computed to be
0.997, only 0.3% away from the true value of 1. While 10000 repetitions of the stimulus is,
admittedly, utterly impractical in an experimental context, the precision in the determination
of this constant is similarly utterly unneeded. We will expand upon this calculation in more
detail in the next section.

This method presents considerable potential advantages over other methods in existence. First,
it is mathematically much better defined than other methods, being a Taylor expansion of a
small change in response, in powers of a small change in the input. Second, we obtain a different
Wiener kernel for every spike, allowing us to verify if different spikes are really always paying
attention to the same input parameters or not. Third, this expansion can be done around any
stimulus I(t) which elicits reliable responses; these could be natural sounds or conspecific
vocalizations. Finally, this method can deal with a situation (like our auditory example above)
where the spike time is affected by features of the stimulus, which do not enter into the decision
to spike or not.

DRC ANALYSIS OF THE LEAKY INTEGRATE-AND-FIRE NEURON

We shall now carry out our analysis in more detail. Our system is, as above, the leaky integrate-
and-fire neuron; we now set the membrane time constant t = 10 ms, threshold V. = 10 mV; we
use Euler integration with time step At = 0.05 ms; the system is driven with white noise current

with noise spectral density of 0= V2004A per time step. Fig 5 shows that we can obtain stable
reconstructions of the exponential kernel across a range of method parameters (such as spike
isolation times and perturbing noise amplitudes), and that the inferred values for the decay
constant T agree with the underlying true value, as seen from Fig 6.

The noise magnitude e with which the spike-evoking waveform is perturbed would, in a real
neuron, have three regimes: the regime in which the perturbing noise is too small to change
the firing deterministically (because the effect is swamped by the noise in the spike generator);
the regime in which the expansion (for the shift in spike timing) is linear in the noise magnitude
(Fig 8, left panel); and the regime where the perturbation is large enough so that a significant
number of spikes are “destroyed” or “created” (Fig 8, right panel). When we compute the
kernels from the observed shifts in spike times, Ar, the trials in which no shift can be found,
presumably because the spike disappeared, are ignored. It seems however, that this introduces
no biases. For isolation times that are too short, also, the identification of “homologous' spikes
can be problematic due to potential confusion with other nearby spikes. Note that even in the
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numerical simulations performed here we find an equivalent of a small-e regime, because the
integration is numerical and the spike shifts are truncated to integer multiples of the integration
time bin, At; this can be seen by the large apparent noise for kernel reconstructions for small
€.

To conclude the section, we would like to draw attention to the perturbations to the original
spike-triggering waveform which cause the perturbed waveform not to elicit a spike any longer.
Since spiking / not-spiking are discrete events, there is a boundary in the high dimensional
space of stimuli around the spike-evoking stimulus, such that the neuron responds to stimuli
within the region enclosed by such boundary with a spike and to stimuli outside the boundary
with silence. This “geometry' of decision boundaries (recently explored in the context of
information transmission in Ref [20]) is probably an interesting description of neuronal
behavior, and is perhaps accessible with the di erential reverse correlation method. We shall
briefly discuss this issue in the next section, but leave a more thorough analysis for future work.

REVEALING INTERNAL STATES

In the previous section, we assumed that the stimulus eliciting the spike causes the membrane
voltage to cross the threshold smoothly, in which case the result of a small amount of corrupting
noise 1 will be to change voltages slightly, and thus to change the time of firing inversely
proportionally to the slope at this the voltage crosses the threshold.

Some stimuli, like white noise, may not cause a smooth evolution of membrane voltage. In the
leaky integrate-and-fire case, the voltage evolves as an Orstein-Uhlenbeck process, a process
resembling a random walk at the small scales. Therefore, if a small fluctuating voltage is added
to the membrane voltage, the resulting At will not be distributed smoothly. This is easier to
see by noting that adding a small fluctuating voltage to the voltage caused by the input alone
is equivalent to keeping the latter unchanged while substracting the fluctuating voltage from
the threshold.

If the At are small, the fluctuating voltage does not change appreciably on the scale of At and
can be considered to be just a constant, proportional to the integral of n via the corresponding
kernel. This causes a fluctuation in the threshold level, with a spike generated at the first
crossing of the voltage with this threshold. Imagine the voltage describing the shape of a
“mountain”. An observer on the far right looks at this mountain and only segments of the
mountain reachable as first crossings are visible by the observer; any descending portion, or
any portion occluded behind an earlier valley is hidden. Spikes can then only occur at the visible
regions.

The function describing this visibility is the cumulative maximum, i.e.,

cummaxy /- =max S
y<x

. A given function is smaller or equal than its own cumulative maximum. The portions where
it is equal to it are the “visible” portions and the regions where it is lower the hidden portions.

Given the voltage caused by the input alone, V (t), its cumulative maximum W (t), and the
probability density P(z) that the fluctuating threshold is at voltage z, the probability distribution
of the At is then given by

P(AD)=W'(@2)P (), 9)
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from where it is seen that a determination of the probability density of At directly allows the
computation of the cumulative maximum of the transmembrane voltage in the vicinity of the
threshold crossing, and thus access to important internal information of the neuronal response.
This detailed information can then be more carefully correlated to the input to characterize
what features of the input cause this neuron to spike.

CONCLUSSIONS

The new method for receptive field analysis that we propose here, called the di erential reverse
correlation method, is based upon applying small perturbations to the spike-triggering stimulus
(e.g. a small amount of added white noise) and correlating small changes in spike timing with
such small perturbations.

This method is applicable to neural systems and stimuli where individual spikes are elicited
by the stimulus in a reliable fashion, and permits receptive field analysis on a spike-by-spike
basis. Indeed, in seems reasonable to examine the causes of spiking on a single spike basis
before such causes are hastily lumped together into a spike-triggered average, to ensure that
such averaging makes sense at all.

Instead of asking “What causes a given neuron to spike,” in this paper we therefore ask about
the causes and determinants of spike timing for each spike separately. In principle, the kernels
reconstructed by using the di erential reverse correlation method could di er substantially from
spike to spike, just like coe cients in the Taylor expansion of a function generally di er
depending on the point about which the expansion is taken. While this (potential) dependence
of kernels on the underlying spike-triggering stimulus can be seen as problematic in terms of
dimensionality reduction of the stimulus space, it is not necessarily a problem of the method
itself; rather, it might be a reflection of the complexity of neuronal processing, which the DRC
method could offer novel experimental access to. On the upside, it could turn out that even
when probed on a spike-by-spike basis, there is a simplicity and consistency in the DRC kernels,
o ering great hopes for deeper understanding of neural computation. Last but not least, the
method permits analysis of all spike-eliciting stimuli, among others especially stimuli from the
natural ensemble.

While in its current version this method is still data-hungry, we expect that acceleration
methods, such as templating or m-sequences, which have been applied to general Wiener
kernels, can also be successfully implemented.
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Spike—-triggered average

Spike-triggered covariance, mode 1

Spike-triggered covariance, mode 2

_D__%

Time (ms)

Schematic diagram of the reverse correlation methods. On the left, waveform samples that
elicited the spike at t = 0. On the right, STA and first two eigenvectors of the spike-triggered
covariance. Notice that the first eigenvector reproduces well the theoretical expectation of
exponential decay with T = 10 ms.
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spike-triggered sonogram
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FIG. 2.

Spike-triggered sonogram of the model neuron that responds by spiking whenever the
instantaneous frequency estimate of the signal is within a small frequency interval around the
neuron's central frequency ocp (see text). Time on x-axis, frequency on y-axis in arbitrary
units; the extent of the analyzing wavelet is shown as a square in the lower left corner; a cross-
section at the central frequency is shown in the lower panel.
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spike-triggered instagram
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FIG. 3.

Spike-triggered instagram of the model neuron descried in caption to Fig 2. Here, spike-
triggered averaging was performed in the “instantaneous” plane (tjns, ®ins), resulting in amuch
sharper feature.
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FIG. 4.

Kernel reconstruction using differential reverse correlation method, lower figure shows the
reconstructed kernel on a logarithmic axis with the fitted linear function. Model neuron is leaky
integrate-and-fire with t = 1 (arbitrary units); 10000 presentations of stimulus perturbed with
different instantiations of white noise, tracking changes in spike timing for a single spike across
presentations. In differential reverse correlation method the (linear) kernel is reconstructed as
the linear filter that, when convolved with stimulus perturbations v, best predicts the changes
in timing for the spike originally at t;.
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FIG. 5.

Kernels recovered with the spike triggered covariance (blue) and our method (red). This is
plotted for a variety of noise perturbation strengths (€) and isolation times tjso. For each set of
parameters, we repeatedly (500 times) generate on the order of 1000 isolated spikes (i.e. spikes
that have not been preceded by another spike for tiso), by driving the system with white noise
I(t). For each isolated spike, we find the spike-triggering waveforms, i.e. snippets &(t) of the
stimulus I(t), which we keep “frozen” and to which we repeatedly (100 times) add different
realizations of white noise to get a perturbed waveform, &'(t) = £(t) + en(t); e is the relative
standard deviation of the added noise perturbation n(t) compared to the standard deviation of
white noise stimulus used to generate spikes, I(t). These perturbed waveforms result in the
original spike being moved by an amount At, measured in units of integration time bins (0.05
ms). Our kernel is then the best linear filter that explains the observed At when multiplied by
the perturbations n. We plot the kernels averaged over all trials. For a variety of parameters,
the spike-triggered covariance and our method agree well. Note that our kernels are less noisy,
but this is because they are computed with more data (not just from the original spike triggering
waveforms, but including also all the of the perturbations). Note also that for very small noise,
the reconstructed kernels are more noisy because the spikes don't shift detectably (i.e. by less
than 1 integration time bin).

Biosystems. Author manuscript; available in PMC 2009 December 14.



1duasnuey Joyiny vVd-HIN 1duasnue Joyiny vd-HIN

1duosnuely Joyiny vd-HIN

Tkacik and Magnasco

e=0.01,t =25ms
iso

5 —x -0.101547 t

4

3

2

1

0

0 10 20 30
t (ms) in the past
e=0.051t =25ms

IS0

5 | — % —0.100511 t

4

3

2

1

0

0 10 20 30

FIG. 6.

Fitting the exponentials to kernels obtained with the DRC method, across the range of
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parameters. We expect decay with constant 1/t = 0.1 ms~1 and see values within 1 percent of
this. The straight line (black) is fitted on all time-points except for the last 5 ms.
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FIG. 7.

Distribution of shifts in the spike timing caused by the added noise perturbation e of different
magnitudes (legend). Multiple lines of the same color represent the results at different isolation
times, tiso, Which has no noticeable effect on the plotted distribution. As expected, the fraction
of spikes that shift by more than 1 integration time bin increases with the perturbation.
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Left: the average of the absolute shift caused by noise perturbation of magnitude €. We observe
an approximately linear effect independent of the isolation time. Right: when we look for the
shift in spike timing, the new spike should be located within some arbitrary (here 10 integration
bins) window around the original spike. If not, the spike has either shifted by more than 10

bins (which is quite unlikely, see the distribution of time shifts P(At) in Fig 7), or the spike

has been “destroyed” by the perturbation. Here we plot the fraction of spikes that can be located
after the perturbation, as a function of the perturbing noise magnitude.
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