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Background and scope: Recently, a number of methods and tools have been proposed to allow the use
of genome-scale metabolic models for the phenotype simulation and optimization of microbial strains,
within the field of Metabolic Engineering (ME). One of the limitations of most of these algorithms and tools
is the fact that only metabolic information is taken into account, disregarding knowledge on regulatory
events.
eywords:
etabolic engineering

ntegrated models
etabolic models

Implementation and performances: This work proposes a novel software tool that implements methods for
the phenotype simulation and optimization of microbial strains using integrated models, encompassing
both metabolic and regulatory information. This tool is developed as a plug-in that runs over OptFlux, a
computational platform that aims to be a reference tool for the ME community.
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Availability: The plug-in
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. Introduction

Over the last few years, the combined efforts of Metabolic
ngineering (ME) and Systems Biology (SB) allowed the reconstruc-
ion of genome-scale metabolic and regulatory models for some
rganisms with an industrial interest. These models, together with
ppropriate simulation methods, allowed the development of com-
utational approaches for finding suitable genetic modifications for
pecific applications. The aim is to make the microorganisms fit to
omply with industrial purposes, i.e. to be able to synthesize some
esired compounds in significant amounts, rather than to follow
heir natural aims.

The majority of the mathematical and computational
pproaches to perform simulations with metabolic models
re based on steady-state approximations, assuming that concen-
rations of internal metabolites do not change over time. In this
cenario, it is possible to determine the space of possible flux distri-

utions (i.e. the set of feasible flux vectors), using constraint-based
etabolic models. These models are constructed based on the

nown stoichiometry of the metabolic reactions, thermodynamic
onstraints and flux capacities. The most popular constraint-based
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approach is Flux Balance Analysis (FBA) (Kauffman et al., 2003)
that uses Linear Programming (LP) to reach an optimal distribu-
tion of flux values for all the reactions. In its most widely used
formulation, FBA predicts cellular behavior assuming the organism
maximizes its biomass production rate, an assumption that was
shown to successfully predict various metabolic phenotypes
(Ibarra et al., 2002). Some alternative constraint-based approaches
have been developed for the simulation of the phenotype of mutant
microorganisms: MOMA (Minimization of Metabolic Adjustment)
(Segrè et al., 2002) or ROOM (Regulatory On/Off Minimization of
metabolic fluxes) (Shlomi et al., 2005).

On the other hand, Boolean approaches have been used to create
regulatory models. Boolean networks approximate the dynam-
ics of the regulatory network by considering that each node in
the network (i.e. gene, stimulus) is in a binary state: active or
inactive. The value of each node is assigned by a Boolean update
rule, depending on the value of some other nodes. Those mod-
els were used to understand regulatory interactions (Kauffman
et al., 2004) and also to simulate the behavior of the system under
given genetic/environmental conditions (Li et al., 2006). Although
metabolic and regulatory systems are known to be highly depen-
dent, only a few studies have focused on the analysis of integrated
models, for example by incorporating regulatory information as

additional constraints of genome-scale metabolic models (Covert
et al., 2004).

Some methods were also developed to allow the phenotype
simulation with such integrated models. One example is rFBA (Reg-
ulatory Flux Balance Analysis), which simulates growth in batch

dx.doi.org/10.1016/j.biosystems.2010.11.012
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
http://www.optflux.org/
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ultures by predicting dynamic flux profiles in changing environ-
ents (Covert et al., 2001). This method works by predicting a

egulatory and a metabolic steady state for short successive time
ntervals. For each step, the method computes a regulatory state
hat is consistent with the metabolic steady state of the previous
nterval. Then, FBA is used to find a steady-state flux distribution
aking as input the regulatory state of the current time interval and
he process is further iterated.

On the other hand, SR-FBA (Shlomi et al., 2007) (Steady-state
egulatory Flux Balance Analysis) is a method for simulating a
etabolic-regulatory steady state, assuming that the organism
aximizes its biomass production rate as in FBA. The integrated

tate satisfies both metabolic and regulatory constraints. This
ethod is based on a Mixed Integer Linear Programming (MILP)

ormulation, since it translates the Boolean logic underlying regu-
atory constraints and the mapping between genes and reactions
o linear equations, integrating them as additional constraints on
op of the metabolic model.

The metabolic phenotype simulation methods described above
llowed the definition of a bi-level strain optimization problem,
dding a layer that searches for the best mutant that can be obtained
y applying a set of selected genetic modifications. The idea is to
orce the microorganisms to synthesize a desired product, while
eeping it viable. One of the first efforts to tackle this class of opti-
ization problems was the OptKnock algorithm (Burgard et al.,

003), where MILP is used to identify an optimum set of knock-
uts under a metabolic steady-state approximation. However, this
lgorithm does not allow considering nonlinear objective functions
nd a considerable computation time is required to reach a solu-
ion. OptGene (Patil et al., 2005; Rocha et al., 2008) was proposed as
n alternative method, which uses Evolutionary Algorithms (EAs)
nd Simulated Annealing (SA) for this scenario.

A common limitation of OptKnock and OptGene is the fact they
nly use metabolic information, determining sets of reactions to
e eliminated from the metabolic model, instead of sets of genes
o knock-out, which is the real purpose. Therefore, to create the
esired mutants in the lab there is the need to determine which
et of genes can lead to the elimination of a given set of reactions.
his would not be a problem if the rule – 1 gene:1 enzyme:1 reac-
ion – was universal. However, there are many exceptions, such as
soenzymes, protein complexes, or enzymes that catalyze several
eactions.

By adding a transcriptional/translational layer into the
etabolic models (Reed et al., 2003), using gene-reaction asso-

iations, new phenotype simulation and strain optimization
pproaches can be implemented (Vilaça et al., 2010). Gene-reaction
ssociations, in a similar way to regulatory interactions, can be
ased on a Boolean logic representation, where the interactions
etween reactions and encoding genes are defined using logical
perations (AND, OR). These associations are used to determine
he reaction(s) that will be inactivated in the model, when a given
ene (or set of genes) is knocked out.

Recently, OptORF was proposed as a new strain optimiza-
ion method (Kim and Reed, 2010) that integrates regulatory and

etabolic information, transforming the Boolean gene-reaction
nd regulatory rules in constraints, in a way similar to SR-FBA. Such
s OptKnock, it also uses MILP to identify an optimum set of gene
nockouts given a production target. Its limitations are therefore,
imilar to the ones of OptKnock, since it does not allow nonlin-
ar objective functions and needs a considerable time to compute
solution. Using meta-heuristics such as EAs or SA to perform
his task can provide near optimal solutions within a reasonable
ime and also allows the optimization of nonlinear objective func-
ions. However, given their stochastic nature, these methods do not
uarantee to reach optimal solutions and can potentially provide
ifferent results in each run.
103 (2011) 435–441

Some of the methods mentioned above are available in a few
software tools that provide some support to the ME community.
CellNetAnalyser (Klamt et al., 2007), Cobra toolbox (Becker et al.,
2007) and OptFlux (Rocha et al., 2010) are examples of platforms
that provide subsets of such tools. Both Cobra and CellNetAnalyser
can be used to perform the phenotype simulation of both wild type
and mutant strains, under distinct environmental conditions. How-
ever, OptFlux, an open-source software platform recently launched
by our research group, is the only one able to perform strain opti-
mization using both OptGene and OptKnock methods. It provides a
simple user’s interface together with a powerful plug-in engine/API,
enabling its easy extension. Both OptFlux and COBRA toolbox allow
the user to load transcriptional and translational information in the
form of gene-reaction associations, but they still do not allow the
integration of regulatory information. CellNetAnalyzer allows the
user to load regulatory models, but it does not have the capacity to
integrate the regulatory information with the metabolic models in
order to provide phenotype simulation.

To address the identified limitations, we hereby present a novel
computational tool, developed as a plug-in for the OptFlux plat-
form, that allows users to load and integrate regulatory models
with metabolic models, providing state of the art methods for the
phenotype simulation of both wild type and mutant strains, as
well as strain optimization algorithms able to work with the inte-
grated models. To the best of the authors’ knowledge this is the
first computational tool to allow this set of functionalities using
integrated models, representing an important step in Metabolic
Engineering.

The next sections describe in more detail the functionalities of
the tool and provide case studies and examples of its usage.

2. Software description

2.1. Integrated models

The regulatory plug-in allows loading a regulatory model and
integrating it with a metabolic model previously loaded with
OptFlux. The regulatory models are qualitative, using a Boolean
representation. Such models consist on a set of genes and a
set of additional Boolean variables or conditions. Genes can be
either metabolic, meaning that they encode enzymes, or regula-
tory, meaning that they encode for proteins involved in regulatory
events (such as transcription factors). The regulated genes can be
either metabolic or other regulatory genes.

Each regulated gene has an associated Boolean rule, which
determines its state from a set of inputs, i.e. a function contain-
ing Boolean values of other genes (typically regulatory), as well as
other conditions, that may influence the gene expression. The con-
ditions can be of two types: variables identifying perturbations to
the system (e.g. stress situations) or variables characterizing the
environment, including the presence of external compounds in the
media (e.g. oxygen, substrates) or other features (e.g. pH value). The
Boolean function can use the following operators: AND, OR, NOT.

The connection between regulatory and metabolic models is
conferred on two levels:

• Gene connections, linking the genes present in the metabolic
model (in the form of gene-reaction associations that define
which genes encode the enzymes connected with a particular
reaction) with regulated genes present in the regulatory model;
• Connections between environmental variables in the regulatory
model and the external metabolites in the metabolic model.
These associate environmental Boolean variables in the regu-
latory model to the presence/absence of a metabolite in the
environment as given by the metabolic model. These variables
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can be used in the right hand size of the rules for each gene
(metabolic or regulatory).

It is assumed that the identifiers in both models are coincident,
n order to allow the previous matches to take place.

Three representation levels define the integrated model:

Regulatory level, including the Boolean rules in the regulatory
model.
Transcriptional/translational level, including the gene-reaction
associations.
Metabolic level, including reactions, metabolites, reaction stoi-
chiometry, reversibility and flux bounds.

.2. Methods for phenotype simulation

The proposed tool implements two different phenotype sim-
lation algorithms for regulatory/metabolic models: an approach
ased on a steady state approximation to rFBA and the previously
entioned SR-FBA. The first algorithm consists of two distinct

teps: (i) the regulatory one, which simulates the regulatory com-
onent of the biological system, reaching as a result the set of genes
hat can be expressed, and (ii) the metabolic step, which simulates
he constraint-based metabolic model to reach the flux values for all
he reactions. This approach is much faster than the SR-FBA simula-
ion, since it relies on two computationally light processes (Boolean
etwork simulation and LP), when compared to MILP, required by
R-FBA.

Given the huge number of possible intermediate states that
ould result from the Boolean network simulation using asyn-

hronous methods, and since here the interest is in calculating a
teady-state approximation, the Boolean simulation is carried out
y a synchronous and deterministic Boolean network simulation
ethod (Naldi et al., 2009). Here, the values of all variables are

pdated simultaneously in every step. Since the method is deter-
inistic, the state will always be the same, if the same initialization

s provided. The user can define the initial state for each particular
ene by choosing the values manually or loading those from a file.
he default option is to consider all gene variables initially to be
rue, except for the genes that are knocked out (if a mutant strain is
eing used in the simulation). This default approach is used in the
. coli case study shown in the final section, since it has been shown
hat in this case the final attractor only depends on the values of
xternal stimuli and not on the initial states of the genes (Samal
nd Jain, 2008).

The variables linked to the metabolic compounds in the environ-
ent are initialized using information from the flux bounds of the

rain reactions in the metabolic model, i.e. if the bounds defined in
he model for the respective exchange reaction allow the uptake of
he metabolite, the variable is considered to be true. The regulatory
etwork state is then iterated until it reaches an attractor, which
epresents a “steady-state” of the regulatory model. In some cases,
he simulation can reach “cyclic attractors”, i.e. the system oscil-
ates between two (or more) states. Here, a conservative approach
s taken, considering as “off” only the genes that have an “off” value
n all states within the cyclic attractors.

In a second step, the set of genes that are set to “off” in the previ-
us step are used to reach a set of reactions that cannot carry a flux,
sing the transcriptional/translational information contained in the
ene-reaction rules. Finally, a simulation method (FBA, MOMA,

OOM) is executed, considering the metabolic model constraints,
ogether with the ones that come from the previous steps. The final
esult is a steady-state flux distribution consistent with the regula-
ory state. In Fig. 1 the two steps of the algorithm are schematically
hown for a small network.
103 (2011) 435–441 437

Section (A) shows a simple regulatory model composed of two
transcription factors/regulatory genes (TF1 and TF2). TF1 is acti-
vated when both the compounds S and O2 are present in the
environment, activating the expression of the metabolic gene g1.
TF2 is activated when the compound 02 is present in the envi-
ronment, activating the expression of the metabolic gene g2. The
transition table shows the next state for all possible initial states.
This information is also shown in the graph form, where the three
resulting attractors are shown. Section (B) demonstrates how the
2-step integrated simulation works. The integrated model is com-
posed by the regulatory model from (A), a metabolic model with
five reactions and seven metabolites, as well as gene-reaction asso-
ciations for all reactions including six metabolic genes, two of which
are also present in the regulatory model (g1 and g2). In the first
step, the steady-state of the regulatory model is determined, i.e. an
attractor is calculated as shown in section A. In this example, there
are three possible regulatory steady-states depending on the pres-
ence or absence of O2 and S in the environment. If S is absent, the
two genes will not be expressed. If it is present and O2 is absent,
g2 will be expressed and g1 will be “off”. If the two compounds
are present in the environment both genes (g1 and g2) will be
expressed. To explain the second step of the method, it is assumed
that O2 is absent and S is present in the environment. Using the
gene-reaction associations and assuming that the metabolic genes
not included in the regulatory model can be expressed, the inac-
tive reactions are calculated (in this example R1 is inactive). The
flux of this reaction is constrained to be 0 in the simulation of the
metabolic model (using FBA, MOMA or ROOM), used to reach the
steady-state flux distribution.

The plug-in also implements the aforementioned SR-FBA, an
integrated simulation method that employs MILP to identify a
consistent regulatory and metabolic steady-state. The regulatory
model and the gene-reaction rules are transformed from Boolean
rules to linear constraints on the MILP formulation, resorting to the
following transformations:

• Boolean expression a = b AND c is formulated as
−1 ≤ 2b + 2c − 4a ≤ 3;

• Boolean expression a = NOT (b) is formulated as a + b = 1.

These constraints are added to the stoichiometric, reversibility
and flux bound constraints present on the metabolic model.

The output of both simulation methods is a set of Boolean values
that represent the expression state of the genes, reached by the
regulatory simulation, as well as the flux values for all reactions.

2.3. Algorithms for strain optimization

Regarding the strain optimization tasks, the proposed tool is able
to run two optimization meta-heuristics: Simulating Annealing
(SA) and Evolutionary Algorithms (EA). These optimization algo-
rithms are similar to the ones previously proposed by the authors
(Rocha et al., 2008) and included in OptFlux (Rocha et al., 2010),
available for strain optimization using metabolic models. Here,
instead of selecting a set of reactions to inactivate, the optimization
problem consists in selecting a set of genes to knock out. This will
be a subset of all genes in the integrated model (i.e. both metabolic
and regulatory genes), that when deleted maximize the production
of a desired compound.

Both optimization algorithms can use either of the phenotype
simulation methods explained above in the evaluation of the poten-

tial solutions, using its output (the flux values) to compute the
fitness value, given by an appropriate objective function. It is pos-
sible to choose between two alternatives: the Biomass-Product
Couple Yield (BPCY) and the Product Yield with Minimum Biomass
(PYMB) (Patil et al., 2005; Rocha et al., 2008).
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Fig. 1. Phenotype simulatio

In PYMB, the fitness is the value of the flux representing the
xcretion of the desired product divided by the substrate flux, if the
iomass flux value is greater than a user-defined threshold value (a
ercentage of the wild type value). On the other hand, the fitness
alue returned by BPCY is given by:

PCY = P × B

S

here P stands for the value of the flux representing the excretion
f the desired product; B for the value of the biomass flux and S for
he substrate intake flux. Besides optimizing for the production of
he desired product, this function also allows to select for mutants
hat exhibit high growth rates.

Since the models account for a significant number of genes, the
ptimization task is computationally hard. The plug-in, therefore,
rovides a method for the discovery of essential genes, defined
s those that when knocked out, make the organism non-viable
biomass flux near zero), also allowing to manual edit this infor-

ation and load it from a text file. These data can be used in
ptimization tasks, not allowing essential genes to be targets for
ptimization, since they would unnecessarily increase the num-
er of decision variables and therefore the size of the search space.
n the proposed software, it is also possible to choose the maxi-
um length of the set of gene knockouts in a solution and also

o allow this number to vary during the optimization process or
ot. An illustration of the structure of both algorithms is given in
ig. 2.
hod for integrated models.

The figure illustrates the main steps of the two strain optimiza-
tion algorithms EA and SA. Details can be found in Rocha et al.
(2008).

2.4. Implementation

OptFlux is a recent open-source platform that aims to be the
reference software for the ME community. It was developed
to facilitate its use by Biologists/Biotechnologists with no back-
ground in programming or command line interfaces. It offers
straightforward graphical user interfaces, based on a simplis-
tic workflow (Data–Operation–Data) conferred by being entirely
built on top of the AIBench framework (Glez-Peña et al., 2010).
Its plug-in nature makes easier the development of new com-
ponents and improves modularity. It integrates three types of
objects: operations, datatypes and datatype views, following the
MVC (Model–View–Controller) software design pattern, which
allows separating the functionalities from the interfaces in the soft-
ware development process.

This plug-in adds five new functionalities to OptFlux, all related
to the integration of regulatory and metabolic models:
• Loading a regulatory network: loads a regulatory model from a csv
file that contains all genes and their regulatory boolean rules, to
be integrated with a metabolic model previously loaded;
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Simulation: simulates a wild type or a mutant strain, computing
the state of for each gene (i.e., if it is active or not) and for each
reaction its flux value. It allows the user to define a set of gene
knockouts, the environmental conditions, the simulation method
and the values of all user defined variables for the regulatory
model (e.g. stress situations, pH value);
Load critical genes: loads a set of essential genes from a file;
Compute critical genes: Computes the set of essential genes for
the model;
Optimization: Runs a strain optimization algorithm to identify a
set of genes to knockout in order to maximize a given objective
function. It allows the user to choose the optimization algorithm
(EA or SA) and its parameters, the objective function, the desired
product flux, the phenotype simulation method, values of user
defined variables in the regulatory model and the environmental
conditions.

Several views of these operations are shown in Fig. 3 (the model
escribed in the next section is used in the example).

More information and documentation about the plug-in can be
ound on OptFlux’s website (www.optflux.org/), where there are
lso examples and a set of relevant How To’s.

. Applications

.1. Case study: prototype network

To demonstrate the capabilities of this new tool, an example of
n integrated metabolic and transcriptional regulatory network is
hown in Fig. 4. This is based on an example from Kim and Reed
2010), where the regulatory model is composed by a transcrip-
ion factor (TF1) that is activated when metabolite S is present,

ctivating the expression of two genes (G3, G5) and repressing
he expression of gene G1A. All the other genes are considered
xpressed by default. In the transcriptional layer, all reactions have
gene-reaction rule associated. R1 is catalyzed when genes G1A

nd G1B are expressed; R2 is catalyzed by the enzyme encoded by
ptimization algorithms.

gene G2; R3 and R4 are catalyzed by the enzymes encoded by genes
G3 and G4, respectively; finally, R5 can be catalyzed by enzymes
encoded either by genes G5 or G6.

In the metabolic level, the substrate (S) is utilized to produce
biomass (B) and by-products P1 and P2. The cellular objective is to
maximize biomass production (B) and the engineering objective
is the production of P1. Reactions R2 and R5 are the only reac-
tions that can produce biomass. Reaction R2 converts the internal
metabolite I1 into product P1 and 0.08 biomass (B), whereas reac-
tion R5 converts the internal metabolite I2 into product P2 and
0.12 Biomass. Without any modification, the model produces pref-
erentially the product P2 and no P1, because reaction R5 produces
more biomass than reaction R2, which is the only reaction capable
of producing P1. Analyzing the metabolic network, it is possible to
conclude that removing reactions R3 and R4 or, in alternative, R5
allows the production of P1.

Using the proposed tool and selecting any of the available simu-
lation and optimization methods to maximize the production of P1,
it finds two possible sets of knock-outs (TF1, G4 or TF1, G6) obtained
in two independent runs. These are the same sets as the ones calcu-
lated using the OptORF approach. Inactivating TF1 and G4, reactions
R3 and R4 are removed, while in the case of TF1 and G6, reactions
R3 and R5 are eliminated. Both produce the desired result.

3.2. Ethanol production using E. coli

To further test the proposed software with a larger case study,
the production of ethanol using E. coli as the host microorganism
was considered. In this case, genome-scale metabolic and regula-
tory models for E. coli are used and the results are compared to the
ones reported in Kim and Reed (2010).

The results are given in detail in a file provided as supplementary

material containing a detailed description of all experiments and
tables with the results. The analysis of these results shows that
the software is able not only to find strategies that are similar to
the ones previously published, but also to find other solutions that
perform well both in terms of growth and ethanol production.

http://www.optflux.org/
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Fig. 3. Screenshots of OptFlux with the proposed plug-in. (A) Clipboard containing the main datatypes; (B) one of the views of the regulatory model; (C) load regulatory
model operation interface; (D) mutant simulation operation interface; (E) view that shows an attractor from the simulation of a regulatory model; and (F) strain optimization
operation interface.

Fig. 4. Prototype network – “toy” integrated model used in the examples.
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. Conclusions and further work

To the best of the authors’ knowledge, the proposed plug-in
akes the OptFlux platform the first available software that inte-

rates regulatory with metabolic models, allowing both phenotype
imulation and strain optimization operations. The software is
vailable for the use of the ME community and it has been vali-
ated in two case studies, one including a genome-scale model for
. coli.

As further work, the authors intend to pursue the validation of
he tool with other case studies and also to enlarge its functional-
ties. The implementation of the OptORF method proposed in Kim
nd Reed (2010) is one of the priorities.

Also, the authors are aware of the limitations of this work
egarding the approach followed for regulatory network simula-
ion, namely the assumption related to synchrony and the related
roblem of the possible existence of multiple attractors Although
his does not represent accurately the biological phenomena, it is
reasonable assumption in some of the most used networks cur-

ently available (Samal and Jain, 2008). In future work, the authors
ntend to improve the capabilities of the software, by taking advan-
age of previous work in the search of attractors without simulation
f the Boolean network (Devloo et al., 2003) and asynchronous
etwork simulation (Naldi et al., 2009).

cknowledgements

This work was funded by Portuguese FCT (MIT-Portugal Pro-
ram) through the project MIT-PT/BS-BB/0082/2008.

ppendix A. Supplementary data

Supplementary data associated with this article can be found, in
he online version, at doi:10.1016/j.biosystems.2010.11.012.

eferences
ecker, S., Feist, A., Mo, M., Hannum, G., Palsson, B., Herrgard, M., 2007. Quantita-
tive prediction of cellular metabolism with constraint-based models: the COBRA
Toolbox. Nature Protocols 2 (3), 727–738.

urgard, A., Pharkya, P., Maranas, C., 2003. Optknock: a bilevel programming frame-
work for identifying gene knockout strategies for microbial strain optimization.
Biotechnology and Bioengineering 84 (6), 647–657.
103 (2011) 435–441 441

Covert, M., Schilling, C., Palsson, B., 2001. Regulation of gene expression in flux
balance models of metabolism. Journal of Theoretical Biology 213 (1), 73–88.

Covert, M., Knight, E., Reed, J., Herrgard, M., Palsson, B., 2004. Integrating high-
throughput and computational data elucidates bacterial networks. Nature 429
(6987), 92–96.

Devloo, V., Hansen, P., Labbé, M., 2003. Identification of all steady states in large
networks by logical analysis. Bulletin of Mathematical Biology 65, 1025–1051.

Glez-Peña, D., Reboiro-Jato, M., Maia, P., Rocha, M., Díaz, F., Fdez-Riverola, F.,
2010. AIBench: a rapid application development framework for translational
research in biomedicine. Computer Methods and Programs in Biomedicine 98
(2), 191–203.

Ibarra, R., Edwards, J., Palsson, B., 2002. Escherichia coli K-12 undergoes adaptive
evolution to achieve in silico predicted optimal growth. Nature 420 (6912),
186–189.

Kauffman, K., Prakash, P., Edwards, J., 2003. Advances in flux balance analysis. Cur-
rent Opinion in Biotechnology 14 (5), 491–496.

Kauffman, S., Peterson, C., Samuelsson, B., Troein, C., 2004. Genetic networks with
canalyzing Boolean rules are always stable. Proceedings of the National Academy
of Sciences of the United States of America 101 (49), 17102–17107.

Kim, J., Reed, J., 2010. OptORF: optimal metabolic and regulatory perturbations for
metabolic engineering of microbial strains. BMC Systems Biology 4 (1), 53.

Klamt, S., Saez-Rodriguez, J., Gilles, E., 2007. Structural and functional analysis of
cellular networks with CellNetAnalyzer. BMC Systems Biology 1, 2.

Li, S., Assmann, S., Albert, R., 2006. Predicting essential components of signal trans-
duction networks: a dynamic model of guard cell abscisic acid signaling. PLoS
Biology 4 (10), e312.

Naldi, A., Berenguier, D., Fauré, A., Lopez, F., Thieffry, D., Chaouiya, C., 2009. Log-
ical modelling of regulatory networks with GINsim 2.3. Bio Systems 97 (2),
134–139.

Patil, K., Rocha, I., Förster, J., Nielsen, J., 2005. Evolutionary programming as a plat-
form for in silico metabolic engineering. BMC Bioinformatics 6, 308.

Reed, J., Vo, T., Schilling, C., Palsson, B., 2003. An expanded genome-scale model of
Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biology 4 (9), R54.

Rocha, M., Maia, P., Mendes, R., Pinto, J., Ferreira, E., Nielsen, J., et al., 2008. Natural
computation meta-heuristics for the in silico optimization of microbial strains.
BMC Bioinformatics 9, 499.

Rocha, I., Maia, P., Evangelista, P., Vilaça, P., Soares, S., Pinto, J., et al., 2010. OptFlux: an
open-source software platform for in silico metabolic engineering. BMC Systems
Biology 4, 45.

Samal, A., Jain, S., 2008. The regulatory network of E. coli metabolism as a boolean
dynamical system exhibits both homeostasis and flexibility of response. BMC
Systems Biology 2, 21.

Segrè, D., Vitkup, D., Church, G., 2002. Analysis of optimality in natural and perturbed
metabolic networks. Proceedings of the National Academy of Sciences of the
United States of America 99 (23), 15112–15117.

Shlomi, T., Berkman, O., Ruppin, E., 2005. Regulatory on/off minimization of
metabolic flux changes after genetic perturbations. Proceedings of the National
Academy of Sciences of the United States of America 102 (21), 7695–7700.
Shlomi, T., Eisenberg, Y., Sharan, R., Ruppin, E., 2007. A genome-scale computa-
tional study of the interplay between transcriptional regulation and metabolism.
Molecular Systems Biology 3, 101.

Vilaça, P., Maia, P., Rocha, I., Rocha, M., 2010. Metaheuristics for strain optimiza-
tion using transcriptional information enriched metabolic models. Evolutionary
Computation, Machine Learning and Data Mining in Bioinformatics, 205–216.

http://dx.doi.org/10.1016/j.biosystems.2010.11.012

	A computational tool for the simulation and optimization of microbial strains accounting integrated metabolic/regulatory i...
	Introduction
	Software description
	Integrated models
	Methods for phenotype simulation
	Algorithms for strain optimization
	Implementation

	Applications
	Case study: prototype network
	Ethanol production using E. coli

	Conclusions and further work
	Acknowledgements
	Supplementary data
	Supplementary data


