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a b s t r a c t

Gene networks can often be interpreted as computational circuits. This article investigates the compu-
tational properties of gene regulatory networks defined in terms of the speed and the accuracy of the
output of a gene network. It will be shown that there is no single optimal set of parameters, but instead,
there is a trade-off between speed and accuracy. Using the trade-off it will also be shown how systems
ccepted 13 January 2011

eywords:
ene regulatory networks
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with various parameters can be ranked with respect to their computational efficiency. Numerical analysis
suggests that the trade-off can be improved when the output gene is repressing itself, even though the
accuracy or the speed of the auto-regulated system may be worse than the unregulated system.

© 2011 Elsevier Ireland Ltd. All rights reserved.
etabolic cost
rade-off

. Introduction

Living systems depend crucially on their ability to adjust
o changes of both internal or external conditions or combina-
ions thereof. Examples are seasonal changes, nutrient availability,
ncounters with predators, prey or mating partners and the like.
eacting to such changes requires the organism to perform com-
utations. Higher animals have specialised nervous systems to this
nd. However, even within unicellular organisms, such as bacteria,
here are computational processes going on at a molecular level.
ndividual proteins have been described as performing computa-
ional functions (Bray, 1995). Another example of systems that can
e considered as implementing computations are genes.

The idea that networks of genes can perform computational
unctions in the cell is now well established (see Fernando et al.,
009; Haynes et al., 2008; Ben-Hur and Siegelmann, 2004; Ziv et al.,
007). As a simple example consider the regulation of metabolic
athways in bacteria. The enzymes necessary to metabolize a spe-
ific nutrient will only be activated if the nutrient is present in the
nvironment (see for example Chu et al., 2008), this metabolic con-

rol implements a basic if-then statement. In this case a bacterial
ell takes as input the concentration of an external nutrient con-
entration, and “computes” an output, namely whether or not to
urn on a metabolic pathway. This is probably the simplest exam-

∗ Corresponding author.
E-mail address: D.F.Chu@kent.ac.uk (D.F. Chu).
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ple of computing one could imagine. The next step in biological
software sophistication is inducer exclusion (Narang, 2006; Narang
and Pilyugin, 2007), i.e. the process whereby prokaryotic cells faced
with several concurrently available nutrient sources exclusively
take up the highest quality one. Beyond these examples, there are
many more complicated instances of gene networks in cells where
environmental information is integrated from a variety of sources
to decide whether or not to turn on a gene (Mattick and Gagen,
2001).

The “computation” metaphor may not be useful in all contexts
in theoretical biology, but in the case of gene networks it can be
very enlightening. A network of genes that relays information from
some input to some output can be parameterised in a number of
ways. To see this consider the simplest model of the output y of a
single gene that is regulated by some molecule with concentration
x. This is a differential equation with a Hill functions as growth
term:

ẏ = ˛ + ˇ
xh

Kh + xh
− �yy.

Here ˛ and ˇ are the leak rate and the maximal growth rate respec-
tively, h and K are kinetic parameters of the Hill function, and x
is the concentration of the regulator molecule. Depending on the

particular parameters of the system, the gene activation function
will be a concave (h ≤ 1) or sigmoid (h > 1) function of the concen-
tration of the input molecules; the sensitivity of the function to
a particular range of input concentrations depends on K; ˛ and ˇ
determine the output range of the gene. A gene network would be

dx.doi.org/10.1016/j.biosystems.2011.01.006
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:D.F.Chu@kent.ac.uk
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odelled as a set of differential equations of the above type, where
he network topology is determined by the dependencies between
he equations.

For a cell, the particular choice of parameters is strongly con-
trained by a number of factors: (i) The kinetic parameters of each
ene must be such that each gene can be regulated over a physi-
logically relevant range of the input x. Analogous considerations
pply to the output range. (ii) The gene networks need to be able
o process input sufficiently rapid, that is they need to change gene
xpression patterns, i.e. switch between steady states of protein
oncentrations, within a time that is appropriate given the bio-
ogical context of the genes. Within the computational metaphor
his can be thought of as the computational speed of a gene net-
ork. (iii) The parameters’ impact on the metabolic cost must also

e taken into account. Expressing proteins requires the cell to use
TP molecules; an expression rate ˇ of a gene comes at a contin-
ous cost per time unit that is proportional to ˇ. This presumably
xerts a strong adaptive pressure on organisms that compete for
imited resources. (iv) Proteins are discrete units expressed and
egraded stochastically. This means that even at steady state con-
entrations will be subject to random fluctuations (noise). Noise
an be beneficial for the cell in some contexts, but is usually detri-
ental when the function of a gene network is to relay/process

nformation. The fluctuations around the signal make it harder for
he cell to tell apart two signals that are close together, hence
educing the ability of a gene network to distinguish between sig-
als.

This uncertainty can be reduced if the cell averages the signals
ver a longer period of time. The intuition behind this is straight-
orward: Assume a series of data points and assume further that
t is known that these data points are distributed around a mean
alue m1 or m2. One can now ask how many data points need to be
xamined before one can, with a given level of confidence, decide
etween the two mean values. The answer is: It depends! More
recisely it depends on the level of noise that affects the data and
he distance between m1 and m2. The closer they are together and
he higher the noise the more sample points must be taken. Or, for
given level of noise, the more points are taken, the more confident
ne can be in determining the true mean value.

This is precisely the situation for a binary gene sensing its
egulatory input. The more input data it collects, the more accu-
ate the cell senses the activation state of the binary input, which
mplies that it will be more accurate in its output. However, col-
ecting more input data takes time. What is more, mathematically
t can be seen that it also entails that the gene switches slower
etween its two possible output levels. This manifests itself through
reduced computational speed of the gene. Hence, there is a trade-
ff between the accuracy of a cellular “computation” and its speed.
his trade-off has been described n a recent contribution by Zabet
nd Chu (Zabet and Chu, 2009; Zabet et al., 2010), where it has
een shown for the (near trivial) case of a single gene that noise
nd switching time cannot be separately optimised. They described
trade-off between the levels of noise of the output of a gene

which they call accuracy), the metabolic cost of expressing the
ene, and the speed with which changes can be processed. For-
ally, this manifests itself through the relationship of the switching

ime and the output noise with the decay rate of the output of the
ene; these are proportional and inversely proportional, respec-
ively.

The question of noise and speed of gene networks has previously
eceived considerable attention in the community. In particular

he impact of local network topologies, so-called network motifs
Oltvai and Barabasi, 2002; Milo et al., 2002a,b; Ma et al., 2009), on
peed and noise has been researched in considerable detail. One of
he results of this research is an emerging consensus that negative
uto-regulation decreases the noise and switching time of a gene
104 (2011) 99–108

(Alon, 2006, 2007; Singh and Hespanha, 2009; Wang et al., 2010;
Bruggeman et al., 2009). However, many of the relevant studies on
networks consider a limited range of parameters only. Moreover,
they often do not keep the metabolic cost of sets of parameters
they compare fixed. Following Zabet and Chu (2009) this draws
into question the comparison. Finally, most studies consider noise
and switching speed separately, ignoring the trade-off between
them.

Nearly all of the existing literature on stochastic fluctuations
in gene networks focuses on noise at a particular steady state, in
the sense that standard definitions of noise are normalised with
respect to the steady state. This choice can be misleading when
it is the aim to understand the computational limits of gene net-
works. Processing and relaying signals requires that the individual
components are able to adequately distinguish between different
input signals. The classic model in computer science is to consider
only two possible states per component, e.g. “on” or “off.” Trans-
lated into the realm of gene networks this would mean that each
gene can be either turned on (high expression/protein abundance)
or turned off (low expression/protein abundance). Within such a
binary model noise manifests itself through an uncertainty about
the activation state of a gene. Depending on the size of the fluc-
tuation and the difference between the high state and the low
state (the signal strength) the cell needs to average out fluctu-
ations by “repeat measurements.” The extent to which a given
level of noise impairs the “distinguishability” of two signals does
not primarily depend on the size of the fluctuations in relations
to the steady state, but on the size of the fluctuations in relation
to the difference between the two possible states, i.e. the sig-
nal strength rather than by the steady state concentration. Hence,
the appropriate measure of noise in this context is the size of
the fluctuation normalised by the mean signal strength, as dis-
cussed in the original article by Zabet and Chu. This seemingly
minor modification, however, not only complicates the mathemat-
ics considerably, but also alters the optimality properties of the
system.

In this article, we will ask the same question as Zabet and Chu
(2009), but extend the analysis beyond their minimal network:
Given a network of genes that is primarily computational in the
above sense, what are the constraints on the choice of parameters?
As it turns out, the answer to this question depends on the topology
of the network. We therefore limit the scope of this article to net-
works small enough to allow some exact analysis, thus striking a
balance between feasibility and practical relevance. The hope is that
the insights gained from this (if not the results themselves) gener-
alize and create the right intuition for later large scale numerical
simulation studies.

The main results presented here are as follows: We prove a num-
ber of optimality properties of gene networks, including a lower
bound on the noise of a gene network. Specifically, we show that the
absolute fluctuations of negatively auto-regulated genes are always
lower than those of comparable standard genes without negative
auto-regulation, while this is no longer true when considering noise
normalised by the signal strength. We also describe a methodology
based on trade-off curves to compare two models of gene networks
in terms of their computational efficiency. We could not find a sin-
gle set of parameters for which negative auto-repression is inferior
in terms of its computational properties.

2. Materials and Methods
2.1. The Model

In this article we consider three genes, Gx , Gy and Gz . The gene Gy is regulated
by an input signal x which we assume to change instantaneously from a high state
xH to the low state xL or vice versa. Similarly, Gz is regulated by the product of Gy .
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Gy Gz

xH

xL

The output gene Gz thus takes one of two possible steady state values depending
n the input x.

We model gene expression as a one-step process, thus ignoring the noise con-
ribution from mRNA expression (McAdams and Arkin, 1997; Paulsson, 2004; Raj
nd van Oudenaarden, 2008). The amount of translational noise depends crucially
n the number of proteins produced from a single mRNA transcript and the lifetime
f the mRNA transcript in relation to the protein product. While translational noise
an be dominating, for most genes it is true that the overall noise is mainly driven
y the underlying transcription dynamics (Bar-Even et al., 2006). In terms of the
ependence of noise and time on the parameters of the system, this is therefore the
ain level to consider.

We denote the concentration of gene Gz by z and analogously for Gy . In this
rticle we will consider two regulation functions, the activator and the repres-
or. At steady state, if the input is xH then the products of the genes take the
alues z* = zH and y* = yH , in the case of the activator and z* = zL and y* = yH in the
ase of the repressor. The asterisk indicates the steady state value of the relevant
oncentration. We model the dynamics of the system as a set of two differential
quations:

ẏ = ˛y + ωg(x) − �yy
ż = ˛z + ˇf (y) − �zz

(1)

he symbols ˛y and ˛z represent the leak expression of the gene in the case of
omplete de-activation. Non-vanishing leak expression is probably common in
iological systems, but is also a source of inefficiency of the system (see Zabet and
hu, 2009); since it does not add any interesting dynamical effects, we will assume
y = ˛z = 0 throughout this contribution. Here the functions g and f are assumed to
e Hill functions given by:

(x) = xh2

Kh2
2 + xh2

, f (y) = yh

Kh + yh

n the case of the repressor the Hill function is given by:

(y) = Kh

Kh + yh

Note that we always assume the gene Gy to be activated by its input. Following
abet and Chu (2009) we define �, the cost of the activator network, as the sum of
he maximum production rates of Gy and Gz:

= ωgH + ˇfH.

ere gH =̇ g(xH); fH is defined analogously. In the case of the repressor we
efine the cost as � = ωgL + ˇfH , to reflect that at steady state the genes Gy

nd Gz are never simultaneously activated. In order to keep the total cost of
he gene network constant, we assume that the production rate of z is given
y

= � − ωgH

fH
.

he system (1) can be solved analytically for y(t), but not for any subsequent
ene products; however, z(t) can be given explicitly in terms of a quadrature,
amely

(t) = e−�z t

[∫ t

0

e�z s
(

˛z + ˇf (y(s))
)

ds + C

]
, (2)

here the constant C depends on initial conditions, and is zero if there is initially
o product, z(0) = 0.

In the case of the negative auto-regulator (NAR), we model the system as
ollows:

˙ = ˇfz(y)�R(z) − �zz (3)

here the negative auto-regulation R is given by

(z) = K̄ h̄

K̄ h̄ + zh̄

nd � =̇ R(zH)−1.
When assessing the relevance of stochastic fluctuations for sub-cellular infor-

ation processing, the common definition of noise (variance divided by the mean or
quare of the mean (Paulsson, 2004; Ozbudak et al., 2002)) may not always be appro-

riate. In essence, both of these measures relate the stochastic fluctuations at steady
tate to a (tacitly assumed) zero-concentration baseline. If defined in this way, noise
s an indicator of the number of (statistically independent) measurements that are
equired in order to determine—within a given margin of error—the mean particle
umber in a cell. In many contexts this may be the relevant question to ask. In the

context of information processing by genes it is not. If we assume binary genes, then
Gy Gz

xH

xL

the absolute size of a signal S1 may not be as important as the ability of the cell to
distinguish S1 from another signal S2 in the presence of a given amount of stochastic
fluctuations. This second signal S2 may just be the absence of a signal, but this rarely
works out to be a true zero baseline. Instead, “no signal” will typically mean “weak
signal.”

Therefore, in order to assess the impact of the stochastic fluctuations on the
computational properties of gene regulatory networks, it is necessary to modify
this standard definition of noise. Following Zabet and Chu (2009) we normalise
the variance by the square of the signal strength (defined as zH − zL), rather than the
signal itself, which is a measure of how the stochastic fluctuations limit an observer’s
ability to distinguish one signal from another one. To compute the noise we use
Paulsson’s version of van Kampen’s linear noise approximation (van Kampen, 2007;
Paulsson, 2004). For the standard system this yields the formula

Nz = zH

(zH − zL)2︸ ︷︷ ︸
intrinsic

+

regulation factor︷ ︸︸ ︷[
ˇf ′

H

zH − zL
�z

]2

time factor︷ ︸︸ ︷
�y

�y + �z
�2

x︸ ︷︷ ︸
extrinsic

(4)

for the noise of z, while the noise formula for the NAR system evaluates
to

N = zH

(1 − �fHR′
H

�−1
z )(zH − zL)2

+ 1

(zH − zL)2

(�ˇf ′
H

RH)2

[�ˇfHR′
H

− �z][−�y + �ˇfHR′
H

− �z]
�2

y

(5)

Here we abbreviated f(yH) by fH , df(yH)/dy by f ′
H

and 1/�z by �z .
We always evaluate the noise at the high state of Gz , because this state has

the higher variance. The normalisation factor zH − zL is the same hence the noise
at the high state will be higher, and is therefore chosen as the indicator for the
noise of the system as a whole. Note that Eqs. (4) and (5) are the formulas for
the activator. In the case of Gz being repressed by Gy the terms fH and f ′

H
need to

be replaced by fL and f ′
L
. This is because the high state zH in Gz is achieved when

y* = yL .

2.2. Switching Time

In the language of dynamical systems that we use to model our system
of genes, the computational speed of a system is determined by the time to
switch from one state to another. In the simplest possible case of a binary sys-
tem that we consider here, there are only two transitions, namely from/to a
high state zH , and to/from a low state zL . Specifically, we interpret the time
to switch as the time of the output to reach a fraction of one steady state
(say zH) given that the system starts in the other possible state (which would

be zL in this case). In general, the transition time Td

(
�H

)
, from the high to

the low state, and the time Tu

(
�H

)
, from the low to the high states will

not be equal, i.e. Tu(�H) /= Td(�L). However, the maximum switching frequency
is limited by T(�), the slowest state transition time in the system, which is
therefore a good indicator of the computational speed of a network of genes:

T(�) = max
(

Tu

(
�H

)
, Td

(
�L

))
,

where �L=̇zH − 	 (zH − zL) and �H=̇zL + 	 (zH − zL).
Here the subscripts u and d abbreviate “up” and “down,” signifying whether

the output signal is rising (Gz turning on) or falling Gz (turning off). The optimum
configuration is reached where the time to switch the system on equals the time to
switch it off, i.e. Tu(�H) = Td(�L).

2.3. Stochastic Model
We compared the noise prediction from the linear noise approximation with a
Markov chain model corresponding to the deterministic system. The Markov chain
model was constructed using the PRISM probabilistic model checker (Kwiatkowska
et al., 2001), using the following code:
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y : [miny..maxy] init miny;

z : [minz..maxz] init minz;

] (y <maxy) & (x>0)

> omeg*(pow(x,h2)/(pow(x,h2) + pow(K2,h2))): (y’=

] (y> miny) -> y*m: (y’=y-1);

] (z <maxz) & (y>0)

> beta*(pow(y,h)/(pow(y,h) + pow(K,h))): (z’=z+1)

] (z> minz) -> z*m: (z’=z-1);

To save space, we suppressed the specification of the parameters here. The
oise was computed using two reward structures namely (i) true: z; and (ii)
rue: z*z;. The relevant property query was then given by:

((R{2}=? [ S ]-(R{1}=? [ S ])*(R{1}=? [ S ])))/pow

PRISM can compute the exact numerical values (up to machine precision) of
he noise; this approach is thus not only computationally more efficient than noise
stimates based on stochastic simulations using Gillespie’s algorithm, but also more
recise. The drawback of this approach is that it only works for relatively small
odels. In the present case, this works as long as the noise from the gene Gx is

onsidered negligible, which was the case in Fig. 1(left). In the case of the positive
uto-regulator in Fig. 1(right) this was no longer the case and we had to resort to
pproximations of the noise by simulation. The model used in this figure had an
dditional stochastic variable x representing the particle number of Gx with the
ollowing transition rates:

x : [minx..maxx] init minx;

[] (y <maxx) & (x>0)-> 10: (x’=x+1) ;

[] (x> minx) -> x*m: (x’=x-1);

Here we did not duplicate the items already listed above.

. Results

In this section we report how the computational properties of
he three-gene system depend on its parameters. In all cases we
ssume that Gy is activated by Gx and we consider the cases where
z is activated/repressed by Gy both for the standard system and

he case of Gz repressing its own expression.

.1. Linear Chain without Feedback—The Standard System

For a linear chain of genes there are two distinct trade-offs
etween noise and time. Firstly, at a fixed metabolic cost the over-
ll noise of the output increases linearly with the decay rate (see
quation (5) in SI 2), while the time to switch is inversely propor-
ional to the decay rate (see SI 4.2). This is a direct generalization
f the noise-time trade-off that has been identified previously for
single gene (Zabet and Chu, 2009).

Secondly, there are optimal values of the Hill threshold K for
oise and switching time. In general, these will not be equal.
ence, the values of K in between the noise-optimum and the

ime-optimum realize a trade-off between noise and time, rep-
esenting various possible combinations of noise and switching
peed. In what follows, we describe these in more detail. For a
xed metabolic cost �, decay rate � and Hill threshold K2 both
he switching time and the noise have an optimal parameter
alue for the Hill threshold K of the gene Gz. Conversely, the
inear noise approximation predicts that for a fixed K there is
n optimal value K2 that minimizes the total noise of the out-
ut (see SI 3). When Gz is an activator, then as K → 0 and K2

s kept optimal with respect to K, Eq. (4) predicts the noise to
pproach( )
lim
→0

N = xh·h2
H

xh·h2
L − xh·h2

H

2
�z

�
. (6)

ence, the linear noise approximation does not predict an optimal
alue for the pair (K, K2) in the case of the activator. We expect
zl,2)

the linear noise approximation to become inaccurate for extreme
parameter values, i.e. close to K = 0. An exact numerical analysis of
the full Markov chain model shows that the linear noise approxi-
mation holds well for even very low K but eventually breaks down
before this minimum can be reached (see Fig. 1(left)).

The repressor case is somewhat different in that noise does not
diverge for K → 0, but approaches a finite value (see SI). Unlike
the case of the activator, there is a global minimum for the noise
in terms of the Hill coefficients K and K2, but it is not pos-
sible to find a meaningful closed form solution for this global
minimum.

Numerical analyses suggest that the time to switch is strongly
dependent on the relative position of K between yH and yL. Intu-
itively, this can be understood as follows: In the case of an infinite
Hill coefficient h the Hill threshold K defines the crucial limit for
y below which there is no activation and above which the gene is
fully activated. Hence, if the Hill threshold K is very low, then low
levels of y will fully activate Gz, which entails that Gz will be acti-
vated soon after Gx has been activated. Hence, low K means rapid
turn-on of Gz. Analogous reasoning applies when turning the acti-
vator off. The closer the Hill parameter to the activated state yH the
earlier the predecessor gene Gy falls to levels below the activation
threshold, and hence higher values of K entail a faster switch-off.
In the case of h = ∞ we therefore find that the time-optimal value
of the Hill threshold is given by K = (yH − yL)/2.

If we relax the assumption of an infinite Hill coefficient, the same
qualitative reasoning still holds, but the optimum K will not exactly
coincide with the mid-point between the steady states of Gy. Fig. 1
illustrates the optimal K for a number of numerical examples. The
graph records a normalised difference between the time required
to switch the gene off and the time required to switch it on, i.e.
(Td(K) − Tu(K))/Td(K). The optimal K coincides with the respective
times being equal, which is where the curves in the graph inter-
sect the horizontal axis in Fig. 1. The case of the repressor gene is
analogous.

As stated previously (and in Zabet and Chu, 2009), for each of the
individual genes Gy and Gz the computing time crucially depends
on the metabolic cost of the gene (assuming a fixed level of noise).
In our present system the costs allocated to the individual genes can
be altered as long as the boundary condition of a fixed total cost is
respected, i.e. � = ˇfH + ωgH remains constant. One could be tempted
to conjecture that the computing time will depend on how cost is
allocated to the individual genes. We show in SI 5 that this is not
the case: The switching time is independent of the cost allocation.
This rules out an allocation mediated trade-off between noise and
time.
With respect to noise, the cost allocation does matter. In the
limiting cases of all the cost being allocated to either Gy or Gz the
noise goes to infinity which shows that there exists at least one
minimum in between these extremes. It can also be shown that
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ig. 1. Switching on and off. (left) The horizontal axis is the relative position of the th
o switch Gz on and off normalised by the time required to it switch on. The optimal
arameters h. The parameters used are as follows: ω = 2, h2 = 2, xH = 5, xL = 0.1, � = 4.
ith respect to the decay rate. (right) Same as left but for the repressor.

ny such minimum is independent of the decay rate �, at least in
he case of decay by dilution.

Fig. 2 illustrates the noise-optimal cost distribution (and hence
he optimal ω) as a function of the relative strength of the upstream
oise. It indicates a strong relationship between the amount of
he upstream noise relative to the total noise and the cost allo-
ation. Intuitively, this can be understood as follows: Allocating
ore resource to Gy reduces the input noise to Gz by increasing the
etabolic cost at Gy, but at the expense of increasing the intrinsic

oise at Gz. Depending on which noise source is the dominant one,
ore or less cost should be allocated to Gy. The same reasoning

olds in the case of the repressor, although the input noise tends to
e low because it is generated by a low particle concentration yL.

.2. Negative Auto-regulation—The NAR System
Negative auto-regulation has been shown to attenuate noise and
ncrease the switching time (Wang et al., 2010; Rosenfeld et al.,
002). Indeed, irrespective of its parameters, the variance of the

ig. 2. Parametric plot of the optimal cost distribution (vertical) as a function of
he ratio of the total noise to the input noise �2

y (horizontal). The parameter varied
long the curve is K = [0 . . . 20]. The following parameters were used: ω = 2, h = h2 = 2,
H = 5, xL = 0.1, � = 4, K2 = 0.04. The value of the decay rate was set to � = 2 but note
hat each of the curves is invariant with respect to the decay rate and the cost.
ld parameter. The vertical axis represents the difference between the time required
eter for K is where the line crosses x = 0. The various curves represent different Hill

alue of the decay rate was set to � = 2 but note that each of the curves is invariant

NAR system is at worst equal to the noise of the corresponding
standard system (see SI). Section SI 5 shows that in the NAR system
the variance is lowest for K̄ = 0 and approaches the levels of the
standard system for K = ∞. This is true for both the repressor and the
activator. However, it should be noted that this does not necessarily
translate into a lower noise. The signal zH − zL in the NAR system is
at best as strong as in the standard system (see SI 5). This means that
there is the potential for the noise of the NAR system to be higher,
even though the variance is lower. A full analytic treatment of the
noise is hindered by the shape of the equation. In the case of the high
state this is not a problem, because zH is identical in the NAR system
and in the corresponding standard system. However, the steady
state equation for the low state zL cannot be solved in general. We
are therefore largely limited to doing numerical analysis.

Fig. 3 compares the noise of the NAR system and the standard
system for some parameter values. The influence of h̄ seems to be
more pronounced in the case of the NAR repressor than for the acti-
vator. In both cases the Hill coefficient of the repression function
does not seem to influence the noise qualitatively, in the sense that
the range of parameters for which the standard system has bet-
ter noise characteristics is roughly unchanged. For a particular set
of parameters, Fig. 3 shows that the noise of the NAR activator is
lower than the corresponding standard system. This contrasts with
the case of the NAR repressor; the right hand side of Fig. 3 sug-
gests that there is a significant proportion of the parameter space
where the noise of the NAR repressor is higher than the correspond-
ing standard system. Given that this is a particular example set of
parameters, it is unclear to what extent this conclusion generalizes.

Figs. 4 and 5 compare the switching times of the NAR and
the standard system. A somewhat different picture presents itself.
While with respect to noise the NAR activator seemed to have
shown more benign computational properties throughout the
parameter space, when it comes to the switching time there is a
sizeable area where the NAR activator is slower than the standard
system. This is specifically true for lower values of the Hill thresh-
old K, but the NAR activator is always faster once K is sufficiently
increased. There is also an area for very low K where the NAR activa-
tor is faster. However, this is unlikely to be of biological significance,
because this corresponds to Gz being only weakly controlled by Gy.

The example also suggests that the Hill coefficient h̄ correlates neg-
atively with speed once it is greater than 2, although the difference
does not seem to be big. Lower Hill coefficients h̄ lead to NAR sys-
tems that are overall more similar to the standard system. This is
expected and for h̄ < 1 this trend would continue. One can see from
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Fig. 3. The noise of the NAR system (activator and repressor). (left) Comparing the noise of the NAR system with the standard system. The graph shows the ratio of the
noise of the standard system and the NAR system for different Hill thresholds of the repressor function K̄ (x-axis) and Hill parameters h̄. A value of 1 means that the systems
have the same noise. A value <1 means that the standard system has higher noise. The parameters used are as follows: ω = 2, h = 3, h2 = 2, xH = 5, xL = 0.1, � = 4, � = 1. The Hill
constants K2 and K have been kept at the midpoint between the high states of x and y, respectively. (right) Same as left but for the NAR repressor.

Fig. 4. Comparing the switching time of the NAR (activator) system with the standard system. (left) The graph shows the ratio of the switching times of the NAR system
and the standard system for different Hill coefficients of the NAR system (h̄). A value of 1 means that the systems have the same switching time. A value <1 means that
the standard system is slower. The parameters used are as follows: K̄ = zH, ω = 2, h = 3, h2 = 2, xH = 5, xL = 0.1, � = 4, � = 1. (right) Same, but h̄ = 2. The different plots
correspond to different relative positions of K̄ = 
̄zH .

Fig. 5. Comparing the switching time of the NAR (repressor) system with the standard system. Parameters and interpretation are the same as in Fig. 4.
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bacteria one way to implement such computations are gene reg-
ulatory networks. These can switch genes or sets of genes on and
off depending on environmental or internal conditions or rather
concentrations of molecular species that indicate such conditions.
ig. 6. Performance of the NAR system. (left) The �-mediated noise-time trade-off
he switching time Tnar(�) and the vertical axis the noise N. The parameters used ar
right) Same as left but for the repressor and K = 0.5yH .

he system of differential equations (3) that the regulation factor
� reduces to 1 for h̄ = 0 independent of K̄; this means that in this

imit the NAR system and the standard system are identical. The
ame is true for very large K̄ , when the contribution of z(t) and zH

n R(z) and � respectively become negligible.
The example solutions shown in Fig. 5 indicate that the NAR

epressor is faster than the standard system for most of the param-
ters, i.e. only a small proportion of each graph reaches beyond
. It is difficult to obtain analytical results for the switching time,
lthough in the limiting case of K̄ = 0 one can gain some insight. In
his case the production rate in the differential equations is given
y J+ = fHzH/z(t). This can be integrated to obtain a general solution
orresponding to Eq. (2), namely

¯(T) = zH

(
(1 + h̄)

zH

∫ T

0

fe�t(1+h̄)dt + zH

)1/(1+h̄)

e−�T (7)

he trajectory of z̄(t) can be seen to be the scaled version of an un-
epressed system with a decay rate �′

z = �(1 + h̄), whose solution
s denoted z′(t). The trajectory from the high state to the low state
an then be written as follows:

¯(T) = zH

(
z′(T)
zH

(
1 + h̄

))1/(1+h̄)

. (8)

nalogously, one can write the trajectory from the low state to the
igh state. The fact that the repressor is a scaled version of the un-
epressed system, denoted by z′(t), does not mean that z̄(t) and z′(t)
ave the same switching times. The reason is that the points �̄ and
′ where the respective systems reach a fraction 	 of the distance

etween the high and the low state are not in direct correspon-
ence. If we map the point z̄(T�̄) = �̄ onto the corresponding point
n z′(t) then we obtain

¯(T�̄) =
((

1 − 	
)

+ z̄L

zH
	
)1/(1+h̄)

.

rom Eq. (8) we can also calculate the low state of the system, that
s

¯L = zH

(
zL

zH

)1/(1+h̄)
. (9)
The numerical examples so far show that the NAR system is
ometimes noisier/slower than the standard system, this does not
ean that the NAR system itself is “worse” than the standard

ystem in terms of its computational properties. Fig. 6 compares
wo trade-off curves. The trade-off curves of the NAR activator
standard system (solid line) compared to the NAR. The horizontal axis represents
llows: ω = 2, h = 3, h2 = 2, h̄ = 2, xH = 5, xL = 0.1, � = 4, K2 = (1/2)xH, K = 0.4yH .

are clearly below the standard system, which means that across
the parameters varied the NAR systems has computationally more
benign properties/trade-offs, and similarly in the case of the repres-
sor. It should be noted that some of the points in the trade-off curves
correspond exactly to points in Figs. 3 and 41: In the trade-off curves
all points of the NAR system are below the standard system. At
the same time, the activator corresponding to K = 0.4yH in Fig. 4
is clearly slower than the corresponding standard system; simi-
larly, Fig. 3 shows that the noise of the NAR repressor is higher
for K = 0.5yH. Nonetheless, for both of these parameters the trade-
off curve of the NAR system is below the standard system, which
indicates an overall better computational performance than the
corresponding standard system.

In order to get a better impression of the behavior of the system
across the parameter space we performed a Monte-Carlo sampling
of the parameter space. Fig. 7 shows parameter sweeps for the
behaviors of the NAR repressor and activator. Sampling different
ω and K further corroborates the impression that there are signif-
icant parts of parameter space where the NAR repressor is noisier
than the standard system, and significant parts where the NAR
activator is slower than the standard system. The interpretation
of these parameter sweeps is aided by comparison with random
points taken at optimal K on the rhs of Fig. 7. Two main obser-
vations emerge from this. Firstly, the NAR repressor is both faster
than the standard system and has lower noise when the Hill thresh-
old parameter is optimised. Secondly, the activator has only lower
noise, but is slower than the standard system at noise-optimal K.

Fig. 8 shows a parameter sweep showing the time optimal K
for random parameters for the repressor. The result shows that
for most points the NAR system is faster than the corresponding
standard system.

4. Discussion

In order to survive, bio-systems need to perform computations
on the state of their environment and their internal states. For
1 It is not possible to know from the graph precisely which points in the trade-off
curve map to the corresponding points in Figs. 3 and 4, because the dots in Fig. 6 are
not labeled with respect to the free parameter �.
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Fig. 7. Parameter sweep of the NAR system. (top) The graph shows noise-time trade-offs of the standard system compared to the NAR for both the positive regulator
(lhs) and the negative regulator (rhs). This is a parametric plot of Nnar /Nstd . The variab
value below 1 on the horizontal and vertical axis respectively means that the noise/s
� = 1, ω = 2, h = 3, h2 = 2, h̄ = 2, xH = 5, xL = 0.1, � = 4, K2 = (1/2)xH . (bottom) As top,
of K was calculated and used to generate the point. This graph is in log-scale for better re

Fig. 8. Parameter sweep of the NAR repressor system. As in the bottom right graph
in Fig. 7 but K is optimised for switching time.
les that are varied are 0 < K̄ < 2zH and 0.1 ≤ ω ≤ 4.1 each for h̄ = 1, 2, 3, 4, 5. A
witching time of the NAR system is lower. The parameters used are as follows:
but random parameter were chosen. For each set of parameters the optimal value
adability.

In this article we use a model of binary genes, that is each gene can
be in one of two states only, “high” or “low.” This assumption signif-
icantly simplifies the mathematics, but does not limit the generality
of our conclusions. In genes that have more than two states, the
same ideas as the one we present here apply. However, a detailed
consideration of this case has to be left to future research.

We define a gene network as computing when it relays or pro-
cesses changes of one and more input concentrations and regulates
genes in response to this. In this article we exclusively consider
binary genes, that is genes that have only two possible activa-
tion states. In gene networks that are optimised for computing,
there are two distinct trade-offs between the time to compute
and the accuracy of the computation, a trade-off mediated by the
decay rate � and one mediated by the Hill thresholds K. Mathe-
matically, the former is the more fundamental one, in the sense
that it is a consequence of how the noise and the switching time
scale with the decay rate, namely (N∼�) and T(�) ∼ 1/�, respec-
tively. The biological interpretation of this �-mediated trade-off is
somewhat more difficult than the mathematics suggest. In bacterial

cells, there is often no active break-down mechanism for proteins
and concentrations diminish mainly through cell growth and divi-
sion. Consequently, the decay rate will be related to the growth
rate, which is time-varying and dependent on the nutrient supply.
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Fig. 9. Optimality analysis and biological experiments. This figure shows the K-mediated noise time trade-off for the pR promoter as reported in Rosenfeld et al. (2005).
The trade-off is drawn in bold, and the sub-optimal points are in grey. We used the following set of parameters: V = 1.5 × 10−15 l, �x = � = �dilution = ln(2)/45 min−1, 	 = 0.9,
˛ bars w
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= 0 �M min−1, xH = 0.006 �M and xL = 0.140 �M (Rosenfeld et al., 2005). The error
osenfeld et al. (2005). (right) The mutant.

he growth rate and the availability of nutrients are only to a lim-
ted extent free parameters of the cell. The �-mediated noise-time
rade-off is therefore best thought of as a physical constraint on the
ell rather than the result of an evolutionary strategy.

In the case of active particle breakdown the interpretation is
ot much clearer. The issue is complicated by the fact that active
reakdown requires at least one additional species of particles to
reak down or inactivate the primary regulator. This comes itself
t an additional metabolic cost and thus complicates the analysis.
oreover, the presence of the breakdown particle does not per se

ncrease the switching speed because these breakdown particles
eed to be broken down themselves before a new signal can be
uilt up. This may be circumvented by transporting particles to
edicated breakdown sites as it occurs in eukaryotic cells. Analyz-

ng this case in terms of optimality considerations would go well
eyond the scope of the present contribution.

Biologically, the K mediated trade-off is more rewarding to ana-
yze, at least in the context of prokaryotic gene regulation. The
ill threshold K is related to the the binding and the un-binding

ate constants of the transcription factor, and as such tunable over
volutionary time-scales. What makes the K-mediated trade-off
nteresting is that it provides insight into the adaptive pressures
hat shaped the parameters of the cell. When the parameters are
nown, then this can be used to understand what precisely the
etwork is an adaptation to. When parameters are not known, then
ptimality considerations can be used to constrain the search space
uring parameter inference (e.g. during model fitting or via priors

n Bayesian parameter estimation).
At present a problem are the high error rates which affect empir-

cal estimates of kinetic parameters in gene regulatory networks.
ig. 9 shows a K-mediated trade-off curve for the pR promoter using
arameters taken from Rosenfeld et al. (2005). They report errors
or the value of the Hill threshold of about 20% and similarly high
alues for other parameters. Using the reported mean values, would
ocate the promoter just off the noise optimum; a mutant they
eported in the same contribution would be just off the time opti-
um. Fig. 9 also shows error bars around the points. We assumed
hat only the Hill threshold is affected by an error and that all the
ther parameters are certain. The figure shows that even in this
verly optimistic scenario it is not possible to meaningfully locate
ndividual genes on the trade-off curve. Note that a proper treat-

ent of errors would also have to note an uncertainty around the
ere produced assuming an error of 20% for K ± 20 %. (left) Wild type as reported in

trade-off curve itself. Future more accurate information about the
parameters will make this type of analysis more rewarding.

In order to analyze the noise-time trade-offs we used the van
Kampen–Paulsson linear noise approximation. A comparison with
exact calculations of the same Markov chain shows that the predic-
tions of this approximation are very accurate for most parameters.
However, there is still some caution warranted when interpret-
ing the results with respect to real organisms. One source of
error are the simplifying assumptions we made in order to arrive
at the dynamical model of the gene networks (i.e. Eqs. (1) and
(3)).

One of these assumptions concerns the input (i.e. the product
of the gene Gx) which we assumed to be flipping instantaneously
between the high state xH and the low state xL, a condition that
is clearly never fulfilled in nature. However, we have mainly con-
centrated on qualitative aspects of the dynamics, that is how
observable features of the gene network depend on the parameters
of the system and we are not trying to present a predictive model of
a specific system. Relaxing the assumption of instantaneous input
will not affect the qualitative relations we have established; the
assumption is therefore of little consequence to our conclusions.

Another aspect that is clearly not taken into account in our
model is the time delay due to the translation step which, amongst
other things, will depend on the length of the protein. The length
of the protein will also enter into the cost function thus complicat-
ing the analysis. For our current purposes these are second order
effects that will be important in quantitative models of specific sys-
tems, but are of minor relevance for the conceptual understanding
we are trying to develop here.

Of more direct impact for our models is the breakdown of the lin-
ear noise approximation for extreme parameters. The FDT approach
predicts that there is a theoretical minimal value for the noise given
by Eq. (6); this can be reached in the limit of a vanishing K (while
keeping K2 optimal). Fig. SI 1(left) indicates that the theoretical
estimates for the noise become inaccurate for very low values of K
which means that this global optimum will probably not be repro-
duced by real systems even though (at least for the parameters in

the graph) the linear noise approximation is a good indicator for a
wide range of parameters (see Fig. SI 2 and SI 1(left)). Add to this
that the model itself is a simplification and we must conclude that
the prediction of Eq. (6) may be far from biological reality in quan-
titative terms. On the other hand, the linear noise approximation
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as successfully been applied to real biological systems and it is
herefore reasonable to assume that the overall qualitative picture
t paints is relevant.

In the literature, there is a general consensus developing that
elf-repressing genes have more benign noise and time (Rosenfeld
t al., 2002; Wang et al., 2010) properties than a standard gene
ith the same parameters. Indeed, in bacteria estimates for the
roportion of NAR genes among all genes range from 40 to 60%
Rosenfeld et al., 2002; Alon, 2007). However, there is no obvious

etabolic cost in negative auto-regulation, which begs the ques-
ion why not all genes are auto-repressors. Part of the answer is
hat the idea of gene networks as computing input is not always
rue. Sometimes genes fulfill functions other than information pro-
essing. In those the main adaptive pressures may not come from
oise and/or switching speed, but from other considerations. There
ay be systems that need to switch fast in one direction only. In

his case the trade-off curves would have to be drawn very dif-
erently, thus altering the conclusions reached here. Finally, in our
nalysis we did not consider motifs other than the standard system
nd negative auto-regulation. For example, in some circumstances
eed-Forward Loop network motifs (Mangan and Alon, 2003) may
e more suitable than negative auto-regulation.

The linear noise approximation predicts that the variance is
lways lower in the NAR system than in the standard system. This
ntails that the noise, if taken against a zero-concentration baseline
s lower. However, if the baseline signal corresponds to a non-
anishing concentration, then the noise of the NAR system may be
igher than in the standard system. In the case of the NAR repressor
e even found this to be the typical behavior for the range of param-

ters we considered. On the other hand, our Monte-Carlo parameter
weeps indicate that the NAR-activator is typically less noisy than
he corresponding standard system, although there are significant
arts of parameter space where the auto-regulated system is slower
han the standard system.

Biologically the typical behavior of a system may not be as rele-
ant as the optimal behavior to which adaptive pressures drove
he system. This is particularly true in the present case where
he typical behavior of the system is very different from the opti-

al behavior: Both at its noise-optimal K and its time-optimal K
he repressor is faster and less noisy than the standard system
see Figs. 7 and 8). In the case of the activator the case is not as
lear cut. For all but a few example parameters we generated, at
oise-optimal K the NAR system has lower noise than the standard
ystem, but the switching time is higher.

From our analysis it is clear that the computational efficiency
f gene networks cannot be indicated by a single variable only, but
ust be assessed across the parameter space using trade-off curves.
hile we found that sometimes the negative regulator has indeed

igher noise than the corresponding standard system, we could
ot find a single example where the NAR system did not lead to
n overall better noise-time trade-off than the corresponding stan-
ard system. This leads us to the conclusion that the NAR system
as a better computational performance than the standard system.
ore generally, however, this suggests that trade-off curves can

e very useful tool when exploring optimal parameter ranges for
io-systems.

ppendix A. Supplementary data

Supplementary data associated with this article can be found, in
he online version, at doi:10.1016/j.biosystems.2011.01.006.
eferences

lon, U., 2006. An Introduction to Systems Biology: Design Principles of Biological
Circuits. Chapman & Hall.
104 (2011) 99–108

Alon, U., 2007. Network motifs: theory and experimental approaches. Nature Review
Genetics 8 (June (6)), 450–461, http://dx.doi.org/10.1038/nrg2102.

Bar-Even, A., Paulsson, J., Maheshri, N., Carmi, M., O’Shea, E., Pilpel, Y., Barkai, N.,
2006. Noise in protein expression scales with natural protein abundance. Nature
Genetics 38 (June (6)), 636–643, http://dx.doi.org/10.1038/ng1807.

Ben-Hur, A., Siegelmann, H., 2004. Computation in gene networks. Chaos 14 (March
(1)), 145–151, http://dx.doi.org/10.1063/1.1633371.

Bray, D., 1995. Protein molecules as computational elements in living cells. Nature
376, 307–313.

Bruggeman, F., Bluethgen, N., Westerhoff, H., 2009. Noise management by molec-
ular networks. PLoS Computational Biology 5 (September (9)), e1000506,
http://dx.doi.org/10.1371/journal.pcbi.1000506.

Chu, D., Roobol, J., Blomfield, I., 2008. A theoretical interpretation of the transient
sialic acid toxicity of a nanR mutant of Escherichia coli. Journal of Molecular
Biology 375, 875–889.

Fernando, C., Liekens, A., Bingle, L., Beck, C., Lenser, T., Stekel, D., Rowe, J.,
2009. Molecular circuits for associative learning in single-celled organisms.
Journal of the Royal Society Interface 6 (May (34)), 463–469, http://dx.doi.
org/10.1098/rsif.2008.0344.

Haynes, K., Broderick, M., Brown, A., Butner, T., Dickson, J., Harde, W., Heard, L.,
Jessen, E., Malloy, K., Ogden, B., Rosemond, S., Simpson, S., Zwack, E., Campbell, A.,
Eckdahl, T., Heyer, L., Poet, J., 2008. Engineering bacteria to solve the burnt pan-
cake problem. Journal of Biological Engineering 2 (1), 8, http://www.jbioleng.
org/content/2/1/8.

Kwiatkowska, M., Norman, G., Parker, D., 2001. PRISM: Probabilistic symbolic model
checker. In: Kemper, P. (Ed.), Proc. Tools Session of Aachen 2001 International
Multiconference on Measurement, Modelling and Evaluation of Computer-
Communication Systems, pp. 7–12, available as Technical Report 760/2001,
University of Dortmund, September.

Ma, W., Trusina, A., El-Samad, H., Lim, W.A., Tang, C., 2009. Defining network topolo-
gies that can achieve biochemical adaptation. Cell 138 (4), 760–773.

Mangan, S., Alon, U., 2003. Structure and function of the feed-forward loop
network motif. Proceedings of the National Academy of Sciences of the
United States of America 100 (October (21)), 11980–11985, http://dx.doi.org/
10.1073/pnas.2133841100.

Mattick, J., Gagen, M., 2001. The evolution of controlled multitasked gene networks:
the role of introns and other noncoding rnas in the development of complex
organisms. Molecular Biology and Evolution 18 (September (9)), 1611–1630.

McAdams, H., Arkin, A., 1997. Stochastic mechanisms in gene expression. Proceed-
ings of the National Academy of Sciences of the United States of America 94
(February (3)), 814–819.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, S., Alon, U., 2002a. Net-
work motifs in the transcriptional regulation network of Escherichia coli. Nature
Genetics 31, 64–68.

Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, S., Alon, U., 2002b.
Network motifs: simple building blocks of complex networks. Science 298,
824–827.

Narang, A., 2006. Comparative analysis of some models of gene regulation in mixed-
substrate microbial growth. Journal of Theoretical Biology 242 (September (2)),
489–501.

Narang, A., Pilyugin, S., 2007. Bacterial gene regulation in diauxic and non-
diauxic growth. Journal of Theoretical Biology 244 (January (2)), 326–348,
http://dx.doi.org/10.1016/j.jtbi.2006.08.007.

Oltvai, Z., Barabasi, A., 2002. Life’s complexity pyramid. Science 298, 763–764.
Ozbudak, E., Thattai, M., Kurtser, I., Grossman, A., van Oudenaarden, A., 2002. Regu-

lation of noise in the expression of a single gene. Nature Genetics 31 (May (1)),
69–73, http://dx.doi.org/10.1038/ng869.

Paulsson, J., 2004. Summing up the noise in gene networks. Nature 427 (January
(6973)), 415–418, http://dx.doi.org/10.1038/nature02257.

Raj, A., van Oudenaarden, A., 2008. Nature, nurture, or chance: stochastic
gene expression and its consequences. Cell 135 (October (2)), 216–226,
http://dx.doi.org/10.1016/j.cell.2008.09.050.

Rosenfeld, N., Elowitz, M., Alon, U., 2002. Negative autoregulation speeds the
response times of transcription networks. Journal of Molecular Biology 323
(November (5)), 785–793.

Rosenfeld, N., Young, J., Alon, U., Swain, P., Elowitz, M., 2005. Gene reg-
ulation at the single-cell level. Science 307 (March (5717)), 1962–1965,
http://dx.doi.org/10.1126/science.1106914.

Singh, A., Hespanha, J., 2009. Optimal feedback strength for noise suppression in
auto-regulatory gene networks. Biophysical Journal 96 (May (10)), 4013–4023.

van Kampen, N., 2007. Stochastic Processes in Physics and Chemistry, third edition.
Elsevier, Amsterdam.

Wang, L., Xin, J., Nie, Q., 2010. A critical quantity for noise attenua-
tion in feedback systems. PLoS Computational Biology 6 (4), e1000764,
http://dx.doi.org/10.1371/journal.pcbi.1000764.

Zabet, N., Chu, D., 2009. Computational limits to binary genes. Journal of the Royal
Society Interface, 10, http://www.cs.kent.ac.uk/pubs/2009/2969, December.

Zabet, N., Hone, A., Chu, D., 2010. Design principles of transcriptional logic circuits.
http://www.cs.kent.ac.uk/pubs/2010/3036.
Ziv, E., Nemenman, I., Wiggins, C., 2007. Optimal signal processing in small

stochastic biochemical networks. PLoS One 2 (10), e1077, http://dx.doi.org/10.
1371/journal.pone.0001077.

http://dx.doi.org/10.1016/j.biosystems.2011.01.006
http://dx.doi.org/10.1038/nrg2102
http://dx.doi.org/10.1038/ng1807
http://dx.doi.org/10.1063/1.1633371
http://dx.doi.org/10.1371/journal.pcbi.1000506
http://dx.doi.org/10.1098/rsif.2008.0344
http://www.jbioleng.org/content/2/1/8
http://dx.doi.org/10.1073/pnas.2133841100
http://dx.doi.org/10.1016/j.jtbi.2006.08.007
http://dx.doi.org/10.1038/ng869
http://dx.doi.org/10.1038/nature02257
http://dx.doi.org/10.1016/j.cell.2008.09.050
http://dx.doi.org/10.1126/science.1106914
http://dx.doi.org/10.1371/journal.pcbi.1000764
http://www.cs.kent.ac.uk/pubs/2009/2969
http://www.cs.kent.ac.uk/pubs/2010/3036
http://dx.doi.org/10.1371/journal.pone.0001077

