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Abstract

We propose a model of quantum-like (QL) processing of mental
information. This model is based on quantum information theory.
However, in contrast to models of “quantum physical brain” reduc-
ing mental activity (at least at the highest level) to quantum physical
phenomena in the brain, our model matches well with the basic neu-
ronal paradigm of the cognitive science. QL information processing
is based (surprisingly) on classical electromagnetic signals induced by
joint activity of neurons. This novel approach to quantum informa-
tion is based on representation of quantum mechanics as a version
of classical signal theory which was recently elaborated by the au-
thor. The brain uses the QL representation (QLR) for working with
abstract concepts; concrete images are described by classical informa-
tion theory. Two processes, classical and QL, are performed parallely.
Moreover, information is actively transmitted from one representation
to another. A QL concept given in our model by a density operator
can generate a variety of concrete images given by temporal realiza-
tions of the corresponding (Gaussian) random signal. This signal has
the covariance operator coinciding with the density operator encod-
ing the abstract concept under consideration. The presence of various
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temporal scales in the brain plays the crucial role in creation of QLR
in the brain. Moreover, in our model electromagnetic noise produced
by neurons is a source of superstrong QL correlations between pro-
cesses in different spatial domains in the brain; the binding problem
is solved on the QL level, but with the aid of the classical background
fluctuations.

1 Introduction

Last years the hypothesis that the brain processes information (at
least partially) by using quantum-like (QL) representation of proba-
bilities by complex amplitudes was discussed from various viewpoint
by numerous authors, e.g., [1]–[22], see also [12]– [17] for statistical
studies confirming (at least preliminary) this hypothesis. In general
such processing need not be based on the physical quantum brain (cf.,
e.g., Homeroff, Penrose, and Vitiello, see [1]–[5]) – quantum physi-
cal carriers of information. In our approach the brain created the
QL representation (QLR) of information in Hilbert space. It uses
quantum information rules in decision making. The existence of such
QLR was (at least preliminary) confirmed by experimental data from
cognitive psychology and economics.1 The violation of LTP in these
experiments is an important sign of nonclassicality of data – the inter-
ference effect. Moreover, recently so called constructive wave function

approach was developed: data violating LTP can be represented by
complex probability amplitudes by application of a special algorithm
– QLR-algorithm [24], [22]. Recently there were also developed QL
models of decision making, see [13]–[15], [11], [21], [29], .

The next natural step is to try to find possible physical realizations
of QLR in the brain. One of possibilities is to appeal to quantum
physics of microprocesses in the brain – the quantum brain, see, e.g.,

1In [12]– [17] we performed experiments with recognition of ambiguous figures which
demonstrated interference effects for incompatible recognition tasks in the form of viola-
tion of the law of total probability (LTP), see [23], [24], [22] for details. (One can speak
about non-Kolmogorovness of probabilistic data, i.e., impossibility to describe it by using
the Kolmogorov probability model [25].) In [13]–[15], [22] it was demonstrated that statis-
tical data from well known experiments in cognitive economics, Shafir and Tversky [26],
[27], on so called disjunction effect in decision making also exhibit interference effect by
violating LTP. We recall that the disjunction effect is related to violation of Savage’s sure
thing principle [28] – the basic principle of the modern economic theory, the principle of
rationality of decision making.
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Homeroff and Penrose, see [1]–[4]. However, (surprisingly) it is possi-
ble to proceed even in the classical field framework, i.e., to create a
classical wave model producing QLR, see [31]–[33]. Neurophysiologi-
cally our model is based on variety of time scales in the brain, see e.g.
[30]. Each pair of scales (fine – the background fluctuations of elec-
tromagnetic field and rough – the mental image scale) induces the QL
representation. The background field plays the crucial role in creation
of “superstrong QL correlations” in the brain.

We propose a classical (!) wave model which reproduces proba-
bilistic effects of quantum information theory. Why do we appeal to
classical electromagnetic fields in the brain and not to quantum phe-
nomena? In neurophysiological and cognitive studies we see numerous
classical electromagnetic waves in the brain. Our conjecture is that
these waves are carriers of mental information which is processed in
the framework of quantum information theory.

In the quantum community there is a general opinion that quan-
tum effects can not be described by classical wave models (however,
cf. Schrödinger; we also can mention works of H. F. Hofmann who
demonstrated that one can use classical electromagnetic fields to de-
scribe a variety of “purely cquantum effects” [34].). Even those who
agree that the classical and quantum interferences are similar empha-
size the role of quantum entanglement and its irreducibility to classical
correlations (however, cf. Einstein-Podolsky-Rosen). It is well known
that entanglement is crucial in quantum information theory. Although
some authors emphasize the role of quantum parallelism in quantum
computing, i.e., superposition and interference, experts know well that
without entanglement the quantum computer is not able to beat the
classical digital computer.

Recently the author proposed a classical wave model reproducing
all probabilistic predictions of quantum mechanics, including corre-
lations of entangled systems, so called prequantum classical statistical

field theory (PCSFT)[31, 32] and see paper[33] for the recent model for
composite systems. It seems that, in spite of the mentioned common
opinion, the classical wave description of quantum phenomena is still
possible.

In this paper we apply PCSFT to model QL processing of infor-
mation in the brain on the basis of classical electromagnetic fields.
This model is based on the presence of various time scales in the

brain. Roughly speaking each pair of time scales, one of them is fine –
the background fluctuations of electromagnetic (classical) field in the
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brain, and another is rough – the mental image scale, can be used for
creation of QLR in the brain. The background field (background os-
cillations in the brain) which is an important part of our model plays
the crucial role in the creation of “superstrong QL correlations” in the
brain, cf. Hofmann [34]. These mental correlations are nonlocal due
to the background field. These correlations might provide a solution
of the binding problem.

Each such a pair of time scales, (fine, rough), induces QLR of in-
formation. As a consequence of variety of time-scales in the brain, we
get a variety of QL representations serving for various mental func-
tions. This QL model of brain’s functioning was originated in author’s
paper[35]. The main improvement of the “old model” is due to a new
possibility achieved recently by PCSFT: to represent the quantum
correlations for entangled systems as the correlations of the classical
random field, so to say prequantum field. This recent development
also enlighted the role of the background field, vacuum fluctuations.
We now transfer this mathematical construction designed for quan-
tum physics to the brain science. Of course, it is a little bit naive
model, since we do not know the “QL code” used by the brain: the
correspondence between images and probability distributions of ran-
dom electromagnetic fields in the brain.

We speculate that decision making through nonclassical LTP is
based on a wave representation of information in the brain. The brain
is full of classical electromagnetic radiation. May be the brain was able
to create QLR of information via classical electromagnetic signals,
cf. K.-H. Fichtner, L. Fichtner, W. Freudenberg and M. Ohya [19].
We also make a remark on the approach of G. Vitiello [5]. It differs
essentially from majority of approahces to quantum physical brain. In
contrast to others, Vitiello uses not quantum mechanics, but quantum
field theory, In some sense his model is closer to PCSFT. He also
operate with macroscopic electromagnetic signals, but for him these
signals are described by the quantum field model.

It is well known that classical waves produce superposition and,
hence, violate LTP. However, quantum information processing is based
not only on superposition, but also on ENTANGLEMENT. It is the
source of superstrong nonlocal correlations. Correlations are really
superstrong – violation of Bell’s inequality. Can entanglement be pro-
duced by classical signals? Can quantum information processing be
reproduced by using classical waves? Surprisingly, the answer is posi-
tive.
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The crucial element of our classical wave model of brain’s function-
ing is the presence of the random background field (in physics fluctu-
ations of vacuum, in the cognitive model – background fluctuations of
the brain). Such a random background increases essentially correla-
tions between different mental functions, generates nonlocal presenta-
tion of information. As was already remarked, we might couple these
nonlocal representation of information to the binding problem:

“How the unity of conscious perception is brought about by the

distributed activities of the central nervous system.”

2 Why may brain use the quantum-

like representation of information based

on classical electromagnetic waves?

As we emphasized, the deep neurophysiological studies demonstrated
that the brain definitely processes the information by using classical
electromagnetic signals. We would like to apply the results of these
studies and propose a classical-signal model of the brain functioning.
However, we do not plan just to explore the standard classical signal
theory. We speculate that information processing in the brain should
be described by the mathematical formalism of quantum mechanics
and that classical electromagnetic waves are used by the brain to cre-
ate QLR.

“Why was the brain not satisfied with the classical signal process-
ing?

What are advantages of the QL processing of information (even
with classical field)?”

2.1 Incomplete processing of information

If we speculate that in physics quantum probabilistic behavior can be
expressed through classical random waves, we definitely reject Bohr’s
thesis on completeness of QM. (This Einsteinian attitude is charac-
teristic only for this chapter, in previous chapters we were able to
proceed even with the orthodox Copenhagen interpretation.) Here we
have to assume that the QM formalism provides only an approximate
description of processes in the micro world. In such an approach the
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main difference of quantum processing of information from classical is
that the first one provides a possibility to ignore consistently a part
of information, to make a consistent cutoff of information (described
by the mathematical formalism of QM).

Operation through incomplete information processing is very prof-
itable for cognitive systems. An important part of cognition is the
extraction of a part of information from huge information flows com-
ing to the brain. By operating in the QL-framework, for example,
on the basis of the wave representation, the brain gets a possibility to
work harmonically with incomplete information. This is one of sources
of creation of the QL- processing in the brain.

By ignoring a part of information the brain is able to create ab-
stract mental images, ideas, concepts, categories. Another advantage
is incredible increasing of the speed of computations. Here we speak
about computations based on classical electromagnetic signals, but
performed on the basis of quantum formalism.

2.2 Background noise: How can the worst en-

emy become the best friend?

By PCSFT the standard QM formalism provides a possibility to ex-
tract signals (in fact, their averages) from the noisy background, see
section 8.5. QM can be interpreted as a kind of renormalization the-
ory which is applicable to signals with irreducible noise. In quantum
physics this is the noise of vacuum fluctuations, the background field.
It seems that this noise is a fundamental feature of space [36], [37];
one cannot hope to isolate a signal from these fluctuations; the only
possibility is to take them into account consistently. We now project
this situation to brain’s functioning. The brain is a complex electric
system; its functioning has definitely to induce noise; more complex
brains are more noisy; higher brain’s activity is also noisier. Of course,
in the process of evolution cognitive systems might try reduce the im-
pact of the background noise in the brain. However, it is clear that
it would be a very complicated task: it seems impossible to isolate
signals in the brain from the background fluctuations (induced by a
huge number of neurons).

We speculate that the brain chosen another way to evolve, namely,
to elaborate a procedure to extract mental images from signals on the
noisy background, i.e., proceeding with the noise, but, finally, having
a procedure (consistent for different signals) for extracting images. By
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PCSFT processing of information on the basis of the QLR provides
such a possibility.

Moreover, in physics (by PCSFT) the background field is a source
of superstong nonlocal correlations between entangled systems – “en-
tangled classical waves” in the PCSFT-framework. By projecting this
situation to the brain functioning we see that the brain can get the
great advantage from the presence of the background fluctuations.
They produce entanglement between processes in different (including
spatially separated) domains of the brain, between different mental
functions, see section 9.2 for further discussion.

2.3 Joint processing of an abstract image and

its concrete realizations

By PCSFT a random electromagnetic field is represented in the QL-
way by its covariance operator (=“density operator”). In the cognitive
model the QL-representation corresponds to abstract mental images.
Thus they are given by covariance operators. To process such QL-
images the brain is not interested in the complex structure of random
fluctuations of classical signals; the brain operates with images en-
coded by operators – covariance operators (matrices) of classical ran-
dom signals. However, in this process the brain might need to proceed
from the abstract image to its concrete realization. For example, the
brain can operate with abstract notions, e.g., house and tree, but it
can switch to the concrete house and the concrete tree. In processing
of the first type (the QL-processing) the brain operates with operators
Dhouse and Dtree and in processing of the second type (the classical
processing) the brain has to switch to the classical signals encoding
this house and this tree.

We remark that two different realizations of the random signal
with the fixed covariance operator can differ essentially, so they really
can encode two different houses. Take a coin. Consider a series of its
tossing, e.g., a few thousands: x = (x1, x2, ...., xn), where xj = 0, 1
are labels of coin’s sides. After this tossing was finished, start a new
series: y = (y1, y2, ..., yn). Although both sequences are samples of the
same random law, they can differ essentially bit wise. Thus we can
encode “house” (as the abstract notion) by the probability law of this
coin, but two concrete houses are encoded by sequences x and y.

If the brain works in the QL (abstract) regime, it recognizes only
encoding of the corresponding probability laws; if it works in the clas-
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sical regime it has to use essentially more processing resources, since
it operates not with the codes of probabilistic laws, but with the real
data streams.

In the QL-model induced by PCSFT we consider only Gaussian

random fields with zero averages (symmetric oscilations). Such ran-
dom fields are uniquely determined by covariance operators. The for-
mer remark on encoding by using the coin and its tossings can be
modified in the following way. We have a Gaussian random genera-
tor producing vector data, each vector (realization) has dimension m.
Starting with some input given by the vector x0 the generator pro-
duces the stream of vectors x encoding the concrete house. Starting
with another input x′0 the generator produces another stream of ran-
dom data y encoding another concrete house. The concept of house
is represented by the covariance operator D = Dhouse of this random
generator, the density operator in the QL-formalism.

3 Prequantum classical statistical field

theory: noncomposite systems

Quantum mechanics (QM) is a statistical theory. It cannot tell us any-
thing about an individual quantum system, e.g., electron or photon.
It predicts only probabilities for results of measurements for ensembles
of quantum systems. Classical statistical mechanics (CSM) does the
same. Why are QM and CSM based on different probability models?

In CSM averages are given by integrals with respect to probability
measures and in QM by traces. In CSM we have:

〈f〉µ =

∫

M

f(φ)dµ(φ), (1)

where M is the state space. In probabilistic terms: there is given a
random vector φ(ω) taking values in M. Then 〈f〉φ = Ef(φ(ω)) =
〈f〉µ. In QM the average is given by the operator trace-formula:

〈Â〉ρ = TrρÂ. (2)

This formal mathematical difference induces the prejudance on fun-
damental difference between classical and quantum worlds. Our aim
is to show that, in spite of the common opinion, quantum averages
can be easily represented as classical averages and, moreover, even
correlations between entangled systems can be expressed as classical
correlations (with respect to fluctuations of classical random fields).
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3.1 Einstein’s dreams:

Albert Einstein did not believe in irreducible randomness, complete-
ness of QM. He dreamed of a better, so to say “prequantum”, mode
l[38]:

1). Dream 1. A mathematical model reducing quantum random-
ness to classical.

2). Dream 2. Renaissance of causal description.
3). Dream 3. Instead of particles, classical fields will provide the

complete description of reality – reality of fields [38]:
“But the division into matter and field is, after the recognition

of the equivalence of mass and energy, something artificial and not
clearly defined. Could we not reject the concept of matter and build
a pure field physics? What impresses our senses as matter is really a
great concentration of energy into a comparatively small space. We
could regard matter as the regions in space where the field is extremely
strong. In this way a new philosophical background could be created.”

The real trouble of the prequantum wave model (in the spirit of
early Schrödinger) are not various NO-GO theorems (e.g., the Bell
inequality[24, ?]), but the problem which was recognized already by
Schrödinger. In fact, he gave up with his wave quantum mechanics,
because of this problem: A composite quantum system cannot be de-

scribed by waves on physical space! Two electrons are described by
the wave function on R6 and not by two wave on R3.

Einstein also recognized this problem [38]: “For one elementary
particle, electron or photon, we have probability waves in a three-
dimensional continuum, characterizing the statistical behavior of the
system if the experiments are often repeated. But what about the case
of not one but two interacting particles, for instance, two electrons,
electron and photon, or electron and nucleus? We cannot treat them
separately and describe each of them through a probability wave in
three dimensions...”

3.2 Quantum system = classical random field

Einstein’s Dreams 1 and 3 came true in PCSFT (but not Dream 2!) – a
version of CSM in which fields play the role of particles.2 In particular,

2It seems surprising that, although Dream 1 came true, Dream 2 cannot. The situa-
tion differs essentially from CSM where dynamics of probability distribution given by the
Liouville equation can be reduced to the deterministic Hamiltonian dynamics. The main
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composite systems can be described by vector random fields, i.e., by
the Cartesian product of state spaces of subsystems and not the tensor
product. The basic postulate of PCSFT can be formulated in the
following way:

A quantum particle is the symbolic representation of a “prequan-

tum” classical field fluctuating on the time scale which is essentially

finer than the time scale of measurements.

The prequantum state space M = L2(R
3), states are fields φ :

R3 → R; “electronic filed”, “neutronic field”, “photonic field” - clas-
sical electromagnetic field. An ensembles of “quantum particles” is
represented by an ensemble of classical fields, probability measure µ
onM = L2(R

3), or random field φ(x, ω) taking values inM = L2(R
3).

For each fixed value of the random parameter ω = ω0, x → φ(x, ω0)
is a classical field on physical space.

3.3 Density operator = covariance operator

Each measure (or random field) has the covariance operator, say D.
It describes correlations between various degrees of freedom.

The map ρ 7→ D = ρ is one-to-one between density operators and
the covariance operators of the corresponding prequantum random
fields – in the case of noncomposite quantum systems. In the case of
composite systems this correspondence is really tricky.

Thus each quantum state (an element of the QM formalism) is
represented by the classical random field in PCSFT. The covariance
operator of this field is determined by the density operator. We also
postulate that the prequantum random field has zero mean value.

These two conditions determine uniquely Gaussian random fields. We
restrict our model to such fields. Thus by PCSFT quantum systems
are Gaussian random fields.

Finally, we remind that the covariance operator D of a random
field φ is defined by its bilinear form (u, v ∈ H) :

〈Du, v〉 = E〉φ, u〈〈v, φ〉 = E

(∫

O

φ(x, ω)u(x)dx

)(∫

O

v(x)φ(x, ω)dx

)

(3)
or by using the probability distribution µ of the random field:

〈Du, v〉 =

∫

H

(∫

O

φ(x)u(x)dx

)(∫

O

v(x)φ(x)dx

)
dµ(φ). (4)

difference is due to the presence of the background fluctuations – irreducible noise.
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3.4 Quantum observable = quadratic form

The map Â→ fA(φ) = (Âφ, φ) establishes one-to-one correspondence
between quantum observables (self-adjoint operators) and classical
physical variables (quadratic functionals of the prequantum field).

It is easy to prove that following equality holds:

EfA(φ(ω)) =

∫

M

fA(φ)dµ(φ) = TrρÂ. (5)

In particular, for a pure quantum state ψ, consider the Gaussian mea-
sure with zero mean value and the covariance operator ρ = ψ⊗ψ (the
orthogonal projector on the vector ψ), then

∫

M

fA(φ)dµ(φ) = (Âψ, ψ).

This mathematical formula coupling integral of a quadratic form and
the corresponding trace is well known in measure theory. Our main
contribution is coupling of this mathematical formula with quantum
physics.

This is the end of the story for quantum noncomposite systems,
e.g., a single electron or photon[31, 32].

3.5 Beyond QM

In fact, PCSFT not only reproduces quantum averages, but it also
provides a possibility to go beyond QM. Suppose that not all pre-
quantum physical variables are given by QUADRATIC forms, consider
more general model, all smooth functionals f(φ) of classical fields. We
only have the illusion of representation of all quantum observables by
self-adjoint operators.

The map
f 7→ Â = f ′′(0)/2 (6)

projects smooth functionals of the prequantum field (physical vari-
ables in PCSFT ) on self-adjoint operators (quantum observables).
Then quantum and classical (prequantum) averages do not coincide
precisely, but only approximately:

∫

M

fA(φ)dµ(φ) = TrρÂ + O(τ/T), (7)

where T is the time scale of measurements and τ the time scale of
fluctuations of prequantum field. The main problem is that PCSFT
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does not provide a quantative estimate of the time scale of fluctuations
of the prequantum field. If this scale is too fine, e.g., the Planck scale,
then QM is “too good approximation of PCSFT”, i.e., it would be
really impossible to distinguish them experimentally. However, even
a possibility to represent QM as the classical wave mechanics can
have important theoretical and practical applications. And in the
present paper we shall use the mathematical formalism of PCSFT
to model brain’s functioning. Although even in this case the choice
of the scale of fluctuations is a complicated problem, we know that
it is not extremely fine; so the model can be experimentally verified
(in contrast to Roger Penrose we are not looking for cognition at the
Planck scale!).

4 Cognitive model: Two regimes of

brain’s functioning

We now turn to considerations of section 2.3 and proceed on the basis
of the short presentation of PCSFT given in section 3. At the mo-
ment we consider one fixed mental function of the brain, say F, which
is physically concentrated in some spatial domain O ⊂ R3 of the brain.
We shall come to the model of QL cooperation of a few mental func-
tions after the presentation of PCSFT for composite systems, section
8 (“entanglement of mental functions”).

4.0.1 Classical regime

By getting an input φ0 (from environment or another mental function)
the mental function F produces a random signal φ(x, ω) – a classical
electromagnetic field resulting from neuronal activity.3 It is a ran-
dom signal depending on the chance parameter ω. For each ω0, this
electromagnetic field, x→ φ(x, ω0), is distributed on the domain O.

We use the complex representation for the electromagnetic field,
the Riemann-Silberstein representation:

φ(x) = E(x) + iB(x),

3Thus we consider the ensemble of neurons which are located in O. By our model the
brain does not so much interested in the “private life” of individual neurons, i.e., the
frequency of spikes and so on, cf. [39]. It is only interested in the electromagnetic field
induced by activity of these neurons.
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whereE(x) = (E1(x), E2(x), E3(x)) andB(x) = (B1(x), B2(x), B3(x))
are the electric and magnetic components, respectively.

In our model each concrete mental image is associated with a ran-

dom signal. Its mental features, “qualia”, are given by functionals
of this signal. In the simplest case these are quadratic forms of the
signal.

The main problem is to create the classical signal code, i.e., to es-
tablish correspondence between random signals and mental images as
well as between field-functionals and qualia of images. We speculate
that at least some field-functionals represent emotions related to the
mental image (which is represented by the classical electromagnetic
signal). Consider a number of emotions, say E1, ..., Ek , related to some
image, say MIφ (associated with the signal φ). Then the mental func-
tion F physically operates with the corresponding field-functionals;
in the simplest case these are quadratic functionals and they can be
represented by integral kernels:

fEj(φ) =

∫

O×O

Kj(x, y)φ(x)φ(y)dxdy. (8)

However, in the classical regime nonquadratic functionals are also in
the use; e.g.,

f(φ) = fE(φ) +

∫

O×O×O

K(x, y, z)φ(x)φ(y)φ(z)dxdydz,

where fE is the functional of the form (8).

Remark 1. (Spatial distribution of qualia) By considering integral
functionals of the classical electromagnetic field we suppose that the
F -function performs integration of a signal over its domain of spatial
concentration. Thus we consider only spatially concentrated mental
functions. If a mental function F is concentrated in a domain O =
∪kOk, where Ok are located in the brain far away from each other,
then we represent F as collection of “elementary mental functions”
Fk concentrated in domains Ok. Some qualia of F are associated with
elementary functions Fk. However, there are also exist global qualia
which are obtained by summation of local ones (so integration on each
Ok and then collection and summation in a special center).

Since signals are random, field functionals are fluctuating quanti-
ties – random variables: ξφ(ω) = f(φ(ω)). It is clear that the brain
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cannot operate with such unstable mental entities. Thus it has to pro-
duce averages of emotions and operate with them. It will be especially
clear in the time-representation of random signals, see section 5. Let
µ be the probability distribution of a random signal φ. Then emotions
are quantified by averages:

〈fEj 〉 =

∫

H

fEj(φ)dµ(φ), (9)

where H = L2(O). In our model not only emotions, but all qualia are
quantified by averages.

It is clear that quantification of each qualia consumes brain’s re-
sources. Therefore only a special class of qualia (in particular, emo-
tions) is associated with each mental image. How does the mental
function F select them is the open question. The crucial point is that
in principle any two emotions E1 and E2 or other qualia can be asso-
ciated with the image MIφ and quantified. This total compatibility of

emotions and qualia in general may induce some problems. For exam-
ple, it is not always profitable for survival to combine some emotions.
We shall see that the situation is totally different in QL processing of
information.

Functionals of classical electromagnetic signals represents not only
emotions, but even other qualia of the image MIφ. For example, in
PCSFT we have the energy variable (representing the intensity of a
signal):

fI(φ) =

∫

O

|φ(x)|2dx =

∫

O

(E2(x) +B2(x))dx. (10)

We relate this functional to the intensity of feeling of the image MIφ.
This intensity is quantified as

〈fI〉 =

∫

H

fI(φ)dµ(φ) =

∫

H

(∫

O

|φ(x)|2dx

)
dµ(φ), (11)

=

∫

H

(∫

O

(E2(x) +B2(x))dx

)
dµ(φ).

In QM the position observable is given by the multiplication operator

x̂φ(x) = xφ(x)

and in PCSFT it is represented by the field functional:

fx(φ) = (x̂φ, φ) =

∫

O

x|φ(x)|2dx =

∫

O

x(E2(x) +B2(x))dx. (12)
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What quale can be coupled to this functional?
Already here, on the level of classical mental processing, mathe-

matics lead us to the notion of conjugate qualia of a mental image.

For example, consider the momentum functional in PCSFT:

fp(φ) = (p̂φ, φ) =

∫

R3

p|φ̃(p)|2dp, (13)

where φ̃(p) is the Fourier transform of the signal φ(x).What is a cogni-
tive interpretation of conjugation between qualia given by functionals
fx and fp?

It seems that in the classical regime the brain can process conju-
gate qualia simultaneously. In the case of “position and momentum”
functionals it is simultaneous processing in the spatial and frequency
representations.

Classical mental coding: How does the brain associate the men-
tal imageMIφ with a classical signal φ? In our model it is done through
calculation of its covariance operator D = D(φ). This association,
mental image – covariance operator, is especially natural in the time
representation of random signals, see section 5.

4.0.2 Quantum-like regime

We are now interested in the QLR (quantum-like representation) of
information. In QLR the brain operates with density operators which
represent not only concrete mental images (coming from the classical
regime of mental processing), but also abstract concepts (of different
levels of abstraction, see section 7 for details) which do not correspond
to classically produced images.

In QLR the brain’s state space is space of density operatorsD(H),H =
L2(O). In principle each density operator can be used as a QL state of
the brain. However, it is natural to assume that each mental function
F operates in its own subspace DF (H) of D(H).

In the standard QM a system has not only the state, but also
“properties” or (depending on interpretation) there are defined ob-
servables on this system (in this state) – e.g., the energy observable,
the coordinate observable and so on. By QM they are represented by
self-adjoint operators.

To simplify mathematics we shall consider only bounded (contin-
uous) operators; denote the space of all bounded self-adjoint opera-
tors by the symbol Ls(H). For a given quantum state ρ ∈ D(H) and
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observable Â ∈ Ls(H), the QM formalism gives the average of this
observable in this state, see (2).

We encode qualia of a QL cognitive image MIρ (which is encoded
by a density operator ρ) by self-adjoint operators; thus qualia of a
mental image (in QLR of information) are described by the space
Ls(H). They are quantified by their averages, via (2).

Opposite to classical processing, in QLR the brain cannot quan-
tify all qualia simultaneously. There exist incompatible qualia; in par-
ticular, incompatible emotions. The QL brain can select different
representations of the mental image MIρ and different collections of
compatible qualia of the image. The QL brain escapes the simultane-
ous use of e.g. some emotions (“incompatible emotions”). In this way
QLR-processing differs essentially from classical processing. We can
speculate that in the process of evolution the brain created (on the ba-
sis of experience) commutative algebras corresponding to compatible
qualia.

4.0.3 Coupling between classical and quantum-like rep-

resentations

The crucial point of QLR of information is that this “operator-thinking”
is naturally coupled with processing of classical electromagnetic sig-
nals. On the level of mental images we have:

aMI). From the classical regime to QL: a classical signal φ induces
the mental imageMIφ given by its covariance operator D = D(φ) and
it is transferred to QLR through normalization by the trace: D →
ρ = D/TrD. Thus there is a map from classical mental images to QL
mental images: MIφ →MIρ.

bMI). From QL to classical: a QL mental image MIρ can be rep-
resented by a classical (Gaussian) signal φ = φρ with the covariance
operator ρ, i.e., by the image MIφ.

On the level of qualia we have:

aQU). From classical regime to QL: each functional of classical
field, f(φ), is represented by its second derivative – self-adjoint oper-
ator, see (6).

bQU). From QL to classical: each quantum quale (given by a self-
adjoint operator) is represented by its quadratic form.

Since aQU is not one-to-one, i.e., since a huge class of different
classical qualia given by various functionals of the electromagnetic
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field (all functionals with the same second derivative) is mapped into
the same self-adjoint operator, QLR makes the mental picture less
rich than it was in the classical representation. The same can be said
about aMI. Various classical signals, concrete mental images, can have
the same covariance operator (we do not claim that input signals are
obligatory Gaussian, so there is no one-to-one correspondence), cf.
with a general discussion on mental prespace [?].

Take a classical mental image MIφ. It is represented by the covari-
ance operator D = D(φ). Of course, it can be mapped to a QL image
MIρ, see aIM. Values of all QL qualia can be obtained by scaling
from values of corresponding classical qualia, since, for any operator
Â ∈ Ls(H),

〈Â〉ρ = TrρÂ =
1

TrD
TrDÂ

=
1

TrD

∫

H

fA(φ)dµ(φ) =
1

TrD
〈fA〉φ,

where µ is the probability distribution of the signal. We remark that

TrD =

∫

H

(∫

O
|φ(x)|2dx

)
dµ(φ) = 〈fI〉

is the intensity of the signal or in the cognitive model the intensity of
feeling of the mental image MIφ. Thus QL qualia are normalized by
the intensity of feeling:

〈Â〉ρ =

∫
H
fA(φ)dµ(φ)∫

H

(∫
O
|φ(x)|2dx

)
dµ(φ)

.

QL processing of all mental images is performed on the same level
of intensity of feeling, so it is “calm thinking”.

We remark once again that some classical qualia do not have quan-
tum counterpart.

5 Classical regime: Time representa-

tion

As usual in signal theory, we can switch from the ensemble repre-
sentation for averages to the time representation (under the standard
assumption of ergodicity). Thus, instead of a random field φ(x, ω),
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which is distributed with some probability distribution dµ(φ) on H,
we consider a time dependent signal

φ(s) ≡ φ(s, x),

where x ∈ O, s ∈ [0,+∞). Then, for each functional f(φ) such that∫
H
|f(φ)|dµ(φ) <∞, we have (by ergodicity):

〈f〉µ ≡

∫

H

f(φ)dµ(φ) = lim
T→∞

1

T

∫ T

0
f(φ(s))ds ≡ 〈f〉φ. (14)

Consider two time scales: τ is a fine scale and T >> τ is a rough time
scale. In QM the latter is the scale of measurements and τ is the scale
of fluctuations of the prequantum field.4 In cognitive science we use
the following interpretation of time scales: T is the scale of the QLR
and τ is the scale of the real physical processing of the electromagnetic
signal in the brain. Thus

〈f〉φ ≈
1

T

∫ T

0
f(φ(s))ds, (15)

where s denotes the time variable at the τ -scale. We call the T -scale
the mental time scale; we can also speak about psychological time.

The T -scale is the scale of creation of mental images by the brain.
The τ -scale is the physical processing scale or premental time scale.

Neurophysiological theoretical and experimental studies provide the
following estimate of realtive magnitudes of these time scales. If we
select τ = 1 mls., then T ≈ 80 mls.

For each signal φ(s, x), x ∈ O, the brain can find its qualia, e.g.,
the strength of feeling of this image:

〈f〉µ ≈
1

T

∫ T

0

(∫

O

(E2(s, x) +B2(s, x))dx

)
ds. (16)

In particular, emotions (special qualia) are given by such functionals,
e.g., fanger, fsadness, ... Our formal mathematical model cannot provide

4PCSFT does not predict the magnitude of the scale of prequantum field fluctuations.
One may speculate (motivated in particular by cosmology and string theory), cf. G. ‘t
Hooft [36], [37] that it has to be the Planck scale τP ≈ 10−44 s. If it were really the case,
then prequantum fluctuations have only a theoretical value: they will be never approached
experimentally. However, in [40] we discussed a possibility that the prequantum scale
may have a larger magnitude and, hence, fluctuations will be soon or later approached
experimentally.
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the form of concrete emotion-functionals. We hope that in future
it will be described as the result of neurophysiological and cognitive
studies.

In the time representation the covariance operator (its bilinear
form) of the signal φ(s, x) is given by

(Du, v) = lim
T→∞

1

T

∫ T

0

(∫

O

u(x)φ(s, x)dx

∫

O

φ(s, x)v(x)dx

)
ds,

≈
1

T

∫ T

0

(∫

O

u(x)φ(s, x)dx

∫

O

φ(s, x)v(x)dx

)
ds, (17)

where u(x), v(x) are two “test signals”, u, v ∈ L2(O).

6 Classical Signal Processing of Men-

tal Images

This section contains a detailed presentation of the classical processing
of information, see section 4.0.1. We proceed in the time representa-
tion of random signals.

CSP1. Electromagnetic field basis of mental images. Inputs
from external and internal worlds induce electromagnetic signals in
the brain.

Each signal has a variety of qualia; in particular, emotions associ-
ated with the signal φ(s, x). Qualia are realized by various functionals,
φ 7→ f(φ), of the signal. They are quantified by averages of these func-
tionals, f 7→ 〈f〉φ, see (14) and (16). In principle all possible qualia
(e.g., emotions) can be jointly associated with φ(s, x).

The physical dynamics of a signal is in general nonlinear and very
complicated; it depends essentially on context of the signal processing:

φ(s, x) = φ(s0, x) +

∫ s

s0

dα

(∫

O

K(x, y, α;φ(α, y);φ(s0 , y))dy

)
, (18)

where the kernel K depends on the spatial variables x, y ∈ O (the
distribution of the signal on the brain), on the time variable α, the
previous dynamics of the signal φ(α, y), α ∈ [s0, s), and the signal at
s = s0, the input. We remark that the dynamics φ(s, x) depends
on input not only additively, i.e., as the initial state which then will
evolve in accordance with some integral equation, but even the kernel
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of the equation depends nontrivially on the input. Thus the dynamics
are different for different inputs.

CSP2. Calculation of correlations; creation of mental im-

ages. For each signal φ(s, x), the brain calculates the corresponding
covariance operator D ≡ D(φ), see (17). The completion of this pro-
cess, i.e., calculation of D, is associated with creation of the mental

image MIφ induced by the signal φ. Thus on the cognitive level the
brain is not interested in the dynamics of the physical signal (18). It
is only interested in the dynamics of the covariance operator

t 7→ D(t). (19)

We remark that dynamics (18) and (19) have different time scales; the
first one is performed on the physical time scale and the second on the
mental time scale. Thus it is very important that the “physical brain”
and the “cognitive brain” work on two different time scales: the scale
of physical signal – τ, and the scale of QLR – T. The interval of time
T >> τ, so its size justifies the ergodic interplay between ensemble
and time representations of random signals.

CSP3. Memory of correlations. The density operator D is
recorded in the brain. The PCSFT-basis of the model in combination
with the ergodic argument make very attractive the following model
of memory:

The operator D determines uniquely the Gaussian probability dis-
tribution µD (with zero mean value). The brain records this proba-
bility distribution. How can it do this?

We speculate that, to encode µD, the brain uses the statistical dis-
tribution by assigning statistical weights to elements of some ensemble
Ω.

What are elements of Ω? They might be neurons or even distribu-
tions of chemical components in the brain.

We emphasize once again that such a model of memory for proba-
bilistic laws is based on the ergodicity of processes in the brain: from
a signal φ(s) ≡ φ(s, x) (the time representation) to its covariance and
from the covariance to the probability distribution on an ensemble.5

CSP4. Recollection of images. Recollection is the process of ac-
tivation of a special mental image. We keep to the model of statistical

5The choice of a Gaussian probability law can be debated. But at least mathematically
it works well, because of the one-to-one correspondence between covariance matrices and
Gaussian probability distributions (with zero mean values).
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(ensemble) representation of the probability distribution encoding the
image, see CSP3. We obtain the following procedure of recollection:

Suppose that a mental image MIφ was recorded in the memory,
φ 7→ D = D(φ) 7→ µ = µD.

The process of recollection: starting with the probability distribu-
tion µ the brain computes the covariance operatorD of this probability
distribution by using the ensemble averaging, see (3), (4) .

On the basis of this covariance operator it produces a signal φrecall(s, x), x ∈
O, a trajectory of the corresponding Gaussian process.

In this situation, the brain does not reproduce the original signal
φ(s, x), see CSP1. The graphs of φ(s, x) and φrecall(s, x) can differ
essentially point wise. Moreover, the original signal φ(s, x) need not
be Gaussian at all. However, correlations inside both signals approx-
imately coincide and, hence, their qualia:

〈f〉φ = lim
T→∞

1

T

∫ T

0
f(φ(s))ds ≈ lim

T→∞

1

T

∫ T

0
f(φrecall(s))ds = 〈f〉φrecall

.

We also remark that even two different recollections φ1recall(s, x)
and φ2recall(s, x) of the same image can be very different as physi-
cal signals – two different realizations of the same Gaussian process.
However, their qualia coincide:

〈f〉µD
= lim

T→∞

1

T

∫ T

0
f(φ1recall(s))ds = lim

T→∞

1

T

∫ T

0
f(φ2recall(s))ds.

(20)
To be more precise, we say that they coincide approximately, since in
reality the brain does not calculate the limit for T → ∞, but it uses
the finite T. Thus

〈f〉µD
≈

1

T

∫ T

0
f(φ1recall(s))ds ≈

1

T

∫ T

0
f(φ2recall(s))ds. (21)

CSP5. Recognition of images. Suppose now that some mental
image was saved in the memory: starting with the input signal φ(s, x)
and through its covariance operator D(φ); for example, the Moscow
Kremlin. I came to Moscow once again and I look at the Krem-
lin; this visual input induces a signal q(s, x). Its covariance operator
D(q) is produced, see CSP2. It is compared with covariance oper-
ators in the memory to match with the operator D(φ). (The model
under consideration does not describe the mechanism of this compar-
ing process; however, see CSP5n.) Finally, matching of the operators,
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D(φ) ≈ D(q), is approached. This activates in the memory the sta-
tistical probability distribution µD(φ) in the form of a Gaussian signal
φrecall(s, x). Its makes the feeling of recognition of the image which
was encoded by D(φ).

6.1 Classical Signal Processing of Mental Im-

ages: finite-dimensional approximations

In principle, the brain can calculate the complete covariance oper-
ator (17); especially if it works as analogous computational device.
However, it consumes a lot of computational resources. We might
speculate that the brain selects a finite number of test functions, it is
always possible to assume that they are orthogonal in L2(O) :

u1(x), ..., un(x). (22)

Instead of the complete covariance operator D = D(φ), the brain
calculates its cutoff, the covariance n× n matrix Dn = Dn(φ). Thus,
instead of infinite dimensional L2-space, the brain works (for a given
mental function) in fixed finite dimensional subspace Hn. We modify
CSP1-CSP5; the first step CPS1 is not changed. We have:

CSP2n. The signal φ(s, x) induces the mental image MIφ;n en-
coded by the covariance matrix Dn.

CSP3n. The MIφ;n is recorded in the memory through the prob-
ability distribution µDn on the finite dimensional Hilbert space Hn.

CSP4n. On the basis of Dn the brain produces a signal φrecall(t)
in Hn. Its activation is recollection of the memory on MIφ;n.

CSP5n. The memory contains the image MIφ;n in the form of the
matrix Dn(φ). The new signal produces MIq;n with the covariance
matrix Dn(q). These matrices must be compared. Since the whole
story is about covariance matrices, so n× n matrices, it is natural to
expect a comparing algorithm which compares cutoffs of these n × n
covariance matrices: first of the dimension two, then three and so on;
i.e., first the D2(q) is compared with 2× 2 matrices obtained through
projection of mental images on H2 until the cluster of matrices with
the left-up block D2(q)(= D2(φ)) is found; then inside this cluster
the brain is looking for the sub-cluster with the left-up block D3(q)(=
D3(φ)) and so on.

How does the brain selects the subspace Hn with the basis (22)?
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The most natural is to assume that it just selects a band of fre-
quencies. It is also natural that different mental functions may use
different bands, i.e., different Hilbert spaces: for mental functions F
and G, two Hilbert spaces HF and HG.

7 Quantum-like processing of mental

images

We still proceed with functioning of one fixed mental function, say F.

QLP1. Density operator code. At some stage of its growing a
cognitive system creates a sufficiently extended database of classical
mental images. They are encoded by covariance operators which are
transferred in density operators by normalization, see aMI, section
4.0.3. Thus the brain created a collection of QL mental states bor-
rowed from the classical processing, ρ ∈ Ddata(H) which is a subspace
of D(H). At this stage the brain can be fine by working inside D(H),
i.e., even without contacts with physical and mental environment.

QLP2. Unitary thinking. Processing of information insideD(H)
is the process of QL-thinking. Starting with the operator ρ0 the brain
induces the evolution ρ(s) of the mental QL state. The simplest dy-
namics corresponds to the process of thinking in the absence of inputs
from environment (which includes the body); it is given by the von
Neumann equation:

i
dρ(t)

dt
= [Ĥ, ρ(t)], ρ(0) = ρ0, (23)

where Ĥ : H → H is “mental Hamiltonian” (given by a self-adjoint
operator). It describes functioning of the mental function F under
consideration, cf. [].

In the simplest case Hamiltonian Ĥ is completely determined by
the mental function F, so Ĥ ≡ ĤF . However, even more complex
dynamics seem to be reasonable – with Ĥ which also depends on the
initial state ρ0 : Ĥ ≡ ĤF,ρ0, cf. with the QL model of decision making,
Chapter ?.

We remark that by starting with e.g. QL-version of a concrete
image, i.e., ρ0 ∈ Ddata(H), the QL dynamics can go away from this
subspace of D(H). New “really QL” images are created. They can be
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visualized through production of corresponding classical signals, see
see bMI, section 4.0.3.

We emphasize that the QL-dynamics of mental images is performed
on the T -scale which is rough comparing with the τ -scale of physical
processing of signals in the brain. Each instant of time t of the T -scale
is the (large) interval T of the s-time.

It may be more illustrative to consider the discrete dynamics, the
mental time t is considered as the discrete parameter: tn = nT. Then

iρ(tn+1) = T [Ĥ, ρ(tn)], ρ(0) = ρ0. (24)

QLP3. Dynamics of QL qualia. In QL-processing qualia are
reduced to quadratic functionals of premental (physical) signals. These
functionals are represented by their QL-counterparts – corresponding
self-adjoint operators. The evolution of QL qualia is described by the
Heisenberg equation:

− i
dÂ(t)

dt
= [Ĥ, Â], Â(0) = Â0; (25)

or in the discrete representation of the mental time:

iÂ(tn) = T [Ĥ, Â(tn)], Â(0) = Â0. (26)

Quale (encoded by Â) of a mental imageMIρ (encoded by the density
operator ρ) is quantified by its average given by the quantum formula
(2).

Of course, the transition from the class of classical qualia (given by
arbitrary functionals of signals) to QL mental features corresponding
to only quadratic functionals simplifies mental representation of an im-
age. However, this reduction can be justified by (7) in the framework
of QLR (6) of classical functionals of signals.

QLP4. Thinking via operator algebra. This is the crucial
point. In QL-thinking the brain switches from the classical physical
signal processing, i.e., nonlinear equations of the type (18) to linear

processing of mental images represented by density operators (26); the
representation of qualia is also essentially simplified and it can be done
in the linear operator form. Our conjecture is that the brain is really
able to realize such linear operator processing of mental entities. This
type of processing is especially profitable for “abstract thinking”, i.e.,
thinking which has a high degree of independence from inputs.
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How does the brain realize the QL (operator) processing on the
physical level?

We do not know yet. However, we hope that our model may stim-
ulate neurophysiologists to look for the corresponding neuronal repre-
sentation of QL-processing. We can present the following scheme of
mental operator processing:

Since the brain has no other computational resources different from
neural electric activity, it seems reasonable to assume that the QL
mental dynamics (29), (26) also has to be performed through this ac-
tivity. The production of density operators can be done similarly to
the production of covariance operators in the classical regime. The
only difference is that the brain wants to escape the complicated non-
linear evolution (18). We consider the following stochastic linear dy-
namics in Hilbert space H (of classical electromagnetic fields):

∂φ

∂t
(t, x, ω) = Ĥφ(t, x, ω), φ(t0, x, ω) = φ0(x, ω), (27)

where the random variable φ0(x, ω) is the Gaussian field with zero
mean value and the covariance operator ρ0. Hence 〈ρ0u, v〉 = E〈φ0, u〉〈v, φ0〉, u, v ∈
H. The solution of the Cauchy problem (27) is the random field:

φ(t, x, ω) = Utφ0(x, ω), (28)

where ut = e−itĤ is the standard for QM one parametric group of
unitary operators. The covariance operator ρ(t) ≡ ρφ(t) can be eas-
ily found: 〈ρ(t)u, v〉 = E〈Utφ0, u〉〈v, Utφ0〉 = E〈φ0, U

∗
t u〉〈U

∗
t v, φ0〉 =

〈ρ(t)U∗
t u,U

∗
t v〉. Thus

ρ(t) = Utρ0U
∗
t .

This operator-valued function ρ(t) satisfies the von Neumann equation
(29). Thus the von Neumann evolution of the mental state can be
induced by the linear dynamics with random initial condition (27).
As was mentioned, the crucial point is that this dynamics is much
simpler than the “classical signal dynamics” (18).

Finally, we have the following model of physical realization of the
evolution (29). In fact, the brain produces the Gaussian random signal
by realizing on the neuronal level the linear Schrödinger type evolu-
tion. At each moment of mental time t by calculating its covariance
operator the brain creates the mental image given by the covariance-
density operator ρ(t).

In quantum information theory it is well known that in general ,
i.e., in the presence of interaction with environment the von Neumann
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equation should be modified to the Gorini-Kossakowski-Sudarshan-
Lindblad equation:

i
dρ(t)

dt
= L̂(ρ(t)), ρ(0) = ρ0, (29)

where L̂ : L(H) → L(H) is a linear map with special properties, see [].
All previous considerations can be easily generalized to such mental
dynamics.

QLP5. Concepts. Consider a subspace L ofH and the orthogonal
projector π ≡ πHL : H → L. It induces the map π : D(H) → D(L),

ρL ≡ π(ρ) =
πρπ

Trπρπ
.

Mental images corresponding to elements of D(L) can be considered
as abstractions of mental images corresponding to elements of D(H);
we call them L-concepts or simply concepts. Take some ρL ∈ D(L).
The mental image MIρL can be interpreted as an abstract concept
induced by the cluster of mental images:

WρL = {ρ ∈ D(H) : π(ρ) = ρL}.

Each concept is based on common correlations of a cluster of mental
images. It is especially interesting to consider the case dim L = m and
m is quite small. These are very abstract concepts which contains only
the basic common correlations in a huge cluster of mental images.
It is extremely profitable for the brain to think on the conceptual
level; especially to operate in a finite-dimensional L. The operator
unitary dynamics (29) is reduced to the matrix dynamics. Conceptual
Hamiltonian is given by a symmetric m × m matrix. For small m,
dynamics of such a type are very simple; processing is very rapid.

For example, consider QLR for the concept “house”. In the classi-
cal regime the brain created a collection of images of concrete houses
MI1, ...,MIk. They were classically encoded by covariance operators
D1, ...,Dk . These operators contain some common correlations. In the
matrix representation they have a common block. For simplicity, sup-
pose that this block is of the diagonal type. Consider a subspace L
of H related to this block. Then this block can be represented as a
self-adjoint and positive operator DL in L. We have:

DL = πDjπ, j = 1, 2, ..., k,
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where π : H → L is the orthogonal projector. Its QL image is given
by

QL = DL/TrDL =
πDjπ

TrπDjπ
=

π(Dj/TrDj)π

Trπ(Dj/TrDj)π
=

πρjπ

Trπρjπ
= ρL.

Here ρj are QL representations of the covariance operators Dj . The
density operator ρL gives the abstract concept of house.

We now describe the process of creation of a concept of a higher
level of abstractness from a cluster of concepts. Consider a subspace
Z of L. The brain can create new concepts belonging to D(Z) starting
with clusters of L-concepts. Of course, it can proceed directly starting
with mental images from D(H). However, such step by step increasing
of the level of abstraction is very natural.

QLP6. Neuronal location of the QL-processor. From the
general viewpoint there are no reasons to assume that QLR is realized
in the same physical domain, the same ensemble of neurons, as classi-
cal processing. It may be that there is a special domain OQL which is
used for dynamics (29). Our model induced an interesting problem of
experimental neurophysiology – to find domains of the brain coupled
to QLR. If the hypothesis that the dynamics (29) of mental images is
based on the physical dynamics (27) is correct, then domains of QLR
can be identified by the presence of Gaussian stochastic dynamics.
Unfortunately, at the present level of measurements it is impossible
to measure directly the electromagnetic field inside the brain (at least
to make measurements in a sufficiently dense set of points). However,
even the measurement technology based on EEG provides a possibility
of reconstruction of the field inside the brain by using the methods of
the inverse problem, [].

QLP7. Quantum-like consciousness. We may speculate that
consciousness can be associated with QL processing in the brain. The
von Neumann equation (or more generally the Gorini-Kossakowski-
Sudarshan-Lindblad equation) represents the “continuous flow of con-
sciousness”. The feeling of continuity is generated through averaging
of physical signals with respect to the mental time scale. i.e., the rep-
resentation of mental images by covariance-density operators. In fact,
on the physical time scale the dynamics is discrete, see (26).

QLP7. Correspondence between classical and quantum

qualia. Consider a classical quale given by a functional f(φ). The
corresponding quantum quale is given by the self-adjoint operator,
the second derivative of f(φ) at the point φ = 0. In general behavior
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of the functional f(φ) differs essentially from behavior of its quadratic
part. However, on the level of averages the difference is not so large:
in the limit τ/T → 0 they coincide, see (7).

8 Composite systems

We turn again to physics. In CSM a composite system S = (S1, S2) is
mathematically described by the Cartesian product of state spaces of
its parts S1 and S2. In QM it is described by the tensor product. Ma-
jority of researchers working in quantum foundations and, especially
quantum information theory, consider this difference in the mathe-
matical representation as crucial. In particular, entanglement which
is a consequence of the tensor space representation is considered as
totally nonclassical phenomenon. However, we recall that Einstein
considered the EPR-states as exhibitions of classical correlations due
to the common preparation. PCSFT will realize Einstein’s dream on
entanglement.

Let S = (S1, S2), where Si has the state spaceHi – complex Hilbert
space. Then by CSM the state space of S is H1 ×H2. By extending
PCSFT to composite systems we should describe ensembles of com-
posite systems by probability distributions on this Cartesian product,
or by a random field φ(x, ω) = (φ1(x, ω), φ1(x, ω)) ∈ H1 ×H2.

In our approach each quantum system is described by its own
random field: Si by φi(x, ω), i = 1, 2. However, these fields are COR-
RELATED – in completely classical sense. Correlation at the initial
instant of time s = s0 propagates in time in the complete accordance
with laws of QM. There is no action at the distance. It is a purely
classical dynamics of two stochastic processes which were correlated
at the beginning. (In fact, the situation is more complex: there is also
the common random background, vacuum fluctuations; we shall come
back to this question a little bit later).

8.1 Operator realization of wave function

Consider now the QM-model, take a pure state case: Ψ ∈ H1 ⊗ H2.
Can one peacefully connect the QM and PCSFT formalisms? Yes!
But Ψ should be interpreted in completely different way than in the
conventional QM.

The main mathematical point: Ψ is not vector! It is an operator!
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It is, in fact, the non-diagonal block of the covariance operator of
the corresponding prequantum random field: φ(x, ω) ∈ H1 ×H2. The
wave function Ψ(x, y) of a composite system determines the integral
operator:

Ψ̂φ(x) =

∫
Ψ(x, y)φ(y)dy.

We keep now to the finite-dimensional case. Any vector Ψ ∈ H1 ⊗H2

can be represented in the form Ψ =
∑m

j=1ψj ⊗ χj, ψj ∈ H1, χj ∈ H2,
and it determines a linear operator from H2 to H1

Ψ̂φ =

m∑

j=1

(φ, χj)ψj , φ ∈ H2. (30)

Its adjoint operator Ψ∗ acts fromH1 toH2 : Ψ̂
∗ψ =

∑m
j=1(ψ,ψj)χj , ψ ∈

H1. Of course, Ψ̂Ψ̂∗ : H1 → H1 and Ψ̂∗Ψ̂ : H2 → H2 and these
operators are self-adjoint and positively defined. Consider the den-
sity operator corresponding to a pure quantum state, ρ = Ψ ⊗ Ψ.
Then the operators of the partial traces ρ(1) ≡ TrH2

ρ = Ψ̂Ψ̂∗ and
ρ(2) ≡ TrH1

ρ = Ψ̂∗Ψ̂.

8.2 Basic equality

Let Ψ ∈∈ H1 ⊗H2 be normalized by 1. Then, for any pair of linear
bounded operators Âj : Hj → Hj, j = 1, 2, we have:

TrΨ̂Â2Ψ̂
∗Â1 = 〈Â1 ⊗ Â2〉Ψ ≡ (Â1 ⊗ Â2Ψ,Ψ). (31)

This is a mathematical theorem[33]; it will play a fundamental role in
further considerations.

8.3 Coupling of classical and quantum corre-

lations

In PCSFT a composite system S = (S1, S2) is mathematically rep-
resented by the random field φ(ω) = (φ1(ω), φ2(ω)) ∈ H1 × H2. Its
covariance operator D has the block structure

D =

(
D11 D12

D21 D22

)
,
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where Dii : Hi → Hi,Dij : Hj → Hi. The covariance operator is
self-adjoint. Hence D∗

ii = Dii, and D
∗
12 = D21.

Here by the definition: (Dijuj , vi) = E(uj , φj(ω))(vi, φi(ω)), ui ∈
Hi, vj ∈ Hj . For any Gaussian random vector φ(ω) = (φ1(ω), φ2(ω))

having zero average and any pair of operators Âi ∈ Ls(Hi), i = 1, 2, the
following equality takes place: 〈fA1

, fA2
〉φ ≡ EfA1

(φ1(ω))fA2
(φ2(ω)) =

(TrD11Â1)(TrD22Â2) + TrD12Â2D21Â1. We remark that TrDiiÂi =
EfAi

(φi(ω)), i = 1, 2. Thus we have fA1
fA2

= EfA1
EfA2

+TrD12Â2D21Â1.
Consider a Gaussian vector random field such that D12 = Ψ̂ :

E(fA1
− EfA1

)(fA2
− EfA2

) = (Â1 ⊗ Â2Ψ,Ψ) ≡ 〈Â1 ⊗ Â2〉Ψ, (32)

or, for covariance of two classical random vectors fA1
, fA2

, we have:
cov (fA1

, fA2
) = 〈Â1 ⊗ Â2〉Ψ.

We have the following equality for averages of quadratic forms of
coordinates of the prequantum random field describing the state of a
composite system: EfAi

(φi)(ω)) = TrDiiÂi. We want to construct a
random field such that these averages will match those given by QM.
For the latter, we have: 〈Â1〉Ψ = (Â1⊗I2Ψ,Ψ) = Tr(ΨΨ∗)Â1;〈Â2〉Ψ =
(I1 ⊗ Â2Ψ,Ψ) = Tr(Ψ̂∗Ψ̂)Â2, where Ii denotes the unit operator in

Hi, i = 1, 2. Thus it would be natural to take DΨ =

(
Ψ̂Ψ̂∗ Ψ̂

Ψ̂∗ Ψ̂∗Ψ

)
.

However, this operator is not positively defined! It could not determine
any probability distribution on the space of classical fields. We modify
it to obtain a positively defined operator. Originally this modification
had purely mathematical reasons, but there are deep physical grounds
for it.

The operator D̃Ψ =

(
Ψ̂Ψ̂∗ + ǫI Ψ̂

Ψ̂∗ Ψ̂∗Ψ+ ǫI

)
is positively de-

fined if ǫ > 0 is large enough [33]. Hence, it determines uniquely the
Gaussian measure on the space of classical fields. Suppose now that
φ(ω) is a random vector with the covariance operator D̃Ψ. Then

〈Â1〉Ψ = EfA1
(φ1(ω)) − ǫTrÂ1. (33)

This relation for averages and relation (32) provide coupling between
PCSFT and QM. Quantum statistical quantities can be obtained from
corresponding quantities for classical random field: “irreducible quan-

tum randomness” is reduced to randomness of classical prequantum

fields.
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8.4 Vacuum fluctuations

The additional term given by the unit operator in the diagonal blocks
of the covariance operator of the prequantum vector field corresponds
to the field of the white noise type. Such a field can be considered
as vacuum fluctuations, vacuum field. PCSFT induces the following
picture of reality:

Fluctuations of the vacuum field are combined with random fields
representing quantum systems. Since we cannot separate, e.g., elec-
tron from the vacuum field, we cannot separate totally any two quan-
tum systems. Thus all quantum systems are “entangled” via the vac-
uum field.

8.5 Superstrong quantum correlations

In PCSFT such correlations (violating Bell’s inequality) are due to
the presence of the vacuum field. The off-diagonal term Ψ̂ can be so
large only if the diagonal terms are completed by the contribution of
the vacuum filed. Mathematics tells us this. Thus they are so strong,
because the vacuum field really couple any two systems; they are in
the same fluctuating space.

Space is a huge random wave; quantum systems are spikes on this
wave; they are correlated via this space-wave. Thus quantum correla-
tions have two contributions:

1) initial preparation;
2) coupling via the vacuum field.

The picture is pure classical... In this model the vacuum field is
the source of additional correlations. It seems that this classical vac-
uum field is an additional (purely classical) quantum computational
resource.

9 Entanglement of mental functions

Consider now two mental functions F1 and F2 which are spatially
coupled to domains O1 and O2 of the brain.
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9.1 Classical correlated processing of mental

images

Consider the input signal φ0 which is split into sub-signals used by
F1 and F2, respectively: φ0 = (φ01, φ02). We emphasize that these are
correlated signals; i.e., in general the nondiagonal term of their covari-
ance matrix D0 is nonzero. Starting with φ0 the F1 and F2 produce
the random field φ(t, x, ω) = (φ1(t, x, ω), φ2(t, x, ω)). In the general
case F1 and F2 can interact on the physical level. But in principle
they can proceed their signals φ1(t, x, ω) and φ2(t, x, ω) without any
physical interaction (with negligibly small interaction). For example,
domains O1 and O2 are sufficiently separated in space. We shall con-
centrate our study on such a case, since here the QL features of the
model are the most visible.

Thus the brain produces the covariance operator D(t) = Dφ(t)

representing the classical mental image at the moment t of mental
time. Its dynamics is very complicated, it is induced by in general
nonlinear dynamics of corresponding signals φ1(t, x, ω) and φ2(t, x, ω).

We now coming to an important issue of our model, namely, the
role of noise in information processing. The presence of noise in the
brain can be considered as a disturbing effect for deterministic infor-
mation processing. However, in our model mental images are encoded
by covariance operators. Incorporation of the noisy contribution in
the covariance operator does not induce problems. Moreover, it can
improve (!) information processing by coupling through noise spatially
separated processes in the brain.

Let us consider noise of the white noise type, i.e., the Gaussian ran-
dom field with zero mean value and the covariance operator Dnoise =
ǫI, ǫ > 0. We now suppose that this noise is incorporated into the
signal φ(t, x, ω) produced by (F1, F2). Hence,

D(t) = D̃(t) +Dnoise.

We remark that nondiagonal blocks describing correlations between
mental functions F1 and F2 do not depend on the presence of the noise.
However, the presence of the noise provides a possibility to make these
nondiagonal blocks essentially larger (in the operator sense) than in
its absence. Thus the noise coordinates processes in O1 and O2 : it
produces so to say nonlocal correlations.
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9.2 Quantum-like entangled processing of men-

tal images

We now can repeat the QL-story on the information processing by
considering mental images encoded by density operators of the class
D(H1 ⊗ H2). It is possible to embed this space into the space of all
covariance operators on the Cartesian product H1×H2.We have done
this for the density operators corresponding to pure quantum states
Ψ ∈ H1 ⊗ H2, see section 8.3. It is possible to generalize our con-
struction to arbitrary density operators in H1 ⊗ H2, see []. The dy-
namics of the mental state is described by von Neumann equation
(or more generally the Gorini-Kossakowski-Sudarshan-Lindblad equa-
tion) in D(H1 ⊗H2). Each pair of qualia Â1 and Â2 associated with
the mental functions F1 and F2 forms a new quale which is given by
the operator Â1 ⊗ Â2. It is quantified by its average.

The neuronal realization of the QL-dynamics can be performed in
the same way as it was done for a single mental function, see QLP4.
Consider the case of two isolated processing: in O1 and O2. Each
of them is described by mental Hamiltonian Ĥi : H → H, i = 1, 2.
In this case QM dynamics is given by the Schrödinger equation with
Hamiltonian Ĥ = Ĥ1 ⊗ I + I ⊗ Ĥ2 :

∂ψ

∂t
(t, x1, x2) = Ĥψ(t, x1, x2, ψ(t0, x1, x2) = ψ0(x1, x2). (34)

We remark that, since in general the initial wave function is not fac-
torizable, i.e., ψ(x1, x2) 6= ψ01(x1)ψ02(x2), the Schrödinger equation
cannot be split into a system of equations corresponding to the subsys-
tems of the composite system. However, we can do this on the level
of the prequantum stochastic process and obtain a system of linear
equations with random initial conditions, j = 1, 2 :

∂φ

∂t
(t, xj , ω) = Ĥjφ(t, xj , ω), φ(t0, xj , ω) = ψ0(xj , ω). (35)

The covariance operator ρ(t) = ρ(φ1(t),φ2(t)) induced by the solution
of this system is the solution of the von Neumann equation for the
composite system.

Correlations between processes related to F1 and F2 are supre-
strong! They can violate Bell’s inequality! However, in our model
this is not a consequence of mystical quantum nonlocality, but of the
presence of the white noise which increases the correlation effect.
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In “prequantum physics” this noise corresponds to the background
(zero point field), it represents vacuum fluctuations. In the brain this
is the ordinary macroscopic noise of a huge electric network consisting
of billions of neurons.
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