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1. Introduction

The translational-transcription process from DNA to proteins is a very complex process carried

on in several steps. A key step is the translation from coding sequences of nucleotides in mRNA to

the proteins chaines. In this process a role is played by the tRNA in which a triplet of nucleotides

(anticodon) pairs to the triplet of nucleotides (codon) reading the genetic information. Since there

are 60 codons (in mitochondrial code) specifying amino acids, the cell should contain 60 different

tRNA molecules, each with a different anticodon in order to have a pairing codon anticodon following

the usual Watson-Crick pattern, i.d. the pairing respectively between the nucleotides C and G, and

U and A. Actually, however, the number of observed anticodons is less than 60. This implies that an

anticodon may pair to more than one codon. Already in the middle of the sixties, it was realized that

the pairing anticodon-codon does not follow the standard rule and Crick (Crick , 1966) proposed, on

the basis of the base-pair stereochemistry, the “wobble hypothesis”. According to this hypothesis a

single tRNA type, with a a specified anticodon, is able to recognize two or more codons in particular

differing only in the third nucleotide, i.e only the first two nucleotides of a codon triplet in mRNA

have the standard precise pairing with the bases of the tRNA anticodon while the first nucleotide in

the anticodon may pair to more than a nucleotide in the third position of the codon.

This rule has been subsequently widely confirmed and extended, with a better understanding

of the chemical nucleotide modifications, for a review see (Agris , 2004). Since the years seventies

the questions were raised (Jukes , 1977): how many anticodons do we need? which anticodons do

manifest?

In order to explain which anticodon do manifest two main hypothesis have been advanced:

1. The conventional wobble versatility hypothesis assumes that the the first position of anticodon

should have G (U) to read for codon with Y (respectively R) in third position.

2. The codon adaptation hypothesis states that the first position of anticodon should pair the

most abondant codon in the family of synonymous codons.

For a comparison and discussion of the two hypothesis in fungal mitochondrial genomes and for

marine bivalve mitochondrial genomes, see (Carullo and Xia , 2000) and (Hong Yu and Qi li , 2011).

In order to have a correct translation process between codons and amino-acids in the mitochon-

drial code we need a minimum number of 22 anticodons. In fact, in this code, the 20 amino-acids

(a.a) are encoded by 2 sextets, 6 quadruplets and 12 doublets of codons. Considering a sextet as the

sum of a quadruplet and a doublet, we need to dispose at least of 22 anti-codons, of which 8 should

“read” the quadruplets and 14 the doublets. Indeed this seems to happen for the mitochondria of an-

imals (Sprinzl et al. , 1998; Higgs et al. , 2003; Wilhelm and Nikolajewa , 2004; Nikolajewa et al. ,

2006; Nikolaeva and Wilhelm , 2005). The data seem to confirm the empirical rule that the most

used anticodons have as second and third nucleotide, respectively, the complementary to the first

and second nucleotide of the codons, while the first nucleotide is U for the anticodons pairing the

quadruplets, G and U for the anticodons pairing, respectively, the doublets ending with a pyrimidine

and with a purine, with exception of Met.
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The aim of this paper is to propose a mathematical approach in the framework of the “crystal

basis model” model of the genetic code (Frappat et al , 1998), to determine which anticodon is chosen

to translate the genetic information stored into the quadruplets and the doublets of codons. More

generally, the idea is to require the minimization of a suitable operator or function, mathematically

expressed in terms of the quantities defined in the model, to explain why and which anticodon is

used to “read” more than a codon1.

Let us very quickly recall the main ideas of the model introduced in (Frappat et al , 1998),

for a review and some applications see (Frappat et al , 2001). In that paper we have proposed a

mathematical framework in which the codons appear as composite states of nucleotides. The four

nucleotides being assigned to the fundamental irreducible representation (irrep.) of the quantum

group Uq(su(2)⊕su(2)) in the limit q → 0, the codons are obtained as tensor product of nucleotides.

Indeed, the properties of quantum group representations in the limit q → 0, or crystal basis, are

crucial to take into account the fact that a codon is an ordered triple of nucleotides. The nucleotide

content of the (1
2
, 1

2
) (fundamental) representation of Uq→0(su(2) ⊕ su(2)), i.e. the eigenvalues of

JH,3, JV,3, is chosen as follows:

C ≡ (+
1

2
,+

1

2
) U ≡ (−

1

2
,+

1

2
) G ≡ (+

1

2
,−

1

2
) A ≡ (−

1

2
,−

1

2
) (1)

where the first su(2) - denoted su(2)H- corresponds to the distinction between the purine bases A,G

and the pyrimidine ones C,U and the second one - denoted su(2)V - corresponds to the complemen-

tarity rule C/G and U/A, Thus to represent a codon, we have to perform the tensor product of three

(1
2
, 1

2
) or fundamental representations of Uq→0(su(2)⊕su(2)) and we get the results, reported in Table

2, where we have also written the observed anticodon for the mitochondria of animals taken from

(Sprinzl et al. , 1998). Really in the present paper we use the minimum principle in a reduced form

as we are only interested to find the composition of the minimum number of anticodons. However

in the last section we hint at some more general application of our schema.

The paper is organised as follows: in Sec. 2 we present the minimum principle, in Sec. 3 we apply

the principle to the mitochondrial code for animals and we compare our theoretical results with the

data of (Sprinzl et al. , 1998). In the final Section we give a short summary and some highlights on

future developments and applications.

2. The “minimum” principle

Given a codon2 XY Z (X, Y, Z ∈ {C,A,G, U}) we conjecture that an anticodon XaY aZa, where

Y aZa = YcXc, Nc denoting the nucleotide complementary to the nucleotide N according to the

Watson-Crick pairing rule3, pairs to the codon XY Z, i.e. it is most used to “read” the codon XY Z

1We do not discuss here the chemical modified structure of the nucleotides, e.g see (Agris , 2004).
2In the paper we use the notation N = C,A,G,U.; R = G,A. (purine); Y = C,U. (pyrimidine).
3This property is observed to be verified in most, but not in all, the observed cases. To simplify we shall assume it.
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if it minimizes the operator T , explicitly written in eq.(2) and computed between the “states”, which

can be read from Table 2, describing the codon and anticodon in the “crystal basis model”. We write

both codons (c) and anticodons (a) in 5” → 3” direction. As an anticodon is antiparallel to codon,

the 1st nucleotide (respectively the 3rd nucleotide) of the anticodon is paired to the 3rd (respectively

the 1st) nucleotide of the codon.

T = 8cH ~Jc
H · ~Ja

H + 8cV ~Jc
V · ~Ja

V (2)

where:

• cH .cV are constants depending on the “biological species” and weakly depending on the encoded

a.a., as we will later specify.

• Jc
H , J

c
V (resp. Ja

H , J
a
V ) are the labels of Uq→0(su(2)H⊕su(2)V ) specifying the state (Frappat et al ,

1998) describing the codon XY Z (resp. the anticodon NYcXc pairing the codon XY Z).

• ~Jc
α · ~Ja

α (α = H, V ) should be read as

~Jc
α · ~Ja

α =
1

2

{

(

~Jc
α ⊕ ~Jα

a
)2

− ( ~Jc
α)

2 − ( ~Ja
α)

2

}

(3)

and ~Jc
α ⊕ ~Ja

α ≡ ~JT
α stands for the irreducible representation which the codon-anticodon state

under consideration belongs to, the tensor product of ~Jc
α and ~Ja

α being performed according to

the rule of (Kashiwara , 1990), choosing the codon as first vector and the anticodon as second

vector. Note that ~Jα

2
should be read as the Casimir operator whose eigenvalues are given by

Jα(Jα + 1).

For example the value of T between the anticodon UUU and the codon AAC is, using Table 4:

< UUU |T |AAC >= −6 cH + 18 cV (4)

As we are interested in finding the composition of the 22 anticodons, minimun number to ensure

a faithful translation, we shall assume that the used anticodon for each quartet and each doublet

is the one which minimizes the averaged value of the operator given in eq.(2), the average being

performed over the 4 (2) codons for quadruplets (doublets), see next section. Indeed it is well known

that synonymous codons are not used with equal frequency. Therefore, in finding the structure of the

anticodons in the minimum set, it appears reasonable that the codon usage probability plays a role

in the determination of the chosen anticodon. If the codon XY Z is used more frequently than the

codon XY Z ′, the codon XY Z should give an impact larger than the codon XY Z ′ in determining the

choice of the anticodon in the T . Therefore, Tav appears more appropriate than T for our purpose.

3. Structure of the minimum number of anticodons

According to our conjecture on the existence of a minimum principle we determine, for each

quadruplet (q) and each doublet (d), the anticodon which minimizes the averaged value Tav of the

operator T (see below). We analyse separately the case of quadruplets and doublets.
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3.1. Quadruplets

Let us give an example of what we mean by averaged value of T . For example let us consider the

anticodon CAC for the a.a. Val, we have to compute

Tav(CAC, V al) =
∑

N

P
q
N < CAC|T |GUN >

= P
q
C < CAC|T |GUC > +P

q
U < CAC|T |GUU >

+P
q
G < CAC|T |GUG > +P

q
A < CAC|T |GUA >

= 2(P q
C + P

q
U + P

q
G + P

q
A) cH + (6P q

C + 6P q
U + 2P q

G + 2P q
A) cV

= 2 cH + [6P q
Y + 2(1− P

q
Y )] cV (5)

In the computation we have to take into account the codon usage frequency or relative percentage

of the appearance of each codon in the quadruplet and we have denoted with P
q
N the codon usage

frequency for codon ending with N. Really we need to introduce the following four positive frequencies

P
q
Y P

q
R, P

q
S ,P

q
W , with the normalization condition:

P
q
Y + P

q
R = P

q
S + P

q
W = 1 (6)

where, respectively, P q
Y , P

q
R, P

q
S and P

q
W denote the relative usage frequency of the codons ending

with nucleotides C,U (pyrimidine), G,A (purine), C,G and U,A. From Table 3 we can compute the

value which we report in Table 5.

3.2. Doublets

In the computation we have to take into account the codon usage frequency in the doublet. Now

we need to introduce the following four positive frequencies P d
C , P

d
U , P

d
G, P

d
A, with the normalization

condition

P d
C + P d

U = P d
G + P d

A = 1 (7)

As example let us compute the averaged value of T for Asp. Let us consider the anticodon CUC we

have to compute

Tav(CUC,Asp) =
∑

Y

P d
Y < CUC|T |GAY >= P d

C < CUC|T |GAC > +P d
U < CUC|T |GAU >

= 2 cH + 18 cV (8)

From Table 4, we can compute the values, which we report in Table 6.

Let us remark that:

• for all a.a. the contribution of suV (2) verifies the same property than for the quadruplets and,

moreover, is not depending on the codon usage;

• for 4 a.a. the contribution of suV (2) is the same for all anticodon.
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From the above remarks we easily realize that the case of doublets is more complicated than the

one of the quadruplets. In some sense the contribution of suV (2) plays a role only in establishing

the most preferred anticodon. Moreover, as we do not want a priori to exclude any anticodon, we

have to face the possibility that an anticodon can be chosen to read for more than one doublet. In

order to avoid this problem, in contradiction with the requirement of a faithful translation process,

we make the following choice:

1. the sign of the constant cH for the doublets ending with a purine is the opposite of the sign of

the doublets ending with a pyrimidine with the same dinucleotide (if it does exist)4.

2. the sign of cH for the 8 weak dinucleotides encoding doublets is positive for the following 4

doublets UUY, UAY, AUY, AAY and negative for the remaining 4, i.e. CAY, UGY, AGY,

GAY.

and fix the following procedure, while considering doublets with the same dinucleotide:

1. first we select, among the four possible anticodons, the one giving the lowest value for T

averaged on the two codons of each doublet and assign this anticodon to the corresponding

doublet.

2. then the anticodon reading the second doublet is chosen between the two ones containing as

a first nucleotide a purine, resp. a pyrimidine, if the first nucleotide of the anticodon already

determined for the first doublet is a pyrimidine (resp. a purine).

As an illustration, we take the case of the Cys and Trp amino acids. The anticodon GCA can

minimize both of them, but more Cys (due to the value −6 for the cV coefficient) than Trp (with

value 2 for the same cV coefficient). Thus GCA will be taken as the anticodon relative to Cys, while

the choice for the Trp anticodon will be made between UCA and CCA, that is the two candidates

with a pyrimidine as a first nucleotide, the anticodon GCA starting with a purine.

Let us remark that, even if the above assumptions seem rather ad hoc, indeed a general symmetric

pattern shows up: for half of a.a. cH is positive and for the other half is negative; the first set of 4

dinucleotides involves only ‘weak” nucleotides, the second one a “strong” nucleotide; the dinucleotides

XY and YX correspond to the same sign.

3.3. Discussion

For all quadruplets, from Table 3, we remark that for cH > 0 and cV < 0 the anticodon minimizing

the average value of T has the composition UXcYc. For Leu, Val and Thr a very weak condition for

codon usage frequency has to be satisfied, i.e for the first two a.a. P
q
S > 0, 25 and for the last one

P
q
Y > 0, 1255. The results are in agreement with the observed anticodons, see (Sprinzl et al. , 1998)

and Table 2.

4We call dinucleotide the first two nucleotids of the codon.
5 The constraint on the codon usage frequency can be released, imposing a suitable condition between cH and cV .
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For doublets, we remark that, with the choice of sign of cH above specified and cV > 0 for all a.a.,

the anticodons minimizing the average value of T are in agreement with the observed anticodon, see

(Sprinzl et al. , 1998) and Table 2. We summarize in Table 1 the results for the doublets.

a.a sign cH anticodon note

His - GUG P d
C > 0, 25

Gln + UUG P d
G > 0, 25

Phe - GAA
Leu + UAA

Cys + GCA
Trp - UCA

Tyr - GUA

Ser + GCU

Asp + GUC P d
C > 0, 25

Glu - UUC P d
G > 0, 25

Ile + GAU
Met - CAU

Asn - GUU
Lys + UUU

Table 1: Anticodon minimizing the operator T , averaged over the two codons, for any amino acid encoded by a
doublet, specifying the sign of cH .

Let us remark that we find that for Met the anticodon is not UAU, as it should be expected from

the empirical rule above quoted, but CAU which seems in agrement with the data, see (Sprinzl et al. ,

1998).

4. Conclusions

We have found that the anticodons minimizing the conjectured operator T given in eq.(2), aver-

aged over the concerned multiplets, are in very good agreement, the results depending only on the

signs of the two coupling constants, with the observed ones, even if we have made comparison with

a limited database.

The fact that the crystal basis model is able to explain, in a relatively simple way, the ob-

served anticodon-codon pairing which has its roots on the stereochemical properties of nucleotides

(Lim and Curran , 2001) strongly suggests that our modeling is able to incorporate some crucial

features of the complex physico-chemical structure of the genetic code.

It is rather clear that the operator T can be looked at as a codon-anticodon interaction operator.

In this spirit, given a codon, the selected anti-codon for fixing the corresponding amino-acid, is

determined as the one which minimizes the interaction. It is hard at this point to be more specific

on the physico-chemical aspects of this quantity.
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Indeed, the analysis in (Percudani and Ottonello , 1999) suggests that the use of the wobble

behaviour is also dictated from the requirement of the optimization of translational efficiency and in

(Lehmann , 2000) the free-energy change of anticodon-codon interaction has been put into relation

with the dissociation time, depending on the molecular structure of the encoded amino-acid, while

in (Lim and Curran , 2001) emphasis has been put in the hydrogen and ionic bondings.

It is intriguing that complex behaviour involving thermodynamical considerations as well as

evolutionary effects can be cast in a single simple mininum principle.

It might be interesting to note, among the different previously obtained applications of the crystal

basis model, that this model has previously allowed to establish a pattern of correlations between

the physico-chemical properties of the amino-acids and the assignment of the corresponding coding

codons in the model (Frappat et al , 2002). Incidentally let us remark that the model explains

the symmetry codon anticodon remarked in (Wilhelm and Nikolajewa , 2004). Let us stress that our

modeling has a very peculiar feature which makes it very different from the standard 4-letter alphabet,

used to identify the nucleotides, as well as with the usual modeling of nucleotide chain as spin chain.

Indeed the identification of the nucleotides with the fundamental irrep. of Uq(su(2)H ⊕ su(2)V )

introduces a sort of double “bio-spin”, which allows the description of any ordered sequence of n

nucleotides as as state of an irrep. and allows to describe interactions using the standard powerful

mathematical language used in physical spin models.

In the present paper we have faced the problem to find the structure of the mimimum set of

anticodons and, then, we have used a very simple form for the operator T , with the main aim to

present a simple, mathematical modeling of the extremely complex codon-anticodon interaction. We

have not at all discussed the possible appearance of any other anticodon, which should require a

more quantitative discussion. For such analysis, as well as for the eukaryotic code, the situation may

be different and more than an anticodon may pair to a quartet. For this future aim we have here

reported Tables 3 and 4.

The pattern, which in the general case may show up, is undoubtedly more complicated, depending

on the biological species and on the concerned biosynthesis process, but it is natural to argue that

the usage of anticodons exhibits the general feature to assure an “efficient” translation process by

a number of anticodons, minimum with respect to the involved constraints. A more refined and

quantitative analysis, as well as comparison with other organisms, which should require more data,

depends on the value of these constants. Very likely, it might happen that the assumption of the

“universal” feature of cH and cV should be released and that the expression of the operator eq.(2)

should be modified, for example by adding a term of “spin-spin” interaction of the type

4gH Jc
H,3J

a
H,3 + 4gV Jc

V,3J
a
V,3 (9)

where the values of JH,3 and JV,3, both for codons and anticodons, can be read out from their

nucleotide composition, see Table 2. However the pattern which shows up in Tables 3 and 4, with

the values of the coefficients equal in pairs, strongly suggests that the minimum number of anticodons

should be 32 (3 for the sextets, 2 for quadruplets and triplet and 1 for doublets and singlets).
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codon a.a. JH JV J3,H J3,V anticodon codon a.a. JH JV J3,H J3,V anticodon

CCC P 3

2

3

2

3

2

3

2
UCC S 3

2

3

2

1

2

3

2

CCU P (1
2

3

2
)1 1

2

3

2
UCU S (1

2

3

2
)1 − 1

2

3

2

CCG P (3
2

1

2
)1 3

2

1

2
UGG UCG S (3

2

1

2
)1 1

2

1

2
UGA

CCA P (1
2

1

2
)1 1

2

1

2
UCA S (1

2

1

2
)1 − 1

2

1

2

CUC L (1
2

3

2
)2 1

2

3

2
UUC F 3

2

3

2
− 1

2

3

2

CUU L (1
2

3

2
)2 − 1

2

3

2
UUU F 3

2

3

2
− 3

2

3

2
GAA

CUG L (1
2

1

2
)3 1

2

1

2
UAG UUG L (3

2

1

2
)1 − 1

2

1

2

CUA L (1
2

1

2
)3 − 1

2

1

2
UUA L (3

2

1

2
)1 − 3

2

1

2
UAA

CGC R (3
2

1

2
)2 3

2

1

2
UGC C (3

2

1

2
)2 1

2

1

2

CGU R (1
2

1

2
)2 1

2

1

2
UGU C (1

2

1

2
)2 − 1

2

1

2
GCA

CGG R (3
2

1

2
)2 3

2
− 1

2
UCG UGG W (3

2

1

2
)2 1

2
− 1

2

CGA R (1
2

1

2
)2 1

2
− 1

2
UGA W (1

2

1

2
)2 − 1

2
− 1

2
UCA

CAC H (1
2

1

2
)4 1

2

1

2
UAC Y (3

2

1

2
)2 − 1

2

1

2

CAU H (1
2

1

2
)4 − 1

2

1

2
GUG UAU Y (3

2

1

2
)2 − 3

2

1

2
GUA

CAG Q (1
2

1

2
)4 1

2
− 1

2
UAG Ter (3

2

1

2
)2 − 1

2
− 1

2
—–

CAA Q (1
2

1

2
)4 − 1

2
− 1

2
UUG UAA Ter (3

2

1

2
)2 − 3

2
− 1

2
—–

GCC A 3

2

3

2

3

2

1

2
ACC T 3

2

3

2

1

2

1

2

GCU A (1
2

3

2
)1 1

2

1

2
ACU T (1

2

3

2
)1 − 1

2

1

2

GCG A (3
2

1

2
)1 3

2
− 1

2
UGC ACG T (3

2

1

2
)1 1

2
− 1

2
UGU

GCA A (1
2

1

2
)1 1

2
− 1

2
ACA T (1

2

1

2
)1 − 1

2
− 1

2

GUC V (1
2

3

2
)2 1

2

1

2
AUC I 3

2

3

2
− 1

2

1

2

GUU V (1
2

3

2
)2 − 1

2

1

2
AUU I 3

2

3

2
− 3

2

1

2
GAU

GUG V (1
2

1

2
)3 1

2
− 1

2
UAC AUG M (3

2

1

2
)1 − 1

2
− 1

2

GUA V (1
2

1

2
)3 − 1

2
− 1

2
AUA M (3

2

1

2
)1 − 3

2
− 1

2
CAU

GGC G 3

2

3

2

3

2
− 1

2
AGC S 3

2

3

2

1

2
− 1

2

GGU G (1
2

3

2
)1 1

2
− 1

2
AGU S (1

2

3

2
)1 − 1

2
− 1

2
GCU

GGG G 3

2

3

2

3

2
− 3

2
UCC AGG Ter

3

2

3

2

1

2
− 3

2
—–

GGA G (1
2

3

2
)1 1

2
− 3

2
AGA Ter (1

2

3

2
)1 − 1

2
− 3

2
—–

GAC D (1
2

3

2
)2 1

2
− 1

2
AAC N 3

2

3

2
− 1

2
− 1

2

GAU D (1
2

3

2
)2 − 1

2
− 1

2
GUC AAU N 3

2

3

2
− 3

2
− 1

2
GUU

GAG E (1
2

3

2
)2 1

2
− 3

2
AAG K 3

2

3

2
− 1

2
− 3

2

GAA E (1
2

3

2
)2 − 1

2
− 3

2
UUC AAA K 3

2

3

2
− 3

2
− 3

2
UUU

Table 2: The vertebral mitochondrial code. The upper label denotes different irreducible representations. We list the
most used anticodons for mitochondria of animals, see (Sprinzl et al. , 1998). In bold-red (italic-blue) the anticodons
reading quadruplets (resp. doublets).
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a.a codon KH,C KV,C KH,U KV,U KH,G KV,G KH,A KV,A

Pro CCC 18 -10 -6 -10 18 -30 -6 -30
CCU 6 -10 -10 -10 6 -30 -10 -30
CCG 18 -6 -6 -6 18 -10 -6 -10
CCA 6 -6 -10 -6 6 -10 -10 -10

Leu CUC 2 -10 -10 -10 2 -30 -10 -30
CUU 2 -10 6 -10 2 -30 6 -30
CUG 2 -6 -10 -6 2 -10 -10 -10
CUA 2 -6 6 -6 2 -10 6 -10

Arg CGC 18 2 -6 2 18 -6 -6 -6
CGU 6 2 -10 2 6 -6 -10 -6
CGG 18 2 -6 2 18 2 -6 2
CGA 6 2 -10 2 6 2 -10 2

Ala GCC 18 6 -6 6 18 -22 -6 -22
GCU 6 6 -10 6 6 -22 -10 -22
GCG 18 2 -6 2 18 6 -6 6
GCA 6 2 -10 2 6 6 -10 6

Gly GGC 18 18 -6 18 18 -6 -6 -6
GGU 6 18 -10 18 6 -6 -10 -6
GGG 18 18 -6 18 18 18 -6 18
GGA 6 18 -10 18 6 18 -10 18

Val GUC 2 6 -10 6 2 -22 -10 -22
GUU 2 6 6 6 2 -22 6 -22
GUG 2 2 -10 2 2 6 -10 6
GUA 2 2 6 2 2 6 6 6

Ser UCC 6 -10 -10 -10 6 -30 -10 -30
UCU 2 -10 2 -10 2 -30 2 -30
UCG 6 -6 -10 -6 6 -10 -10 -10
UCA 2 -6 2 -6 2 -10 2 -10

Thr ACC 6 6 -10 6 6 -22 -10 -22
ACU 2 6 2 6 2 -22 2 -22
ACG 6 2 -10 2 6 6 -10 6
ACA 2 2 2 2 2 6 2 6

Table 3: Values of the coefficient multiplying cH (KH = 8 ~Jc
H · ~Ja

H) and cV (KV = 8 ~Jc
V · ~Ja

V ) computed from the value
of the tensor product of the codon XY Z with the anticodon NYcXc, for the quadruplets.

9



a.a codon KH,C KV,C KH,U KV,U KH,G KV,G KH,A KV,A

His CAC 2 2 -10 2 2 -6 -10 -6
CAU 2 2 6 2 2 -6 6 -6

Gln CAG 2 2 -10 2 2 2 6 2
CAA 2 2 6 2 2 2 6 2

Phe UUC -10 -10 -6 -10 -10 -30 -6 -30
UUU 6 -10 18 -10 6 -30 18 -30

Leu UUG -10 -6 -6 -6 -10 -10 -6 -10
UUA 6 -6 18 -6 6 -10 18 -10

Cys UGC 6 2 -10 2 6 -6 -10 -6
UGU 2 2 2 2 2 -6 2 -6

Trp UGG 6 2 -10 2 6 2 -10 2
UGA 2 2 2 2 2 2 2 2

Tyr UAC -10 2 -6 2 -10 -6 -6 -6
UAU 6 2 18 2 6 -6 18 -6

Asp GAC 2 18 -10 18 2 -6 -10 -6
GAU 2 18 6 18 2 -6 6 -6

Glu GAG 2 18 -10 18 2 18 -10 18
GAA 2 18 6 18 2 18 6 18

Ile AUC -10 6 -6 6 -10 -22 -6 -22
AUU 6 6 18 6 6 -22 18 -22

Met AUG -10 2 -6 2 -10 6 -6 6
AUA 6 2 18 2 6 6 18 6

Ser AGC 6 18 -10 18 6 -6 -10 -6
AGU 2 18 2 18 2 -6 2 -6

Asn AAC -10 18 -6 18 -10 -6 -6 -6
AAU 6 18 18 18 6 -6 18 -6

Lys AAG -10 18 -6 18 -10 18 -6 18
AAA 6 18 18 18 6 18 18 18

Table 4: Values of the coefficient multiplying cH (KH = 8 ~Jc
H · ~Ja

H) and cV (KV = 8 ~Jc
V · ~Ja

V ) computed from the value
of the tensor product of the codon XY Z with the anticodon NYcXc, for the doublets.
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a.a anticodon coeff. cH coeff. cV

Pro CGG 18P q
S +6(1-P q

S) -10P q
Y - 6(1-P q

Y )
UGG -6P q

S -10(1-P q
S) -10P q

Y - 6(1-P q
Y )

GGG 18P q
S +6(1-P q

S) -30P q
Y - 10(1-P q

Y )
AGG -6P q

S -10(1-P q
S -30P q

Y - 10(1-P q
Y )

Leu CAG 2 -10P q
Y - 6(1-P q

Y )
UAG -10P q

S + 6(1-P q
S) -10P q

Y - 6(1-P q
Y )

GAG 2 -30P q
Y - 10(1-P q

Y )
AAG -10P q

S + 6(1-P q
S) -30P q

Y - 10(1-P q
Y )

Arg CCG 18P q
S +6(1-P q

S) 2
UCG -6P q

S -10(1-P q
S) 2

GCG 18P q
S +6(1-P q

S) -6P q
Y +2(1-P q

Y )
ACG -6P q

S - 10(1-P q
S) -6P q

Y +2(1-P q
Y )

Ala CGC 18P q
S + 6(1-P q

S) 6P q
Y + 2(1-P q

Y )
UGC -6P q

S - 10(1-P q
S) 6P q

Y + 2(1-P q
Y )

GGC 18P q
S + 6(1-P q

S) -22P q
Y + 6(1-P q

Y )
AGC -6P q

S - 10(1-P q
S) -22P q

Y + 6(1-P q
Y )

Gly CCC 18P q
S + 6(1-P q

S) 18
UCC -6P q

S -10(1-P q
S) 18

GCC 18P q
S + 6(1-P q

S) 6P q
Y + 18(1-P q

Y )
ACC -6P q

S -10(1-P q
S) 6P q

Y + 18(1-P q
Y )

Val CAC 2 6P q
Y + 2(1-P q

Y )
UAC -10P q

S + 6(1-P q
S) 6P q

Y + 18(1-P q
Y )

GAC 2 -22P q
Y + 6(1-P q

Y )
AAC -10P q

S + 6(1-P q
S) -22P q

Y + 6(1-P q
Y )

Ser CGA 6P q
S + 2(1-P q

S) -10P q
Y - 6(1-P q

Y )
UGA -10P q

S + 2(1-P q
S) -10P q

Y - 6(1-P q
Y )

GGA 6P q
S + 2(1-P q

S) -30P q
Y - 10(1-P q

Y )
AGA -10P q

S + 2(1-P q
S) -30P q

Y - 10(1-P q
Y )

Thr CGU 6P q
S +2(1-P q

S) 6P q
Y + 2(1-P q

Y )
UGU -10P q

S +2(1-P q
S) 6P q

Y + 2(1-P q
Y )

GGU 6P q
S +2(1-P q

S) -22P q
Y + 6(1-P q

Y )
AGU -10P q

S +2(1-P q
S) -22P q

Y + 6(1-P q
Y )

Table 5: Value of the coefficients multiplying cH and cV in Tav , computed for any anticodon and averaged over the
four codons for each quadruplet.
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a.a anticodon coeff. cH coeff. cV

His CUG 2 2
UUG -10P d

C + 6(1-P d
C) 2

GUG 2 -6
AUG -10P d

C + 6(1-P d
C) -6

Gln CUG 2 2
UUG -10P d

G + 6(1-P d
G) 2

GUG 2 2
AUG 6 2

Phe CAA -10P d
C + 6(1-P d

C) -10
UAA -6P d

C + 18(1-P d
C) -10

GAA -10P d
C + 6(1-P d

C) -30
AAA -6P d

C + 18(1-P d
C) -30

Leu CAA -10P d
G + 6(1-P d

G) -6
UAA -6P d

G + 18(1-P d
G) -6

GAA -10P d
G + 6(1-P d

G) -10
AAA -6P d

G + 18(1-P d
G) -10

Cys CCA 6P d
C + 2(1-P d

C) 2
UCA -10P d

C + 2(1-P d
C) 2

GCA 6P d
C + 2(1-P d

C) -6
ACA -10P d

C + 2(1-P d
C) -6

Trp CCA 6P d
G + 2(1-P d

G) 2
UCA -10P d

G + 2(1-P d
G) 2

GCA 6P d
G + 2(1-P d

G) 2
ACA -10P d

G + 2(1-P d
G) 2

Tyr CUA -10P d
C + 6(1-P d

C) 2
UUA -6P d

C + 18(1-P d
C) 2

GUA -10P d
C + 6(1-P d

C) -6
AUA -6P d

C + 18(1-P d
C) -6

Ser CCU 6P d
C + 2(1-P d

C) 18
UCU -10P d

C + 2(1-P d
C) 18

GCU 6P d
C + 2(1-P d

C) -6
ACU -10P d

C + 2(1-P d
C) -6

Asp CUC 2 18
UUC -10P d

C + 6(1-P d
C) 18

GUC 2 -6
AUC -10P d

C + 6(1-P d
C) -6

Glu CUC 2 18
UUC -10P d

G + 6(1-P d
G) 18

GCA 2 18
Continued on next page
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Continued from previous page
a.a anticodon coeff. cH coeff. cV

ACA -10P d
G + 6(1-P d

G) 18

Ile CAU -10P d
C + 6(1-P d

C) 6
UAU -6P d

C + 18(1-P d
C) 6

GAU -10P d
C + 6(1-P d

C -22
AAU -6P d

C + 18(1-P d
C) -22

Met CAU -10P d
G + 6(1-P d

G) 2
UAU -6P d

G +186(1-P d
G) 2

GAU -10P d
G + 6(1-P d

G) 6
AAU 18P d

G + 6(1-P d
G) 6

Asn CUU -10P d
C + 6(1-P d

C) 18
UUU -6P d

C + 18(1-P d
C) 18

GUU -10P d
C + 6(1-P d

C) -6
AUU -6P d

C + 18(1-P d
C) -6

Lys CUU -10P d
G + 6(1-P d

G) 18
UUU -6P d

G + 18(1-P d
G) 18

GUU -10P d
G + 6(1-P d

G) 18
AUU -6P d

G + 18(1-P d
G) 18

Table 6: Value of the coefficients multiplying cH and cV
in Tav , computed for any anticodon and averaged over
the two codons for each doublet.
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