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Magnetic-sensitive radical-ion-pair reactions are understood to underlie the biochemical magnetic
compass used by avian species for navigation. Recent experiments have provided growing evidence
for the radical-ion-pair magnetoreception mechanism, while recent theoretical advances have un-
ravelled the quantum nature of radical-ion-pair reactions, which were shown to manifest a host of
quantum-information-science concepts and effects, like quantum measurement, quantum jumps and
the quantum Zeno effect. We here show that the quantum Zeno effect provides for the robustness
of the avian compass mechanism, and immunizes it’s magnetic and angular sensitivity against the
deleterious and molecule-specific exchange and dipolar interactions.

PACS numbers:

I. INTRODUCTION

”In the history of natural selection, did nature ever
come across a way to use quantum weirdness?” This is
a question claimed [1] to have an affirmative answer, at
least in regard with the apparent ability of photosyn-
thetic antennae to efficiently guide the excitonic energy
to the photosynthetic reaction center. Questions like the
previous one, addressing the possibility of biological pro-
cesses exhibiting non-trivial quantum effects, ordinarily
thought to be suppressed in the decoherence-prone bio-
logical environment [2, 3], have attracted an increasing
attention in recent years. For example, significant ex-
perimental [4, 5] and theoretical [6, 7] progress has been
recently made on elucidating the role of quantum coher-
ence and quantum walks, respectively, in the workings
of photosynthetic antennae complexes. In a different
front, radical-ion-pair reactions [8, 9] have been recently
shown [10–16] to exhibit the full machinery of concepts
and physical effects familiar from quantum information
science. Radical-ion pairs play a fundamental role in a
series of biologically relevant chemical reactions, rang-
ing from charge transfer initiated reactions in photosyn-
thetic reaction centers [17] to magnetic sensitive reac-
tions abounding in the field of spin-chemistry [18]. In
particular, radical-ion pairs are understood to underlie
the biochemical magnetic compass used by avian species
to navigate in earth’s magnetic field [19, 20], as corrobo-
rated by several recent experiments [21–24].

In Fig. 1 we depict a generic model for radical-ion-
pair reactions, which form a magnetic sensor since the
reaction product yields depend on the external magnetic
field. Radical-ion pairs are formed by a charge transfer
process following a photoexcitation of a donor-acceptor
dyad, leading to two molecular ions and two unpaired
electrons. The latter can either be in the spin singlet or
in the spin triplet state. Magnetic interactions with the
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FIG. 1: Radical-ion-pair reaction dynamics: Photoexcitation
of a donor-acceptor molecule DA followed by charge-transfer
creates a radical-ion-pair, i.e. two molecular ions and two
unpaired electrons (two dots). The Zeeman interaction of
the two unpaired electrons with the external magnetic field
and hyperfine interactions with the molecule’s magnetic nu-
clei induce a coherent singlet-triplet conversion, ceased by the
spin-selective charge recombination, which transforms singlet
(triplet) radical-ion pairs into singlet (triplet) neutral prod-
ucts at a rate kS (kT ).

external magnetic field and hyperfine interactions with
the molecule’s magnetic nuclei bring about a coherent
singlet-triplet oscillation. At some random instant in
time the reaction is terminated, since the radical-ion-
pair undergoes charge recombination, leading to the reac-
tion products. Angular momentum conservation enforces
spin selectivity of the recombination process, i.e. singlet
(triplet) radical-ion pairs recombine to singlet (triplet)
neutral products. Moreover, anisotropic hyperfine inter-
actions within the molecule render the reaction yields de-
pendent on the inclination of the external magnetic field
with respect to a molecule-fixed coordinate frame.

Interestingly, intra-molecule magnetic interactions are
more complicated. Both spin-exchange and long-range
dipolar interactions affect reaction dynamics, to an ex-
tent dependent on the particular molecular structure. In
this respect, it has been recently shown [25] that the pres-
ence of exchange and/or dipolar interactions significantly
suppresses the magnetic and angular sensitivity of the
reaction yields, thus severely degrading the mechanism’s
functionality. Along the same lines, it was concluded [25]

http://arxiv.org/abs/0908.0763v4
mailto:ikominis@iesl.forth.gr


2

that only when the molecular parameters determining
J and D, the exchange and dipolar couplings, are fine-
tuned so that the effects of these two interactions cancel
each other, is the magnetic and angular sensitivity of the
reaction restored. Although it is conceivable that Na-
ture has conjured up such a fortuitous cancellation for
a functionally important biological sensor, the fact that
J and D depend sensitively on molecule-specific param-
eters, like the donor-acceptor distance r (for example J
has an exponential dependence on r) makes this possibil-
ity questionable.

It was recently shown [10] that radical-ion-pair reac-
tions form a biochemical system that exhibits the quan-
tum Zeno effect [26]. We will here show that when the
quantum Zeno effect is manifested (i.e. when the re-
combination rates are asymmetric), the reaction’s mag-
netic and angular sensitivity is practically independent
of the presence or not of exchange and/or dipolar inter-
actions. This realization has profound implications for
the robustness of this biological sensor, i.e. a non-trivial
quantum effect renders the sensor insensitive to molecule-
specific parameters [25], such as donor-acceptor distance
(affecting the exchange coupling and the long-range dipo-
lar coupling) and the inter-radical medium and the par-
ticular electronic structure (affecting the exchange cou-
pling). Whether Nature has engineered molecules realiz-
ing a fine-tuned cancellation [25] of the adverse effects
of exchange and dipolar interactions, or on the other
hand, has evolved the avian compass into operating at
the quantum Zeno regime, remains to be discovered. In
the following we will analyze the merits of the latter pos-
sibility. It is noted that the topic of this work is at the
center of two debates. The first has to do with whether
the avian magnetoreception is based on the radical-pair
mechanism or magnetic nano-particles, as suggested by
several authors [27]. We do not make any suggestion as to
which mechanism is actually responsible for avian mag-
netic navigation. We just deal with a particular weak-
ness of the radical-pair magnetoreception as described
in [25] and suggest how the radical-pair magnetorecep-
tion can be indeed viable in the appropriate parameter
regime. The second debate has to do with the fundamen-
tal master equation describing radical-ion-pair reactions
[10, 11, 16, 28–31]. In particular, there are currently
three different theories describing the quantum dynam-
ics of these reactions, the traditional theory (also referred
to as Haberkorn master equation), the Jones-Hore the-
ory and the theory developed by one of us. As will be
shown in the following, the results of this work are qual-
itatively valid for all three theories, the only differences
being quantitative.

In Section II we reiterate the quantum dynamics of
radical-ion-pair reactions and elaborate on the magnetic
interactions within the radical-ion-pair central to the
problem of study. In Section III we analyze the magnetic
and angular precision of the avian compass magnetic sen-
sor in the presence of exchange interactions, while in Sec-
tion IV we explain the robust performance of the avian

compass as a direct consequence of the quantum Zeno ef-
fect and the spin delocalization resulting from the quan-
tum measurement dynamics inherent in radical-ion-pair
recombination reactions.

II. QUANTUM DYNAMICS AND MAGNETIC

INTERACTIONS IN THE RADICAL-ION-PAIR

AVIAN COMPASS

What is of interest in describing radical-ion-pair reac-
tions is the spin state of the pertaining particles, the two
electrons and the molecule’s nuclear spins. The spin state
of the radical-ion-pair is described by a 4n-dimensional
density matrix ρ , where the factor 4 is the spin multiplic-
ity of the two electrons and n = (2I1+1)(2I2+1)...(2Ik+
1) is the nuclear spin multiplicity of the molecule’s k nu-
clei having nuclear spins I1, I2,...,Ik. The time evolution
of ρ is described by a master equation of the form

dρ/dt = −i[Hm, ρ]− L(ρ) (1)

where the first term describes the unitary evolution of ρ
due to the magnetic interactions embodied in Hm and
L denotes a superoperator that takes into account the
reaction dynamics. It is this part of the theoretical de-
scription that three above mentioned theories differ, and
the relevant details can be found in the recent litera-
ture [10, 11, 16]. The two basic parameters and opera-
tors that determine the reaction dynamics are the sin-
glet and triplet recombination rates kS and kT , and the
singlet and triplet projection operators, QS and QT , re-
spectively. Once the density matrix evolution is known,
i.e. once the master equation (1) is solved, the reaction
yield e.g. the triplet can be calculated from

YT = kT

∫

∞

0

Tr{ρQT} (2)

The magnetic Hamiltonian for the problem under study,
Hm = HZ + Hhf + Hex, is composed of HZ , the Zee-
man interaction of the two unpaired electrons (nuclear
Zeeman interaction is negligible) with the external mag-
netic field, Hhf , the hyperfine couplings of the electrons
with the surrounding nuclear spins, and finally the spin-
exchange interaction, Hex. For the transparency of the
following discussion we will ignore the dipolar interac-
tion as its inclusion leads to exactly the same conclu-
sions. The Zeeman interaction Hamiltonian that will
be used for the study of the magnetic sensitivity is
HZ,magn = ω(s1z+s2z), where the magnetic field of mag-
nitude B is assumed to be in the z-axis (ω = γB, with
γ = 2π×2.8MHz/G). For the study of the angular sensi-
tivity we take the magnetic field, again of magnitude B,
to be in the x-y plane, hence the Zeeman interaction term
will be HZ,ang = ω cosφ(s1x + s2x) + ω sinφ(s1y + s2y).
For the study of the magnetic sensitivity we vary B,
whereas for studying anfular sensitivity we keep B con-
stant and vary the angle φ. In the following we will
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consider the simplest physically realizable radical-ion-
pair containing just one spin-1/2 nucleus (in which case
dim(ρ)=8), hence the hyperfine interaction Hamiltonian
is Hhf = I · A · s1, where A is the hyperfine coupling
tensor of the single nuclear spin I existing in e.g. the
donor molecule with the donor’s unpaired electron. We
will consider the simplest case where the hyperfine ten-
sor is diagonal with one non-zero component Axx = a,
to provide for the angular sensitivity on the x− y plane.
Thus Hhf = as1xIx. Finally the spin-exchange Hamilto-
nian is Hex = Js1 · s2. We note that the simplification of
considering just one nuclear spin is common in all such
considerations, and although it does not exhaust all the
richness of phenomena that can be observed by the re-
alistic inclusion of more nuclear spins (as is the case in
Nature), it does provide an idea of what is in principle
feasible, and this is exactly the goal of this work.
In the following we will calculate the magnetic and

angular sensitivity of the reaction for two regimes: (i)
the ”traditional” regime with equal recombination rates
kS = kT on the order of or smaller than the hyperfine
coupling a. It is in this regime that almost all calcula-
tions have been performed based on the previous, tradi-
tional master equation. We then study the regime (ii)
where kT ≫ kS with kT on the order of or larger than
the hyperfine coupling a, i.e. when the quantum Zeno
effect is manifested. To elaborate on this, we note that
if the initial state of the molecule is the singlet (which
is usually the case) and there exist asymmetric recom-
bination rates then the spin state of the radical-pair is
strongly projected to the singlet state by the triplet reser-
voir. As has been explained in [10, 16], the singlet and
triplet reservoirs essentially measure the observable QS

at a total measurement rate of (kS + kT )/2. A large
measurement rate essentially means frequent quantum
jumps to either the singlet or the triplet state. Since
the molecule starts out from the singlet, chances are that
most of those jumps will be to the singlet state, hence
the strong projection to the singlet, which is the signa-
ture of the quantum Zeno effect, or in other words, the
strong measurement regime (the same considerations ob-
viously apply to the case of a triplet initial state and
kS ≫ kT ). We will then show that in the regime (i)
the inclusion of the spin exchange interaction indeed de-
grades the magnetic and angular sensitivity of the reac-
tion, as has already been analyzed [25]. However, regime
(ii) exhibits an appreciable magnetic and angular sensi-
tivity with their dependence on the exchange coupling J
being significantly suppressed.

III. MAGNETIC AND ANGULAR

SENSITIVITY OF THE AVIAN COMPASS

In Figures 2a and 2b we plot an example of the triplet
reaction yield YT , calculated from (2), as a function of the
external magnetic field (using HZ,magn) and the field’s
angle (using HZ,ang), respectively. The magnetic sensi-
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FIG. 2: Examples of (a) magnetic and (b) angular sensitivity
of the triplet reaction yield as a function of (a) magnetic field
and (b) magnetic field’s direction in the horizontal plane for
two different values of the exchange coupling J . The calcu-
lations were done for kS=0.5 MHz, kT=40 MHz, hyperfine
coupling a=1.75 G and a magnetic field B = 0.5 G for the
angular sensitivity.

tivity of the reaction at earth’s field of interest for the
avian compass is proportional to the slope of YT vs B
calculated at B=0.5 G. Similarly, the angular sensitivity
of the reaction is proportional to the (maximum) slope of
YT vs φ. The smallest measurable change of the magnetic
field, δB (absolute magnetic sensitivity), and the small-
est detectable change, δφ, in the field’s angle with respect
to the molecule’s x-axis (absolute angular sensitivity or
heading error) both follow from the previous calculations
if the smallest measurable reaction yield change, δYT , is
known. It thus follows that

δB =
δYT

|dYT /dB|B=0.5 G

(3)

δφ =
δYT

(YT,max − YT,min)/∆φ
(4)

where YT,min and YT,max are the minimum and maxi-
mum values of the yield YT (φ) and ∆φ = 90o is the an-
gular width of the full swing between YT,min and YT,max.
To make further progress the value of δYT must be known
or estimated. Obviously δYT depends on the particu-



4

lar realization of the biochemical mechanism transducing
the radical-ion-pair reaction yield to a physiological sig-
nal. On rather general grounds it has been shown [33]
that δYT is connected to NR, the number of neuronal re-
ceptors sensitive to the radical-ion-pair reaction product
molecules, by (δYT )

2 = 4/NR. We chooseNR = 1.6×107,
in order to set δYT at the value δYT = 0.05%. The cho-
sen value of NR and hence δYT is realistic [33] and has
the consequence that it sets the magnetic sensitivity at
zero exchange coupling at the value of δB ≈ 0.01 G, i.e.
at 2% of earth’s field. This level of magnetic sensitiv-
ity is understood [20] to be actually realized in several
avian species. It is stressed, however, that the following
considerations are qualitatively independent of the par-
ticular value of δYT , which just sets the absolute scale of
the derived magnetic and angular sensitivity.
From plots like the ones in Figs. 2a and 2b, and for

various values of the exchange coupling J , we obtain the
sensitivities δB and δφ, according to (3) and (4), which
are plotted in Figs. 3a and 3b, respectively. It is clearly
seen in Figure 3a that in the traditional regime (i) the
magnetic precision plunges to δB = 0.5 G already at J ≈
6 G. Similarly, as shown in Figure 3b, the angular preci-
sion in regime (i) drops dramatically with increasing J ,
with a complete loss of heading information already at
J=6 G. In contrast, in the quantum Zeno regime (ii) the
angular precision of about δφ = 40o at the highest value
of the exchange coupling is actually at the level of experi-
mental observations [34] of the heading error of the avian
compass. Finally, as noted before, all three theories pro-
duce qualitatively similar results. The particular values
obtained here for the absolute sensitivities δB and δφ
obviously depend on the particular hyperfine couplings
used and the chosen values of the recombination rates.
As pointed out in the introduction, more complicated
models will result in different numbers, however, our sole
goal is to demonstrate a behaviour that is in principle
feasible.

IV. EXPLANATION OF THE ROBUST AVIAN

COMPASS SENSITIVITY

We will now explain the robust magnetic and angu-
lar sensitivity resulting in the quantum Zeno regime.
This follows by considering the behavior of unrecombined
radical-ion pairs, described by the maser equation

dρ/dt = −i[Hm, ρ]− (kS +kT )(QSρ+ρQS − 2QSρQS)/2
(5)

This master equation has been derived in [10] and its
physical meaning explained in detail in [16]. Essentially,
unrecombined radical-ion pairs suffer a loss of singlet-
triplet coherence due to the continuous measurement of
QS induced by the singlet and triplet reservoirs and the
concomitant quantum jumps. To get an insight into the
dynamics in the regime of the asymmetric recombination
rates, we consider the eigenvalues of the master equation
(5), which are obtained by diagonalizing the matrix M
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FIG. 3: (a) Magnetic sensitivity and (b) angular sensitivity
(heading error) of the reaction as a function of the exchange
couplijng J for the two different regimes of (i) equal recombi-
nation rates (solid lines) and (ii) asymmetric recombination
rates (dashed lines) and for all three theories. Insets zoom
into low δB and δφ values in order to make the predictions
of all three theories in regime (ii) distinguishable. For all cal-
culations kS=kT=10 MHz for the traditional regime, kS=0.5
MHz and kT=40 MHz for the Zeno regime and a=1.75 G.
For the angular sensitivity calculation the magnitude of the
magnetic field was B = 0.5 G. It is obvious that both the
magnetic and the angular sensitivity depend on J much less
sensitively in regime (ii), where the strong projective measure-
ment induced by a large kT (quantum Zeno effect) dominates
the dynamics.

(of dimension dim(ρ)2) that satisfies dρ̃/dt = Mρ̃, where
ρ̃ is a column matrix containing all matrix elements of
ρ . The resulting eigenvalues are of the form −λ + iΩ,
with λ ≥ 0 being the decay rate and Ω the oscillation
frequency of the particular eigenmode. As is in general
the case with the quantum Zeno effect [35], some of the
eigenvalues have decay rates increasing with the measure-
ment rate k as λ ∼ k, while the others (responsible for
the quantum Zeno effect) decrease with k as λqZ ∼ h2/k,
where h is the characteristic frequency scale of the sys-
tem, here determined by the magnetic Hamiltonian Hm.
In our case, the measurement rate k = (kS + kT )/2, and
in the quantum Zeno regime in which kT ≫ kS , it will
be k ≈ kT /2.
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Now, the exchange Hamiltonian can be written (up to
an additive constant) as Hex = −JQS. Furthermore, as
is known from quantum measurement theory [36], the
deterministic evolution of the system’s quantum state
(due to the unitary Hamiltonian evolution and the mea-
surement of QS with rate k) is generated by the non-
hermitian operator K = Hm − ikQS. It is easily seen
that if HJ=0

m is the magnetic Hamiltonian without the
exchange interaction Hex, then K = HJ=0

m − i(k− iJ)QS,
i.e. the inclusion of the exchange interaction is equiva-
lent to replacing k with with an imaginary measurement
rate k − iJ . We can now complete the argument as fol-
lows: the eigenvalues with a real part that scales as λ ∼ k
pick up an oscillation frequency (in addition to Ω) of −J ,
the effect of which roughly averages out. On the other
hand, the eigenvalues with the quantum Zeno scaling
λqZ ∼ h2/k suffer a change in their real part which be-
comes (since in our case k/J < 1) λ′

qZ ≈ h2k/J2 ≪ λqZ .
Thus, with increasing J , the spin state evolution is slowed
down. This can be clearly seen in Figure 4a, which shows
the time evolution of the normalization of the density
matrix, Tr{ρ}, i.e. the number of existing radical-ion
pairs, as calculated from (1). The reaction is considered
to be terminated when Tr{ρ} ≈ 5 × 10−4, i.e. when
the reaction yield is known to within δYT . It is clearly
seen that in the quantum Zeno regime, the reaction time
depends on J in the way outlined before. On the con-
trary, when kS = kT = κ, the change of Tr{ρ} dur-
ing the time interval dt easily follows from (1) and is
dTr{ρ} = −dt(kS〈QS〉 + kT〈QT〉) = −κdtTr{ρ}, since
QS + QT = 1. Hence the reaction time is proportional
to 1/κ and independent of J . The result is that dur-
ing the short reaction time in the traditional regime, the
triplet probabilityQT has not increased appreciably (Fig-
ure 4b), and the triplet yield is small, as shown in Figure
4c. In contrast, in the quantum Zeno regime the re-
action has enough time to ”sample” large values of QT

and lead to a triplet yield about an order of magnitude
higher, hence the higher sensitivity in this regime. In
other words, as seen in Figure 4c, the relative change
δYT /YT of the triplet yield with the magnetic field is
roughly the same in both cases, but the absolute value of
YT differs by a factor of 20, leading to respectively high
slopes dYT /dB and dYT /dφ. To summarize, the quan-
tum measurement dynamics inherent in the recombina-
tion process of radical-ion pairs result in ”delocalization”
of the electron spin state at long times, as evidenced in
Figure 4b. The asymmetric (kT ≫ kS) recombination
rates result in the J-dependence of the reaction time.
The interplay of these two effects provides for the robust
magnetic and angular sensitivity in the presence of the
exchange interaction.
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FIG. 4: (a) Time evolution of the normalization of ρ. The
dashed line at N = 5 × 10−4 signifies the ”termination” of
the reaction, i.e. the point when the remaining radical-ion
pairs are 0.05% of the initial number. It is seen that in the
quantum Zeno regime, the reaction lasts longer for increasing
J , as explained in the text. In contrast, in the traditional
regime of equal recombination rates the duration of the reac-
tion is independent of J . (b) Time evolution of the singlet
and triplet probability, 〈QS(t)〉 and 〈QT (t)〉, respectively for
the unrecombined radical-pairs, calculated from (5) for B=0.5
G and J=10 G. The measurement dynamics inherent in the
charge recombination process of radical-ion pairs ”delocalize”
the electron spin state at long times. (c) Triplet yield as a
function of the magnetic field for J=10 G, plotted in the two
regimes for the recombination rates.

A. Quantum Zeno Effect in the Traditional Master

Equation

The quantum Zeno effect is embodied also in the tradi-
tional theory as well as the Jones-Hore theory. This has
been mentioned in [31] and analyzed in detail in [38]. We
will here elucidate this using a simple two-dimensional
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example. Consider the density matrix ρ =

(

ρSS ρST

ρTS ρTT

)

and a magnetic Hamiltonian of the form H =

(

0 ω
ω 0

)

.

The projection operators are in this case QS =

(

1 0
0 0

)

and QT =

(

0 0
0 1

)

. The traditional master equation,

dρ/dt = −i[H, ρ]−kS(QSρ+ρQS)/2−kT (QTρ+ρQT )/2
is, assuming for simplicity that kS = 0, equivalent to

d

dt







ρSS

ρST

ρTS

ρTT






=







0 iω −iω 0
iω −kT /2 0 −iω
−iω 0 −kT /2 iω
0 −iω iω −kT













ρSS

ρST

ρTS

ρTT







(6)
The above 4×4 matrix has four eigenvalues, −kT /2 (dou-

bly degenerate), −kT /2 −
√

k2T − 16ω2/2 and −kT /2 +
√

k2T − 16ω2/2. For kT ≫ ω, the last eigenvalue is ap-
proximately equal to −2ω2/kT . This, as already noted,
is the quantum Zeno scaling, i.e. the larger the interroga-
tion rate kT , the slower the decay of the density matrix el-
ements dependent on the particular eigenvalue. In other
words, even if the traditional theory is not constructed
on the quantum measurement concepts on which our the-
ory is based, being a successful phenomenological theory
it does bear part of the physics entering radical-ion-pair
reactions in the asymmetric recombination regime.

V. CONCLUSIONS

In conclusion, we have identified a concrete biologi-
cal process in which fundamental quantum effects have
a profound effect on the system’s performance, alluding
to the possibility that this biological quantum sensor has
evolved to a robust device by taking advantage of non-
trivial aspects of quantum physics. Coincidentally or not,
it turns out [37] that the radical-ion pairs participating
in the last stages of the electron-transfer processes taking
place in bacterial photosynthetic reaction centers operate
at the quantum Zeno regime, i.e. the triplet recombina-
tion rate kT is about 20 times larger than kS , the singlet
recombination rate. It is noted that the manifestation of
the quantum Zeno effect does not require any parameter
fine-tuning, but just the presence of asymmetric recom-
bination rates. This regime seems to offer an operational
advantage and hence the possibility that it is Nature’s
inevitable choice is rather plausible.
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