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Abstract

Evolutionary graph theory studies the evolutionary dynamics of populations
structured on graphs. A central problem is determining the probability that
a small number of mutants overtake a population. Currently, Monte Carlo
simulations are used for estimating such fixation probabilities on general di-
rected graphs, since no good analytical methods exist. In this paper, we
introduce a novel deterministic framework for computing fixation probabil-
ities for strongly connected, directed, weighted evolutionary graphs under
neutral drift. We show how this framework can also be used to calculate
the expected number of mutants at a given time step (even if we relax the
assumption that the graph is strongly connected), how it can extend to other
related models (e.g. voter model), how our framework can provide non-trivial
bounds for fixation probability in the case of an advantageous mutant, and
how it can be used to find a non-trivial lower bound on the mean time to
fixation. We provide various experimental results determining fixation prob-
abilities and expected number of mutants on different graphs. Among these,
we show that our method consistently outperforms Monte Carlo simulations
in speed by several orders of magnitude. Finally we show how our approach
can provide insight into synaptic competition in neurology.
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1. Introduction

Evolutionary graph theory (EGT), introduced by [14], studies the prob-
lems related to population dynamics when the underlying structure of the
population is represented as a directed, weighted graph. This model has
been applied to problems in evolutionary biology [28], physics [25], game
theory [20], neurology [26], and distributes systems [13]. A central problem
in this research area is computing the fixation probability - the probability
that a certain subset of mutants overtakes the population. Although good
analytical approximations are available for the undirected/unweighted case
[1, 6], these break down for directed, weighted graphs as shown by [16]. As
a result, most work dealing with evolutionary graphs rely on Monte Carlo
simulations to approximate the fixation probability [22, 7, 4]. In this paper
we develop a novel deterministic framework to compute fixation probability
in the case of neutral drift (when mutants and residents have equal fitness)
in directed, weighted evolutionary graphs based on the convergence of “ver-
tex probabilities” to the fixation probability as time approaches infinity. We
then show how this framework can be used to calculate the expected number
of mutants at a given time, how the framework can be modified to do the
same for related models, how it can provide non-trivial bounds for fixation
probability in the case of an advantageous mutant, and how it can provide
a non-trivial lower bound on the mean time to fixation. We also provide
various experiments that show how our method can outperform Monte Carlo
simulations by several orders of magnitude. Additionally, we show that the
results of this paper can provide direct insight into the problem of synaptic
competition in neurology.

Our method also fills a few holes in the literature. First, it allows for
deterministic computation of fixation probability when there is an initial
set of mutants – not just a singleton (the majority of current research on
evolutionary graph theory only considers singletons). Second, it allows us
to study how the mutant population changes as a function of time. Third,
we show (by way of rigorous proof) that fixation probability, under the case
of neutral drift is a lower bound for the case of the advantageous mutant -
confirming simulation observations by [15]. Fourth, we show (also by way of
rigorous proof) that fixation probability under neutral drift is additive (even
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for weighted, directed graphs), which extends the work of [6] that proved
this for undirected/unweighted graphs. Fifth, we provide a non-trivial lower
bound for the computation of mean time to fixation in the general case -
which has only previously been explored for well-mixed populations [2] and
special cases of graphs [5].

This paper is organized as follows. In Section 2 we review the original
model of Lieberman et al., introduce the idea of “vertex probabilities” and
show how they can be used to find the fixation probability. We then show how
this can be used to determine the expected number of mutants at a given
time in Section 3. This is followed by a discussion of how the framework
can be extended to other update rules in Section 4 and then for bounding
fixation probability in the case of an advantageous mutant in Section 5.
We then discuss how our approach can be adopted to bound mean time to
fixation in Section 6. We use the results of the previous sections to create
an algorithm for computing fixation probability and introduce a heuristic
technique to significantly decrease the run-time. The algorithm and several
experimental evaluations are described in Section 7. In Section 8, we show
how our framework can be applied to neurology to gain insights into synaptic
competition. Finally, we discuss related work in Section 9 and conclude.

2. Directly Calculating Fixation Probability

The classic evolutionary model known as the Moran Process is a stochas-
tic process used to describe evolution in a well-mixed population [18]. All
the individuals in the population are either mutants or residents. The aim of
such work was to determine if a set of mutants could take over a population
of residents (achieving “fixation”). In [14], evolutionary graph theory (EGT)
is introduced, which generalizes the model of the Moran Process by speci-
fying relationships between the N individuals of the population in the form
of a directed, weighted graph. Here, the graph will be specified in the usual
way as G = (V,E) where V is a set of nodes (individuals) and E ⊆ V × V .
In most literature on evolutionary graph theory, the evolutionary graph is
assumed to be strongly connected. We make the same assumption and state
when it can be relaxed.

For any node i, the numbers k
(i)
in , k

(i)
out are the in- and out- degrees respec-

tively. We will use the symbol N to denote the sized of V . Additionally,
we will specify weights on the edges in set E using a square matrix denoted
W = [wij] whose side is of size N . Intuitively, wij is the probability that
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member of the population j is replaced by i given that member i is selected.
We require

∑
j wij = 1 and that (i, j) ∈ E iff wij > 0. If for all i, j, we have

wij = 1/k
(i)
out, then the graph is said to be “unweighted.” If for all (i, j) ∈ E,

we have (j, i) ∈ E the graph is said to be “undirected.” Though our results
primarily focus on the general case, we will often refer to the special case
of undirected/unweighted graphs as this special case is quite common in the
literature [1, 6].

In this paper we will often consider the outcome of the evolutionary pro-
cess when there is a set of initial mutants as opposed to a singleton. Hence,
we say some set (often denoted C) is a configuration if that set specifies the
set of mutants in the population (all other members in the population then
are residents). We assume all members in the population are either mutants
or residents and have a fitness specified by a parameter r > 0. Mutants
have a fitness r and residents have a fitness of 1. At each time step, some
individual i ∈ V is selected for “birth” with a probability proportional to its
fitness. Then, an outgoing neighbor j of i is selected with probability wij
and replaced by a clone of i. Note if r = 1, we say we are in the special case
of neutral drift.

We will use the notation PV ′,t to refer to the probability of being in
configuration V ′ after t timesteps and PV ′,t|C to be the probability of being in
configuration V ′ at time t conditioned upon initial configuration C. Perhaps
the most widely studied problem in evolutionary graph theory is to determine
the fixation probability. Given set of mutants C at time 0, the fixation
probabilty is defined as follows.

FC = limt→∞PV,t|C (1)

This is the probability that an initial set C of mutants takes over the en-
tire population as time approaches infinity. Similarly, we will use the term
the extinction probability, FC , to be limt→∞P∅,t|C . If the graph if strongly
connected, then we have FC + FC = 1. Hence, for a strongly connected
graph, a mutant either fixates or becomes extinct. Typically, this problem
is studied using Monte Carlo simulation. This work uses the idea of a ver-
tex probabilities to create an alternative to such an approach. The vertex
probability is the probability that a certain vertex is a mutant at a certain
time given an initial configuration. For vertex i at time t, we denote this as
Pi,t|C . Often, for ease of notation, we shall assume that the probabilities are
conditioned on some initial configuration and drop the condition, writing Pi,t
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instead of Pi,t|C . We note that Pi,t can be expressed in terms of probabilities
of configurations as follows.

Pi,t =
∑
V ′∈2V

s.t. i∈V ′

PV ′,t (2)

Viewing the probability that a specific vertex is a mutant at a given time
has not, to our knowledge, been studied before with respect to evolutionary
graph theory (or in related processes such as the voter model). The key
insight of this paper is that studying these probabilities sheds new light on
the problem of calculating fixation probabilities in addition to providing other
insights into EGT. For example, it is easy to show the following relationship.

Proposition 1. Let V ′ be a subset of V and t be an arbitrary time point.
Iff for all i ∈ V ′, Pi,t = 1 and for all i /∈ V ′, Pi,t = 0, then PV ′,t = 1 and for
all V ′′ ∈ 2V s.t. V ′′ 6≡ V ′, PV ′′,t = 0.

It is easy to verify that FC > 0 iff ∀i ∈ V , limt→∞Pi,t > 0. Hence, in this
paper, we shall generally assume that limt→∞Pi,t > 0 holds for all vertices i
and specifically state when it does not. As an aside, for a given graph, this
assumption can be easily checked: simply ensure for j ∈ V − C that exists
some i ∈ C s.t. there is a directed path from i to j.

Now that we have introduced the model and the idea of vertex proba-
bilities we will show how to leverage this information to compute fixation
probability. It is easy to show that as time approaches infinity, the vertex
probabilities for all vertices converge to the fixation probability when the
graph if strongly connected.

Theorem 1. ∀i, limt→∞ Pi,t|C = FC

Now let us consider how to calculate Pi,t for some i and t. For t = 0,
where we know that we are in the state where only vertices in a given set are
mutants, we need only appeal to Proposition 1 - which tells us that we assign
a probability of 1 to all elements in that set and 0 otherwise. For subsequent
timesteps, we have developed Theorem 2 shown next (the proof of which is
included in the supplement).
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Theorem 2.

Pi,t = Pi,t−1 +
∑

(j,i)∈E

wji
(
Pj,t−1 · S(j,t)|(j,t−1) − Pi,t−1 · S(j,t)|(i,t−1)

)
(S(j,t)|(i,t−1) is the probability that j is picked for reporduction at time t given
that i was a mutant at time t− 1.)

We believe that a concise, tractable analytical solution for S(j,t)|(i,t−1) is un-
likely. However, for neutral drift (r = 1), these conditional probabilities are
trivial - specifically, we have for all i, j, t, S(j,t)|(i,t−1) = 1/N as this probability
of selection is independent of the current set of mutants or residents in the
graph. Hence, in the case of neutral drift, we have the following:

Pi,t = Pi,t−1 +
∑

(j,i)∈E

wji
N
· (Pj,t−1 − Pi,t−1) (3)

Studying evolutionary graph theory under neutral drift was a central theme
in several papers on EGT in the past few years [6, 15] as it provides an
intuition on the effects of network topology on mutant spread. In Section 5
we examine the case of the advantageous mutant (r > 1). Neutral drift allows
us to strengthen the statement of Equation 1 to a necessary and sufficient
condition - showing that when the probabilities of all nodes are equal, then
we can determine the fixation probability.

Theorem 3. Assuming neutral drift (r = 1), given initial configuration C
with fixation probability FC, if at time t the quantities Pi,t|C are equal (for all
i ∈ V ), then they also equal FC.

Therefore, under neutral drift, we can determine fixation probability when
Equation 3 causes all Pi,t’s to be equal. We can also use Equation 3 to find
bounds on the fixation probability for some time t by the following result
that holds for any time t under neutral drift.

min
i
Pi,t ≤ FC ≤ max

i
Pi,t (4)

Under neutral drift, we can show that fixation probability is additive for
disjoint sets. Broom et al. proved a similar result the a special case of undi-
rected/unweighted evolutionary graphs [6]. However, our proof (contained in
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the supplement) differs from theirs in that we leverage Equation 3. Further,
unlike the result of Broom et al., our result applies to the more general case
of weighted, directed graphs.

Theorem 4. When r = 1 for disjoint sets C,D ⊆ V , FC + FD = FC∪D.

3. Calculating the Expected Number of Mutants

In addition to allowing for the calculation of fixation probability, our
framework can also be used to observe how the expected number of mutants
changes over time. We will use the notation Ex

(t)
C to denote the expected

number of mutants at time t given initial set C. Formally, this is defined
below.

Ex
(t)
C =

∑
i∈V

Pi,t (5)

Unlike fixation probability, which only considers the probability that mu-
tants overtake a population, Ex

(t)
C provides a probabilistic average of the

number of mutants in the population under a finite time horizon. For exam-
ple, is has been noted that graph structures which amplify fixation normally
also increase time to absorption [8, 21]. Hence, finding the expected number
of mutants may be a more viable topic in some areas of research where time
is known to be limited. Following from Equation 3 where we showed how to
compute Pi,t for each node at a given time, we have the following relationship
concerning the expected number of mutants at a given time under neutral
drift.

Ex
(t)
C = Ex

(t−1)
C +

Ex
(t−1)
C

N
− 1

N

∑
i∈V

∑
(j,i)∈E

wji · Pi,t−1 (6)

Based on Equation 6, we notice that for r = 1, at each time-step, the
number of expected mutants increases by at most the average fixation prob-
ability and decreases by a quantity related to the average “temperature.”
The temperature of vertex i (denoted Ti) is defined for a given node is the
sum of the incoming edge weights [14]: Ti =

∑
j wji. Intuitively, nodes with

a higher temperature change more often between being a mutant and being a
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resident than those with lower temperature. Re-writing Equation 6 in terms
of temperature we have the following:

Ex
(t)
C = Ex

(t−1)
C +

Ex
(t−1)
C

N
− 1

N

∑
i∈V

Ti · Pi,t−1 (7)

Hence, if the preponderance of high temperature nodes are likely to be
mutants, then most likely the average number of mutants will decrease at the
next time step. We also note that Theorem 2, Equation 3, and Equation 6
do not depend on the assumption that the underlying graph is strongly con-
nected. Therefore, as such is the case, we can study the relationship of time
vs. expected number of mutants for any evolutionary graph (under neutral
drift). This could be of particular interest to non-strongly connected evolu-
tionary graphs that may have trivial fixation probabilities (i.e. 1 or 0) but
may have varying levels of mutants before achieving an absorbing state.

4. Applying the Framework to Other Update Rules

The results of the last two sections not only apply to the original model of
[14], but several other related models in the literature. Viewing an evolution-
ary graph problem as a stochastic process, where the states represent different
mutant-resident configurations, it is apparent that the original model spec-
ifies the transition probabilities. However, there are other ways to specify
the transition probabilities known as update rules. Several works address
different update rules [1, 25, 15]. Overall, we have identified three major
families of update rules - birth-death (a.k.a. the invasion process) where the
node to reproduce is chosen first, death-birth (a.k.a. the voter model) where
the node to die is chosen first, and link dynamics, where an edge is chosen.
We summarize these in Table 1.

We have already shown how our methods can deal with the original model
of Lieberman et al., often referred to as the Birth-Death (BD) process. In
this section, we apply our methods to the neutral-drift (non-biased) cases of
death-birth and link-dynamics. In these models, the weights of the edges is
typically not considered. Hence, in order to align this work with the majority
of literature on those models, we will express vertex probabilities in terms of
node in-degree (k

(i)
in ) and the set of directed edges (E). We note that these

results can be easily extended to a more general case with an edge-weight
matrix as we used for the original model of EGT.
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Table 1: Different families of update rules.

Update Rule Intuition

Birth-Death (BD) (1) Node i selected
(a.k.a. Invasion Process (IP)) (2) neighbor of i, node j selected

(3) Offspring of i replaces j
Death-Birth (DB) (1) Node i selected
(a.k.a. Voter Model (VM)) (2) neighbor of i, node j selected

(3) Offspring of j replaces i
Link Dynamics (LD) (1) Edge (i, j) selected

(2) The offspring of one node in the
edge replaces the other node

4.1. Death-Birth Updating

Under the death birth model (DB), at each time step, a vertex i is selected
for death. With a death-bias (DB-D), it is selected proportional to the inverse
of its fitness, with a birth-bias (DB-B) it is selected with a probability 1/N ,
which is also the probability under neutral drift. Then, an incoming neighbor
(j) is selected either proportional to the fitness of all incoming neighbors
(birth-bias), or with a uniform probability (in the case death-bias or neutral
drift). The selected neighbor then replaces i. Here, we compute Pi,t under
this dynamic with r = 1.

Pi,t = (1−N−1)Pi,t−1 + (Nk
(i)
in )−1

∑
(j,i)∈E

Pj,t−1 (8)

We note that the proof of convergence still holds for death-birth - that
is for some time t, ∀i, the value Pi,t is the same, then Pi,t = FC . Further,
Theorem 4 holds for DB under neutral drift as well, specifically, for disjoint
sets C,D ⊆ V , FC + PD = PC∪D.

4.2. Link-Dynamics

With link dynamics (LD), at each time step an edge (i, j) is selected
either proportional to the fitness of i or the inverse of the fitness of j. It
has previously been shown that LD under birth bias is an equivalent process
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to LD with a death bias [15]. Under neutral drift, the probability of edge
selection is 1/|E| (where |E| is the cardinality of set E). Then, i replaces j.
Now, we compute Pi,t under this dynamic with r = 1.

Pi,t = (1− k(i)
in |E|−1)Pi,t−1 +

1

|E|
∑

(j,i)∈E

Pj,t−1 (9)

Again, convergence and additivity of the fixation probability still hold
under link dynamics just as with BD and DB.

5. Bounding Fixation Probability for r > 1

So far we have shown how our method can be used to find fixation proba-
bilities under the case of neutral drift. Here, we show how our framework can
be useful in the case of an advantageous mutant (when the value for r, the
relative fitness, is greater than 1). First, we show that our method provides
a lower bound. We then provide an upper bound on the fixation probabil-
ity that can be used in conjunction with our framework when studying the
case of the advantageous mutant. We note that certain parts of these proofs
are specific for diffent update rules, and we identify them using the abbre-
viations from the last section (DB-D, DB-B, and LD). The update of the
original model of [14] is known as the “birth-death” model and abbreviated
BD. If the fitness bias is on a birth event, we denote it as BD-B and if the
bias is on a death event we denote it as BD-D.

Naoki Masuda observes experimentally (through simulation) that the fix-
ation probability computed with neutral drift appears to be a lower bound
on the fixation probability for an advantageous mutant [15]. We were able
to prove this result analytically – the proof is included in the supplementary
materials.

Theorem 5. For a given set C, let F
(1)
C be the fixation probability under

neutral drift and F
(r)
C be the fixation probability calculated using a mutant

fitness r > 1. Then, under BD-B, BD-D, DB-B, DB-D, or LD dynamics,
F

(1)
C ≤ F

(r)
C .

This proof leads to the conjecture that r′ > r implies F
(r′)
C ≥ F

(r)
C . How-

ever, we suspect that proving this monotonicity property will require a dif-
ferent technique than used in Theorem 5. Next, to find an upper bound
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that corresponds with the lower bound above, we use the proof technique in-
troduced in [9], to obtain the following non-trivial upper bounds of fixation
probability for individual nodes in various update rules.

BD−B : F{i} ≤ r(r +
∑
j

wji)
−1 (10)

BD−D : F{i} ≤

(∑
j

wji
r − rwji + wji

)−1

(11)

DB−B : F{i} ≤
∑
j

rwij(1− wij + rwij)
−1 (12)

DB−D : F{i} ≤ r
∑
j

wij (13)

6. A Lower Bound for Mean Time to Fixation

Another important, although less-studied problem with respect to evolu-
tionary graph theory is the mean time to fixation - the average time it takes
for a mutant to take over the population. Closely related to this problem
are mean time to extinction (average time for the resident to take over) and
mean time to absorption (average time for either mutant or resident to take
over). This has been previously studied under the original Moran process
for well mixed populations [2] as well as some special cases of graphs [5].
However, to our knowledge, a general method to compute these quantities
(without resorting to the use of simulation) have not been previously studied.
Here we take a “first step” toward developing such a method by showing how
the techniques introduced in this paper can be used to compute a non-trivial
lower bound for mean time to fixation (and easily modified to bound mean
time to extinction and absorption).

Let Ft|C be the probability of fixation at time t. Therefore, Ft|C − Ft−1|C
is the probability of entering fixation at time t. The symbol tC is the mean
time. By the results of [2], we have the following:

Theorem 6.

tC =
1

FC

∞∑
t=1

t · (Ft|C − Ft−1|C)
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Our key intuition is noticing that at each time step t, Ft|C ≤ mini Pi,t.
From this, we use the accounting method to provide a rigorous proof for the
following theorem that provides a non-trivial lower-bound for the mean time
to fixation. This result can be easily modified for mean time to extinction
and absorption as well.

Theorem 7. 1
FC

∑∞
t=1 t·(Pmin,t−Pmin,t−1) ≤ 1

FC

∑∞
t=1 t·(Ft|C−Ft−1|C) Where

Pmin,t = mini Pi,t.

7. Algorithm and Experimental Evaluation

We leverage the finding of the previous sections in Algorithm 1. As described
earlier, our method has found the exact fixation probability when all the
probabilities in

⋃
i{Pi,t} (represented in the pseudo-code as the vector p) are

equal. We use Equation 4 to provide a convergence criteria based on value
ε, which we can prove to be the tolerance for the fixation probability.

Proposition 2. Algorithm 1 returns the fixation probability FC within ±ε.

Our novel method for computing fixation probabilities on strongly con-
nected directed graphs allows us to compute near-exact fixation probabilities
within a desired tolerance. The running time of the algorithm is highly de-
pendent on how fast the vertex probabilities converge. In this section we
experimentally evaluate how the vertex probabilities in our algorithms con-
verge. We also provide results from comparison experiments to support the
claim that Algorithm 1-ACC finds adequate fixation probabilities order of
magnitudes faster than Monte Carlo simulations. We also show how the al-
gorithm can be used to study the expected number of mutants as well as
bound mean time to fixation.

7.1. Convergence of Vertex Probabilities

We ran our algorithm to compute fixation probabilities on randomly
weighted and strongly connected directed graphs in order to experimentally
evaluate the convergence of the vertex probabilities. We generated the graphs
to be scale-free using the standard preferential attachment growth model [3]
and randomly assigned an initial mutant node. We replaced all edges in the
graph given by the growth model with two directed edges and then randomly
assigned weights to all the edges.
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Algorithm 1 - Our Novel Solution Method to Compute Fixation Probabil-
ities
Input: Evolutionary Graph 〈N, V,W 〉, configuration C ⊆ V , natural number
R > 0, and real number ε ≥ 0.
Output: Estimate of fixation probability of mutant.

1: pi is the ith position in vector p corresponding with vertex i ∈ V .
2: Set pi = 1 if i ∈ C and pi = 0 otherwise. {As per Proposition 1}
3: q← p {q will be p from the previous time step.}
4: τ ← 1
5: while τ > ε do
6: for i ∈ V {This loop carries out the calculation as per Equation 3}

do
7: sum← 0
8: m← {j ∈ V |wji > 0}
9: for j ∈ m do

10: sum = sum+ wji · (qj − qi)
11: end for
12: pi ← qi + 1/N · sum
13: end for
14: q← p
15: τ ← (1/2)·(max p−min p) {Ensures error bound based on Equation 4}
16: end while
17: return (min p) + τ
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Figure 1: Left: Convergence of the minimum (MinP), maximum (MaxP), and average
(AvgP) of vertex probabilities towards the final fixation probability as a function of our
algorithm’s iterations t for a graph of 100 nodes. Right: Average speedup (on a log scale)
for finding fixation probabilities achieved by our algorithm vs Monte Carlo simulation for
graphs of different sizes.

To compare Algorithm 1 with the Monte Carlo approach, we should
set the parameter R in that algorithm to be comparable with ε in Algo-
rithm 1. As ε is the provable error of a solution to Algorithm 1. Based on
the commonly-accepted definition of estimated standard error from statis-
tics, we can obtain the estimated standard error for the solution returned by
Monte Carlo approach with the following expression (where R is the number
of simulation runs). √

FC(1− FC)

R− 1
(14)

We can use Equation 14 to estimate the parameter R for the Monte
Carlo approach as follows. We set ε equal to the estimated standard error
as per Expression 14 and manipulate it algebraically. This gives us R ≈
S(S−1)
ε2

+ 1 where S is the solution to Algorithm 1, ε is the input parameter
for Algorithm 1 and R is the number of simulation runs in the Monte Carlo
approach that we estimate to provide a comparable error bound. We also
note, that as the vertex probabilities converge, the standard deviation of the
p vector in Algorithm 1 could be a potentially faster convergence criteria.
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Figure 2: Standard deviation of vertex probabilities as a function of our algorithm’s iter-
ations for the same 100 node graph of Figure 1 (left).

Note that using standard deviation of p and returning the average vertex
probability would no longer provide us of the guarantee in Proposition 2,
however it may provide good results in practice. The modifications to the
algorithm would be as follows: line 15 would be τ ← st.dev(p) and line 17
would be return avg(p). We will refer to this as Algorithm 1 with alternate
convergence criteria or Algorithm 1-ACC for short.

Figure 1 (left) shows the convergence of the minimum, maximum, and the
average of vertex probabilities towards the final fixation probability value for
a small graph of 100 nodes. We can observe that the average converges to
the final value at a logarithmic rate and much faster than the minimum and
maximum vertex probability values. This suggests that while Algorithm 1-
ACC does not give the same theoretical guarantees as Algorithm 1, it is much
preferable for speed since the minimum and maximum vertex probabilities
take much longer to converge to the final solution than the average. The
fact that the average of the vertex probabilities is much preferable as a fast
estimation of fixation probabilities is supported by the logarithmic decrease
of the standard deviation of vertex probabilities (see Figure 2). Convergences
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for other and larger graphs are not shown here but are qualitatively similar
to the relative convergences shown in the provided graphs.

7.2. Speed Comparison to Monte Carlo Simulation

In order to compare our method’s speed compared to the standard Monte
Carlo simulation method, we must determine how many iterations our algo-
rithm must be run to find a fixation probability estimate comparable to that
of the Monte Carlo approach. Thankfully, as we have seen, we can get a
standard error on the fixation probability returned by the Monte Carlo ap-
proach as per Equation 14. While we did not theoretically prove anything
about how smoothly fixation probabilities from our methods approach the
final solution, the convergences of the average and standard deviation as
shown above strongly suggest that estimates from our method approach the
final solution quite gracefully. In fact, in the following experiments, once
our method has arrived at a fixation probability estimate within the stan-
dard error of simulations, the estimate never again fell outside the window of
standard error (although the estimate did not always approach the final es-
timate monotonically). This is in stark contrast to Monte Carlo simulations,
from which estimations can vary greatly before the method has completed
enough single runs to achieve a good probability estimate.

We generated a number of randomly weighted and strongly connected
directed graphs of various sizes on which we compare our solution method
to Monte Carlo approximation of fixation probabilities. The graphs were
generated as in our convergence experiments. For each graph of a different
size, we generated a number of different initial mutant configurations. We
found fixation probabilities both using Monte Carlo estimation with 2000
simulation runs and our direct solution method, terminating when we have
reached within the standard error of the Monte Carlo estimation. Since the
average vertex probability proved to be such a good fast estimate of the true
fixation probability, we used Algorithm 1-ACC.

Figure 1 (right) shows the speedup our solution provides over Monte
Carlo simulation. Here speedup is defined as the ratio of the time it takes
for simulations to complete over the time it takes our algorithm to find a
fixation probability within the standard deviation. The often extremely low
number of iterations needed by our algorithm to find fixation probabilities
within the standard error of simulations may prompt the concern that the
probabilities fall within this window so soon by mere chance. However, our
experiments have shown that the fixation probability estimation found by
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our algorithm at each iteration approaches the final fixation probability after
termination smooothly at a logarithmic rate, asymptotically approaching the
true fixation probability. While in this case the fixation probability estimate
slightly crosses over the true fixation probability and then slowly approaches
it again, none of the fixation probability estimates from our algorithm exited
the window of standard error (from simulations) once they entered it.

We can observe from our experiments that computing fixation proba-
bilities using Monte Carlo simulations showed to be a very time-expensive
process, highlighting the need for faster solution methods as the one we have
presented. Especially for larger graph sizes, the time complexity of our so-
lution to achieve similar results to Monte Carlo simulation has shown to be
orders of magnitude smaller than the standard method.

7.3. Monitoring the Expected Number of Mutants

As observed in Section 3, our method not only allows for the calculation
of the fixation probability of a mutant, but also allows us to study how the
expected number of mutants change over time. In this section, we present
experimental results exploring the trajectory of the expected number of mu-
tants over time on various undirected/unweighted graphs and under different
initial mutant placement conditions.

First, we note that the expected number of mutants (as time approaches
infinity) in an unweighted/undirected graph with respect to a single initially
infected vertex i can be computed by modifying the result of [6] (for BD
updating) to obtain the following.

lim
t→∞

Ex
(t)
{i} =

1

ki〈k−1〉
(15)

Where 〈k−1〉 is the average inverse of the degree for the graph. Hence, we
can determine whether a node amplifies or suppresses selection by observing
if limt→∞Ex

(t)
{i} is greater or less than 1 respectively: if ki <

1
〈k−1〉 selection is

amplified and if ki >
1
〈k−1〉 it is suppressed. We have used our algorithm to

compare the trajectory of the expected number of mutants over time when
the initial mutant is placed on amplifiers vs. suppressors under different
graph topologies and BD updating. We note that similar comparisons can
be obtained with our algorithm for the other update rules. We also note that
by Theorem 5, an amplifier for BD (with no bias) will also be an amplifier
for the (biased) BD-B and BD-D where r > 1.
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Figure 3: Expected number of mutants over time starting with a single mutant placed
on a graph for Barabási-Albert preferential attachment (BAR), Erdős-Rényi (ERD), and
Newmann-Watts-Strogatz small world (NWS) graphs. Lines are averages over 50 random
graphs of each type. In the left graph, mutants are placed at the highest degree nodes,
which are suppressors. In the right graph, mutants are placed at lowest degree nodes,
which are amplifiers.

Figure 3 shows the trajectories of the expected number of mutants over
time on random [3] preferential attachment (BAR), [10] (ER), and [19] small
world graphs (NWS), each for when the initial mutant is placed on a sup-
pressor (highest degree node of graph) and amplifier (lowest degree node of
graph). Graphs are all of equal size at 100 nodes. We note that the highest
degree nodes are especially strong suppressors on BAR graphs, less so for
NWS graphs, and even less so for ER graphs. This makes sense when one
considers the degree distribution of the different graph topologies, which are
scale-free or power-law (P (k) ∼ k−3) for BR, roughly Poisson-shaped for
NWS, and relatively uniform for ER graphs. For lowest degree amplifiers,
the expected number of mutants grows faster early on in Barabási-Albert
graphs, but it plateaus earlier than and is eventually surpassed by the slower
growing expected number of mutants in the Erdős-Rényi, and Newmann-
Watts-Strogatz graphs. Such insights into the evolutionary process may be
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Figure 4: Expected number of mutants over time for an Erdős-Rényi graph of 100 nodes,
with an extra muntant node (mn) and resident node(rn) with directed edges to con mn
and con rn respectively. The value that the expected number of mutants converges to
depends on the relative degrees of con mn and con rn, as shown in the legend.

crucial in applications, e.g. when one may be more interested in achieving
highest number of mutants in a short amount of time rather than highest
number of mutants as t→∞ or vice versa.

Finally, thus far we have only considered strongly connected graphs in
which the vertex probabilities converge as t → ∞, but this is not the case
for some non-strongly connected graphs. We have thus also investigated the
expected number of mutants over time for some simple cases of such graphs.
Consider a random graph that is strongly connected, and then have a resident
node (rn) and mutant node (mn) connected with only directed edges into the
strongly connected graph. Clearly, the vertex probabilities cannot converge,
since ∀ t, Pmn,t = 1 and Prn,t = 0. Our experimental results in Figure 4 show
however that while the vertex probabilities do not converge, the value for
the expected number of mutants given by our algorithm seems to converge.
What value the expected number of mutants converges to depends on the
relative degrees of the nodes that the mutant node mn and resident node
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rn connect to. We shall call these nodes con mn and con rn, respectively.
If kcon mn ≈ kcon rn, the expected value of mutants converges at around 50%
of the graph’s nodes. If kcon mn > kcon rn, the expected value of mutants
is less than 50% of the graph’s nodes, and conversely, if kcon mn < kcon rn,
it is greater. These results are intuitive because lower degree nodes are
better spreaders under BD updating. These results are also interesting be-
cause the expected value converges - even though the graphs are not strongly
connected. By an examination of Equation 6, this convergence is possible.
However, we have not proven that convergence always occurs. An interest-
ing direction for future work is to identify under what conditions will the
expected number of mutants converges in a non-strongly connected graph.

7.4. Experimentally Computing the Lower Bound of the Mean Time to Fix-
ation

We also performed experiments to examine the lower bound on mean
time to fixation (discussed in Section 6) as compared to the average fixation
time determined from simulation run. In doing so, we were able to confirm
the lower-bound experimentally. We were able to use Algorithm 1-ACC to
compute the lower bound with a few changes (noted in the supplement).

We generated random (ER) graphs of size 10, 20, 50 and 100 nodes, creat-
ing five different graphs for each number of nodes. The graphs were generated
as in our convergence experiments, and our comparison to Monte Carlo test-
ing are shown in Figure 5 where we demonstrate experimentally that our
algorithm produces a lower bound. Our algorithm was run until the stan-
dard deviation of fixation probabilities for all vertices was 2.5 × 10−6. The
Monte Carlo simulations were each set at 10, 000 runs.

8. Application: Competition Among Neural Axons

In recent work, [26] created a model for synaptic competition based on
death-birth updating under neutral drift. They noted that the model aligns
well with their empirical observations. In the model, the graph represents a
synaptic junction and the nodes represent sites in the junction. For every two
adjacent sites in the synaptic junction, there is an undirected edge between
the corresponding two nodes in the graph. Hence, in- and out- degrees of
each node are the same. Initially, there are K different axon types located
in the junction configured in a manner where all sites are initially occupied
by one axon type. At each time step, an axon occupying one of the sites is
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Figure 5: Mean-time-to-fixation comparison between algorithm and simulation. Note that
the y-axis is a logarithmic scale.

eliminated - making the site open. The selection of the axon for elimination
(death) is with a uniform probability. Hence, there is no bias in this model.
Following the elimination of an axon, an adjacent axon grows into the site.
The adjacent axon is selected with a uniform probability of the eliminated
axon’s neighbors. Hence, based on the results of this paper, we can provide
the following insights into synaptic competition.

1. After t axons are eliminated,1 the probability of any site being occupied
by an axon of a certain type can be calculated directly by Theorem 8.
Even though there are K axon types, this theorem still applies as it
only considers the probability of a node being a mutant (resp. a site
being a one of the K axon types).

2. Using point 1 above, we can determine the expected number of axons
of a given type after t axons being eliminated.

1Note that the number of axons eliminated corresponds directly to the number of
timesteps in the model.
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3. After t axons are eliminated, the probability of any set of sites being
occupied by a certain axon type is simply the sum of the probabilities
of the individual sites being occupied by that axon. As a result, the
fixation probability is additive.

4. Leveraging point 3 above combined with an easy modification of the
result of Broom et al. [6] for the BD model, the fixation probability
of an axon originating at site i is ki

2·Θ where ki is the number of sites
adjacent to site i (hence the degree of node i in the corresponding
graph) and Θ is the total number of adjacencies in the synapse (hence,
half the number of directed edges in the corresponding graph).

5. Based on item 4 above and the results from Section 3, we can conclude
that for a given axon type (let’s call it “axon type A”) occupying a
set of sites, that if the average adjacencies of those sites is greater
than (resp. less than) the overall average adjacencies for the sites in
the entire synaptic junction, then as the number of eliminated axons
approaches infinity, we can expect the number of axon type A in the
synaptic junction will increase (resp. decrease) in expectation.

6. We can directly apply Theorem 7 to find a lower-bound on the number
of eliminated axons before fixation occurs.

We note that the results stated above are either precise mathematical ar-
guments or calculations that can be found exactly with a deterministic al-
gorithm. They are not theoretical approximations and do not rely on sim-
ulation. As such is the case, we can make more precise statements about
synaptic competition (given the model) and can avoid the variance that
accompanies simulation results. Insights such as these may lead to future
biological experiments.

9. Related Work

Evolutionary graph theory was originally introduced in [14]. Previously,
we have compiled a comprehensive review [24] for a general overview of the
work in this exciting new area.

While most work dealing with evolutionary graphs rely on Monte Carlo
simulation, there are some good analytical approximations for the undi-
rected/unweighted cased based on the degree of the vertices in question.
Antal et al. [1] use the mean-field approach to create these approximations
for the undirected/unweighted case. Broom et al. [6] derive an exact analyt-
ical result for the undirected/unweighted case in neutral drift, which agrees
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with the results of Antal et al. They also show that fixation probability is
additive in that case (a result which we extend in this paper using a different
proof technique). However, the results of [16] demonstrate that mean-field
approximations break down in the case of weighted, directed graphs. [15]
also studied weighted, directed graphs, but does so by using Monte Carlo
simulation. [22] derive exact computation of fixation probability through
means of linear programming. However, that approach requires an exponen-
tial number of both constraints and variables and is intractable. The recent
work of [27] introduces a parameter called graph determinacy which mea-
sures the degree to which fixation or extinction is determined while starting
from a randomly choses initial configuration. This property is then used
to analyze some special cases of evolutionary graphs under birth-death up-
dating. There has been some work on algorithms for fixation probability
calculation that rely on a randomized approach [4, 9]. [4] present a heuris-
tic technique for speeding up Monte Carlo simulations by early termination
while [9] present utilize simulation runs in a fully-polynomial randomized
approximation scheme. However, our framework differs in that it does not
rely on simulation at all and provides a deterministic result. Further, our
non-randomized approach also allows for additional insights into the evolu-
tionary process - such as monitoring the expected number of mutants as a
function of time. Recently, [12] study the related problem of determining the
probability of fixation given a single, randomly placed mutant in the graph
where the vertices are “islands” and there are many individuals residing on
each island in a well-mixed population. They use quasi-fixed points of ODE’s
to obtain an approximation of the fixation probability and performed experi-
ments with a maximum of 5 islands (vertices) containing 50 individuals each.
This continuous approximation provides the best results when the number
of individuals in each island is much larger than the number of islands. As
the problem of this paper can be thought of as a special case where each
island has just one individual, it seems unlikely that the approximation of
Houchmandzadeh and Vallade’s approach will hold here.

Some of the results in this paper were previously presented in conferences
by the authors [23, 17]. The analysis and experiments concerning the ex-
pected number of mutants at a given time, the extension of the framework
for other update rules (beyond birth-death), the use of the framework for the
case of r > 1, and the neurology applications are all new results appearing
for the first time in this paper.
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10. Conclusion

In this paper, we introduced a new approach to deal with problems relat-
ing to evolutionary graphs that rely on “vertex probabilities.” Our presented
analytical method is the first deterministic method to compute fixation prob-
ability and provides a number of novel uses and results for EGT problems:

• Our method can be used to solve for the fixation probability under
neutral drift orders of magnitude faster than Monte Carlo simulations,
which is currently the presiding employed method in EGT studies. We
have extended the method to all of the commonly used update pro-
cesses in EGT. The special case of neutral drift is not only of interest
in the literature [6, 15] but also it has been applied to problems in
neurology [26].

• While the presented method is currently constrained to the case of
neutral drift, we have demonstrated how it can inform cases of non-
neutral drift by using it to provide both a lower and upper bound for
this case. Combined with our analytical method’s speed, this means
that it can be used to acquire useful knowledge to guide general EGT
studies interested in the case of advantageous mutants.

• We have shown how our analytical method can be used to calculate a
non-trivial lower bound to the mean time to fixation, providing a first
step for a general method to computing this and related quantities that
is lacking in the current literature.

• We have shown how our method can be used to calculate deterministi-
cally the expected number of mutants, which is useful for applications
that require predictions on the number of mutants in the population
under a specific finite time horizon. We have also provided results on
the expected number of mutants on different common graph topologies,
showing differences in the growth trajectories of amplifiers and sup-
pressors on these different topologies. These results may prove highly
significant in the recent application of EGT to distributed systems [13]
where the problem of information diffusion is considered among com-
puter systems. In such a domain, it may be insufficient to guarantee
fixation in the limit of time - which may be impractical - but rather to
make guarantees on the outcome of the process after a finite amount
of time.
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• Finally, we have shown how our method can provide insight when ap-
plied to the problem of synaptic competition in neuroscience.

Though evolutionary graph theory is still a relatively new research area, it
is actively being studied in a variety of disciplines [14, 24, 28, 25, 20, 26, 13].
We believe that more real-world applications will appear as this area gains
more popularity. As illustrated by recent work [26, 13], experimental sci-
entists with knowledge of EGT may be more likely to recognize situations
where the model may be appropriate. As these cases arise, deterministic
methods for addressing issues related to EGT may prove to be highly useful.
However, this paper is only a starting point - there are still many impor-
tant directions for future work. Foremost among such topics are scenarios
where the topology of the graph also changes over time or where additional
attributes of the nodes/edges in the graph affect the dynamics.
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Supplementary Material

11. Notes

Throughout this supplement, we will use an extended notation. Fixation
probability given initial configuration C is denoted FC . For vertex i at time
t, we denote this as Pr(M(t)

i ). We will use S(t)
i to denote the event that vertex

i was selected for reproduction and R(t)
ij to denote the event of i replacing

j. We will often use conditional probabilities. For example, Pr(M(t)
i |C(0))

is the probability that vi is a mutant given the initial set C of mutants.
Throughout this supplement, unless noted otherwise, all of our probabili-
ties will be conditioned on C(0). We will drop it for ease of notation with
the understanding that some set C of V were mutants at t = 0. Hence,
Pr(M(t)

i ) = Pr(M(t)
i |C(0)).

12. Proof of Theorem 1

∀i, limt→∞Pr(M(t)
i |C(0)) = FC

Proof. Consider the following definition property of Pr(M(t)
i |C(0))

Pr(M(t)
i |C(0)) =

∑
V ′∈2V

s.t. vi∈V ′

Pr(V ′(t)|C(0)) (16)

We note that as time approaches infinity, for all V ′ ∈ 2V − ∅ − V we have
Pr(V ′(t)|C(0)) = 0. As vi /∈ ∅, the statement follows. Q.E.D.

13. Proof of Theroem 2

Pr(M(t)
i ) =

Pr(M(t−1)
i ) +

∑
(vj ,vi)∈E

wji ·Pr(M(t−1)
j ) ·Pr(S(t)

j |M
(t−1)
j )− wji ·Pr(M(t−1)

i ) ·Pr(S(t)
j |M

(t−1)
i )

Where S(t)
i is true iff vi is selected for reproduction at time t.
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Proof. Note we use the variable R(t)
j i is true iff vj replaces vi at time t.

CLAIM 1:

Pr(M(t)
i ) = Pr(M(t−1)

i ∧
∧

(vj ,vi)∈E

¬S(t)
j ) +

∑
(vj ,vi)∈E

Pr(S(t)
j ∧ R(t)

ji ∧M(t−1)
j ) +

∑
(vj ,vi)∈E

Pr(S(t)
j ∧ ¬R

(t)
ji ∧M(t−1)

i )

This is shown by a simple examination of exhaustive and mutually exclusive
events based on the original model of [14].

CLAIM 2:

Pr(M(t−1)
i ∧

∧
(vj ,vi)∈E

¬S(t)
j ) = Pr(M(t−1)

i ) ·

1−
∑

(vj ,vi)∈E

Pr(S(t)
j |M

(t−1)
i )


(Proof of claim 2) By exhaustive and mutual exclusive events, we have the
following.

Pr(M(t−1)
i ∧

∧
(vj ,vi)∈E

¬S(t)
j ) = Pr(M(t−1)

i )−
∑

(vj ,vi)∈E

Pr(S(t)
j ∧M(t−1)

i )

By the definition of conditional probability, we have the following

Pr(M(t−1)
i ∧

∧
(vj ,vi)∈E

¬S(t)
j ) = Pr(M(t−1)

i )−
∑

(vj ,vi)∈E

(
Pr(S(t)

j |M
(t−1)
i ) ·Pr(M(t−1)

i )
)

= Pr(M(t−1)
i )−Pr(M(t−1)

i ) ·
∑

(vj ,vi)∈E

Pr(S(t)
j |M

(t−1)
i )

= Pr(M(t−1)
i )

1−
∑

(vj ,vi)∈E

Pr(S(t)
j |M

(t−1)
i )


The claim immediately follows.

CLAIM 3: For all edges (vj, vi), we have the following.

Pr(S(t)
j ∧ R(t)

ji ∧M(t−1)
j ) = wji ·Pr(M(t−1)

j ) ·Pr(S(t)
j |M

(t−1)
j )
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(Proof of claim 3) The following is a direct application of the definition of
conditional probability.

Pr(S(t)
j ∧ R(t)

ji ∧M(t−1)
j ) = Pr(R(t)

ji ∧M(t−1)
j |S(t)

j ) ·Pr(S(t)
j )

From our model, we note that given even S(t)
j , the fitness of the nodes is not

considered in determining if the event associated with R(t)
ji is to occur. Hence,

it follows that M(t−1)
j is independent of R(t)

ji given S(t)
j . As Pr(R(t)

ji |S
(t)
j ) = wji,

we have the following.

Pr(S(t)
j ∧ R(t)

ji ∧M(t−1)
j ) = Pr(R(t)

ji |S
(t)
j ) ·Pr(M(t−1)

j |S(t)
j ) ·Pr(S(t)

j )

= wji ·Pr(M(t−1)
j |S(t)

j ) ·Pr(S(t)
j )

By Bayes Theorem, and that the model causes ∀iPr(S(t)
i ) > 0, we have the

following.

Pr(S(t)
j ∧ R(t)

ji ∧M(t−1)
j ) = wji ·Pr(S(t)

j |M
(t−1)
j ) ·

Pr(M(t−1)
j )

Pr(S(t)
j )

·Pr(S(t)
j )

= wji ·Pr(M(t−1)
j ) ·Pr(S(t)

j |M
(t−1)
j )

The claim follows immediately.

CLAIM 4: For all edges (vj, vi), we have the following.

Pr(S(t)
j ∧ ¬R

(t)
ji ∧M(t−1)

i ) = (1− wji) ·Pr(M(t−1)
i ) ·Pr(S(t)

j |M
(t−1)
i )

(Proof of claim 4) This mirrors claim 3.

(Proof of theorem) From claims 1-4, we have the following.

Pr(M(t)
i ) = Pr(M(t−1)

i ) ·

1−
∑

(vj ,vi)∈E

Pr(S(t)
j |M

(t−1)
i )

+ (17)

∑
(vj ,vi)∈E

(
wji ·Pr(M(t−1)

j ) ·Pr(S(t)
j |M

(t−1)
j )

)
+ (18)

∑
(vj ,vi)∈E

(
(1− wji) ·Pr(M(t−1)

i ) ·Pr(S(t)
j |M

(t−1)
i )

)
(19)

Which, after re-arranging some terms, gives us the statement of the theorem.
Q.E.D.
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14. Proof of Theorem 3

When r = 1, if for some time t, ∀i, the value Pr(M(t)
i ) is the same, then

Pr(M(t)
i ) = FC .

Proof Sketch. Consider Pr(M(t)
i ) = Pr(M(t−1)

i )+ 1
N

∑
(vj ,vi)∈E wji·(Pr(M(t−1)

j )−
Pr(M(t−1)

i )) when for t−1, ∀i, j we have Pr(M(t−1)
j ) = Pr(M(t−1)

i ). Clearly,

in this case, the value for Pr(M(t)
i ) = Pr(M(t−1)

i ). As the probabilities of all
vertices was the same at t− 1, they remain so at t. Therefore, in this case,
limt→∞Pr(M(t)

i ) = Pr(M(t)
i ). QED

15. Proof of Inequality 4

For any time t, under neutral drift (r = 1),

min
i

Pr(M(t)
i ) ≤ FC ≤ max

i
Pr(M(t)

i )

Proof. PART 1: For any time t, under neutral drift (r = 1), FC ≤
maxiPr(M(t)

i ).

We show that for each time step t, maxiPr(M(t−1)
i ) ≥ maxiPr(M(t)

i ). Hence,

by showing that, for any time t′, we have maxiPr(M(t′)
i ) ≥ limt→∞maxiPr(M(t)

i )
which by allows us to apply Theorem 1 and obtain the statement of this theo-
rem. Suppose BWOC that at time t we have max`Pr(M(t−1)

` ) < maxiPr(M(t)
i ).
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Then we have:

max
`

Pr(M(t−1)
` ) <

1

N

∑
(vj ,vi)∈E

wji ·
(
Pr(M(t−1)

j )−Pr(M(t−1)
i )

)
+Pr(M(t−1)

i )

≤ 1

N

∑
(vj ,vi)∈E

wji ·
(

max
`

Pr(M(t−1)
` )−Pr(M(t−1)

i )
)

+Pr(M(t−1)
i )

=

∑
(vj ,vi)∈E wji

N

(
max
`

Pr(M(t−1)
` )−Pr(M(t−1)

i )
)

+Pr(M(t−1)
i )

max
`

Pr(M(t−1)
` )(1−

∑
(vj ,vi)∈E wji

N
) < Pr(M(t−1)

i )(1−
∑

(vj ,vi)∈E wji

N
)

max
`

Pr(M(t−1)
` ) < Pr(M(t−1)

i )

Which is clearly a contradiction and completes this part of the proof.
PART 2: For any time t, under neutral drift (r = 1), FC ≥ miniPr(M(t)

i ).

We show that for each time step t, miniPr(M(t−1)
i ) ≤ miniPr(M(t)

i ). Hence,

by showing that, for any time t′, we have miniPr(M(t′)
i ) ≤ limt→∞maxiPr(M(t)

i )
which by allows us to apply Theorem 1 and obtain the statement of this theor-
erm. Suppose BWOC that at time t we have min`Pr(M(t−1)

` ) > miniPr(M(t)
i ).

33



Then we have:

min
`

Pr(M(t−1)
` ) >

1

N

∑
(vj ,vi)∈E

wji ·
(
Pr(M(t−1)

j )−Pr(M(t−1)
i )

)
+Pr(M(t−1)

i )

≥ 1

N

∑
(vj ,vi)∈E

wji ·
(

min
`

Pr(M(t−1)
` )−Pr(M(t−1)

i )
)

+Pr(M(t−1)
i )

=

∑
(vj ,vi)∈E wji

N

(
min
`

Pr(M(t−1)
` )−Pr(M(t−1)

i )
)

+Pr(M(t−1)
i )

min
`

Pr(M(t−1)
` )(1−

∑
(vj ,vi)∈E wji

N
) > Pr(M(t−1)

i )(1−
∑

(vj ,vi)∈E wji

N
)

min
`

Pr(M(t−1)
` ) > Pr(M(t−1)

i )

Which is clearly a contradiction and completes this part of the proof. Q.E.D.

16. Proof of Theorem Theorem 4

When r = 1 for disjoint sets C,D ⊆ V , FC + FD = FC∪D.
Proof. Consider some time t and vertex vi. Clearly, by Corollary 1, Pr(M(t)

i )

can be expressed as a linear combination of the form
∑

vj∈V (Cj · Pr(M(0)
j ))

where Cj is a coefficient. We note that these coefficients are the same re-

gardless of the initial configuration of mutants that M(t)
i is conditioned on.

Hence, Pr(M(t)
i |C(0)) is this positive function with Pr(M(0)

j ) = 1 if vj ∈ C
and 0 otherwise (see Proposition 3). Hence, for disjoint C,D, for any vi ∈ V ,

we have Pr(M(t)
i |C(0))+Pr(M(t)

i |D(0)) = Pr(M(t)
i |(C∪D)(0)). The statement

follows. Q.E.D.

17. Proof of Equation 9

Pr(M(t)
i ) =

(
1− 1

N

)
·Pr(M(t−1)

i ) +
1

N · k(i)
in

∑
(vj ,vi)∈E

Pr(M(t−1)
j )
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Under death-birth dynamics with neutral drift (r = 1).

Proof. D(t)
i and B(t)

i are random variables associated with birth and death
events for vertex vi.
CLAIM 1: Pr(M(t)

i ) = Pr(M(t−1)
i ∧¬D(t)

i )+
∑

(vj ,vi)∈E Pr(D(t)
i ∧B

(t)
j ∧M

(t−1)
j )

Follows directly form exhaustive and mutually exclusive events.
CLAIM 2: Pr(M(t−1)

i ∧ ¬D(t)
i ) =

(
1− 1

N

)
·Pr(M(t−1)

i )

By the definition of conditional probabilities, we have Pr(¬D(t)
i |M

(t−1)
i ) ·

Pr(M(t−1)
i ). Also, we know the probability of a given node dying is always

1/N . Hence, Pr(¬D(t)
i |M

(t−1)
i ) = Pr(¬D(t)

i ) = 1− 1
N

and the claim follows.
CLAIM 3: For any (vj, vi) ∈ E, we have

Pr(D(t)
i ∧ B(t)

j ∧M(t−1)
j ) = 1

N ·k(i)in

·Pr(M(t−1)
j )

As both birth and death events occur independent of any node being a mutant
at the previous time step, the definition of conditional probabilities gives us
the following:

Pr(D(t)
i ∧ B(t)

j ∧M(t−1)
j ) = Pr(D(t)

i ∧ B(t)
j ) ·Pr(M(t−1)

j ) (20)

= Pr(B(t)
j |D

(t)
i ) ·Pr(D(t)

i ) ·Pr(M(t−1)
j ) (21)

From the model, we have the following:

Pr(B(t)
j |D

(t)
i ) = 1/k

(i)
in (22)

Pr(D(t)
i ) = 1/N (23)

Hence, the claim follows. QED Q.E.D.

18. Proof of Equation 10

Pr(M(t)
i ) =

(
1− k

(i)
in

|E|

)
·Pr(M(t−1)

i ) +
1

|E|
∑

(vj ,vi)∈E

Pr(M(t−1)
j )

Under link dynamics with neutral drift (r = 1).

Proof. Here S(t)
ij is the random variable associated with the selection of edge

(vi, vj).

CLAIM 1: Pr(M(t)
i ) = Pr(M(t−1)

i ∧
∧

(vj ,vi)∈E ¬S
(t)
ji ) +

∑
(vj ,vi)∈E Pr(S(t)

ji ∧
M(t−1)

j )
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Follows directly form exhaustive and mutually exclusive events.

CLAIM 2: Pr(
∧

(vj ,vi)∈E ¬S
(t)
ji ) = 1− k

(i)
in

|E|

Clearly, we have Pr(
∧

(vj ,vi)∈E ¬S
(t)
ji ) = Pr(

∨
{(vβ ,vα)∈E|β 6=i} S

(t)
βα). As there are

k
(i)
in incoming edges to vi, we know that Pr(

∨
{(vβ ,vα)∈E|β 6=i} S

(t)
βα) = 1 − k

(i)
in

|E| ,
giving us the claim.

CLAIM 3: Pr(M(t−1)
i ∧

∧
(vj ,vi)∈E ¬S

(t)
ji ) =

(
1− k

(i)
in

|E|

)
·Pr(M(t−1)

i )

For any α, β, the random variable S(t)
αβ is independent from M(t−1)

i . Hence,
the claim immediately follows from this fact and claim 2.
CLAIM 4: Pr(S(t)

ji ∧M(t−1)
j ) = 1

|E| ·Pr(M(t−1)
j )

As, by the definition of the model, Pr(S(t)
ji |M

(t−1)
j ) = Pr(S(t)

ji ) = 1
|E| , the

claim follows directly form the definition of conditional probabilities. QED
Q.E.D.

19. Proof of Theorem 5

For a given set C, let F (1)(C) be the fixation probability under neutral
drift and F (r)(C) be the fixation probability calculated using a mutant fitness
r > 1. Then, under BD-B, BD-D, DB-B, DB-D, or LD dynamics, F (1)(C) ≤
F (r)(C).
Proof. First, some notation.

• We define an interpretation, I : 2V → [0, 1] as probability distribution
over mutant configurations. Hence, for some I we have

∑
V ′∈2V I(V ′) =

1.

• Next, we define a transition function that maps configurations of mu-
tants to probabilities, χ : 2V → [0, 1] where for any C ∈ 2V ,

∑
C′∈2V χ(C,C ′) =

1. We will use χ+ and χ− to indicate if the transition is made with a
mutant being selected for birth (χ+) or resident (χ−). Hence, for some
C ∈ V and v /∈ C, χ−(C,C ∪{v}) = 0 and χ+(C ∪{v}, C) = 0. Hence,
for all C ∈ 2V ,

∑
C′∈2V (χ+(C,C ′) + χ−(C,C ′)) = 1.

• If the transitioon function is based on birth-death and computed with
some r > 1, then we will write it as χ

(r)
+ , χ

(r)
− respectively. If computed

with r = 1, then we write χ
(nd)
+ , χ

(nd)
− respectively.
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• For some C ∈ 2C , let inc(C) be the set of all elements D ∈ 2V s.t.
|D| ≥ |C| and χ+(C,D) > 0.

• For some C ∈ 2C , let dec(C) be the set of all elements D ∈ 2V s.t.
|D| ≤ |C| and χ−(C,D) > 0.

• Given set C ⊆ V , we will use F
(r)
C to denot the probability of fixation

given initial set of mutants C where the value r is used to calculate all
transition probabilities.

CLAIM 1: If a some time period, the probability distribution over mutant
configurations is I, the fixation probability is

∑
C∈2V I(C) · F (r)

C .

Clearly, for any time t, F
(r)
C = lim i→∞Pr(V (i)|C(t)). Under the assump-

tion that there exists some tim ω s.t. fixation is reached, we have:

F
(r)
C = Pr(V (ω)|C(t))

=
Pr(V (ω) ∧ C(t))

Pr(C(t))

Hence, F
(r)
C ·Pr(C(t)) = Pr(V (ω) ∧ C(t)). The statement then follows by the

summation of exhaustive and mutually exclusive events.

CLAIM 2: If a some time period t, the probability distribution over mutant
configurations is I, and the transition functions used to reach the next time
step are χ+, χ−, then the probability of being in some mutant configuration
C at time t+ 1 is given by

∑
D∈2V I(D) · (χ+(D,C) + χ−(D,C)).

Follows directly from the rules of dynamics.

CLAIM 3: If a some time period t, the probability distribution over mu-
tant configurations is I, mutant fitness r, and the transition functions used
to reach the next time step are χ

(r)
+ , χ

(r)
− , and all subsequent transitions are

computed using the same dynamics with neutral drift, then the fixation prob-
ability is:

P(I, r) =
∑
C∈2V

I(C) ·

 ∑
D∈inc(C)

(χ
(r)
+ (C,D) · F (1)

D ) +
∑

D∈dec(C)

(χ
(r)
− (C,D) · F (1)

D ))
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Follows directly from claims 1-2.

CLAIM 4: Under BD-B, BD-D, DB-B, DB-D, or LD dynamics, for some

r ≤ r′, for all C,D ∈ 2V , we have χ
(r)
+ (C,D) ≤ χ

(r′)
+ (C,D) and χ

(r)
− (C,D) ≥

χ
(r′)
− (C,D).

CLAIM 4a: For some r ≤ r′, for all C,D ∈ 2V , we have χ
(r)
+ (C,D) ≤

χ
(r′)
+ (C,D).

Let {vj} = D−C. For each vertex vi, fi = 1 if vi /∈ C (a resident) and fi = r
if vi ∈ C (a mutant). When D ≡ C, the following are all summed over the
set {vj ∈ C|∃vi ∈ C ∧ (vi, vj) ∈ E}.

• Under BD-B,

χ
(r)
+ (C,D) =

∑
vi∈C|

(vi,vj)∈E

r · wij
r · |C|+N − |C|

• Under BD-D, ∑
vi∈C|

(vi,vj)∈E

wij
N ·

∑
vq |(vi,vq)∈E wiq · f−1

q

• Under DB-B,

χ
(r)
+ (C,D) =

∑
vi∈C|

(vi,vj)∈E

wij · r
N ·

∑
vq |(vq ,vj)∈E wqj · fq

• Under DB-D,

χ
(r)
+ (C,D) =

∑
vi∈C|

(vi,vj)∈E

wij∑
vq∈V f

−1
q

• Under LD,

χ
(r)
+ (C,D) =

∑
vi∈C|(vi,vj)∈E

wij · r∑
vq ,v`|(vq ,v`)∈E wq` · fq
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By simple algebraic manipulation, for each of these, when all values other
than r are fixed, they increase as r increases.

CLAIM 4b: For some r ≤ r′, for all C,D ∈ 2V , we have χ
(r)
− (C,D) ≥

χ
(r′)
− (C,D). Let {vj} = C − D. For each vertex vi, fi = 1 if vi /∈ C (a

resident) and fi = r if vi ∈ C (a mutant). When D ≡ C, the following are
all summed over the set {vj ∈ V − C|∃vi ∈ V − C ∧ (vi, vj) ∈ E}.

• Under BD-B,

χ
(r)
+ (C,D) =

∑
vi∈V−C|
(vi,vj)∈E

wij
r · |C|+N − |C|

• Under BD-D, ∑
vi∈V−C|
(vi,vj)∈E

wij · r−1

N ·
∑

vq |(vi,vq)∈E wiq · f−1
q

• Under DB-B,

χ
(r)
+ (C,D) =

∑
vi∈V−C|
(vi,vj)∈E

wij
N ·

∑
vq |(vq ,vj)∈E wqj · fq

• Under DB-D,

χ
(r)
+ (C,D) =

∑
vi∈V−C|
(vi,vj)∈E

wij · r−1∑
vq∈V f

−1
q

• Under LD,

χ
(r)
+ (C,D) =

∑
vi∈V−C|(vi,vj)∈E

wij∑
vq ,v`|(vq ,v`)∈E wq` · fq
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By simple algebraic manipulation, for each of these, when all values other
than r are fixed, they decrease as r increases.

CLAIM 5: Given some C ∈ 2V , for all pairs D,D′ where D ∈ inc(C) and

D′ ∈ dec(C), we have F
(1)
D ≥ F

(1)
D′ .

Follows directly from Theorem 5.

CLAIM 6: Given interpretation I, under BD-B, BD-D, DB-B, DB-D, or LD
dynamics, for some r > 1, P(I, r) ≥ P(I, 0).
Let us consider some set C from the outermsot summation in the computa-
tion of P(I, r). Suppose, BWOC, there exists some C ∈ 2V s.t.:

∑
D∈inc(C)

(χ
(r)
+ (C,D) · F (1)

D ) +
∑

D∈dec(C)

(χ
(r)
− (C,D) · F (1)

D ) <
∑

D∈inc(C)

(χ
(1)
+ (C,D) · F (1)

D ) +
∑

D∈dec(C)

(χ
(1)
− (C,D) · F (1)

D )

This give us:

∑
D∈inc(C)

(χ
(r)
+ (C,D) · F (1)

D )−
∑

D∈inc(C)

(χ
(1)
+ (C,D) · F (1)

D ) <
∑

D∈dec(C)

(χ
(1)
− (C,D) · F (1)

D )−
∑

D∈dec(C)

(χ
(r)
− (C,D) · F (1)

D )

Let Fsm = inf {F (1)
D |D ∈ inc(C)} and Flg = sup{F (1)

D |D ∈ dec(C)}, this give
us:

Fsm
∑

D∈inc(C)

(χ
(r)
+ (C,D)− χ(1)

+ (C,D)) < Flg
∑

D∈dec(C)

(χ
(1)
− (C,D)− χ(r)

− (C,D))

Consider ther following:

∑
D∈inc(C)

χ
(r)
+ (C,D) +

∑
D∈dec(C)

χ
(r)
− (C,D) =

∑
D∈inc(C)

χ
(1)
+ (C,D) +

∑
D∈dec(C)

χ
(1)
− (C,D)

∑
D∈inc(C)

χ
(r)
+ (C,D)−

∑
D∈inc(C)

χ
(1)
+ (C,D) =

∑
D∈dec(C)

χ
(1)
− (C,D)−

∑
D∈dec(C)

χ
(r)
− (C,D)

Note that by claim 4, both sides of the above equation are positive numbers.
Hence, we have Fsm < Flg, which contradicts claim 5.

PROOF OF THEOREM: Let P(1)(I, r) = P(I, r) and P(i+1)(I, r) = P(P(i)(I, r), r).
By claim 6, for any i, P(i+1)(I, r) ≥ P(P(i)(I, r), r). Consider an inter-
pretation I that describes the initial probability distribution over mutant
configurations. The fixation probability under neutral drift is P(I, 1). For
some value r > 1, the fixation probaiblity is lim i→∞P(i)(I, r). Clearly,
lim i→∞P(i)(I, r) ≥ P(I, 1). Q.E.D.
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20. Proof of Theorem 6

tC =
1

FC

∞∑
t=1

t · (Ft|C − Ft−1|C)

Proof. This proof was first presented in [2]. The mean time to fixation is
described as the expected time to fixation given that the process fixates. Let
Ft|C be the probability that fixation is reached in exactly t time-steps or less.
Hence, the probability of reaching fixation in exactly t time steps conditioned
on the process reaching fixation is (Ft|C − Ft−1|C)/FC . The remainder of the
theorem follows from the definition of an expected value. Q.E.D.

21. Proof of Theorem 7

We introduce two pieces of notation tfix, tconvg. We define tfix as a time

s.t. tC = 1
FC

∑tfix
t=1 t · (Ft|C − Ft−1|C). and tconvg s.t. ∀i, Pr(M

(tconvg)
i ) = FC .

While in reality, both of these values could be infinite, we note that the
relationship ∞ ≥ tfix ≥ tconvg holds and that using a lower value for tfix
and/or tconvg will still ensure we have a lower bound.

1

FC

∞∑
t=1

t · (Pmin,t − Pmin,t−1) ≤ 1

FC

∞∑
t=1

t · (Ft|C − Ft−1|C)

Where Pmin,t = miniPr(M(t)
i ).

Proof. First, we have the following.

tconvg∑
t=1

t · (Pmin,t − Pmin,t−1) ≤
tfix∑
t=1

t · (Ft|C − Ft−1|C) (24)

For any time t, let P(t)
C = Ft|C − Ft−1|C and Pr(∆M(t)

min) = Pmin,t − Pmin,t−1.

As for each time t, we have Pmin,t ≥ Ft|C , we can define θ
(t)
t′ as the portion of

P(t)
C accounted for in Pr(∆M(t′)

min). This results in having θ
(t)
t′ = 0 whenever
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t′ > t or t > tconvg as well as the following:

P(t)
C =

t∑
t′=1

θ
(t)
t′ (25)

Pr(∆M(t)
min) =

tfix∑
t′=t

θ
(t′)
t (26)

tconvg∑
t=1

t · (Pmin,t − Pmin,t−1) =

tconvg∑
t=1

tfix∑
t′=t

tθ
(t′)
t (27)

=

tconvg∑
t=1

tfix∑
t′=1

tθ
(t′)
t (28)

=

tfix∑
t′=1

tconvg∑
t=1

tθ
(t′)
t (29)

=

tfix∑
t′=1

t′∑
t=1

tθ
(t′)
t (30)

We also note that the following is true:

tfix∑
t=1

t · (Ft|C − Ft−1|C) =

tfix∑
t′=1

t′P(t′)
C (31)

=

tfix∑
t′=1

t′
t′∑
t=1

θ
(t′)
t (32)

≥
tfix∑
t′=1

t′∑
t=1

tθ
(t′)
t (33)

=

tconvg∑
t=1

t · (Pmin,t − Pmin,t−1) (34)

Which concludes the proof. Q.E.D.

22. Materials and Methods

Except for the experiments dealing with time to fixation/extinction, all
algorithms were implemented in Python and run on a 2.33GHz Intel Xeon
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CPU. The time-to-fixation experiments were run on a machine equipped with
an Intel Core i7 M620 processor running at 2.67 GHz with 4 GB RAM.

All graphs in the experiments were generated using the Python NetworkX
package [Hagberg et al.]. Parameters used for the experiments concerning the
expected number of mutants were m=1 for BA, p = 0.5 for ER, and k = 2
and p = 0.5 for NWS graph generator functions.

We modified Algorithm 1-ACC based on the results on mean time to
fixation as follows:

• Before line 14, insert: t += 1; Sum += t*(min(p)-min(q))

• Replace line 17 with: return = Sum/average(p), where average(q)
is the algorithm’s best estimate for Pc at termination.
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