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Abstract

The instantaneous state of a neural network consists of both the degree of
excitation of each neuron the network is composed of and positions of im-
pulses in communication lines between the neurons. In neurophysiological
experiments, the neuronal firing moments are registered, but not the state of
communication lines. But future spiking moments depend essentially on the
past positions of impulses in the lines. This suggests, that the sequence of
intervals between firing moments (inter-spike intervals, ISIs) in the network
could be non-Markovian.

In this paper, we address this question for a simplest possible neural
“net”, namely, a single inhibitory neuron with delayed feedback. The neuron
receives excitatory input from the driving Poisson stream and inhibitory
impulses from its own output through the feedback line. We obtain analytic
expressions for conditional probability density P (tn+1 | tn, . . . , t1, t0), which
gives the probability to get an output ISI of duration tn+1 provided the
previous (n+1) output ISIs had durations tn, . . . , t1, t0. It is proven exactly,
that P (tn+1 | tn, . . . , t1, t0) does not reduce to P (tn+1 | tn, . . . , t1) for any
n ≥ 0. This means that the output ISIs stream cannot be represented as a
Markov chain of any finite order.
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1. Introduction

In a neural network, the main component parts are neurons and inter-
neuronal communication lines – axons [25]. These same units are the main
ones in most types of artificial neural networks [15]. If so, then the instan-
taneous dynamical state of a network must include dynamical states of all
the neurons and communication lines the network is composed of. The state
of a neuron can be described as its degree of excitation. The state of a line
consists of information of whether the line is empty or conducts an impulse.
If it does conduct, then the state of the line can be described by the amount
of time which is required for the impulse to reach the end of the line (time
to live).

In neurophysiological experiments, the triggering (spiking, firing) mo-
ments of individual neurons but not the states of communication lines are reg-
istered. The sequence of intervals between the consecutive moments (inter-
spike intervals, ISIs) is frequently considered as a renewal [16] or Markovian
[7] stochastic process. For a renewal process, the consecutive ISIs are mu-
tually statistically independent. Moreover, all statistical characteristics of
a spike train must be derivable from the single-ISI probability distribution.
Additionally, those characteristics must be the same for a shuffled spike train,
obtained by randomly reordering the ISIs, since shuffling does not change the
single-ISI probability distribution. On the other hand, the experimentally
obtained spike trains in auditory [19] and visual [18] sensory systems does
not support the ISIs’ mutual independence. This is revealed by calculating
the correlation coefficient between the adjacent ISIs, which appeared to be
nonzero for the experimental spike trains, while it must be zero for any re-
newal process. Also, such characteristics as Fano factor curve and firing rate
distribution calculated for shuffled spike trains differ qualitatively from those
obtained for the intact ones. These observations can be associated with mem-
ory effects in the ISI sequence which arise from an underlying non-renewal
process. Recently [28], such a possibility was analyzed for weakly electric
fish electrosensory afferents using high-order interval analysis, count analy-
sis, and Markov-order analysis. The authors conclude that the experimental
evidence cannot reject the null hypothesis that the underlying Markov chain
model is of order m or higher, or maybe non-Markovian. The limited data
sets used in [28] allow to establish a lower bound for m as m ≥ 7 for some
fibers.

What could be possible sources of such non-renewal, or even non-Markovian,
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behavior of ISI sequences in real neural network? First, this behavior could
be inherited from non-renewal (non-Markovian) character of the input signal.
Second, intrinsic neuronal properties, such as adaptation, could be responsi-
ble. Finally, as we show here, the presence of delayed feedback interconnec-
tions itself could be the possible source of the non-Markovian behavior of ISI
sequences.

The non-Markovian behavior of the ISI sequence from neuron in a net-
work with delayed interconnections is not surprising. Indeed, the information
about which neurons are spiking/silent at any given moment of time leaves
unknown the position of impulses in the interconnection lines at that mo-
ment. And it is the previous firing moments which determine the states
of interconnection lines, which in turn determine the next firing moments.
Therefore, information about the previous neuronal firing moments could
improve our predicting ability as regards the next firing moments.

In this paper, we consider a simplest neural “net”, namely, a single in-
hibitory neuron with delayed feedback, which is driven with excitatory im-
pulses from a Poisson process. As neuronal model we take binding neuron as
it allows rigorous mathematical treatment. We study the ISI output stream
of this system and prove that it cannot be presented as Markovian chain
of any finite order. This suggests that activity of a network, if presented
in terms of neuronal interspike intervals, could be non-Markovian as well,
provided the network includes components with delayed interconnections,
similar to that in the Fig. 1.

2. The object under consideration

2.1. Binding neuron model

The understanding of mechanisms of higher brain functions expects a
continuous reduction from higher activities to lower ones, eventually, to ac-
tivities in individual neurons, expressed in terms of membrane potentials and
ionic currents. But the description of the higher brain functions in terms of
potentials and currents in parts of individual neurons would be difficult, sim-
ilarly as it would be difficult to describe execution of computer programs by
a CPU in terms of Kirhgoff’s laws. In this connection, it would be helpful to
abstract from the rules by which a neuron changes its membrane potentials
to rules by which the input impulse signals are processed in the neuron and
determine its output firing activity. The coincidence detector, and temporal
integrator are the examples of such an abstraction, see discussion in [17].
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Figure 1: Binding neuron with feedback line under Poisson stimulation. Multiple input
lines with Poisson streams are joined into a single one here. ∆ is the delay duration in the
feedback line, s is the time left for the feedbacked impulse to reach the neuron.

One more abstraction, the binding neuron (BN) model, is proposed as
signal processing unit [33], which can operate either as coincidence detector,
or temporal integrator, depending on quantitative characteristics of stimula-
tion applied. This conforms with behavior of real neurons, see, e.g. [29, 21].
The BN model describes functioning of a neuron in terms of discrete events,
which are input and output impulses, and degree of temporal coherence be-
tween the input events, see [34] for detailed description. Mathematically,
this model can be realized as follows. We expect that all input impulses in
all input lines are identical. Each input impulse is stored in the BN for a
fixed time, τ . The τ is similar to the tolerance interval discussed in [22]. All
input lines are excitatory. The neuron fires an output impulse if the num-
ber of stored impulses, Σ, is equal or higher than the threshold value, N0.
After that, BN clears its memory and is ready to receive fresh inputs. That
is, every input impulse either disappears contributing to a triggering event,
or it is lost after spending τ units of time in the neuron’s internal memory.
The latter represents leakage. Here, the leakage is abrupt, while in more
traditional models it is gradual.

The BN model is not general, but somewhat inspired by neurons as inte-
grators up to a threshold. Its name is suggested by binding of features/events
in large-scale neuronal circuits [9, 11, 12]. Its operational simplicity is pro-
vided by the fact that each input impulse traces entirely disappear after finite
time τ . This is in the contrast to more familiar models where the traces (ex-
citatory postsynaptic potentials, EPSP) decay exponentially. E. g., in the
leaky integrate-and-fire model, EPSP is mimicked as pure exponential func-
tion the traces of which can disappear completely only after triggering. In
the BN model, the EPSP is mimicked as box function of width/duration τ
and the traces are stored in the neuron no longer than τ units of time.
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Further, we expect that input stream in each input line is the Poisson
one with some intensity λi. In this case, all input lines can be collapsed into
a single one delivering Poisson stream of intensity λ =

∑

i λi, see Figure 1.
For analytic derivation, we use BN with N0 = 2 in order to keep mathe-

matical expressions shorter. It seems, that cases with higher thresholds might
be considered with the same approach, but even N0 = 3 without feedback
requires additional combinatorial efforts, see [36]. Therefore, cases of higher
threshold are tested here only numerically.

As regards real biological neurons, the number of synaptic impulses in
the internal memory which is necessary to trigger a neuron, varies from one
[23], through fifty [4], to 60-180 [2], and 100-300 [1].

2.2. Feedback line action

In real neuronal systems, a neuron can form synapses from its axonal
branch to its own dendritic tree [3, 5, 8, 20, 26, 27, 31, 32]. Synapses of this
type are called autapses. Some of the neurons forming autapses are known to
be inhibitory, see [8, 27, 31] for experimental evidence. As a result, the neuron
stimulates itself obtaining an inhibitory impulse through an autapse after
each firing with some propagation delay. We model this situation assuming
that output impulses of BN are fed back into BN’s input with delay ∆. This
gives the inhibitory BN with delayed feedback model, Figure 1.

The inhibitory action of feedback impulses is modeled in the following
way. When the inhibitory impulse reaches BN, it annihilates all excitatory
impulses already present in the BN’s memory, similarly as the Cl-type in-
hibition shunts depolarization of excitable membrane, see [30]. If at the
moment of inhibitory impulse arrival, the neuron is empty, then the impulse
disappears without any action, similarly as Cl-type inhibition does not af-
fect membrane’s voltage in its resting state. Such inhibition is ”fast” in that
sense, that the inhibitory impulses act instantaneously and are not remem-
bered by neuron. This simple behavior is approved by relatively fast kinetics
of the chloride inhibitory postsynaptic currents [6].

The feedback line either keeps one impulse, or keeps no impulses and
cannot convey two or more impulses at the same time. Biological correlates
supporting to an extent this assumption could be a prolonged refractory time
and/or short-term synaptic depression. The latter can have the recovery time
up to 20 s [40]. If the feedback line is empty at the moment of firing, the
output impulse enters the line, and after time interval equal ∆ reaches the
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BN’s input. If the line already keeps one impulse at the moment of firing,
the just fired impulse ignores the line.

This means, that at the beginning of an output ISI the feedback line is
never empty. In order to describe the state of the feedback line, we introduce
the stochastic variable s, s ∈ ]0;∆], which gives the time to live of the impulse
in the feedback line, see Fig 1. Hereinafter, we will use the values of s just
at the moments of output ISI beginnings (just after firings).

We assume, that time delay ∆ of impulse in the feedback line is smaller
than the BN’s memory duration, τ :

∆ < τ. (1)

It allows to make analytic expressions shorter. Also, the assumption (1) is
consistent with the case of direct feedback, not mediated by other neurons.
See also Part 1 of this paper, [39], this issue, for more detailed discussion and
justification of this assumption.

3. Statement of the problem

The input stream of impulses, which drives neuronal activity is the Pois-
son stream. It is stochastic, therefore, the output activity of our system
requires probabilistic description in spite of the fact that both the BN and
the feedback line action mechanisms are deterministic. We treat the output
stream of inhibitory BN with delayed feedback as the stationary process1. In
order to describe its statistics, we introduce the following basic functions:

• the joint probability density P (tm, tm−1, . . . , t0) for (m + 1) successive
output ISI durations, t0 is the first one.

• the conditional probability density P (tm | tm−1, . . . , t0) for output ISI
durations; P (tm | tm−1, . . . , t0)dtm gives the probability to obtain an
output ISI of duration between tm and tm +dtm provided the previous
m ISIs had durations tm−1, tm−2, . . . , t0, respectively.

1 The stationarity of the output stream results both from the stationarity of the input
one and from the absence of time-dependent parameters in the BN model, see Section 2.1.
In order to ensure stationarity, we also expect that system is considered after initial period
sufficient to forget the initial conditions.
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Definition 1. The sequence of random variables {tj}, taking values in Ω, is
called the Markov chain of the order n ≥ 0, if

∀m>n∀t0∈Ω . . .∀tm∈Ω P (tm | tm−1, . . . , t0) = P (tm | tm−1, . . . , tm−n),

and this equation does not hold for any n′ < n (see e.g. [10]). In the case of
ISIs one reads Ω = R

+.

In particular, taking m = n + 1, we have the necessary condition

P (tn+1 | tn, . . . , t1, t0) = P (tn+1 | tn, . . . , t1),

ti ∈ R
+, i = 0, . . . , n+ 1, (2)

required for the stochastic process {tj} of ISIs to be the n-order Markov
chain.

Our purpose in this paper is to prove the following theorem.

Theorem 1. The output ISIs stream of inhibitory BN with delayed feedback
under Poisson stimulation cannot be represented as a Markov chain of any
finite order.

4. Main calculations

This section with Appendices contains the required proof of Theorem 1.
Here we give a very short sketch of the methods we use.

In order to prove the Theorem 1 it is necessary and enough to prove that
(2) does not hold. The Definition 1 includes universal quantifiers, there-
fore, it is enough to prove that P (tn+1 | tn, . . . , t1, t0) has a property, which
explicitly depends on the t0. For the excitatory neuron case, studied in
[38] such a property was the Dirac δ-function singularity presence in the
P (tn+1 | tn, . . . , t1, t0). The position of the singularity depends explicitly
on the t0. Here we use the similar method for the inhibitory neuron. In
this case the P (tn+1 | tn, . . . , t1, t0) does not have a δ-function singularity.
Instead, P (tn+1 | tn, . . . , t1, t0) has a jump type discontinuity along certain
hyperplanes. Position of these hyperplanes depends exactly on the t0, see
(26). This proves that t0-dependence of P (tn+1 | tn, . . . , t1, t0) cannot be
eliminated. Again, due to the universal quantifiers presence in the Definition
1 it is enough to prove the t0-dependence at a subset of variables t0, . . . , tn+1,
which has nonzero measure. For the general case of any n we use such a
subset, see (18). For the particular cases of n = 0 and n = 1, we study the
whole set of possible values, see Sec. 5, even if it is not necessary for the
proof.
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4.1. Proof outline

We are going to show analytically, that the equality (2) does not hold for
any finite value of n. Namely, we will derive the exact analytic expression
for the conditional probability density P (tn+1 | tn, . . . , t1, t0) and show, that
it depends on t0 for any finite number n.

For this purpose, we denote by s the time left for an impulse in the
feedback line to reach the neuron, see Fig. 1. Hereafter, we call s as ”time
to live” of the impulse in the feedback line. From the Sec. 2.2 it follows: the
feedback line always conveys an impulse at the moment when an ISI starts.
This allows us to introduce the stream ts of events (t, s)

ts = {. . . , (ti, si), . . . },

where si is the time to live of the impulse in the feedback line at the
moment, when the ISI ti starts. We consider the joint probability den-
sity P (tn+1, sn+1; tn, sn; . . . ; t0, s0) for realization of (n+ 2) successive events
(t, s), and the corresponding conditional probability density P (tn+1, sn+1 |
tn, sn; . . . ; t0, s0) for these events.

Then, we proof the following lemma, which will be used in our calcula-
tions.

Lemma 1. Stream ts is the 1-st order Markovian:

∀n≥0∀t0>0∀s0∈ ]0;∆] . . .∀tn+1>0∀sn+1∈ ]0;∆]

P (tn+1, sn+1 | tn, sn; . . . ; t0, s0) = P (tn+1, sn+1 | tn, sn), (3)

where {t0, . . . , tn+1} is the set of successive ISIs, and {s0, . . . , sn+1} are the
corresponding times to live.

See Appendix Appendix A for the proof.
Then, in order to find the conditional probability density P (tn+1 | tn, . . . , t1, t0),

we perform the following steps:

• Step 1. Use the property (3) for calculating joint probability density of
events (t, s):

P (tn+1, sn+1; tn, sn; . . . ; t0, s0) =

P (tn+1, sn+1 | tn, sn) . . . P (t1, s1 | t0, s0)P (t0, s0), (4)

where P (t, s) and P (tn, sn | tn−1, sn−1) denote the stationary probabil-
ity density and conditional probability density (transition probability)
for events (t, s).
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• Step 2. Represent P (tn+1, tn, . . . , t0) as marginal probability by inte-
gration over variables si, i = 0, 1, . . . , n+ 1:

P (tn+1, tn, . . . , t0) =
∫ ∆

0

ds0

∫ ∆

0

ds1 . . .

∫ ∆

0

dsn+1P (tn+1, sn+1; tn, sn; . . . ; t0, s0). (5)

• Step 3. Use the definition of conditional probability density:

P (tn+1 | tn, . . . , t1, t0) =
P (tn+1, tn, . . . , t0)

P (tn, . . . , t0)
. (6)

Taking into account the Steps 1 and 2, one derives for the joint probability
density

P (tn+1, tn, . . . , t0) =
∫ ∆

0

ds0 . . .

∫ ∆

0

dsn+1P (t0, s0)

n+1
∏

k=1

P (tk, sk | tk−1, sk−1). (7)

In the next sections, we are going to find the exact analytic expressions
for probability densities P (t, s) and P (tk, sk | tk−1, sk−1), and perform the
integration in (7). Then we will apply the Step 3, above, to find expressions
for the conditional probability densities P (tn+1 | tn, . . . , t0). It appears, that
P (tn+1 | tn, . . . , t0) is a function with jump discontinuities. In order to prove
that the equality (2) does not hold for any n ≥ 0, we analyze the positions
of those jump discontinuities only.

4.2. Probability density P (t, s) for events (t, s)

The probability density P (t, s) can be derived as the product

P (t, s) = F (t | s)f(s). (8)

Here F (t | s) denotes conditional probability density for ISI duration pro-
vided the time to live of the impulse in the feedback line equals s at the
moment of this ISI beginning. The exact expression for F (t | s) is calculated
in Eqs. (9)–(11) of the first part of this paper, see [39], this issue. This
is done based on the definition of BN with delayed inhibitory feedback by
considering different relationships between t and s. In [39], this issue, we use
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notation P∆(t | s), here we use F (t | s) instead, in order to make final ex-
pressions shorter. As a result we have found in [39], this issue, the following
expression

F (t | s) =











λ2t e−λt, t ∈ ]0; s[,

(1 + λs) e−λsP 0(t− s), t ≥ s,

(9)

were P 0(t), t > 0, denotes an output ISI probability density for BN without
feedback, which was obtained in [36, Eq. (3)]. Explicit expressions for P 0(t)
are different for different domains of t. For example,

P 0(t) = λ2t e−λt, t ∈ ]0; τ ]. (10)

It is proven in [36], that P 0(t) is a continuous function for whole range of ISI
durations: t ∈ ]0;∞[.

Another function in (8), f(s), denotes the stationary probability density
for time to live of the impulse in the feedback line at the moment of an
output ISI beginning. The exact expression for the f(s) is found in the first
part of this paper, see Eqs. (14)–(16) in [39], this issue. This is done by
the following method. First, we calculate the transition probability density,
P (s′ | s), which gives the probability to have an impulse in the feedback
line with time to live in [s′; s′ + ds′[ at the moment an ISI starts, provided
that at the moment when the previous ISI starts, there was an impulse in
the feedback line with time to live equal s. The exact expression for the
P (s′ | s), see [39, Eq. (13)], this issue, is found based on the exact expression
(9) for the F (t | s). Exact expression for f(s) is then found as normalized
solution to the following equation

∫ ∆

0

P (s′ | s) f(s) ds = f(s′).

We do not need the exact expression for f(s) here, (see the first part of this
paper, [39, Eq. (15)], this issue, for the exact expression). What do we need
here is the form of f(s), which is

f(s) = a · δ(s−∆) + g(s), where a =
4e2λ∆

(3 + 2λ∆)e2λ∆ + 1
, (11)

where δ(·) – is the Dirac delta-function, g(s) – is a regular function, which
vanishes out of interval s ∈ ]0;∆], the a gives the probability to obtain the
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impulse in the feedback line with time to live equal ∆ at the beginning of an
arbitrary output ISI, λ — is the input Poisson stream intensity.

Let us explain the presence of Dirac δ-function type singularity in f(s).
The probability to have time to live, s, exactly equal ∆ at the moment of an
output ISI beginning is not infinitesimally small. Every time, when the line
is free at the moment of an output ISI beginning, the impulse enters the line
and has time to live equal ∆. For the line to be free from impulses at the
moment of triggering, it is enough that t > s for the previous ISI. The set
of realizations of the input Poisson process, each realization satisfying t > s,
has non-zero probability a, see (11), and this gives the δ-function at s = ∆
in the probability density f(s).

It is essential for further study, that F (t | s) considered as function of t
has a jump discontinuity at t = s. Indeed, using (9) and (10), one obtains

lim
t→s−0

F (t | s) = λ2s e−λs > 0, s ∈ ]0;∆],

lim
t→s+0

F (t | s) = 0.

We emphasize, that F (t | s) is a continuous function elsewhere except of the
point t = s, where it has strictly positive jump. The continuity of F (t | s) at
t ∈ ]0; s[ and t ∈ ]s;∞[, and its jump at t = s will be used later.

The presence of jump in F (t | s) at t = s can be explained as follows.
According to the definition of F (t | s), the inhibitory impulse from the
feedback line arrives s seconds later than the ISI t starts. After the inhibitory
impulse arrival, it is guaranteed, that the BN is empty. To trigger the BN just
after that moment, it is necessary to get two impulses from the input stream
within infinitesimally small time interval. This event has infinitesimally small
probability for the Poisson process (as well as for any other point process).
That is why, the value of probability density F (t | s) drops to zero at t = s+0
and F (t | s) experiences discontinuity at t = s.

The output ISI probability density P (t) for inhibitory neuron with delayed
feedback can be obtained as the result of integration of (8):

P (t) =

∫ ∆

0

F (t | s)f(s)ds. (12)

Discontinuity of F (t | s) at t = s and δ-function type singularity at s = ∆
in f(s) result in discontinuity of P (t) at t = ∆.

Examples of P (t) and f(s) graphs can be found in Fig. 2.

11



 0
 10
 20
 30
 40
 50
 60

 0  10  20  30  40  50

P(
t)

, 1
/s

t, ms

 0

 20

 40

 60

 80

 100

 0  2  4  6  8

f(
s)

, 1
/s

s, ms

Figure 2: Left : output ISI probability density P (t) reproduced from [39, Fig. 2], this
issue; Right : probability density f(s) for times to live of the impulse in the feedback line.
Here τ = 10 ms, ∆ = 8 ms, λ = 150 s−1, N0=2.

4.3. Conditional probability density P (tk, sk | tk−1, sk−1)

Here we find the conditional probability density P (tk, sk | tk−1, sk−1) for
events (tk, sk), which determines the probability to obtain the event (tk, sk),
with precision dtkdsk, provided the previous event was (tk−1, sk−1). By def-
inition of conditional probabilities, the probability density wanted can be
represented as the following product

P (tk, sk | tk−1, sk−1) = F (tk | sk, tk−1, sk−1)f(sk | tk−1, sk−1), (13)

where F (tk | sk, tk−1, sk−1) denotes conditional probability density for ISI
duration, tk, provided i) this ISI started with lifetime of impulse in the
feedback line equal to sk, and ii) previous (t, s)-event was (tk−1, sk−1); the
f(sk | tk−1, sk−1) denotes conditional probability density for times to live of
impulse in the feedback line under condition ii). It is obvious, that

F (tk | sk, tk−1, sk−1) = F (tk | sk), (14)

because with sk being known, the previous event (tk−1, sk−1) does not add
any information, useful to predict tk (compare with the proof of Lemma 1,
Appendix Appendix A).

In order to find the probability density f(sk | tk−1, sk−1), let us consider
various possible relations between tk−1 and sk−1. If tk−1 ≥ sk−1, the line will
have time to get free from the impulse during the ISI tk−1. That is why at
the beginning of the ISI tk, an output spike will enter the line and will have
time to live sk = ∆ with probability 1. Therefore, the probability density
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contains the corresponding δ-function:

f(sk | tk−1, sk−1) = δ(sk −∆), tk−1 ≥ sk−1. (15)

If tk−1 < sk−1, than the ISI tk−1 ends before the impulse leaves the feedback
line. Therefore, at the beginning of the tk, the line still keeps the same
impulse as at the beginning of tk−1. This impulse has time to live being
equal to sk = sk−1 − tk−1, so

f(sk | tk−1, sk−1) = δ(sk − sk−1 + tk−1), tk−1 < sk−1. (16)

Taking all together, for the conditional probability density P (tk, sk | tk−1, sk−1)
one obtains

P (tk, sk | tk−1, sk−1) = F (tk | sk)δ(sk −∆), tk−1 ≥ sk−1,

= F (tk | sk)δ(sk − sk−1 + tk−1), tk−1 < sk−1, (17)

where exact expression for F (t | s) is given in (9).

4.4. Joint probability density P (tn+1, . . . , t0)

In this section, we are going to find the exact analytic expression for the
joint probability density P (tn+1, . . . , t0) at the following domain

D1 =

{

(t0, . . . , tn, tn+1)
∣

∣

∣

n
∑

i=0

ti < ∆

}

. (18)

Notice, that coordinate tn+1 is not included to the condition here. The set
of (n + 2) successive ISI durations t0, . . . , tn, tn+1 has non-zero probability,
p∆ > 0, to fall into the domain (18). Indeed, BN with threshold N0 = 2
requires 2(n + 1) input impulses within time window ]0;∆[ to be triggered
(n + 1) times within this window (condition (1) ensures that no one input
impulse will be lost). BN receives excitatory impulses from the Poisson
stream and inhibitory impulses from the feedback line. But no more than one
impulse from the line may have time to reach BN’s input during time interval
less than ∆. Therefore, if as much as (2n + 3) input impulses are received
from the Poisson stream during the time interval ]0;∆[, the inequality (18)
holds for sure, no matter was an impulse from the feedback line involved, or
not. Therefore, p∆ > p(2n + 3,∆) > 0, where p(i,∆) gives the probability
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to obtain i impulses from the Poisson stream during time interval ∆ [14]:
p(i,∆) = e−λ∆(λ∆)i/i!.

For a fixed (n+2)-tuple (t0, . . . , tn, tn+1) ∈ D1, let us split the integration
domain for s0 in (7) in the following way:

]0;∆] =]0; t0]∪]t0; t0 + t1]∪]t0 + t1; t0 + t1 + t2] ∪ · · · ∪]t0 + t1 + · · ·+ tn; ∆],

or
∫ ∆

0

ds0 =

∫ t0

0

ds0 +

n
∑

i=1

∫

∑i
j=0 tj

∑i−1

j=0
tj

ds0 +

∫ ∆

∑n
j=0

tj

ds0,

and introduce the following notations:

Ii =

∑i
j=0

tj
∫

∑i−1

j=0
tj

ds0

∆
∫

0

ds1 . . .

∆
∫

0

dsn+1P (t0, s0)
n+1
∏

k=1

P (tk, sk | tk−1, sk−1),

i = 0, 1, 2, . . . , n, (19)

In+1 =

∆
∫

n∑

j=0

tj

ds0

∆
∫

0

ds1 . . .

∆
∫

0

dsn+1P (t0, s0)

n+1
∏

k=1

P (tk, sk | tk−1, sk−1), (20)

where we assume, that
∑j2

j=j1
= 0 for j1 > j2.

According to (7), (19) and (20), the probability density P (tn+1, . . . , t0)
can be obtained as

P (tn+1, . . . , t0) =
n+1
∑

i=0

Ii. (21)

Substituting P (t0, s0) and P (tk, sk | tk−1, sk−1) from expressions (8) and (17)
to (19) and (20) and performing integration over variables s1, . . . , sn+1, one
obtains

Ii =

n+1
∏

k=i+1

F (tk | ∆−

k−1
∑

j=i+1

tj)

∑i
j=0 tj
∫

∑i−1

j=0
tj

i
∏

k=0

F (tk | s0 −

k−1
∑

j=0

tj)g(s0)ds0,

i = 0, 1, 2, . . . , n. (22)
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In+1 =

∆
∫

∑n
j=0

tj

n+1
∏

k=0

F (tk | s0 −
k−1
∑

j=0

tj)g(s0)ds0 + a
n+1
∏

k=0

F (tk | ∆−
k−1
∑

j=0

tj), (23)

where F (t | s) and g(s) were defined in (9) and (11) (see Appendix Appendix B
for the details of integration).

Taking into account (21), (22) and (23), one obtains the following expres-
sion for the joint probability density for output ISI durations:

P (tn+1, . . . , t0) =
n+1
∑

i=0

Ii

=
n
∑

i=0

n+1
∏

k=i+1

F (tk | ∆−
k−1
∑

j=i+1

tj)

∑i
j=0

tj
∫

∑i−1

j=0
tj

g(s0)
i
∏

k=0

F (tk | s0 −
k−1
∑

j=0

tj)ds0

+

∆
∫

n∑

j=0

tj

g(s0)
n+1
∏

k=0

F (tk | s0 −
k−1
∑

j=0

tj)ds0 + a
n+1
∏

k=0

F (tk | ∆−
k−1
∑

j=0

tj),

n
∑

i=0

ti < ∆, n = 0, 1, ..., (24)

where we assume, that
∑j2

j=j1
= 0 and

∏j2
j=j1

= 1 for j1 > j2.
The expression (24) gives the joint probability density P (tn+1, . . . , t0) for

consecutive ISI durations at the domain D1 for an arbitrary n. Therefore,
the conditional probability density P (tn+1 | tn, . . . , t0) at D1 can be obtained
readily, see equation (6).

4.5. Discontinuities in P (tn+1, . . . , t0)

In this section, we will answer two following questions: i) does the P (tn+1, . . . , t0)
contain discontinuities at D1? and ii) if it does, what are the positions of
that discontinuities?

In order to ascertain the continuity of expression, defined in (24), let us
first analyze the behavior of Ii, i = 0, . . . , n, and In+1 separately.

Consider Ii, defined in (22). Since, at D1, tk < ∆ −
∑k−1

j=i+1 tj for any

k = i+ 1, . . . , n, the functions F (tk | ∆−
∑k−1

j=i+1 tj) are continuous, see (9).
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The factor F (tn+1 | ∆−
∑n

j=i+1 tj) undergoes a nonzero jump discontinuity
when point (t0, . . . , tn+1) transverses the hyperplane defined as

n+1
∑

j=i+1

tj = ∆, i = 0, . . . , n, (25)

and is continuous function anywhere else. The result of integration in (22)
is a continuous function in D1, see the proof in Appendix Appendix C.
Therefore, at the domain D1, each Ii has a discontinuity of a jump type at
the hyperplane defined in (25).

Now, consider the continuity of In+1, expression (23). The first term,
again, is a continuous function in D1, the proof is similar to what is done
in Appendix Appendix C. The only discontinuity in the second term at the
domain D1 is due to the factor F (tn+1 | ∆−

∑n

j=0 tj) and it is located at the
hyperplane defined as

n+1
∑

j=0

tj = ∆, (26)

while all F (tk | ∆ −
∑k−1

j=0 tj), k = 0, . . . , n are continuous functions at this
domain, see (9).

According to (21), the probability density P (tn+1, . . . , t0) can be obtained
as a sum of all Ii, i = 0, . . . , n and In+1. Therefore, it inherits all the dis-
continuities, contained in Ii and In+1. So, at the domain D1, the probability
density P (tn+1, . . . , t0) has nonzero jump discontinuities at the (n + 2) hy-
perplanes2 defined in (25) and (26), and is a continuous function at the rest
of the domain.

4.6. Discontinuities in P (tn+1 | tn, . . . , t0)

Conditional probability density P (tn+1 | tn, . . . , t0) can be easily derived
from (24) according to the definition (6). It should be outlined, that joint
probability density P (tn, . . . , t0) is strictly positive for any (n + 1)-tuple
of positive values (tn, . . . , t0) as it can be concluded from (24). Moreover,
P (tn, . . . , t0) is continuous at the domain

n
∑

i=0

ti < ∆. (27)

2Note, that all hyperplanes, defined in (25) and (26) are different.
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Indeed, at the domain (27), we have also
∑n−1

i=0 ti < ∆, which means that the
discontinuities of P (tn, . . . , t0) are located at hyperplanes defined by condi-
tions (25) and (26) with (n−1) substituted instead of n. But those conditions
are never satisfied due to (27). Thus, division of P (tn+1, . . . , t0) by strictly
positive and continuous function P (tn, . . . , t0) neither does add new discon-
tinuities, nor does it eliminate already found in the P (tn+1, . . . , t0) at the
domain D1.

Therefore, at the domain D1, function P (tn+1 | tn, . . . , t0) contains (n +
2) jump discontinuities, located at the same positions as in P (tn+1, . . . , t0),
equations (25) and (26), and is a continuous function at the rest of D1. The
location of discontinuity (26) depends on t0. This dependence cannot be
compensated by any summands, continuous at hyperplane (26), therefore,
the whole conditional probability density P (tn+1 | tn, . . . , t0) depends on t0.
This means, that the condition (2) does not hold for any n for the output
stream of BN with delayed feedback. The Theorem 1 is proven. �

5. Particular cases

In the previous sections, we have proven the impossibility to represent the
stream of output ISI durations for BN with delayed feedback as a Markov
chain of any finite order. In particular, output ISI stream is neither a se-
quence of independent random variables, and therefore is non-renewal, nor
it is the first-order Markovian process.

In the course of proving Theorem 1, we have obtained the expression
for P (tn+1, tn, . . . , t0) at the domain

∑n

i=0 ti < ∆ in general case of an arbi-
trary n, see (24). This allows to calculate the conditional probability density
P (tn+1 | tn, . . . , t0) for

∑n

i=0 ti < ∆ and n = 0, 1, . . ..
In this section, we consider two particular cases of P (tn+1 | tn, . . . , t0)

when n = 0 and n = 1, namely, the single-ISI conditional probability density
P (t1 | t0) and the double-ISI conditional probability density P (t2 | t1, t0) and
obtain the expressions for P (t1 | t0) and P (t2 | t1, t0) for domain (18), as well
as for all other possible domains, which were omitted in calculations with
arbitrary n.

5.1. Conditional probability density P (t1 | t0)

In order to derive the exact expression for conditional probability density
P (t1 | t0) for neighbouring ISI durations, we take Steps 1–3, outlined in
Section 4.1, for n = 0. In the case of P (t1 | t0), there are only two domains, on
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which the expressions should be obtained separately, namely cases t0 < ∆ and
t0 ≥ ∆. Performing integration in (7), one obtains the following expressions
for P (t1, t0) at these domains:

P (t1, t0) = F (t1 | ∆)P (t0), t0 ≥ ∆,

= F (t1 | ∆)

t0
∫

0

F (t0 | s0)g(s0)ds0

+

∆
∫

t0

F (t1 | s0 − t0)F (t0 | s0)f(s0)ds0, t0 < ∆. (28)

Expressions (28) can be understood as follows. Since t0 ≥ ∆, one can be
sure that the line has time to get free from impulse during t0, therefore at the
moment of next firing (at the beginning of t1) the impulse enters the line and
has time to live equal ∆. In the case of t0 < ∆, see (28), two possibilities arise.
The first term corresponds to the scenario, when the feedback line discharges
conveyed impulse within time interval t0, and the second one represents the
case when at the beginning of t1 the line still keeps the same impulse as at
the beginning of t0.

Then, using (6) and (11), one obtains:

P (t1 | t0) = F (t1 | ∆), t0 ≥ ∆,

=
1

P (t0)

(

F (t1 | ∆)

t0
∫

0

F (t0 | s0)g(s0)ds0+aF (t1 | ∆− t0)F (t0 | ∆)

+

∆
∫

t0

F (t1 | s0 − t0)F (t0 | s0)g(s0)ds0

)

, t0 < ∆. (29)

It should be outlined, that the output ISI probability density P (t0) is strictly
positive and continuous function at the domain 0 < t0 < ∆. Indeed, due to
(9)–(12), the only discontinuity contained in P (t0) is placed at t0 = ∆, see
Figure 2 (a).

It can be shown, that the following normalization conditions take place:
∞
∫

0

dt1P (t1 | t0) = 1, and
∞
∫

0

dt0P (t1, t0) = P (t1).

18



 0

 50

 100

 150

 0  2  4  6  8  10  12  14

P(
t1

|t0
),

 1
/s

t1, ms

 0

 50

 100

 150

 0  2  4  6  8  10  12  14

P(
t1

|t0
),

 1
/s

t1, ms

Figure 3: Conditional probability density P (t1 | t0) for τ = 10 ms, ∆ = 8 ms, λ = 400 s−1,
N0 = 2, t0=6 ms (left) and t0= 11 ms (right), found numerically by means of Monte-Carlo
method (the number of firings accounted N = 150 000).

Using (9) and (29), one obtains the positions of discontinuities in P (t1 |
t0):

t1 = ∆, if t0 ≥ ∆, (30)

t1 = ∆, t0 + t1 = ∆, if t0 < ∆. (31)

Obviously, expressions (31) could be obtained directly from (25) and (26) by
substituting n = 0.

As it can be seen from (30) and (31), the number of jump discontinuities
in P (t1 | t0) and their positions depend on t0. Therefore, the conditional
probability density P (t1 | t0) cannot be reduced to output ISI probability
density P (t1). Therefore, the neighbouring output ISIs of BN with delayed
feedback are correlated, as expected.

Examples of P (t1 | t0), found for two domains numerically, by means of
Monte-Carlo method (see Section 6 for details), are placed at Figure 3.

5.2. Conditional probability density P (t2 | t1, t0)

In order to derive the exact expression for conditional probability density
P (t2 | t1, t0) for the successive ISI durations, we take Steps 1–3, outlined in
Section 4.1, for n = 1. In the case of P (t2, t1, t0), there are five domains, on
which the expressions should be obtained separately, namely, the domain

D1 = {(t0, t1, t2) | t1 + t0 < ∆},
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which was already utilized in Section 4, and the four remaining:

D2 = {(t0, t1, t2) | t0 ≥ ∆ and t1 ≥ ∆},

D3 = {(t0, t1, t2) | t0 < ∆ and t1 ≥ ∆},

D4 = {(t0, t1, t2) | t0 ≥ ∆ and t1 < ∆},

D5 = {(t0, t1, t2) | t0 < ∆ and ∆− t0 ≤ t1 < ∆},

Expressions for P (t2 | t1, t0) can be found exactly on each domain:

P (t2 | t1, t0) = F (t2 | ∆), (t0, t1, t2) ∈ D2,

= F (t2 | ∆) (t0, t1, t2) ∈ D3,

= F (t2 | ∆− t1), (t0, t1, t2) ∈ D4,

=
1

P (t1, t0)

(

F (t2 | ∆− t1)F (t1|∆)

∫ t0

0

F (t0 | s0)g(s0)ds0

+ F (t2|∆)

∫ ∆

t0

F (t1|s0 − t0)F (t0|s0)g(s0)ds0 + a F (t2|∆)F (t1|∆− t0)F (t0|∆)
)

,

(t0, t1, t2) ∈ D5,

=
1

P (t1, t0)

(

F (t2 | ∆− t1)F (t1 | ∆)

∫ t0

0

F (t0 | s0)g(s0)ds0

+ F (t2 | ∆)

∫ t0+t1

t0

F (t1 | s0 − t0)F (t0 | s0)g(s0)ds0

+

∫ ∆

t0+t1

F (t2|s0 − t0 − t1)F (t1|s0 − t0)F (t0|s0)g(s0)ds0

+ a F (t2|∆− t0 − t1)F (t1|∆− t0)F (t0|∆)
)

, (t0, t1, t2) ∈ D1.

(32)

where P (t1, t0) = F (t1 | ∆)
∫ t0

0
F (t0 | s0)g(s0)ds0 +

∫ ∆

t0
F (t1 | s0 − t0)F (t0 |

s0)f(s0)ds0, according to (29).
It is worth to notice, that P (t1, t0) is strictly positive and continuous

function on both D1 and D5, see denominators in (32). Indeed, from (30)
and (31) one can see, that P (t1, t0) may include discontinuities only at the
points t1 = ∆ and t1 = ∆− t0. None of these points fall into D1, or D5.

It can be shown, that the following normalization conditions take place:
∞
∫

0

dt2P (t2 | t1, t0) = 1, and
∞
∫

0

dt0P (t0, t1, t2) = P (t2, t1).
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Figure 4: Conditional probability density P (t2 | t1, t0) for τ = 10 ms, ∆ = 6 ms, λ = 400
s−1, N0 = 2, t1=8 ms, t0=8 ms (left) and t1 = 3 ms, t0 = 8 ms (right), found numerically
by means of Monte-Carlo method (N = 150 000).

Using (9) and (32), one derives the positions of jump discontinuities in
the conditional probability density P (t2 | t1, t0):

t2 = ∆, (t0, t1, t2) ∈ D2 ∪D3, (33)

t1 + t2 = ∆, (t0, t1, t2) ∈ D4. (34)

t2 = ∆, t1 + t2 = ∆ (t0, t1, t2) ∈ D5, (35)

t2 = ∆, t1 + t2 = ∆, t0 + t1 + t2 = ∆, (t0, t1, t2) ∈ D1. (36)

Obviously, expression (36) could be obtained directly from (25) and (26) by
substituting n = 1.

As one can see, the number and the position of jump discontinuities in
P (t2 | t1, t0) depends on t0, therefore P (t2 | t1, t0) cannot be reduced to
P (t2 | t1), which means that the output stream is not first-order Markovian.

Examples of P (t2 | t1, t0), found numerically for different domains, are
placed at Figures 4 and 5.

6. Numerical simulation

In order to check the correctness of obtained analytic expressions, and
also to investigate whether the output ISIs stream is non-Markovian for in-
hibitory BN with higher thresholds as well as for N0 = 2, numerical sim-
ulations were performed. A C++ program, containing class, which models
the operation manner of inhibitory BN with delayed feedback, was devel-
oped. Object of this class receives the sequence of pseudorandom numbers
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Figure 5: Conditional probability density P (t2 | t1, t0) for τ = 10 ms, ∆ = 6 ms, λ =
400 s−1, N0 = 2, t1=3 ms, t0=3.5 ms (left) and t1 = 3 ms, t0 = 2.5 ms (right), found
numerically by means of Monte-Carlo method (N = 150 000).

with Poisson probability density to its input. The required sequences were
generated by means of utilities from the GNU Scientific Library3 with the
Mersenne Twister generator as source of pseudorandom numbers.

Program contains function, the time engine, which brings system to the
moment just before the next input signal, bypassing moments, when neither
external Poisson impulse, nor impulse from the feedback line comes. So, only
the essential events are accounted. It allows one to make exact calculations
faster as compared to the algorithm where time advances gradually by adding
small time-steps.

The conditional probability densities, P (t1 | t0) and P (t2 | t1, t0), are
found by counting the number of output ISI of different durations and nor-
malization (see Figures 3 – 6). Obviously, for calculation of conditional dis-
tributions only those ISIs are selected, which follow one or two ISIs of fixed
duration, t0 for P (t1 | t0) and {t1, t0} for P (t2 | t1, t0). The number and the
positions of discontinuities, obtained in numerical experiments for inhibitory
BN with threshold 2, coincide with those predicted analytically in (30), (31)
and (33) – (36).

For N0 > 2, conditional probability densities P (t1 | t0) and P (t2 | t1, t0)
are similar to those, found for N0=2. In particular, both the quantity and
position of discontinuities coincide with those obtained for inhibitory BN
with threshold 2, as expected, compare Figures 6 and 5.

3http://www.gnu.org/software/gsl/
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Figure 6: Conditional probability density P (t2 | t1, t0) for τ = 10 ms, ∆ = 6 ms, λ = 1000
s−1, N0 = 4, t1=3 ms, t0=3.5 ms (a) and t1 = 3 ms, t0 = 2.5 ms (b), found numerically
by means of Monte-Carlo method (N = 150 000).

7. Conclusions and discussion

Our results reveal the influence of delayed feedback presence on the neu-
ronal firing statistics. In the contrast to the cases of BN without feedback
[35] and BN with instantaneous feedback [37], the neighbouring output ISIs
of inhibitory BN with delayed feedback are mutually correlated. This means
that even in the simplest possible recurrent network the output ISI stream
cannot be treated as a renewal one.

The non-renewalness of experimentally registered spike trains was ob-
served for neuronal activity in various CNS areas in mammals [19, 13, 24]
and fish [18, 28]. The simplest stochastic processes which are not renewal are
the Markov processes of various order. The order of underlying Markov pro-
cess was estimated in [28] for activity in the weakly electric fish electrosensory
system. It was found in [28] that for some neural fibers the Markov order
should be at list seven, which does not exclude that the genuine order is
higher, or that the activity is non-Markovian.

Actually, for proving based on experimental data that a stochastic activity
has Markov order m, one needs increasing amount of data with increasing m.
If so, it seems impossible to prove experimentally that a stochastic activity is
non-Markovian. Similarly as it is impossible to prove experimentally that a
number is irrational. We prove here that the output ISI stream of inhibitory
BN with delayed feedback is non-Markovian based on complete knowledge
of the mechanism which generates the output stream. In a sense, to have
this knowledge is equivalent as to have an unlimited amount of experimental
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data.
It is worth to notice, that the activity of excitatory BN with delayed feed-

back is non-Markovian as well [38]. We conclude, that it is namely the delayed
feedback presence, which results in non-Markovian statistics of neuronal fir-
ing. One should take this facts into account during analysis of neuronal spike
trains obtained from any recurrent network.

Appendix A. Proof of Lemma 1

In the compound event (tn+1, sn+1), the time to live sn+1 always gets
its value before than the tn+1 does. The value of sn+1 can be determined
unambiguously from the (tn, sn) value (See Sections 2.2 and 4.3):

sn+1 = sn − tn, tn < sn,

= ∆, tn ≥ sn.

The only two factors, which determine the next ISI duration, tn+1, are
(i) the value of sn+1, and (ii) the behavior of the input Poisson stream under
the condition (tn, sn; . . . ; t0, s0) after the moment θ, when the tn+1 starts.
The sn+1 value does not depend on (tn−1, sn−1; . . . ; t0, s0), see above. As
regards the input Poisson stream, condition (tn, sn; . . . ; t0, s0) imposes certain
constraints on its behavior before the θ. Namely, if ti 6= si for some 0 ≤ i ≤ n,
than one can conclude that an input impulse was obtained just at the end
of ti. In the opposite situation, when ti = si, one can conclude that in the
course of ti exactly one impulse was obtained from the Poisson stream. But
what do we need in the definition of the P (tn+1, sn+1 | tn, sn; . . . ; t0, s0), it is
the conditional probability to obtain input impulses at definite moments after
the θ. For a Poisson stream this conditional probability does not depend on
conditions before the θ. For example, conditional probability to obtain the
first after θ impulse at θ+ t equals e−λtλdt, whatever conditions are imposed
on the stream before the θ. This proves (3). �

Appendix B. Finding integrals Ii for P (tn+1, . . . , t0)

Domain of s0 values covered by Ii, i = 0, . . . , n, corresponds to the sce-
nario, when impulse, which was in the feedback line at the beginning of
interval t0 (with time to live s0), will reach BN during interval ti, see Fig-
ure B.7. In this process, after each firing, which starts ISI tk, k ≤ i, the time
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Figure B.7: Illustration of relations between (t0, . . . , tn) and (s0, . . . , sn+1) contributing

to the Ii: s0 ∈
]
∑i−1

j=0
tj ;
∑i

j=0
tj
]

,
∑n

j=0
tj < ∆. The time to live sk decreases steadily

with every output firing for k = 0, ..., i− 1 until it becomes that si < ti. Then, during the
time interval ti the line discharges its impulse to BN input, and at the beginning of ti+1

starts to convey the new one with time to live si+1 = ∆. After that, times to live sk are
again decreased by corresponding tk with each firing, k = i+ 1, ..., n.

to live of the impulse in the feedback line is decreased exactly by tk−1. This
means, that variables of integration {s0, . . . , sn+1}, above, are not actually
independent, but must satisfy the following relations:

sk = s0 −

k−1
∑

j=0

tj, k = 1, . . . , i, (B.1)

which are also ensured by δ-function in the bottom line of (17). Next to si
time to live must be equal ∆:

si+1 = ∆, (B.2)

and this is ensured by δ-function in the top line of (17).
The next to si+1 times to live again are decreased by corresponding ISI
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with each triggering. Due to (18), this brings about another set of relations:

sk = ∆−
k−1
∑

j=i+1

tj , k = i+ 2, . . . , n+ 1, (B.3)

which are again ensured by δ-function in the bottom line of (17). Relations
(B.1), (B.2) and (B.3) together with limits of integration over s0 in (19)
ensure that at D1 the following inequalities hold:

sk > tk, k = 0, . . . , i− 1,

si ≤ ti,

sk > tk, k = i+ 1, . . . , n. (B.4)

Inequalities (B.4) allow one to decide correctly which part of rhs of (17)
should replace each transition probability P (tk, sk | tk−1, sk−1) in (19), and
perform all but one integration. This gives:

Ii =

∑i
j=0 tj
∫

∑i−1

j=0
tj

ds0

∆
∫

0

ds1 · . . . ·

∆
∫

0

dsn+1

F (t0 | s0)f(s0)

i
∏

k=1

F (tk | sk)δ(sk − s0 +

k−1
∑

j=0

tj)

× F (ti+1 | si+1) δ(si+1 −∆)

n+1
∏

k=i+2

F (tk | sk)δ(sk −∆+

k−1
∑

j=i+1

tj)

=
n+1
∏

k=i+1

F (tk | ∆−
k−1
∑

j=i+1

tj)

∑i
j=0

tj
∫

∑i−1

j=0
tj

i
∏

k=0

F (tk | s0 −
k−1
∑

j=0

tj)g(s0)ds0,

i = 0, 1, 2, . . . , n. (B.5)

The last expression might be obtained as well by means of consecutive
substitution of either top, or bottom line of (17) into (19), without previously
discovering (B.1) – (B.4).

Finally, integral In+1 corresponds to the case, when at the beginning of
interval tn+1, the line still keeps the same impulse as at the beginning of t0.
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Therefore, In+1 comprises the rest of scenarios contributing to the value of
P (tn+1, . . . , t0) in (5). Proceeding as in the preceding terms, the contribution
Ii+1 reads:

In+1 =

∫ ∆

∑n
j=0

tj

ds0

∫ ∆

0

ds1 . . .

∫ ∆

0

dsn+1

F (t0 | s0)f(s0)
n+1
∏

k=1

F (tk | sk)δ(sk − s0 +
k−1
∑

j=0

tj)

=

∆
∫

∑n
j=0

tj

n+1
∏

k=0

F (tk | s0 −
k−1
∑

j=0

tj)f(s0)ds0

=

∆
∫

∑n
j=0

tj

n+1
∏

k=0

F (tk | s0 −

k−1
∑

j=0

tj)g(s0)ds0 + a

n+1
∏

k=0

F (tk | ∆−

k−1
∑

j=0

tj).

(B.6)

Appendix C. Continuity of integral factor in (22)

Continuity in D1 of the integral factor

∑i
j=0

tj
∫

∑i−1

j=0
tj

i
∏

k=0

F (tk | s0 −
k−1
∑

j=0

tj)g(s0)ds0, i = 0, 1, . . . , n, (C.1)

in the expression (22) can be proven after mathematical simplification. First,
notice that due to integration domain the following inequalities take place

s0 −

k−1
∑

j=0

tj > tk, k = 0, 1, . . . , i− 1, s0 −

i−1
∑

j=0

tj < ti,

which together with (9) allows to replace (C.1) with the following

i−1
∏

k=0

(

λ2tke
−λtk

)

∑i
j=0

tj
∫

∑i−1

j=0
tj

(1 + λs1) e
−λs1P 0 (ti − s1) g(s0)ds0,
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where s1 = s0 −
∑i−1

j=0 tj . The continuity of the last expression is determined
by the continuity of its second factor, since the first one is continuous in
R

n+2. The second factor can be replaced with

ti
∫

0

(1 + λs0)e
−λs0P 0(ti − s0)g

(

s0 +

i−1
∑

j=0

tj

)

ds0. (C.2)

after changing the variable of integration. For further simplification of the
last expression use (1), (18) and (10), which gives instead of (C.2)

ti
∫

0

(1 + λs0)e
−λs0λ2(ti − s0)e

−λ(ti−s0)g

(

s0 +
i−1
∑

j=0

tj

)

ds0 =

= e−λtiti

ti
∫

0

(1 + λs0)λ
2g

(

s0 +

i−1
∑

j=0

tj

)

ds0− (C.3)

−e−λti

ti
∫

0

(1 + λs0)λ
2s0 g

(

s0 +
i−1
∑

j=0

tj

)

ds0. (C.4)

The required continuity of (C.1) is determined by the continuity of integral
factors in (C.3) and (C.4). Now, take into account the explicit expression
for g(s), which is found in [39, Eq. (15)], this issue. For our purposes it is
enough to know that g(s) = A+Be2λs, where A and B are constants. Taking
this into account, the integral factor in (C.3) can be replaced with

A

ti
∫

0

(1 + λs0)λ
2ds0 +Be2λ

∑i−1

j=0
tj

ti
∫

0

(1 + λs0)λ
2e2λs0ds0,

which makes its continuity self-evident. The same is for integral factor in
(C.4).
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