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Abstract

One of the most fundamental concepts of evolutionary dynamics is the “fixation”
probability, i.e. the probability that a mutant spreads through the whole pop-
ulation. Most natural communities are geographically structured into habitats
exchanging individuals among each other and can be modeled by an evolution-
ary graph (EG), where directed links weight the probability for the offspring of
one individual to replace another individual in the community. Very few exact
analytical results are known for EGs. We show here how by using the tech-
niques of the fixed point of Probability Generating Function, we can uncover a
large class of of graphs, which we term bithermal, for which the exact fixation
probability can be simply computed.

Keywords: Evolutionary graphs, fixation probability, fitness, probability
generating functions.

1. Introduction.

Evolutionary dynamics is a stochastic process due to competition between
deterministic selection pressure and stochastic events due to random sampling
from one generation to the other. One of the most fundamental concepts of
evolutionary dynamics is the fixation probability, i.e. the probability that a
mutant spreads and takes over the whole community(Patwa and Wahl [12]). In
the framework of the Moran model (Moran [11]) for a well mixed population,
where an individual’s offspring can replace any other one in the community, the
fixation probability is

πf =
1− r−m0

1− r−M
(1)

where M is the size of the community, m0 the original number of mutants and
r the relative fitness of the mutants. A similar result was reached by Kimura
(Kimura [7]) for the Fisher-Wright model under the diffusion approximation.

The idea of well mixed population is however far from realistic. Natural com-
munities are geographically extended and subdivided into patches that exchange
individuals (figure 1a). Maruyama (Maruyama [9, 10]) was the first to cast the
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(a) (b)

Figure 1: Evolutionary Graphs. (a) individuals are spread in space. A node i can send its
offspring only to connected nodes j with a probability mij . A non-structure population can
be considered as a fully connected graph with uniform migration probability mij = 1/N . (b)
The star configuration, which can be proved to differ from a non-structured population for its
fixation probability.

problem of evolutionary dynamics into a Moran process on graphs (or islands,
in his terminology) and under harsh approximations, concluded that the fixa-
tion probability does not depend on the population structure. The first formal
proof that Maruyama’s results are not always correct was given by Lieberman
et al(Lieberman et al. [8]) who showed that for a Moran process on a star graph
(Figure 1b), the effective fitness of the mutant, in the large population limit,
can be enhanced to r2 due to topological effects. In order to do so, Lieberman
et al. considered evolutionary graphs (EG) where nodes contain exactly one
individual, whether wild type or mutant, connected by directed links represent-
ing the geographical (or social) connectivity. Lieberman et al. also extended
their results to the funnel topology with K layers where the effective fitness,
in the limit of large population, can be amplified to rK , but provided only a
sketch of the proof. Beyond the special cases considered by Lieberman et al,
very few exact analytical results are known. A review of the present state of
known results is given by Shakarian et al(Shakarian et al. [13]).

Most of the results of the EG are obtained through Monte Carlo numerical
simulations. These simulations however scale as 2M where M is the number
of nodes. A new numerical scheme has been proposed (Barbosa et al. [2]) to
accelerate the speed of these simulations, but the computation of the fixation
probability of large graphs is still very time consuming.

It would therefore be important to know the exact fixation probability of a
large class of graphs that can be used as an approximation of closely related
graphs or as a benchmark for assessing the progress in numerical simulation
schemes. This is the aim of the present article.

We recently proposed a new method (Houchmandzadeh and Vallade [6]),
based on the fixed points of the time dependent Probability Generating Function
(fp-PGF) which can efficiently approximate the fixation probability of large,
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arbitrary graphs by solving only a system of M second order algebraic equations.
We show in the present article that the fp-PGF method can also be used to
derive exact results for a large class of graphs that we call bithermal, which are
an extension of the isothermal graphs considered by Lieberman et al.

The temperature of a node is related to the imbalance between the sum
of the weights of the incoming and outgoing links. In isothermal graphs, all
nodes are balanced and have the same temperature T = 1. Bithermal graphs
are bipartite, with two kinds of nodes at either temperature TA or TB. The
star topology (figure 1b) is one particular example of such graphs, some other
particular examples are shown in Figure 2 . We show here that the fixation
probability of these graphs is a simple rational function of the fitness r and of
the number of nodes MA and MB in each class

πf = f(MA,MB, r)

The exact expression of this function is given by equation (21) and its plot by
figure 4a. When there is the same number of nodes in each class (MA = MB),
bithermal graphs become isothermal and the function f above is equal to the
Moran expression (1). When the imbalance between the number of nodes in
each class is large (MA ≫ MB or MA ≪ MB), the fixation probability tends
toward 0 or 1−1/r2, depending on the nature of the Moran process (birth-death
or death-birth).

This article is organized as follow. In the next section, we recall the con-
tinuous time stochastic process of Moran on graph and its associated Master
equation ; the third section is devoted to the Probability Generating Function
method ; In the fourth section, we apply these results to the bithermal graphs
and give their exact fixation probability. The last section is devoted to some
generalizations and conclusions.

2. Continuous time Moran process on graph.

Consider a community of M individuals, which can either be wild type (WT)
with fitness 1 or mutant with relative fitness r = 1+s. The individuals are spread
spatially and the progeny of an individual i can replace individual j according
to a connectivity map. The connectivity map can be envisioned as a graph,
where each node i contains exactly one individual, either mutant or wild type ;
the weight of a link mij specifies the probability for the progeny of an individual
at node i to replace an individual at node j (Figure 1a). The coefficients mij

are collected into a connectivity matrix m. As the number of individual is
fixed, it is sufficient to specify the number of mutants (0 or 1) on each node
n = (n1, n2, ...nM ) at a given time to have complete information about the
system at this time. We consider here a continuous time model where birth
(or death) events occur randomly with rate µ (Houchmandzadeh and Vallade
[5]). The probability density for a node i to decrease or increase its number of
mutants by one unit during a time interval dt is (Houchmandzadeh and Vallade
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(a)

(c)

Figure 2: Some examples of bithermal graphs; for simplicity, each link represents two directed
links. A bithermal graph is constituted of two kinds of nodes at respective temperature TA

and TB , indicated here by their colors. Each A node is connected to a subset of B nodes and
vice versa. (a) a (4,12,6,2) generalized star, consisting of 4 central nodes and 12 peripheral
nodes, each central node connected to 6 peripheral and each peripheral connected to two
central nodes ; (b) an example where the combined effect of the number of links and their
weight makes the graph bithermal ; (c) A symmetric 2 dimensional, bithermal crystal with
periodic boundaries;
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[6])

W−
i (ni) = (µ/M)ni

M
∑

k=1

mki(1 − nk) (2)

W+

i (ni) = (µ/M)r (1− ni)
M
∑

k=1

mkink (3)

It is crucial at this step to distinguish between two kinds of Moran processes
(Antal et al. [1]). In the first case which we call D-B (Death first and then
replacement, also called Voter Model), a death occurs first on a node, then
immediately one connected node duplicates and send its progeny to this node.
Equation (2) is therefore the probability density that a mutant dies at node
i during dt, and is replaced by the progeny of a WT on a connected node k.
Equation (3) is the probability density that a WT dies at node i and is replaced
by a mutant on a connected node. Without loss of generality, the mutant’s
advantage r is included in this line, either as a decreased mortality or a better
replacement success once a death event has occurred.

In the case of B-D processes (also called Invasion Process), a birth occurs
first on a node k and the progeny is then sent to a connected node i to replace
the local resident. The transition probabilities are still expressed by the same
equations (2,3), but the quantity µ now denotes the birth rate.

Although the rate equations (2,3) are similar for these two processes, the
normalization conditions of mki coefficients are different :

M
∑

i=1

mik = 1 (D-B);

M
∑

i=1

mki = 1 (B-D) ∀k (4)

The temperature of a node is defined for these processes as

M
∑

i=1

mki = Tk (D-B) ;

M
∑

i=1

mik = Tk (B-D) ∀k (5)

Because of the normalization constraint (4), we must have
∑M

j=1
Tj = M for

both processes. This means that if some nodes are cold (T < 1), others must
be hot (T > 1).

The Moran process is a one-step stochastic one, where during an infinites-
imal interval dt, only one birth or death event can occur. Equations (2,3)
are transition probabilities between states n on the one hand and states ain =
(n1, ...ni−1, ...nM) and a†in = (n1, ...ni+1, ...nM) on the other. The probability
P (n, t) of observing state n at time t obeys the Master equation

∂P (n, t)

∂t
=
∑

{m}

W (m → n)P (m, t)−W (n → m)P (n, t) (6)

The EG process we are considering has two absorbing states 1 = (1, 1, ...1)
and 0 = (0, 0, ...0). Once a mutant has invaded all the nodes or has been
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eliminated from all of them, it is fixed or lost and there is no further evolu-
tion (until a new mutant appears by random mutation) : W (1 → m) = 0 and
W (0 → m) = 0 as can be deduced from equations (2,3). Note that the probabil-
ity of reaching state 1 from an initial state n, i.e. the fixation probability π(n)
can in principle be found using the Kolmogorov’s backward equation (Ewens
[3]) :

∑

m

(π(n)− π(m))W (n → m) = 0 (7)

π(0) = 0 ; π(1) = 1 (8)

which is a set of linear equations in the unknowns π(n). The direct resolution of
the above set of equation however can be attempted only in special cases. The
best example of a direct solution is the unstructured population, where the graph
is fully connected and mij = 1/M ; the EG dynamics can then be mapped into
a biased one-dimensional Brownian motion and solved by standard techniques
(Ewens [3]), which yields the well known result (1) . Other cases, such as the
star topology in the limit of large population considered by Lieberman et al
(Lieberman et al. [8]), use such careful mapping. The mapping method however
is hard to generalize.

3. The fp-PGF method.

Computation of the fixation probability can be simplified if instead of the
linear system (7), we use the dynamics of the Probability Generating Function

φ(z, t) =
∑

{n}

P (n, t)zn

where the variable z = (z1, z2, ...zM ) is conjugate to n = (n1, n2, ..., nM ) and
z
n = zn1

1
zn2

2
...znM

M . Time is measured in generation time units M/µ. Note that
φ(0, t) = 0 and φ(1, t) = 1. From the Master Equation (6), we can derive the
dynamics of the PGF (Houchmandzadeh and Vallade [6]) which reads:

∂φ

∂t
=

M
∑

k=1

fk(z)
∂φ

∂zk
−

M
∑

i,k=1

gi,k(z)
∂2φ

∂zi∂zk
(9)

where for D-B processes,

fk(z) = zk

(

M
∑

i=1

mki(zi − 1)

)

− r−1(zk − 1) (10)

gi,k(z) = mki(zi − 1)(zi − r−1)zk (11)

For the B-D process, the first order term is slightly different and reads

fk(z) = zk

(

M
∑

i=1

mki(zi − 1)

)

− (Tk/r)(zk − 1)
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Solving the PGF equation (9) would seem at least as formidable as solving
directly the Master Equation (6). However, for the computation of the fixation
probabilities, we are only interested in the large time limit t → ∞. At large
time, the mutant is either fixed or lost, therefore the stationary solution φs(z)
to which the PGF converges is simply

φs(z) = π0 + πf

M
∏

i=1

zi (12)

where π0 and πf are the loss and fixation probabilities and implicit functions
of the initial conditions. It can also be checked manually that (12) is indeed a
solution of (9). The problem of finding π0 and πf becomes trivial if the PGF
possesses a fixed point ζ = (ζ1, ...ζM ) such that

∂φ

∂t

∣

∣

∣

∣

z=ζ

= 0

In this case, we have

φ(ζ, 0) = φ(ζ,∞) = π0 + πf

M
∏

i=1

ζi

and, as πf + π0 = 1,

πf =
1− φ(ζ, 0)

1−
∏M

i=1
ζi

As the quantity φ(ζ, 0) is known from the initial conditions, finding a fixed point
of the PGF determines entirely the fixation probability. Note that once a fixed
point has been found, the fixation probability for any initial condition can be
trivially computed.

For the initial condition of the mutant appearing at random with probability
1/M on one node, φ(z1, ...zM ; t = 0) = (1/M)

∑

i zi and therefore the fixation
probability is given by

πf =
1− (1/M)

∑

i ζi
1−

∏

i ζi
(13)

The condition for a point ζ to be a fixed point is

fk(ζ) = 0 ∀k (14)

gi,k(ζ) + gk,i(ζ) = 0 ∀i, k (15)

Whether such a fixed point exists or not depends on the connectivity matrix
mik. For an isothermal graph where all the nodes k have temperature Tk = 1,
it is easy to check that ζ = r−1

1 is a fixed point :

fk(r
−1

1) = r−1(r−1 − 1)− r−1(r−1 − 1) = 0

gi,k(r
−1

1) = mik(r
−1 − 1)(r−1 − r−1)r−1 = 0
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Figure 3: The connectivity matrix of a 2-thermal graph for a D-B process, where nodes of
type A are numbered from 1 to MA and nodes of type B from MA + 1 to MA +MB. For a
B-D process, the sum of the elements of a row is equal to unity, and the sum of the elements
of a column is equal to TA or TB .

and the fixation probability (13) of the isothermal graph is equal to the result
(1) for unstructured populations. We see here how easily this theorem can be
obtained from the fixed point of the PGF.

4. bithermal graphs.

We now consider a subset of bipartite graphs that we call bithermal (2)
for which the fixation probability can be determined in algebraic closed form.
In these graphs, there are MA nodes of type A at temperature TA and MB

nodes of type B at temperature TB. More over, we require that two nodes
can be connected only if they are at different temperatures, and if a node i is
connected to a node j, then j is also connected to i. Of course, we suppose that
the graph is connected, i.e. there is always a path from any node i to any node
j. With appropriate numbering of the nodes, the connectivity of such graph is
a block matrix of the form

m =

(

0 α
β 0

)

(figure 3). The star topology (figure 1b) is such a graph with MA = 1 central
and MB peripheral nodes. For a D-B process, all the elements of the star’s β
block are equal to 1/MB and all the elements of α block are equal to 1. Therefore
TA = MB and TB = 1/MB. The star graph can be generalized to the case where
the number of central nodes MA > 1 (figure 2a). For a general bithermal graph
the number of B nodes to which an A node connects and the weights of these
links can be arbitrary, as long as the constraints on temperatures are respected.
Note that TA and TB are not independent. By summing over all the elements
mki of the β or α block of the connectivity matrix m, we have for a D-B process

MA = MBTB ; MB = MATA

8



for a B-D process, the role of MA and MB are exchanged, but in both cases, we
have

TATB = 1 (16)

We now search for the bithermal graphs which have an exact fixed point.
Following the example of the isothermal graphs, we look for a fixed point ζ =

(ζ1, ...ζM ) where ζi = ζA if i ∈ A and ζi = ζB if i ∈ B .
Let us first consider the case of D-B processes. Using condition (14) for

k ∈ A orB we obtain a set of two algebraic equations :

fA(ζ) = ζA(ζB − 1)TA − r−1(ζA − 1) = 0

fB(ζ) = ζB(ζA − 1)TB − r−1(ζB − 1) = 0

the solution of which is given by

ζA = u(r,MA/MB) (17)

ζB = u(r,MB/MA) (18)

u(r, T ) =
1/r + T

r + T
(19)

This solution also satisfies condition (15) if for k ∈ A and i ∈ B, we have the
following relation between the coefficient of the connectivity matrix m :

mki

mik

= −
(ζB − 1)(ζB − r−1)ζA
(ζA − 1)(ζA − r−1)ζB

=
1

TA

=
MA

MB

which we can express as a relation between the two blocks β and α of the
connectivity matrix m:

α = TAβ
⊺ (20)

We observe here that this is the sufficient condition to form exactly solvable
bithermal graphs : form an MB × MA matrix β where the sum of elements
in each column is 1 and the sum of elements in each row is 1/TA = MA/MB;
form the block matrix m from β and α = TAβ

⊺. The β block contains MAMB

coefficients subject to MA +MB summation rules, so the number of bithermal
graphs with exact solutions is indeed very large when MA or MB are large.

An important subset of bithermal graphs that always has an exact fixed
point is a set we call symmetric bithermal graphs. For these graphs, all the
existing links from a node A to a node B (respect. B to A ) have the same
weight mAB (resp. mBA). The generalized star graph (fig 2a) belongs to this
subset. For these sets, the weight of a link is determined only by the number
of connected nodes, and each A (resp. B) node has always the same number of
neighbors. The symmetric subset automatically satisfies all the constraints and
always has exact fixed points.
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Once the fixed point is known, the fixation probability is easily determined
from equation (13):

πf =
1− (MAζA +MBζB)/(MA +MB)

1− ζMA

A ζMB

B

(21)

For a B-D process, the computation of the fixed point follows exactly the
same line of argument. The result is obtained by permuting MA and MB :

ζBD
A = u(r,MB/MA) ; ζBD

B = u(r,MA/MB) (22)

The fixation probability is given by the same expression (21). Note that D-B
and B-D processes act in opposite directions. Compared to a non-structured
population of the same size, a bithermal D-B process acts as a suppressor of
selection, lowering the fixation probability where the B-D process is an amplifier
of selection, increasing the fixation probability. The maximum πf for a D-B is
obtained for TA = 1 and is equal to expression (1) ; the maximum πf for a B-D
process is obtained for TA → ∞ and is equal to 1− r−2. A plot of both fixation
probabilities and their comparison to numerical simulations is shown in figure
4 .

We stress that for bithermal graphs, the details of the connectivity are not
important : the fixation probability depends only on the total number of A and
B nodes. Consider for example the symmetric generalized star (MA,MB, p, q)
where each A node is connected to p nodes of type B and each B nodes to q
nodes of type A. For a fully connected generalized star, p = MB and q = MA

; an example of partially connected generalized star is given in figure 2a. We
emphasize that for generalized stars, the fixation probability does not depend
on the detail of the connectivity p, q, a result which would be hard to predict
by other methods. We also note from numerical simulations that the fixation

time is also only a function of MA and MB and does not depend on the detail
of the connectivity.

Finally, we note that even when the constraint (20) is not respected and
α 6= TAβ

⊺, the fixation probability of bithermal graphs is well approximated
by expression (21). In this case, the point ζ computed from equations (17,18)
is only a quasi-fixed point, but as we have shown earlier(Houchmandzadeh and
Vallade [6]), for large communities, quasi-fixed points can be used for a good
approximation of the fixation probability. It can be observed in figure (4b) that
the numerical errors of fixation probabilities of connectivity matrices having
exact fixed points (left of vertical line) or only quasi-fixed point (right of vertical
line) are of the same magnitude, for a system as small as M = 100. We also
note from numerical simulations that fixation time, is only

5. Discussion and Conclusion.

The approach we presented above can be generalized in various directions.
We have restricted our approach to the case where each node contains only one
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Figure 4: Fixation probability πf of bithermal EGs of size M = 100 and r = 1.25. (a) πf

as a function of the number MA of nodes of type A for a generalized (MA,MB) star. circles
(black) and triangles (red) correspond to numerical resolution of the fixation probabilities for
B-D and D-B processes. Solid lines correspond to exact solutions given by equation (21). The
dashed lines correspond to πf = 1 − 1/r and πf = 1 − 1/r2. Numerical simulations were
performed by using a Gillespie Algorithm(Gillespie [4]) ; for each point, 105 stochastic paths
were generated and used to compute the fixation probability. (b)Fixation probability πf for
random bithermal EG for different values of MA (circles 5, squares 10, × 15, diamond 20,
triangle up 30,triangle down 45) and D-B processes. To the left of the vertical line (#index
≤50) : Each point corresponds to a random bithermal connectivity matrix where the two
blocks are related through α = TAβ⊺. To the right of the vertical line (#index >50) : For
each point, the two blocks of the bithermal connectivity matrix are random and α 6= TAβ⊺.
Solid lines indicate the theoretical values computed by equation (21).
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Figure 5: Generalization to bi-level graphs, where each node can be considered as composed
of N individuals, conserving the same topology, i.e. the weight of new links is downscaled by
a factor N : m′

ij = mij/N

individual. This restriction can be relaxed and we can let each node contain
a number of individuals N ≥ 1 (figure 5) . This is equivalent to the original
island model of Maruyama(Maruyama [9]) or can alternatively be envisioned as
a bi-level graph as defined by Shakarian et al(Shakarian et al. [13]), where each
node is mapped into N sub-nodes conserving the original topology. As we have
shown earlier(Houchmandzadeh and Vallade [6]), this parameter does not alter
the expression of the PGF and the fixed points are still computed by the same
equations. The fixation probability is slightly modified and reads

πf =
1− (MAζA +MBζB)/(MA +MB)

1− ζNMA

A ζNMB

B

The approach can be extended even further and allows for different numbers Nk

of individuals for each node k (Houchmandzadeh and Vallade [6]).
Another direction toward which this work can be extended is the n−thermal

graphs. Here we have considered only bithermal graphs composed of two types
of nodes which we can represent by an A − B topology. In principle, we can
generalize the method to graphs containing P types of nodes O1, ..., OP : The
MI nodes belonging to type OI have the temperature TI and a hot class can
only be connected to cold classes and vice versa. We could in principle form
a polymeric topology such as O1 − O2... − OP , branched systems, closed rings
and so on. The exploration of these topologies implies an analytic study of the
roots of algebraic equations of order 2P and is beyond the scope of the present
article.

To summarize, we have obtained exact analytical results for a wide class
of graphs that we have called bithermal in the field of Evolutionary Graph
Theory. EGT is a cornerstone for our understanding of evolution, because
natural population are always geographically extended and cannot be a priori
approximated as “well mixed”. Exact results in EGT however have been hard to
obtain because in each case, a mapping into a one-dimensional Brownian motion
has to be constructed ; whether such a mapping exists or not for a particular
problem is not a trivial problem. The method we develop is radically different
: by using the continuous time version of the Moran model and the dynamics
of the PGF, we reduce the problem of finding an exactly solvable model into
finding the roots of algebraic equations. We have illustrated the power of this
dynamical method through our study of bithermal graphs. We believe that the
method we have presented can be a powerful tool to get exact results for the
fixation probability of more complex evolutionary graphs.
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