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Abstract

Progress in cell type reprogramming has revived the interest in Waddington’s concept of the 

epigenetic landscape. Recently researchers developed the quasi-potential theory to represent the 

Waddington’s landscape. The Quasi-potential U(x), derived from interactions in the gene 

regulatory network (GRN) of a cell, quantifies the relative stability of network states, which 

determine the effort required for state transitions in a multi-stable dynamical system. However, 

quasi-potential landscapes, originally developed for continuous systems, are not suitable for 

discrete-valued networks which are important tools to study complex systems. In this paper, we 

provide a framework to quantify the landscape for discrete Boolean networks (BNs). We apply our 

framework to study pancreas cell differentiation where an ensemble of BN models is considered 

based on the structure of a minimal GRN for pancreas development. We impose biologically 

motivated structural constraints (corresponding to specific type of Boolean functions) and 

dynamical constraints (corresponding to stable attractor states) to limit the space of BN models for 

pancreas development. In addition, we enforce a novel functional constraint corresponding to the 

relative ordering of attractor states in BN models to restrict the space of BN models to the 

biological relevant class. We find that BNs with canalyzing/sign-compatible Boolean functions 

best capture the dynamics of pancreas cell differentiation. This framework can also determine the 

genes' influence on cell state transitions, and thus can facilitate the rational design of cell 

reprogramming protocols.
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1. Introduction

A hallmark of multicellular organisms is the co-existence of distinct differentiated cell types 

with different functions and stable gene expression patterns. A less specialized cell, a stem 

or progenitor cell, spawns a variety of more specialized progeny cells through cell 

differentiation. Once differentiated, a specialized cell’s gene expression pattern is relatively 

robust against perturbations emanating from a noisy environment. Where does this stability 

come from? How do gene expression patterns change as cells differentiate in response to 

external cues, and thereby, transition from one stable gene expression pattern to another? In 

principle, such questions can be answered by understanding the interactions between the 

genes in the underlying gene regulatory network (GRN), which constrain the changes in the 

gene expression patterns, producing stable and unstable steady states. The dynamical system 

associated with GRNs can be modelled by a system of ordinary differential equations 

(ODEs) where continuous variables represent the expression levels of individual genes. 

However, with ODEs one is quickly limited by the number of configurations of the networks 

due to the exponential growth of complexity with the number of genes as well as the general 

lack of information on the parameters that characterize the interactions between genes. A 

widely used alternative approach to study GRNs is Boolean networks (BNs), a framework 

that enables modelling of networks with hundreds of genes or analyze large statistical 

ensembles of networks of random structure [1,2]. Analysis of an ensemble of BNs can yield 

insights on the relationship between structure and dynamics of GRNs [1–3].

In 1969 Kauffman introduced BNs to study the dynamics of GRNs [1]. Since then BNs have 

been used to model a wide range of biological phenomena such as cell cycle, cellular 

differentiation and evolution of GRNs [4–17]. Specifically, BNs have been extensively used 

to study developmental processes. Villani et al [13] have developed a BN framework for cell 

differentiation. Krumsiek et al [14] have developed a BN model to recapitulate 

hematopoiesis. Chang et al [15] employed a BN model to explain human embryonic stem 

cell differentiation and the generation of induced pluripotent stem cells (iPSCs). Klipp et al 
[16] used a BN model to study the influence of gene regulation, methylation and histone 

modifications on cell differentiation. Alvarez-Buylla et al [6–17] used BNs to explain cell 

differentiation and developmental ordering in the floral organ of Arabidopsis. An important 

limitation of these reconstructed BN models [4–17] for different biological processes is their 

specification of one defined set of Boolean functions for genes in the network out of a 

multitude of possible choices [18] that can reproduce the biologically relevant cell states as 

network attractors, and the reason for the chosen set of Boolean functions often remains 

elusive. Also experimental observations in cell differentiation systems usually are consistent 

with a large number of possible Boolean functions rather than suggesting a single well-

defined set, giving rise to a set of possible BNs that can describe the observed gene 

expression patterns of the attractors [18]. Thus, one always wonders whether the reported 
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results would still hold for other choices of functions and how structurally robust the 

predicted dynamics is for the observed attractor states.

A more stringent requirement on a model capturing the development of multicelluar 

organisms is the following constraint. In addition to recapitulating the multiple observed 

attractors of the network, the model of the developmental GRN should also reproduce the 

experimentally observed relative stabilities of attractors, i.e, the model has to relate the 

different attractor states to each other based on their relative stabilities. By that we mean the 

relative ease for transitioning from one attractor state (A) to another state (B) which 

epitomizes the developmental process. More formally, in a stochastic system, the relative 

ease of transitioning from state A to state B would be given by the probability P(A→B) for 

transition from A to B (given random flutuations in gene expression). Note that such 

transition probabilties are typically asymmetric (i.e., P(A→B) ≠ P(B→A)) – a property that 

ultimately accounts for the directionality (irreversibility) of development.

Interactions between genes collectively produce the developmental ordering of different cell 

types which is robust and repeatable during embryogenesis. Therefore, once the multiple 

attractors of the dynamical system are determined, it is necessary to evaluate their relative 

stabilities in order to derive a consistent relative ordering for all attractors in a 

developmental process (if one exists). Recently, some of us have derived a framework to 

calculate the relative stabilities of cell attractors in continuous ODE-based GRN models 

using least action principles [19]. However, ODE-based GRN models are not well-suited to 

model large networks, let alone ensembles of networks, for which BNs are commonly used 

[1–3].

In this paper, we present a mathematical framework for calculating the relative stabilities of 

cell attractors and transitions, and hence deriving the notion of a landscape in BN models of 

development. We use a minimal GRN for pancreas development as an example to 

demonstrate the utility of our method. Imposing the observed relative ordering of attractors 

as a novel phenotypic constraint affords evaluation of ensembles of BNs (with a given 

network structure but different sets of Boolean functions) that are compatible with multiple 

observed attractors of the GRN. Our method can be used to reconstruct simple BN models 

for developmental processes from available information on GRN architecture and relative 

stability of attractor states, and thus, can predict the efforts associated with particular state 

transitions of interest which in turn can facilitate the rational protocol design for cell 

reprogramming in regenerative medicine.

2. Modelling Framework

2.1 Boolean network (BN) model

BN model for a GRN is specified by its set of nodes, directed edges and Boolean functions. 

In a BN, the nodes represent genes while the edges represent interactions among genes in 

the network. Any gene i in a BN at a given time can be in one of two expression states: on if 

its state xi = 1 and off if its state xi = 0. For a m-gene BN, the state vector Xt = (x1(t), x2(t), 

…, xm(t)) gives the expression of all genes at discrete time t in the network. For each gene i 
in a BN, a Boolean function Fi determines the output value xi at time t + 1 given the state of 
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its input genes at time t. Thus, the gene expression state of a BN at any time step is governed 

by the recursive equation:

(1)

where Xt is a m-dimensional binary vector (0 or 1) that gives the expression of all genes at 

time step t. F encapsulates both the network topology and Boolean functions at all nodes, 

and thus, contains the information determining the dynamics of the BN.

For a m-gene BN, there are 2m possible states. A sequence of states X0, …, Xt, Xt+1, … 

forms a trajectory in the state space. Trajectories converge in a deterministic (noise-free) 

system. Since the state space is finite, the trajectories eventually coverge either to a single 

state (point attractor) or a cycle of states (cyclic attractor). In the extreme case, a cyclic 

attractor encompasses all or almost all possible network states, and given the large number 

of states 2m, such behavior will appear chaotic. For any given attractor, its associated basin 

of attraction is the set of initial states that will converge to that attractor. Attractors of a BN 

are charaterized by the size (and shape) of their associated basin of attraction. The network 

topology (i.e., the set of nodes and edges) and the Boolean functions at each node fully 

determine the attractor structure – which consists of attractors, trajectories and basins of 

attraction. The attractor structure can be determined by explicitly evaluating all state 

transitions X1 = F(X0) for all 2m possible initial states X0. An example of a 4-gene GRN 

with Boolean functions and resulting attractor structure is shown in Fig. 1.

2.2 Transition matrix and BN dynamics

Spontaneous transitions between attractors that underlie the epigenetic landscape or the 

quasipotential landscape requires probabilistic (noise-driven) dynamics. A discrete Markov 

model can be used to describe the BN dynamics. Let pi give the probability for the 

occupation of a state si, and Tij give the transition probability from state sj to state si. In a 

BN with m genes, there are 2m possible states, and the occupation probability of different 

possible states at time t can be represented by the probability distribution , 

(k = 2m). The evolution of the discrete-time Markov model associated with the BN of m 
genes is governed by:

(2)

The steady state distribution is then given by eigenvector p* of Markov transition matrix T 
corresponding to the eigenvalue λ = 1. Thus, BN dynamics can be characterized by the 

eigenvectors of Markov matrix T. If p* has only one non-zero element, then the network has 

a point attractor. If p* has ω non-zero elements with 1 < ω < 2m, then the network has 

cyclic attractors. If p* has 2m non-zero elements, it means that every state can transition to 

every other state, and the network dynamics is ergodic.
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2.3 Mapping BN to a Markov model

We describe here the procedure to map a BN model to a Markov model with a simple 

example. Consider the toggle switch between two genes (x and y) with both cross-inhibitory 

interactions and self-activation as shown in Fig. 2. The BN model of the 2-gene toggle 

switch can have 22 = 4 possible states: s1 = (0,0), s2 = (0,1), s3 = (1,0), and s4 = (1,1). The 

Boolean functions for the 2 genes in the BN model of the toggle switch are given by:

(3)

For the BN model of the toggle switch, the occupation probability of the 4 possible states is 

represented by a distribution vector p = (p1, p2, p3, p4). Based on Boolean functions in Eq. 3, 

the Markov transition matrix for the BN model of the toggle switch is:

(4)

where the element Tij gives the transition probability from state sj to state si. In the case of 

the toggle switch, the Markov matrix T has three eigenvectors with eigenvalue λ = 1. The 

corresponding steady states are represented by the eigenvectors p* ∈ {(0,1,0,0), (0,0,1,0), 

(0,0,0,1)} and the three corresponding point attractors are s2, s3, and s4.

2.4 Relative stability of states in BN model with noise

In a deterministic BN model, there cannot be any transitions between two states in different 

basins of attraction, and thus the relative stabilities of attractors have no meaning for such a 

Markov model. However, introduction of noise into deterministic BNs will render the 

possibility of transitions between two states in different basins of attraction. Thus, the notion 

of relative stability of the attractors can be defined in BNs with noise where there is 

possibility of transitions between attractors. Also, the Markov transition matrix for BNs with 

noise is ergodic because there is a non-zero probability of transition between any two states 

of the network.

In a BN with m genes, any state si in the Markov model can be represented by a m-bit binary 

vector. Let η be the probability for randomly flipping one bit due to noise in the m-bit binary 

vector corresponding to any state si. A perturbation matrix P can then be constructed using 

the Hamming distance dij = ‖si − sj‖H between two states si and sj as follows [20]:
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(5)

where  are binomial coefficients, which guarantee that each column of matrix P sums up 

to 1 − (1 − η)m. The BN model with noise is then constructed by adding the perturbation 

matrix P to the Markov matrix T:

(6)

The equation for the dynamics of the BN model with noise is then:

(7)

Note that the Markov matrix T for the deterministic BN model is such that each column of T 
adds up to 1. Similarly, in Eq. 6, a normalizing coefficient is used to ensure that T̃ also 

satisfies the conservation principle, i.e., each column of T̃ adds up to 1. Since the Markov 

matrix T̃ is ergodic for η > 0, the BN model with noise will have one and only one steady 

state probability distribution p* [21]. Equations 5 and 6 can be used to construct a BN model 

with noise which will always converge to a steady state probability distribution p* that can 

be directly calculated from Eq. 7. With the introduction of noise, the original dynamical 

system corresponding to the deterministic BN relaxes into an ergodic dynamical system, and 

we can quantify the relative stabilities of distinct attractors for such a system via two 

measures: steady states probability distribution p* and mean first passage time (MFPT).

2.5 Mean First Passage Time (MFPT)

In an ergodic dynamical system, it is possible to reach every possible state from any 

arbitrary state. A transition barrier that epitomizes the ease of transition from one attractor to 

another attractor offers a notion of relative stability. Relative stability can be measured via 

mean first passage time (MFPT) which evaluates the average number of time steps Mij that 

are necessary for the system to transition from state si to state sj [22].

One can compute the matrix Mij containing the MFPT for the transition between any two 

states si and sj in the dynamical systems as follows. Let  denote that the probability that 

the first passage time from si to sj is n. Then we have the equations:
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(8)

where  is the probability of transition between states si and sj in n steps. Thus, we have 

the following recursive equation:

(9)

for the first passage time, and the MFPT Mij is then calculated as:

(10)

Note that the shorter the number of time steps Mij to transition between two states si and sj, 

the lower is the transition barrier between two states si and state sj. There exists a particular 

distribution of time steps required for the transition from state si to state sj and MFPT is a 

mean value of this distribution.

2.6 Relative transitive ordering in a developmental GRN

Cell differentiation is a largely (spontaneously) irreversible process where the zygote 

differentiates robustly into other cell types in a pre-determined order. This programmed 

behavior that allows the zygote to robustly differentiate into other cell types in a well-

defined sequence in the presence of molecular noise requires that the GRN orchestrates a 

consistent relative ordering of different attractors and intermediate transient states. By 

consistent relative ordering of different attractors, we mean that in the directed graph with 

each node as attractor state and edges representing spontaneous attractor transitions, there is 

little or ideally no circular (non-transitive) structure. Based on the relative stabilities of cell 

states measured via MFPT, we propose below a mathematical formula to define a consistent 

relative ordering of all attractors in the GRN.

Suppose we have a relative stability matrix M which gives the transition barrier between any 

two states based on MFPT, then we can define a relative ordering as follows. First, we define 

the net transition rate Dij between two attractors, i and j, as follows:

(11)

Note that Dij > 0 implies that attractor i is more stable than attractor j. This relationship can 

be extended to n different attractors of the network. From the structure of the skew-
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symmetric matrix D, we determine whether the set of n attractors is ordered with respect to 

the relative stability of attractors i and j, or whether cycles are present as follows. If there 

exists an even permutation π = (π1, …, πn): {1, …, n} → {1, …, n} with sgn(π) = 1 and ∀i 
≠ j: πi ≠ πj, such that ∀πi < πj: Dπiπj ≥ 0, then π defines a consistent relative ordering. 

Note that when a set of states has consistent ordering then there are no cycles in terms of 

relative stability between the states.

2.7 Canalyzing, Nested canalyzing and Sign-compatible Boolean functions

Information on the topology of a GRN is increasingly available from direct experimental 

determination of gene regulatory mechanism or such information can be inferred from 

experimental data [23–27]. However, the Boolean function that controls the expression state 

of each gene based on the state of its input genes is more difficult to determine than network 

topology. In practice, a vast number of Boolean functions are plausible for a given network 

topology based on available experimental data [18]. Thus, it is desirable to apply 

biologically motivated constraints to limit the number of possible Boolean functions. We 

propose to use canalyzing, nested canalyzing and unate Boolean functions to charaterize the 

gene interactions and limit the set of possible Boolean functions for biological systems.

Kauffman proposed the concept of canalyzing Boolean functions (CFs) [2]. A Boolean 

function F(x1, …, xn) is CF if there exists an input xi with canalyzing Boolean value a such 

that F(x1, …, xi = a, xn) = b is constant. Thus, the input value xi = a determines the output 

value of the Boolean function F(x1, …, xn) regardless of the state of other inputs. The output 

value b is called the canalyzed value.

Later Kauffman extended this concept to nested canalyzing Boolean functions (NCFs) 

which are a subset of CFs [27]. A Boolean function F(x1, …, xn) is NCF if there exists a 

permutation of inputs (σ1, …, σn) such that it satisfies the following conditions: F(xσ1 = aσ1, 

…, xσn) = bσ1; F(xσ1 ≠ aσ1, xσ2 = aσ2 …, xσn) = bσ2; ………; F(xσ1 ≠ aσ1, xσ2 ≠ aσ2 …, 

xσn−1 = aσn−1, xσn) = bσn−1; F(xσ1 ≠ aσ1, xσ2 ≠ aσ2 …, xσn−1 ≠ aσn−1, xσn = aσn) = bσn 
where bσi is the canalyzed Boolean value of input xσi. The presence of CFs in BNs results in 

lesser number of effective upstream regulators for genes than it may appear in the network 

topology [27].

Furthermore, it has been shown that CFs improve the robustness of the attractor states in 

BNs to both mutations (in the form of changes in architecture, such as rewiring of edges or 

deletion of nodes) as well as perturbations (in the form of instant bit flips of the node states), 

and thus, CFs push the BN dynamics towards an ordered regime [27,28].

Another class of Boolean functions that influence the network dynamics comprises the unate 
functions [28]. An unate function is a type of Boolean function which has monotonic 

properties. Since in biology a gene interaction is often characterized as either activating or 

inhibiting, unate functions can be used to capture the monotonic properties of the Boolean 

functions. A Boolean function F(x1, x2, …, xn) is said to be positive unate in input xi if ∀xj 

∈ {0,1} with j ≠ i:
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(12)

and negative unate in input xi if ∀xj ∈ {0,1} with j ≠ i:

(13)

Positive unateness in input xi means that when the input gene xi is on, the output of the 

Boolean function is greater than or equal to that when the input gene xi is off. Negative 
unateness in input xi means that when the input gene xi is on, the output of the Boolean 

function is less than or equal to that when the input gene xi is off. Note that it has been 

shown earlier that NCFs are equivalent to unate cascade functions [30].

Although the Boolean function controlling the expression state of an output gene based on 

the state of its input genes is difficult to determine, in many cases, the nature of gene 

interactions (activation or inhibition) between the input gene(s) and the output gene may be 

known from experimental data. Such information on the nature of gene interactions can be 

used to constrain the set of Boolean functions. Specifically, NCFs can be limited to a subset 

of sign-compatible functions (SGNs) based on such information on the nature of gene 

interactions. A NCF F(x1, x2, …, xn) is said to be a SGN if every input xi satisfies either 

positive unateness or negative unateness based on the known nature of interaction between 

input gene and output gene. If the output function for gene xj is a SGN then its input xi will 

satisfy positive unateness if xi is known to activate xj or its input xi will satisfy negative 

unateness if xi is known to inhibit xj.

In summary, a hierarchy exists among the different types of Boolean functions considered 

here. CFs are a subset of all possible Boolean functions, NCFs are a subset of CFs and SGNs 

are a subset of NCFs. We show later that the sign-compatiblity plays an important role in 

constraining the set of possible BNs compatible with multiple observed attractors and in 

determining the relative stabilities of cell attractors.

2.8 Restricting the space of BNs by imposing specific types of Boolean functions and 
dynamical constraints

Building the BN model for a GRN involves two important steps. Firstly, the topology of the 

underlying network has to be specified. This task is usually accomplished through synthesis 

of large amounts of experimental data from the literature on the specific biological process 

in question. Secondly, appropriate Boolean functions need to be specified for each gene in 

the network which determines the output expression state of genes based on the expression 

state of the input genes. This step is much more challenging compared to the task of 

specifying the topology of the network as the space of possible Boolean functions for a 

given network topology can be astronomical [18]. A possible strategy to restrict the space of 

possible Boolean functions for a given network topology is through imposition of dynamical 

constraints associated with known attractors of the GRN and the choice of specific type of 

Boolean functions. Firstly, through imposition of dynamical constraints, one demands that 
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the BN with the chosen functions recapitulate the known attractors of system that 

correspond to cell types in a developmental GRN. Secondly, one can restrict the Boolean 

functions to certain desired mathematical forms [2,27,28,30,31] which may render the 

dynamics to be ordered and directional. Here, we hypothesized that canalyzing, nested 

canalyzing and sign-compatible functions may render the dynamics of the developmental 

GRN to be an ordered and directional process. We apply this framework next to model 

pancreas cell differentiation.

3. Results and Discussion

3.1 BN model for pancreas differentiation with restriction of Boolean functions

In this work, we apply the concept of relative stability of attractor states to study cell 

differentiation in BN models of human pancreas development.

The pancreas is an exocrine gland that secretes various digestion enzymes into the intestinal 

lumen. It is also an important endocrine organ: β cells of the pancreas islets secrete insulin 

into the circulatory system that regulates blood glucose levels and metabolism as shown in 

Fig. 3A. As deficiency or malfunction of β cells leads to diabetes, a major focus of research 

has been on cell regeneration or reprogramming to produce β cells. This line of research has 

led to the characterization of cell lineage determining factors in the pancreas development as 

well as reprogramming experiments to β cells. Pdx1 is the first gene in embryonic 

development that marks the onset of the pancreas cell lineage. The cells with high Ptf1a 
expression are fated to the exocrine pancreas. A few cells that display temporarily high 

Ngn3 expression will form the endocrine cell lineages. The expression of Pax4 in some cells 

further specifies the β, δ lineages while Arx specifies the α,PP lineages (Fig. 3B).

Based on experimental literature, we reconstruct a minimal GRN for pancreas development 

shown in Fig. 3C that determines three cell types: the exocrine cells, the β/δ progenitor and 

the α/PP progenitor. The set of interactions between the five genes in the minimal GRN for 

pancreas development shown in Fig. 3C were deduced from the literature on ChIP-chip or 

knockout or overexpression experiments [32–37]. Supplementary Table S1 lists literature 

evidence in support of interactions between genes contained in the minimal GRN for 

pancreas development. Note that in Fig. 3C the interactions shown with continuous lines 

have known signs (activation or inhibition) based on experimental data while interactions 

shown with dashed lines have unknown signs. In principle, interactions with unknown signs 

can either mediate activation or inhibition.

We decided to build a BN model for pancreas development based on the structure of the 

minimal GRN of 5 genes along with known nature of interactions as shown in Fig. 3C. 

Since, the number of possible Boolean functions for a node with k inputs is 22k
, the total 

number of all possible combinations of Boolean functions for the minimal GRN of 5 genes 

shown in Fig. 3C is 221
 × 223

 × 223
 × 223

 × 223
 ≈ 1.7 × 1010 (Table 1), and this number is 

too large for any practical computational purpose. Thus, we decided to impose (structural) 

constraints on the type of functions to limit the set of possible Boolean functions in the BN 

model of the pancreas development.
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As a first constraint, we explicitly adopt Boolean functions of the following type: CFs [2], 

NCFs [27] and SGNs (See Section 2.7). Such functions may render pancreas development to 

be an ordered and directional process [27,28]. Since, the number of possible CFs for a node 

with k=1 input is 4 and with k=3 inputs is 120, the total number of all possible combinations 

of CFs for the minimal GRN of 5 genes is 4 × 120 × 120 × 120 × 120 ≈ 8.3 × 108 (Table 1). 

Similarly, the number of possible NCFs for a node with k=1 input is 2 and with k=3 inputs is 

64, and the total number of all possible combinations of NCFs for the minimal GRN of 5 

genes is 2 × 64 × 64 × 64 × 64 ≈ 3.4 × 107 (Table 1). For the minimal GRN of 5 genes 

shown in Fig. 3C, we find the number of possible SGNs for the node with k=1 input to be 1, 

and for each of the 4 nodes with k=3 inputs to be 16. Thus, the total number of all possible 

combinations of SGNs for the minimal GRN of 5 genes is 1 × 16 × 16 × 16 × 16 = 65536 

(Table 1). Note that while assigning SGNs to nodes which have some inputs with unknown 

nature of interaction (activation or repression), we allow both possibilities (positive or 

negative unateness) for such interactions with unknown signs in the SGN. In summary, as 

reported in Table 1, the number of possible Boolean functions for the minimal GRN of 5 

genes decreases from 1.7 × 1010 to 8.3 × 108 when restricting Boolean functions to CFs, to 

3.4 × 107 when restricting to NCFs, and down to 6.5 × 104 when restricting to SGNs. Thus, 

restriction to SGNs significantly constrains the number of possible Boolean functions for the 

minimal GRN of 5 genes by reducing the functions to a fraction 3.8 × 10−6 of the complete 

space (Table 1).

Based on experimental measurements [32–36], we can define three cell states 

(corresponding to the exocrine cells, the β/δ progenitor and the α/PP progenitor) for the 

minimal GRN of 5 genes with each gene adopting binary values: 0 when the gene is not 

expressed in a cell lineage and 1 when the gene is expressed in a cell lineage, as shown in 

Fig. 3D. These three cell states or lineages (which are labelled attractor 1, 2, and 3 in Fig. 

3D) must be stable attractor states of the BN model for pancreas development, and thus, 

represent a dynamical constraint on the network. Therefore, as a second constraint, we 

impose that the BN models for pancreas development based on topology of the minimal 

GRN of 5 genes must have at least three stable attractors with the gene expression patterns 

as defined in Fig. 3D. Here we further refine this condition into two cases: (i) BNs that have 

at least the three defined attractors; (ii) BNs that have exactly three defined attractors. In the 

first case, for at least three attractors, we find that the number of combinations of Boolean 

functions satisfying the dynamical constraint to be ~1.0×106. Among these ~1.0×106 

combinations, there are 78,400 CFs, within which there are 9,216 NCFs, and 3,600 SGNs 

(Table 1). In the second case, for exactly three attractors, we find the number of 

combinations of Boolean functions satisfying the dynamical constraint to be 86,042. Among 

these 86,042 combinations, there are 3,741 CFs, 219 NCFs, and 109 SGNs (Table 1). 

Supplementary Table S2 lists the 109 combinations of SGNs for the minimal GRN of 5 

genes satisfying the dynamical constraint of exactly three attractors.

Our results reported in Table 1 show that the condition of sign-compatible functions is the 

strictest constraint leading to significant decrease in the number of possible Boolean 

functions. We remark that our method of applying successive structural constraints (CFs, 

NCFs and SGNs) to shrink the space of possible Boolean functions can serve as a powerful 

tool to reconstruct large-scale BNs from experimental datasets. The logic relationship of 
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various constraints for the nested subsets of Boolean functions is shown in the Venn diagram 

in Fig. 3E.

3.2 Imposing structural constraints enriches the biologically correct relative ordering of 
attractors

From experimental observations, it is known that among the cell types of pancreas studied 

here, the exocrine cells are the least stable while the β, δ progenitors are more stable than the 

α, γ progenitors [38]. In order to study the relative stability of cell states in pancreas 

differentiation, we demand that the corresponding BN model not only recapitulates the 

correct (observed) gene expression patterns for the three cell types, but also that it 

reproduces the correct developmental ordering of the three cell types, that is, of the three 

attractors. Thus, we impose one additional functional constraint for BN model 

determination: transition rates between the attractors should reflect the developmental 

ordering. Consideration of this additional functional constraint of developmental ordering 

within BN framework to build models raised a central question: when one imposes structural 

and dynamical constraints as in the last section to shrink the space of possible BNs, does it 

lead to the enrichment of correct relative ordering of cell attractors? Here we define the 

relative ordering of cell attractors in BN models of development based on MFPT which is 

used to measure the relative stability of attractor states (See sections 2.5 and 2.6).

We employ an ensemble approach to determine whether imposition of increasing level of 

constraints on the set of possible BNs will increase the probability of obtaining the BNs with 

correct relative ordering. In other words, we decided to check if the set of BNs with correct 

relative ordering will be enriched when more stringent constraints are put on the ensemble of 

possible Boolean functions. To estimate the statistical significance, a null model was 

constructed to bootstrap the same number of Boolean functions as the ones defined by the 

structural constraints (CFs, NCFs and SGNs). For example, there are 9,216 NCFs among the 

set of 78,400 CFs satisfying the dynamical constraint of at least three attractors. In the null 

model, we use bootstrapping to repeatedly randomly choose 9,216 functions from the set of 

78,400 CFs and calculated their ordering distribution based on MFPT to generate a Boxplot 

(Fig. 4). In Fig. 4, only the second panel represents the correct biological ordering (Stability 

of Attractor 1 < Stability of Attractor 3 < Stability of Attractor 2) for pancreas 

differentiation. From the Boxplot in Fig. 4, it is seen that when we impose increasing 

constraints on the type of Boolean functions in the order of CFs, NCFs and SGNs, the ratio 

of the BNs with correct relative ordering (represented by black dots), always outperforms 

the random sampling. Bootstrapping for other possible orderings show mixed results 

compared with random sampling. In fact, the opposite ordering (Stability of Attractor 2< 

Stability of Attractor 3 < Stability of Attractor 1) is diluted as can be seen in panel 5 of Fig. 

4. These observations further validate our choice of the sign-compatible functions, which not 

only significantly decrease the number of possible BNs, but also promote correct ordering of 

the relative stabilities of cell attractors in the GRN for pancreas development.

3.3 Bimodal distribution of Landscape between Flatness and Ruggedness

Besides building a BN model for the correct relative ordering of cell attractors, it is of 

general interest to characterize the level of effort required for a cell to transition from one 
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state to another state, i.e., is the BN landscape of cell state transitions rather flat or rugged 

[2,39,40]? A simple measure [41] to evaluate the ruggedness of the BN landscape is the 

entropy  associated with the steady state probability distribution p* of the 

BN model with noise where elements  give the probability for the system to be in state si. 

The larger the entropy S, the flatter is the landscape and vice versa. Since the entropy of the 

steady state probability distribution of the BN model varies with the noise level η, we 

computed the entropies of the 86,024 combinations of Boolean functions (producing exactly 

three attractors) for different noise levels η ∈ [0.001, 0.009] in increments of 0.001, η ∈ 
[0.01, 0.09] in increment 0.01, and η ∈ [0.1, 0.7] in increments of 0.1, as plotted in Fig. 5A. 

We find that the variance of entropies of the Boolean function ensemble becomes smaller 

and the landscape becomes flatter with increasing noise. This implies that presence of large 

amplitude of noise in BN models diminishes the influences of constraints specified by GRN. 

Since all noise levels were generally found to have the same trend, we chose the noise level 

η=0.01 to plot the entropies of 86,024 steady state distributions corresponding to all 

combinations of Boolean functions with exactly three attractors in Fig. 5B (where different 

colors correspond to different relative ordering). From Fig. 5B, it is seen that the patterns of 

entropy across the combinations of Boolean functions with exactly three attractors is almost 

repeatable, but interestingly this is not due to degeneracy in steady state distributions. We 

have explicitly checked that each steady state distribution p* is unique, with the overall trend 

that the entropy hops between two peaks when we sample all combinations of Boolean 

functions with exactly 3 attractors.

From Fig. 5B and 5C, we can see that the entropy distributions for different relative ordering 

schemes appear to be bimodal. Since the state space of the minimal GRN of 5 genes has 32 

states, the absolute random case corresponds to the entropy 

. From Fig. 5B, it is seen that the maximum 

entropy for BNs of any relative ordering is below 1.8, suggesting that the selected networks 

were all in the ordered regime [2], far away from pure randomness. Note that smaller the 

value of entropy, greater is the level of constraints on a BN model. Thus, in Fig. 5B, the peak 

near zero reflects more rugged landscapes while the peak far away from zero denotes the flat 

landscapes. It is interesting to notice that even two dynamical systems with exactly the same 

attractors and the same relative ordering, can display a distinct overall landscape, either flat 

or rugged. Cell reprogramming is much more difficult in the rugged landscape than in the 

flat one because of the many intermediate attractors between the origin and the destination 

attractors. Thus, the above described scheme could be exploited for the analysis, and 

perhaps, rational protocol design of cell reprogramming. Specifically, one may be able to 

perturb the GRN such as to make the landscape flatter while maintaining its biological 

ordering of cell attractors.

We next tried to identify common features across the set of Boolean functions leading to 

rugged landscapes in the minimal GRN of 5 genes. Given any Boolean function, we define a 

quantity called rule number associated with the function that gives the number of Boolean 

rules separated by logical OR in the disjunctive normal form of the Boolean function. For 

example, the Boolean function A AND NOT B AND C has rule number 1; the Boolean 
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function (NOT A AND B) OR (B AND NOT C) has rule number 2. In Figs. 6A and 6B, we 

plot the distribution of rule numbers for Boolean functions at each node of the minimal GRN 

of 5 genes for both the flat and the rugged landscapes. The main difference between the two 

types of landscapes we found was that the Boolean functions of the rugged landscape had, 

on average, higher rule numbers than those of the flat ones. One possible explanation for this 

finding is as follows: In case of dynamical systems with the same set of attractors, more rule 

numbers in Boolean functions leads to a more rugged landscape, which in turn renders more 

difficult the cell state transitions.

4. Conclusions

In the post-genome era, understanding of biological processes has shifted from a notion of 

causation focused on few genes or linear regulatory pathways to one that takes into account 

the high-dimensional dynamics of complex nonlinear systems, prosaically represented by 

GRNs [4– 17,42–44]. Many higher-level cell functions, such as cell differentiation, cell 

cycle, immune responses or neuronal activities can only be explained by the dynamics of 

complex biological networks [4–17]. In this paper, we built on the old elementary concept of 

the cell attractor that is now gaining attention and showed that Waddington’s epigenetic 

landscape [39] has a formal basis even in the BN framework [1–3]. Porting the landscape 

concept to the realm of discrete networks allowed us to use computational tools to study the 

landscape as additional information derived from the GRN. We defined the relative stability 

of network states on the BN landscape, thus providing a formal and quantifiable basis to the 

elevation in the landscape for Boolean network. We proposed methods to enforce the relative 

ordering of attractor states in BN models as a novel requirement for constraining large 

ensembles of BNs to the biologically relevant class. We showed in our example that even 

with incomplete information about network structures, the use of BN can capture the 

essential dynamics of cell fate change and permit the estimation of relative stability and 

transition barriers between the cell attractors. This mathematical framework has the potential 

to assist the rational design of perturbation protocols for directing cell reprogramming in 

order to generate the desired cell lineages in regenerative medicine. As the knowledge of the 

structure of GRNs governing the development of various tissues increases in the next 

decade, the utilization of such network information for therapeutic reprogramming may 

benefit from the concepts developed here.
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Refer to Web version on PubMed Central for supplementary material.
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BN Boolean network
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CF Canalyzing function

GRN Gene regulatory network

MFPT Mean first passage time

NCF Nested canalyzing function

ODE Ordinary differential equation

SGN Sign-compatible function
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Figure 1. Example of a BN model and its attractor landscape
(a) Structure of the BN model with four genes along with their interactions. Different types 

of edges are used to distinguish between the different types of gene interactions (activation 

or inhibition). Also shown are the set of Boolean functions governing the output state of 

each node in the network. (b) The attractor structure for the BN model can be determined by 

explicitly evaluating state transitions for the 16 possible states of the network. (c) Attractor 

landscape of the BN model consisting of 4 attractors and associated basins of attraction 

within state space. Arrows depict transitions between two states in the state space which are 

governed by the set of Boolean functions at each node in the network. Stable states (fixed-

point attractors) transition to themselves while cyclic attractors oscillate within a subset of 

states following a certain time sequence.
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Figure 2. BN model for a toggle switch of two genes
For the 2-gene toggle switch, the figure shows the network structure with cross-inhibition 

and self-activation, the Boolean functions for the two genes, and the attractor landscape for 

the BN model.
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Figure 3. BN model of the minimal GRN for Pancreas cell differentiation
(a) The anatomical structure of the pancreas which consists of the exocrine cells and the 

islets of Langerhans with the endocrine cells. β cells in the islets secrete insulin to regulate 

the blood sugar level. (b) Developmental tree of pancreas cells. Pancreas progenitor cells 

first differentiate into the exocrine cells and endocrine progenitors which can further 

differentiate into β/δ progenitors and α/PP progenitors. β/δ progenitors differentiate into δ 
cells and β cells. α/PP progenitors differentiate into α cells and PP cells. (c) Structure of the 

minimal GRN model recapitulating the pancreas developmental process for the three main 

lineages (exocrine, β/δ and α/PP) considered here. The network mainly consists of two 

layers of two mutually-inhibitory fate genes. The first cross-inhibition between Ptf1a and 

Ngn3 determines the switch between the exocrine cells and endocrine progenitors. The 

second cross-inhibition between Pax4 and Arx determines the switch between the β/δ 
progenitors and α/PP progenitors. Here, black edges terminating with arrow heads represent 

known activating interactions, red edges terminating with bars represent known inhibitory 

interactions, and blue dashed edges terminating with circles represent interactions with 

unknown signs. (d) The gene expression patterns corresponding to the three cell attractors of 

the minimal GRN for pancreas differentiation. Attractor 1 corresponds to exocrine cells, 2 to 

β/δ progenitors and 3 to α/PP progenitors. (e) Venn diagram shows that imposition of 

successive structural constraints (CFs, NCFs and SGNs) and dynamical constraint of three 
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stable attractor states corresponding to cell lineages limits the space of possible Boolean 

functions for the minimal GRN of 5 genes.
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Figure 4. Distribution of BN models satisfying increasing structural constraints and the 
dynamical constraint of exactly three defined attractors across different possible relative stability 
orderings of cell attractors
This Boxplot has six panels with each corresponding to a different relative ordering of cell 

attractors. For example, the panel labeled 1<2<3 corresponds to the relative ordering where 

the relative stability of attractor 1 is less than that of attractor 2 which is less than that of 

attractor 3. Attractors 1, 2 and 3 correspond to exocrine cells, the β/δ progenitor and the 

α/PP progenitor, respectively. The second panel (1<3<2) corresponds to the correct 
(experimentally observed) ordering of cell states. In each panel, the black dots represent the 

fraction of BN models having the corresponding relative ordering of attractors in addition to 

satisfying the dynamical constraint of exactly three defined attractors and one of the 

following structural constraints w.r.t. Boolean functions: ALL – all Boolean functions; CF – 

canalyzing functions; NCF – nested canalyzing functions; and SGN – sign-compatible 

functions. The distributions in different panels of the Boxplot give the expected value from 

the Null model.
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Figure 5. Entropy associated with the steady state probability distribution of BN models 
satisfying structural and dynamical constraints
(a) Entropy distribution for 86,024 BN models of pancreas development satisfying the 

dynamical constraint of exactly three attractors for various levels of noise η. Results are 

shown for ten different noise levels η in the range from 0.001 to 0.2. With increase in noise 

levels η, the nature of distribution changes from broad with values in the range [0,3] to that 

approaching an absolute chaos with entropy . 

(b) Entropy distribution for 86,024 BN models of pancreas development satisfying the 

dynamical constraint of exactly three attractors with noise level η = 0.01 and different 

relative ordering of attractor states. In this figure, the color scheme for different relative 

ordering of attractors is as follows: Blue - 1<2<3; Cyan - 1<3<2; Red - 2<1<3; Green - 

3<1<2; Magenta - 2<3<1; Grey - 3<2<1. (c) Histogram plot of entropy distribution for 

86,024 BN models of pancreas development satisfying the dynamical constraint of exactly 

three attractors with noise level η = 0.01 across different relative ordering of attractor states. 

It is seen that distributions are distinctively bi-modal.
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Figure 6. Distribution of rule numbers for Boolean functions at each node of the minimal GRN 
of 5 genes for flat and rugged landscapes
(a) Distribution for flat BN landscapes. (b) Distribution for rugged BN landscapes. In this 

figure, BFi refers to Boolean function for gene xi in the minimal GRN of 5 genes.
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Table 1

Number of possible combinations of Boolean functions satisfying structural and dynamical constraints 

associated with BN model of pancreas development.

Type of Boolean
functions

Fixed network
structure but without
any dynamical
constraint

Fixed network
structure and
dynamical constraint
of at least three known
attractors

Fixed network structure and
dynamical constraint of exactly three
known attractors

All Boolean functions
(ALL)

1.71799×1010 1,048,576 86,024

Canalyzing functions
(CF)

8.2944×108 78,400 3,741

Nested canalyzing
functions (NCF)

3.35544×107 9,216 219

Sign-compatible
functions (SGN)

65,536 3,600 109
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