
 

 Page 1 of 1 

FedUni ResearchOnline 
https://researchonline.federation.edu.au 
Copyright Notice 

 

This is the submitted version of the following article: 

Youseph, A., Chetty, M., Karmakar, G. (2019) Reverse engineering genetic networks using 
nonlinear saturation kinetics. BioSystems, 182, pp.30-41. 

Which has been published in final form at: 

https://doi.org/10.1016/j.biosystems.2019.103977 

Copyright © 2019 Elsevier B.V.  All rights reserved. 

 

CRICOS 00103D RTO 4909   

https://researchonline.federation.edu.au/
https://doi.org/10.1016/j.biosystems.2019.103977


Accepted Manuscript

Title: Reverse Engineering Genetic Networks Using Nonlinear
Saturation Kinetics

Author: Ahammed Sherief Kizhakkethil Youseph Madhu
Chetty Gour Karmakar

PII: S0303-2647(18)30397-6
DOI: https://doi.org/doi:10.1016/j.biosystems.2019.103977
Reference: BIO 103977

To appear in: BioSystems

Received date: 16 November 2018
Revised date: 25 April 2019
Accepted date: 27 May 2019

Please cite this article as: Ahammed Sherief Kizhakkethil Youseph,
Madhu Chetty, Gour Karmakar, Reverse Engineering Genetic Networks
Using Nonlinear Saturation Kinetics, <![CDATA[BioSystems]]> (2019),
https://doi.org/10.1016/j.biosystems.2019.103977

This is a PDF file of an unedited manuscript that has been accepted for publication.
As a service to our customers we are providing this early version of the manuscript.
The manuscript will undergo copyediting, typesetting, and review of the resulting proof
before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that
apply to the journal pertain.

https://doi.org/doi:10.1016/j.biosystems.2019.103977
https://doi.org/10.1016/j.biosystems.2019.103977


Page 1 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

Reverse Engineering Genetic Networks Using Nonlinear Saturation
Kinetics

Ahammed Sherief Kizhakkethil Yousepha, Madhu Chettyb, Gour Karmakarb

aFaculty of Information Technology, Monash University, Clayton, 3800, Australia.
bSchool of Science, Engineering and Information Technology, Federation University Australia, Gippsland, 3842, Australia.

Abstract

A gene regulatory network (GRN) represents a set of genes along with their regulatory interactions.

Cellular behavior is driven by genetic level interactions. Dynamics of such systems show nonlinear

saturation kinetics which can be best modeled by Michaelis-Menten (MM) and Hill equations. Al-

though MM equation is being widely used for modeling biochemical processes, it has been applied

rarely for reverse engineering GRNs. In this paper, we develop a complete framework for a novel

model for GRN inference using MM kinetics. A set of coupled equations is first proposed for modeling

GRNs. In the coupled model, Michaelis-Menten constant associated with regulation by a gene is made

invariant irrespective of the gene being regulated. The parameter estimation of the proposed model is

carried out using an evolutionary optimization method, namely, trigonometric differential evolution

(TDE). Subsequently, the model is further improved and the regulations of different genes by a given

gene are made distinct by allowing varying values of Michaelis-Menten constants for each regulation.

Apart from making the model more relevant biologically, the improvement results in a decoupled GRN

model with fast estimation of model parameters. Further, to enhance exploitation of the search, we

propose a local search algorithm based on hill climbing heuristics. A novel mutation operation is also

proposed to avoid population stagnation and premature convergence. Real life benchmark data sets

generated in vivo are used for validating the proposed model. Further, we also analyze realistic in sil-

ico datasets generated using GeneNetweaver. The comparison of the performance of proposed model

with other existing methods shows the potential of the proposed model.

Keywords: Gene Regulatory Network, Michaelis-Menten Kinetics, Reverse Engineering, Mixed

Integer Nonlinear Programming, Trigonometric Differential Evolution, Local Search
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1. Introduction

The advances in the field of microarray technology enabled biologists to measure the expression levels

of a large number of genes at a time. In turn, this facilitated the computational biologists in accurately

modeling and analyzing large-scale gene regulatory networks (GRN). Various inference methods typ-

ically make use of the time-series data obtained from the set of transient expression levels of genes

measured at different time intervals (in time series) in an experiment. A typical gene expression

dataset is characterized by a large number of genes and a few samples. With the increase of the num-

ber of genes, the search space for finding the network structure grows exponentially. This problem

and unavailability of sufficient data, make the GRN inference a difficult and challenging problem. The

number of datasets is shown to have a significant influence on the inference performance (Xenitidis

et al., 2017).

Several approaches have been proposed in literature for reverse engineering of GRNs. The key

components of the reconstruction process is a modeling framework and a method of learning the

parameters of the model. One of the first models proposed for GRN inference is Boolean network

(Kauffman, 1969). Boolean networks are simple logic models and learning is computationally fast.

However, the model is limited to work with binary values of gene expression data and hence fails

to represent the multiple values of gene expressions. Although continuous-valued Boolean networks

are being proposed recently for GRN reconstruction (Grieb et al., 2015), the linearity of the model

contradicts with the nonlinear nature of GRNs. Bayesian networks (BN), one of the popular models

used for GRNs, are capable of representing fractional values of gene expression data (Friedman et al.,

2000a,b). But, BNs and dynamic BNs (Yu et al., 2017) work only with discretized data and cannot

model system dynamics in continuous time. Similar to Boolean networks, BNs are also linear models

and their biological relevance is debatable. GRN inference from time-series gene expression data

has been accomplished by using a number of non-parametric methods such as Jump3 (Huynh-Thu

and Sanguinetti, 2015) which is based on decision tree, dynGENIE3 (Huynh-Thu and Geurts, 2018)

which is based on random forest and lasso (Nguyen and Braun, 2018) which is based on regularized

regression.

Various models based on linear ordinary differential equations are also used for GRN reconstruc-
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tion (Lu et al., 2011; Zhu et al., 2012; Zheng et al., 2012). However, again, they fail to assimilate

the nonlinear behavior of biological systems. State space models (Hirose et al., 2008; Tamada et al.,

2011), which are capable of representing system with a very few variables, have been considered

to be adequate to deal with problems related to less number of samples in the data. However, the

biological relevance of these linear state space models is inadequate. Neural network models used

for GRN reconstruction include artificial neural networks (Rubiolo et al., 2018) and recurrent neural

networks (Kordmahalleh et al., 2017; Chen, 2017; Khan et al., 2018). It is believed that as compu-

tational demand becomes less challenging, neural networks will become more promising (Barbosa

et al., 2018). Among the models proposed for GRN reconstruction, nonlinear state space models

(Noor et al., 2012) and some recurrent neural network models (Wahde and Hertz, 2000) represent

nonlinearity. However, both these approaches are limited to simple nonlinear functions and fail to

represent the complex molecular mechanisms underlying GRNs. In general, the identification of non-

linear systems is a cumbersome task and often employ selected nonlinear functions in the parameter

estimation processes (Pan et al., 2016).

Needless to say, genetic interactions are best modeled by nonlinear equations. Among the few

nonlinear models used for reverse engineering GRNs, S-system has been viewed to be suitable for

the biological nature of genetic networks (Maki et al., 2001; Chen et al., 2017). Although the S-

system models can represent a biological system more closely than the linear models, because of the

power-law functions, they still fail to capture the saturation kinetic behavior of biochemical processes

precisely. Experimental studies reported in the literature (Yagil and Yagil, 1971; Bintu et al., 2005; Ka-

plan et al., 2008) help to understand the variation in gene expression levels as a function of the gene’s

inducers. Such studies usually show the variation in gene expression levels as nonlinear saturation

kinetics (Yagil and Yagil, 1971; Bintu et al., 2005; Kaplan et al., 2008). Moreover, zero or near-zero

values of gene expressions are very often found in microarray datasets, but the S-system models are

not suitable to be applied for such datasets.

Michaelis-Menten equation is well accepted in modeling biochemical reactions and is widely used

over a century for engineering biological systems (Choi et al., 2017). Van den Bulcke et al. (2006)

generated synthetic gene expression data by modeling the interaction kinetics using Michaelis-Menten
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and Hill kinetics. Further, saturation kinetics can also be effectively modeled by Michaelis-Menten and

Hill kinetics. Despite being widely accepted and employed in modeling biological systems including

GRNs, Michaelis-Menten kinetics in its fundamental form has not been exploited for reverse engineer-

ing GRNs.

In this paper, we apply Michaelis-Menten kinetics and develop a new nonlinear ordinary differ-

ential equation (ODE) model which is biologically relevant and thus suitable for obtaining realistic

GRNs. The model identification is formulated as a mixed-integer nonlinear programming (MINLP)

problem so that, both the structural complexity of the network and deviation of the experimental data

from the model predictions are minimized. The optimization is carried out using an evolutionary al-

gorithm called trigonometric differential evolution (TDE) which is a variant of differential evolution.

To speed up the convergence, the optimization uses local search heuristics and the flip operation sim-

ilar to that have been reported for S-system modeling by Noman and Iba (2007) and Chowdhury and

Chetty (2011), respectively.

The identification of systems described by nonlinear ordinary differential equation(ODE) models

is computationally expensive due to the high cost involved in numerical integration. The parameters

involved in such models (e.g. S-system) used in GRN inference are usually estimated in a step by

step method (Maki et al., 2002). The ODE describing the rate of change of single gene’s expression is

considered at a time, while the expression values of other genes are given as input to the estimation

algorithm. Thus, the parameters associated with the expression rate of each gene are estimated one

by one. In the simpler version of the model (Youseph et al., 2015a) that is being proposed here,

we had considered the variable representing the Michaelis-Menten dynamics between the regulating

and regulated gene as a constant leading to model with coupled differential equations. Since the

parameters appeared coupled, gene-by-gene parameter estimation was not possible. In (Youseph

et al., 2015b), we replaced this constant with a variable enabling us to decouple the differential

equations.

In this paper, we have reduced the number of decision variables for optimization by coupling

a set of linked-parameters in the model. The fitness function that is minimized for estimation of

parameters is modified to reflect the trade-off between model prediction accuracy and the scale-free
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nature of real genetic networks. A hill-climbing local-search algorithm that is specific to the proposed

model is developed to reduce possible false predictions. Moreover, a flip operation specific to the

proposed model is developed to avoid stagnation and premature convergence. The algorithm is coded

in Matlab and simulations are extended to networks of higher sizes including in vivo and in silico

networks. The inferred networks are evaluated using the commonly used performance metrics, i.e.,

sensitivity, specificity, precision and F-score and are compared with the current existing methods. The

results show that the proposed model is competent to all the existing methods and is outperforming

all in some cases.

The rest of the paper is organized as follows: Section 2 presents the background of the model. The

methods of model development and model identification are described in Section 3. The results are

presented and discussed in Section 4. Finally Section 5 concludes the paper.

2. Background

The activities taking place in living systems are the result of various biochemical reactions. A general

biochemical reaction is the formation of a molecule, referred as product, from another molecule,

referred as substrate. These reactions are catalyzed by biological catalysts, called enzymes. In gene

transcription, the primary enzyme is RNA polymerase and the product is mRNA. Substrates are usually

not involved here except that the process is usually regulated by transcription factors.

The binding interaction between an enzyme and a substrate was first discovered by Victor Henri

(Henri, 1903) in 1903. Michaelis and Menten took up Henri’s work of enzyme kinetics and proposed

a mathematical model of enzyme kinetics (Michaelis and Menten, 1913) in 1913. Interestingly, both

these works are more often cited in the 21st century than they were in the 20th (Cornish-Bowden,

2015). There are following two ways to arrive at the Michaelis-Menten equation.

i The binding reaction, i.e., the first step, is very fast and attains equilibrium quickly. This assump-

tion, called rapid equilibrium approach was used by Michaelis and Menten in deriving the equation

(Michaelis and Menten, 1913). Later, G. E. Briggs and J. B. S. Haldane derived the equation, using

ii Quasi-steady state approximation (QSSA), i.e. the enzyme-substrate complex comes to the steady

state rapidly (Shuler and Kargi, 2002). Briggs and Haldane suggested that QSSA holds when
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the concentration of the enzyme is much less than the concentration of the substrate (or ligand)

(Shuler and Kargi, 2002). This is called free-ligand approximation.

The MM constant determined in the proposed method would be from any of the two methods unless

the information is provided while generating the data.

When the formation of a product P is activated by an activator A, the rate of formation of the

product, denoted by v, can be expressed using Michaelis-Menten kinetics as follows:

v =
d[P]
dt

= vmax
[A]

KA +[A]
f1 (1)

where, [P] is the concentration of the product P, vmax is the maximum production rate, [A] is the

concentration of the activator A, KA is Michaelis-Menten constant which accounts for the affinity of

the activator binding and f1 is a function of other factors affecting the reaction. On the other hand, if

the product formation is inhibited by an inhibitor I, v can be expressed as follows:

v =
d[P]
dt

= vmax
KI

KI +[I]
f2 (2)

where, [I] is the concentration of the inhibitor I, KI is Michaelis-Menten constant which accounts for

the affinity of the inhibitor binding, f2 is a function of other factors affecting the reaction. If the

product formation is both activated by A and inhibited by I at the same time, v can be expressed as

follows:

v =
d[P]
dt

= vmax

(
KI

KI +[I]

)(
[A]

KA +[A]

)
f3 (3)

We could model biochemical systems according to Eq. (3) if the regulations were known a priori.

For example, Arkin et al. (1998) and Chen et al. (2004), using principles of chemical kinetics, modeled

the system where the molecular interactions are known or presumed. Such models can be employed

for various in silico system analyses such as stability analysis and what-if analysis. However, in reverse

engineering problems such as inferring GRNs, the regulations are unknown and applying this kinetics

are not straightforward.
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3. Methods

3.1. The Proposed Model

3.1.1. Michaelis-Menten Coupled GRN Model

Development of the model essentially involves introducing new variables to account for all the possi-

bilities of regulations between two genes in a network. In our case, broadly two cases are possible,

i.e., regulation and no regulation, which can be captured by using one binary variable, i.e., p = 1 or

0 which indicates the existence or absence of the regulation, respectively. The regulations can further

be categorized into two types: activation and inhibition, represented respectively by 1 and 0 with

another variable q. In a summation model, the binary variables can be used as the coefficients of the

terms being added. However, GRN model, being nonlinear, requires a product form. The method of

formulation in integer programming for this case is to use the binary variables as the powers of the

terms being multiplied.

The general approach of formulating such a model would be the following:

dyi

dt
= vmax

i

N

∏
j=1

[(
y j

K j + y j

)qi j
(

K j

K j + y j

)1−qi j
]pi j

− vd
i yi (4)

where, yi is the concentration of mRNA expressed by gene-i, vmax
i is the maximum rate of expression

of gene-i, vd
i is the self decay rate of mRNA expressed by gene-i, pi j and qi j are two binary variables

that represent the presence/absence of a regulation and the type of the regulation, respectively in

regard to the regulation from gene- j to gene-i and K j is the Michaelis-Menten constant associated

with gene- j to gene-i regulation kinetics. This equation encompasses all the possibilities discussed in

the beginning of this section. For example, pi j = 1 and qi j = 1 give the same fractional term as in Eq.

(1). From the observation that the denominator remains the same in both the forms of regulation

and a sum of both terms indicates no regulation, we come up with a much simpler model as detailed

below.

The terms to be multiplied in the production term in all possible cases of regulation and non-

regulation from gene- j to gene-i are shown in Table 1.
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Table 1 The terms to be multiplied for possibilities of regulation from gene- j to gene-i

Type of Regulation Term to be multiplied
Activation y j

K j+y j

Inhibition K j
K j+y j

No regulation 1 =
K j+y j
K j+y j

=
y j

K j+y j
+

K j
K j+y j

From the above observation, for a system of N genes, we define, the Michaelis-Menten Coupled

GRN (MMC-GRN) model equation as follows:

ẏi =
dyi

dt
=vmax

i

N

∏
j=1

(
gi j

y j

K j + y j
+hi j

K j

K j + y j

)
− vd

i yi

=vmax
i

N

∏
j=1

(
gi jy j +hi jK j

K j + y j

)
− vd

i yi

(5)

where, vmax
i is the maximum rate of expression of gene-i

hi j,gi j ∈ {0,1} ,1≤ hi j +gi j ≤ 2 ∀ i, j = 1, . . . ,N

hi j = 1,gi j = 1 implies that there is no regulation from gene- j to gene-i

hi j = 0,gi j = 1 implies that gene- j activates gene-i

hi j = 1,gi j = 0 implies that gene- j inhibits gene-i

K j is Michaelis-Menten constant which indicates the binding affinity; the smaller the value of K j, the

larger the binding affinity is.

vd
i is the self decay rate of mRNA expressed by gene-i.

To demonstrate the modeling process, let us consider a simple example of a 5-gene network shown

in Figure 1. Gene-4 is inhibited by gene-2 and activated by gene-3. The rate of change of gene

expression for gene-4 can be written by the following general equation:

dy4

dt
=vmax

4

5

∏
j=1

[
gi jy j +hi jK j

K j + y j

]
− vd

4y4

=vmax
4

(
g41y1 +h41K1

K1 + y1

)(
g42y2 +h42K2

K2 + y2

)(
g43y3 +h43K3

K3 + y3

)(
g44y4 +h44K4

K4 + y4

)
×
(

g45y5 +h45K5

K5 + y5

)
− vd

4y4

(6)

8
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Figure 1 A simple GRN of five genes. Arrow ended arcs indicate activation and block ended arcs indicate
inhibition.

This is because there are no regulations from gene-1 to gene-4, gene-4 to gene-4 or gene-5 to gene-4,

g41 = h41 = g44 = h44 = g45 = h45 = 1. Since the regulation from gene-2 to gene-4 is inhibition, g42 = 0

and h42 = 1. Similarly, gene-3 activates gene-4, hence g43 = 1 and h43 = 0. Now substituting all the g

and h values in the above equation, the equation reduces to the following form which is analogous to

the equation (3).
dy4

dt
= vmax

4

(
K2

K2 + y2

)(
y3

K3 + y3

)
− vd

4y4 (7)

The model parameters hi j and gi j, being binary parameters, provide four (22) combinations. How-

ever, by the model definition, both these parameters cannot be zero at a time for any i and j. This

means that we are left with three options for hi j and gi j, i.e., (1,0), (0,1) and (1,1). The total number

of parameters for a system of N genes according to Eq. (5) is N(1+ 1+ 1+N +N) = 2N2 + 3N. The

lesser the number of parameters, the cheaper will be the computational cost for estimation of the

parameters. In order to reduce the computational complexity of the estimation algorithm, instead of

hi j and gi j, we can estimate a new variable δi j ∈ {−1,0,1} as defined below:

δi j =


0, if gi j = 1,hi j = 1

+1, if gi j = 1,hi j = 0

−1, if gi j = 0,hi j = 1

(8)
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The parameter δi j can be expressed as a function of gi j and hi j, and vice versa, as follows:

δi j =gi j−hi j (9)

gi j =
δi j +1
| δi j |+1

(10)

hi j =
1−δi j

| δi j |+1
(11)

Substituting for gi j and hi j in Eq. (5), we obtain the following equation:

dyi

dt
= vmax

i

N

∏
j=1

 δi j+1
|δi j|+1y j +

1−δi j
|δi j|+1K j

K j + y j

− vd
i yi (12)

For a system of N genes, the parameters are vmax ∈ IRN×1, vd ∈ IRN×1, K ∈ IRN×1 and δ ∈ ZN×N

and hence, Eq. (12) requires estimating the values of N instances of vmax, K and vd and N2 instances

of delta which can be used subsequently to determine the values of g and h. Therefore, the total

number of parameters to be estimated for MMC-GRN model is (N +N +N +N2) = (3N +N2) where,

N2 parameters are integer variables.

In order to evaluate the number of parameters to be estimated in the inference process, we write

the S-system model in Eq. (13):

ẏi =
dyi

dt
= αi

N

∏
j=1

y
g′i j
j −βi

N

∏
j=1

y
h′i j
j (13)

The number of parameters to be estimated in S-system is 2N +2N2 which is (2N +2N2)− (3N +N2) =

(N2−N) parameters more than that of MCC-GRN model.

3.1.2. Michaelis-Menten Decoupled GRN Model

In the coupled model, for each regulatory gene, the value of K j is fixed irrespective of the gene being

regulated, i.e., the binding affinity of the regulatory protein from gene- j is considered to be the same

for all the genes it regulates. For example, if gene-1 regulates gene-2 and gene-3, the binding affinity

of the protein from gene-1 towards gene-2 and towards gene-3 are assumed to be the same. This

10
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


1 vmax

1 vd
1 δ11 - δ1N K1 - KN

2 vmax
2 vd

2 δ21 - δ2N K1 - KN
- - - - - - - - -
i vmax

i vd
i δi1 - δiN K1 - KN

- - - - - - - - -
N vmax

N vd
N δN1 - δNN K1 - KN

Figure 2 The parameters to be estimated for each gene in MMC-GRN model defined in Eq. (5)

assumption is correct when one gene regulates only one gene. However, this is not the case in reality,

especially in large scale networks, where a gene is more likely to regulate multiple genes.

In order to get better biological relevance with respect to MMC-GRN, we propose a modification in

MMC-GRN model by allowing differing values for the Michaelis-Menten constant for each regulation

irrespective of the regulatory gene. If a gene-i is regulating gene- j and gene-k, two different constants

K ji and Kki are used to differentiate the binding of protein from gene-i to the promoter region of

gene- j from its binding to the promoter region of gene-k. The model defined in Eq. (5) is modified as:

ẏi = vmax
i

N

∏
j=1

(
gi jy j +hi jKi j

Ki j + y j

)
− vd

i yi . (14)

where, Ki j is Michaelis-Menten constant for the regulation of gene-i by gene- j if the regulation exists

and other constants are same as in Eq. (5).

Substituting g and h in Eq. (14) with functions of δ gives the following:

dyi

dt
= vmax

i

N

∏
j=1

 δi j+1
|δi j|+1y j +

1−δi j
|δi j|+1Ki j

Ki j + y j

− vd
i yi . (15)

In the coupled model defined in Eq. (5), the parameters to be estimated for each gene are shown in

Fig. 2 where in each equation the parameters are different except K1,K2, . . . ,KN that are the same for

all N genes. As mentioned before, the total number of parameters to be estimated in this MMC-GRN

model is N(2+N)+N = N2 +3N and they all have to be estimated together.

Since we have modified the model, the parameters for each gene in the new model defined in Eq.

(14) are shown in Fig. 3. None of the parameters are coupled for different genes and hence the model

defined in Eq. (14) can be decoupled, thereby allowing estimation of parameters to be carried out for

11
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


1 vmax

1 vd
1 δ11 - δ1N K11 - K1N

2 vmax
2 vd

2 δ21 - δ2N K21 - K2N
- - - - - - - - -
i vmax

i vd
i δi1 - δiN Ki1 - KiN

- - - - - - - - -
N vmax

N vd
N δN1 - δNN KN1 - KNN

Figure 3 The parameters to be estimated for each gene in MMD-GRN model defined in Eq. (14)

one gene at a time. The proposed decoupled model, namely MMD-GRN can finally be expressed as

follows:
dyi

dt
= vmax

i

(
giiyi +hiiKii

Kii + yi

) N

∏
j=1
j 6=i

(
gi jy∗j +hi jKi j

Ki j + y∗j

)
− vd

i yi . (16)

where, y∗j are the expression levels of genes other than gene-i. They can be determined using any

numerical interpolation method before the parameter estimation of gene-i is calculated. Figure 3

shows that each gene has 2+N +N = 2(N + 1) parameters. Therefore, total number of parameters

that are required to be estimated for N genes is 2N(N +1).

It may be noted that Ki j (Michaelis-Menten constant) is nonnegative and the connectivity parame-

ter δi j can have only three values, -1, 0 or +1. This observation enables us to consider a single entity

Ki jδi j during estimation.

Kmin ≤Ki j ≤ Kmax (17)

−Kmax ≤Ki jδi j ≤ Kmax (18)

K =|Ki jδi j| (19)

δi j =

0, if Ki jδi j = 0

Ki jδi j
|Ki jδi j| , otherwise.

(20)

Hence the number of parameters is reduced by N2 as above. As a result, the total number of

parameters to be estimated for the MMD-GRN model is 2N +N2 which is less than that of S-system

model. Figure 4 shows the comparison of the parameters to be estimated for the MMD-GRN model

with those of the MMC-GRN model and S-system. Although the curves for MMC-GRN and MMD-
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Figure 4 Comparison of the number of parameters to be estimated in MMD-GRN with that in MMC-GRN and
S-system

GRN seem to be overlapping each other, in reality, the latter one is slightly below the former one.

However, the plot of S-system shows that the number of parameters to be estimated in S-system

model is significantly higher that that for both the MM models for large scale networks.

3.2. Estimation of Parameters

The parameter estimation is carried out using trigonometric differential evolution algorithm by which

the fitness function is optimized.

3.2.1. Fitness Function

The fitness function considers two factors: (i) model prediction error and (ii) penalty on model com-

plexity. As these two terms are two entities of non-comparable magnitudes, Chowdhury et al. (2013)

suggested a balancing factor. We considered the fitness function for inferring MMD-GRN as the sum

of absolute square error and a balanced penalty term which is analogous to the penalty term proposed

13
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by Chowdhury et al. (2013). The objective function minimized for each gene is the following.

fi(yi,δi1,δi2, . . . ,δi) =
T

∑
j=1

{
yc

i j− ye
i j

ye
i j

}2

+Bi×Ci×
N

(N− ri)
(21)

where, ri is the total number of regulations for gene-i and can be calculated as follows:

ri =
N

∑
j=1
| δi j | (22)

Bi is the balancing factor(Chowdhury et al., 2013) which balances the two terms (SRE and penalty

on model complexity) on the R.H.S. of Eq. (21) and Ci is the penalty factor, as defined by Chowdhury

et al. (2013)

Ci =


1, if Ji < ri < Ii

1+(Ji− ri)
2, if ri ≤ Ji

1+(ri− Ii)
2, if ri ≥ Ii

(23)

where, Ji and Ii respectively, are the minimum and maximum cardinalities of gene-i . Following

Chowdhury et al. (2013), the balancing factor (Bi) is adaptively chosen during the optimization. At

the beginning of the optimization, to allow the optimization to minimize the prediction error produced

by the model without considering the model complexity, Bi is assigned a value of zero. After a fixed

number of generations is reached or the prediction error goes below a threshold value, both the terms

on R.H.S. of Eq. (21), the model error (SRE) and the model complexity
(

N
N−ri

)
, are evaluated for the

best 50% of the population. Bi is fixed as the ratio of their averages.

Bi =
Ē
C̄

(24)

where, Ē is the average model error and C̄ is the average model complexity.
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3.2.2. Problem Formulation

The estimation of parameters in the equation for each gene gets formulated as a mixed integer non-

linear programming (MINLP) problem.

min
vmax

i ,vd
i ,Ki j,δi j

fi(yi,δi j) j = 1,2, . . . ,N

sub ject to
dyi

dt
= f ′(y j,vmax

i ,vd
i ,Ki j,δi j),

yi(to) = yi0, j = 1,2, . . . ,N

vmax
i ,vd

i ,Ki j,yi(t)≥ 0,δi j ∈ {−1,0,1}

(25)

where, fi is the function defined in equation Eq. (21), f ′ is the R.H.S. of equation Eq. (15). Otero-

Muras et al. (2016) developed a software toolbox, SYNBADm, that finds biocircuit designs for given

specifications. SYNBADm includes global mixed-integer nonlinear programming (MINLP) optimiza-

tion solvers.

3.2.3. Optimization Algorithm

A variant of differential evolution (DE), trigonometric differential evolution (TDE) is applied for esti-

mation of the parameters. As the parameter estimation is carried out for each gene separately, each

individual of the population in optimization for each gene consists of (2+N) parameters to be learned,

i.e., for gene-i, an individual Ind is given by Ind = [vmax
i ,vd

i ,Ki1δi1,Ki2δi2, . . . ,KiNδiN ]. The DE algorithm

consists of the following steps:

1. Initialization: Initialize the parent population of Np individuals, Np is the population size. In our

case, each individual ∈ IR(N+2)×1

2. Fitness Evaluation: Evaluate the fitness (objective function being optimized) of each individual

in the population.

3. Offspring Generation: Generate a new (children) population by mutation and crossover.

4. Fitness Evaluation: Evaluate the fitness of each individual in the child population.

5. Parent Selection: The fitness of each individual in the parent population is compared with that

of the corresponding individual in the child population to select the best as the new parent.

15
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6. Termination: If the stopping criterion is met, return the best solution. Otherwise, go to step 3.

A simple initialization procedure is to generate individuals randomly using the lower and upper

bounds on decision variables as follows:

wg=0
i = wmin +ρi(wmax−wmin), ρi ∈ [0,1] i = 1,2, . . . ,Np (26)

where, ρi is a uniformly distributed random number and wmin and wmax are the lower and upper

bounds on the decision variables.

Several mutation operations are proposed in literature. A simple mutation operation proposed in

(Storn and Price, 1997), DE/Rand/1/Bin, is as follows:

ui = wg
r1
+Fm(wg

r2
−wg

r3
), r1,r2,r3 ∈

{
1,2, . . . ,Np

}
i 6= r1 6= r2 6= r3 i = 1,2, ...,Np (27)

where, Fm is the mutation factor and r1, r2 and r3 are any three different random numbers from{
1,2, . . . ,Np

}
. Thus, a random member is perturbed by taking the difference between any other two

randomly selected members of the current generation, scaling it by Fm and adding it to the random

member. The mutation factor is considered to be the most sensitive parameter in DE (Yang, 2014).

Although the accepted value of the mutation factor (Fm) is ∈ [0,2] (Storn and Price, 1997), Fm ∈ [0,1]

is more efficient, Fm ∈ [0.4,0.95] is good with a first choice Fm ∈ [0.7,0.9] (Yang, 2014).

In the crossover operation, the new members zi of the offspring generation are created by randomly

selecting elements ui( j) and wg
i ( j) from the perturbed vector, ui and the current (parent) generation,

wg
i , respectively based on a user-defined crossover ratio as follows (Storn and Price, 1997):

zi( j) =

ui( j), if rand1 j ≤CR, CR ∈ [0,1]

wg
i ( j),otherwise

j = 1,2, . . . ,N +2; i = 1,2, . . . ,Np (28)

where, rand1 j is a random number ∈ [0,1] and CR∈ [0,1] is a user-defined crossover factor. The higher

the value of CR, the more diverse will be the search. A good range would be CR ∈ [0.1,0.8] with a first

choice CR = 0.5 (Yang, 2014).
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The next step is the evaluation and selection process. For the two generations, namely parent and

children, the objective functions are evaluated. From the parent and children generations, for each

member, wg
i and zi, the new parent generation is selected as follows:

wg+1
i =

zi, if f (zi) is better than f (wg
i )

wg
i ,otherwise

(29)

Trigonometric Differential Evolution (TDE) employs a Trigonometric Mutation Operation (TMO)

propsed by Fan and Lampinen (2003) for accelerating convergence. A random number, rand2 j ∈ [0,1]

is generated and if rand2 j > Mt (where Mt is the trigonometric mutation ratio) the normal mutation is

carried out and otherwise the trigonometric mutation is carried out. The TMO is done as follows (Fan

and Lampinen, 2003):

ui =
wg

r1 +wg
r2 +wg

r3

3
+(p2− p1)(wg

r1
−wg

r2
)

+(p3− p2)(wg
r2
−wg

r3
)+(p1− p3)(wg

r3
−wg

r1
) (30)

where,p1 =
| f (wg

r1) |
p′

, p2 =
| f (wg

r2) |
p′

, p3 =
| f (wg

r3) |
p′

p′ =| f (wg
r1
) |+ | f (wg

r2
) |+ | f (wg

r3
) | (31)

Because of the good convergence rate and efficiency in optimizing nonlinear GRN models, TDE is

preferred over simple DE in many S-system model-based GRN inference methods (Noman and Iba,

2006, 2007; Chowdhury, 2014). After subjective analysis, we also have chosen TDE to implement in

this research.

3.2.4. Local Search Heuristics

Noman and Iba (2007) proposed a local search, namely Hill-Climbing Local Search (HCLS), which

exploits the sparse nature of GRNs. HCLS was developed for inference of GRNs using S-system model

where the possible non-regulations are traced out based on the value of kinetic orders. A similar

concept has been adopted for our model based on the following observations.

If gene- j activates the expression of gene-i, the fraction being multiplied to the production term of

17
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the rate equation for expression of gene-i is given below:

y j

Ki j + y j
=

1

1+ Ki j
y j

(32)

In this case, if Ki j � y j,
Ki j
y j
→ 0 which means that there is no regulation. If gene- j inhibits the

expression of gene-i, the fraction being multiplied to the production term of the rate equation, Eq.

(14), for expression of gene-i is given below:

Ki j

Ki j + y j
=

1
1+ y j

Ki j

(33)

In this case, if Ki j� y j,
y j
Ki j
→ 0 which means that there is no regulation.

To eliminate the possible non-regulations identified as regulations in the candidate individuals of

the current population, we sort the regulations based on the following weight function:

wi j
(
Ki j, ȳ j,δi j

)
=

(
Ki j

ȳ j

)δi j

(34)

where, ȳ j is the mean value of expression of gene- j over the given samples of time. For the best

10% of the population in each iteration, our proposed MM Hill-Climbing Local Search (MMHCLS) is

applied. For each of the selected individuals, the procedure described in Algorithm 1 is carried out.

The regulatory weights of the arcs in the individual (Ind) of the population are sorted in ascending

order (Step 1). The arc having the lowest value of weight function is removed from Ind (i.e., assigned

a value of zero) if the fitness evaluated by removing it shows an improvement. This procedure is

repeated (N-1) more times for each Ki jδi j in the order sorted by weight function (Step 2 to Step 8).

To evaluate the impact of MMHCLS, two sets of simulations were run to infer a five-gene in silico

network using the TDE algorithm, one with MMHCLS and the other without MMHCLS. The value of

the best objective function in each generation is plotted in Figure 5 for both the simulations. It may

be noted that the search exploits the local optima and comes to the global optima quickly by using

MMHCLS. However, the traditional TDE without any heuristics gets stuck at a local optimum.
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Algorithm 1 MM Hill-Climbing Local Search

Require: Ind, the candidate for which local search is to be carried out.
Ensure: Ind, updated through local search execution.

1: Sort the regulations in the ascending order of confidence based on the weight, wi1(δi1,Ki1, ȳ1) ≤
wi2(δi2,Ki2, ȳ2)≤ . . . ,wiN(δiN ,KiN , ȳN)

2: for j = 1 to N do
3: Ind′← Ind.
4: Ki jδi j(Ind′)← 0.
5: if fi(Ind′)≤ fi(Ind) then
6: Ind← Ind′.
7: end if
8: end for
9: return Ind
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Figure 5 The impact of MMHCLS algorithm on the optimization efficiency
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3.2.5. Michaelis-Menten Specific Flip Operation

Chowdhury and Chetty (2011) proposed an S-system specific mutation, namely flip operation, which

flips between the regulations in the production and degradation phase. This is based on the observa-

tion that the activation (or inhibition) of a gene in the production phase is equivalent to the inhibition

(or activation) in the degradation phase. In our model, we propose a flip between activation and

inhibition as we observe that activation with a Michaelis-Menten constant is equivalent to inhibition

with a different Michaelis-Menten constant which is described below.

If gene- j activates the expression of gene-i, the fraction being multiplied to the production term of

the rate equation for expression of gene-i is given below.

y j

Ki j + y j
=

y2
j

Ki jy j + y2
j
=

y2
j

Ki j

y j +
y2

j
Ki j

=
K′i j

K′i j + y j
(35)

where, K′i j =
y2

j
Ki j

. From the above observation, it is vivid that activation with Michaelis-Menten constant

Ki j is equivalent to inhibition with Michaelis-Menten constant
y2

j
Ki j

. Based on this observation, we

propose the following mutation operation.

When the fitness function does not improve for l iterations, we carry out a flip operation. A specific

percentage (in our case 30%) of the best individuals are kept unaltered and a specific percentage (30%

in our case) of the worse individuals are selected for flip operation. Each of the regulations in the

selected individuals is reversed (δi j = −δi j) and the Michaelis-Menten constant is set as the product

of the square of ȳ j and the reciprocal of the current Michaelis-Menten constant, i.e., Ki j =
ȳ2

j
Ki j

. The

flip operation procedure is presented in Algorithm 2. For each of the regulatory arc in the selected

individual, a new Michaelis-Menten constant (K′) is calculated for a probable arc with an opposite

sign (Step 3). If the newly calculated K′ lies within twice the feasible range, the sign of the regulatory

arc is altered with the new Michaelis-Menten constant and is brought to the nearest bound, if exceeds

the limit (Steps 4 to 12).

To evaluate the impact of flip operation (Chowdhury and Chetty, 2011) on MM model, two sets

of simulations were run to infer a five-gene in silico network using the TDE algorithm, one with
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Algorithm 2 MM Specific Flip Operation

Require: Ind, the candidate for flip operation is to be carried out.
Ensure: Ind, updated through flip operation.

1: Find the regulations in Ind, |δi1|= |δi1|= . . .= |δir|= 1 and δi(r+1) = δi(r+2) = . . .= δiN = 0
2: for j = 1 to r do

3: K′i j←
ȳ2

j
Ki j(Ind)

4: if 2×Kmin ≤ K′i j ≤ 2×Kmax then
5: δi j(Ind)←−δi j(Ind).
6: Ki j(Ind)← K′i j.
7: if Ki j(Ind)< Kmin then
8: Ki j(Ind)← Kmin.
9: else if Ki j(Ind)> Kmax then

10: Ki j(Ind)← Kmax.
11: end if
12: end if
13: end for
14: return Ind

flip operation and the other without flip operation. The value of the best objective function in each

generation is plotted in Figure 6 for both the simulations. It may be noted that while the traditional

TDE without flip operation gets stuck at a local optimum, the flip operation helps in directing the

search to a better solution.

3.3. Computational Complexity Analysis

The nonlinear ODE models of GRN inference typically use population based (and often evolutionary)

optimization algorithms for parameter estimation. Solving the differential equations is carried out

using numerical integration techniques like Runge-Kutta (RK) methods. For a traditional coupled

S-System model, the complexity of inference is O
(
GmNpN3Nt

)
where, Gm is the maximum number

of generations used in the optimization, Np is the population size and Nt is the number of samples.

Considering a decoupled S-System Model, the complexity is O
(
GmNpN2Nt

)
. For the proposed MMC-

GRN Model, the complexity is O
(
GmNpN3Nt

)
. Similarly, the complexity of the proposed MMD- GRN

Model is O
(
GmNpN2Nt

)
. Although the computational complexity of a decoupled S-system and MM

model are of the same order, the real simulation time is expected to be lesser for MM model as the

number of parameters is lesser.
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Figure 6 The impact of flip operation on the optimization efficiency

4. Results

The following commonly used performance metrics are used for evaluation of the proposed modeling

framework.

1. Sensitivity:

Sn =
T P

T P+FN
(36)

2. Specificity:

Sp =
T N

T N +FP
(37)

3. Precision:

Pr =
T P

T P+FP
(38)

4. F-score:

F =
1

α
1
Pr
+(1−α) 1

Sn

=
2PrSn

Pr +Sn
(when α = 0.5) (39)

where, T P is the total number of regulations inferred by the algorithm correctly, FP is the total

number of regulations falsely predicted by the algorithm, T N is the total number of non-regulations
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correctly inferred by the algorithm and FN is the total number of non-regulations falsely predicted by

the algorithm.

Sensitivity or recall is the true positive rate and gives the probability of capturing a true regulation

by a given method. A high value of sensitivity implies that the method has captured most of the

true regulations. Specificity is the true negative rate and gives the probability of capturing a true

non-regulation by a given method. A high value of specificity implies that the method has captured

most of the true non-regulations. Precision or positive predictive value is the fraction of the captured

regulations by a given method that are true regulations. A high value of precision implies that most

of the captured regulations are true regulations. F-score gives a weighted balance between sensitivity

and precision. A harmonic mean of the two are usually considered in evaluation.

4.1. IRMA- An In Vivo Network

Cantone et al. (2009) reported a 5-gene synthetic network in yeast, (i.e., Saccharomyces cerevisiae)

for “In vivo Reverse engineering and Modeling Assessment (IRMA)", shown in Figure 7a. The five

genes are CBF1, GAL4, SWI5, GAL80 and ASH1. There are six transcriptional regulations, namely

CBF1 activates GAL4, GAL4 activate SWI5, SWI5 activates CBF1, GAL80 and ASH1, ASH1 inhibits

CBF1. The network has two protein-protein interactions, Gal4p and Gal80p inhibiting each other.

Cantone et al. (2009) came out with a simplified representation of the network which shows only the

transcriptional regulations as shown in Figure 7b. The original network consists of all eight regulatory

arcs and a simplified network excludes the two protein-protein interactions.

Saccharomyces cerevisiae can grow on both glucose and galactose; the growth on galactose being

more expensive than the growth on glucose. For this reason, the organism always prefers to use

glucose for its growth if available (Bhat, 2008). However, if glucose is absent in the growth medium,

yeast has to look for alternate sources of nutrition, for example, galactose. When galactose is the only

available source for growth, yeast synthesizes enzymes that are necessary for the transport as well as

metabolism of galactose, i.e., it switches ‘ON’ the system. Once the organism gets access to glucose, it

switches ‘OFF’ the GAL genes. Cantone et al. (2009) generated the datasets for both the conditions.

(i) Switch ’ON’: by growing the yeast Saccharomyces cerevisiae in a galactose-rich and glucose-absent

medium and (ii) switch ‘OFF’: by transferring the cultures being grown on galactose into a glucose
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(a) Original Network (b) Simplified Network

Figure 7 IRMA Network (Cantone et al., 2009). Solid edges indicate gene interactions and the dashed edges
indicate protein-protein interactions. Arrow ended arcs indicate activation, block ended arcs indicate inhibition
and the circle ended arc indicates either activation or inhibition.

Table 2 The experimental results of MMC-GRN and MMD-GRN for IRMA network, reconstructed from ON
dataset. The results for other methods are reported by Chowdhury et al. (2013)

Original Network Simplified Network
Method Sn Sp Pr F Sn Sp Pr F
MMD-GRN 0.71 0.89 0.71 0.71 1.00 0.82 0.71 0.83
MMC-GRN 0.71 0.89 0.71 0.71 1.00 0.82 0.71 0.83
REGARD (Chowdhury et al., 2012) 0.69 0.83 0.60 0.64 0.70 0.75 0.54 0.61
BITGRN (Morshed et al., 2012) 0.63 1.00 1.00 0.77 0.67 1.00 1.00 0.80
TD-ARACNE (Zoppoli et al., 2010) 0.63 0.88 0.71 0.67 0.67 0.90 0.80 0.73
BANJO (Yu et al., 2004) 0.24 0.76 0.33 0.29 0.50 0.70 0.50 0.50
ALG (Noman and Iba, 2007) 0.77 0.27 0.27 0.40 0.80 0.42 0.36 0.50

medium. Both of these datasets have been used for evaluating the proposed MMC-GRN model.

An evaluation of the proposed method with the existing methods for reconstructing IRMA network

from ON dataset is tabulated in Table 2. The Bayesian inference methods used in comparison are

BANJO (Bayesian network inference using java objects) (Yu et al., 2004), TD-ARACNE (Algorithm for

the reconstruction of accurate cellular networks with time delay) (Zoppoli et al., 2010) and BITGRN

(Bayesian information theoretic gene regulatory network reconstruction algorithm) (Morshed et al.,

2012). The other methods used in comparison are S-system based methods such as ALG (Noman and

Iba, 2007) and REGARD (Chowdhury et al., 2012).

Considering the simplified network, the sensitivity and F-score are the best for MMC-GRN and

MMD-GRN among all the methods and other metrics are close to the best values. For the original
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Table 3 The experimental results of MMC-GRN and MMD-GRN for IRMA network, reconstructed from OFF
dataset. The results for other methods were reported by Chowdhury et al. (2013)

Original Network Simplified Network
Method Sn Sp Pr F Sn Sp Pr F
MMD-GRN 1.00 0.84 0.67 0.80 1.00 0.82 0.71 0.83
MMC-GRN 1.00 0.83 0.70 0.82 1.00 0.73 0.63 0.77
REGARD (Chowdhury et al., 2012) 0.77 0.76 0.53 0.63 0.80 0.79 0.62 0.70
BITGRN (Morshed et al., 2012) 0.50 0.94 0.80 0.62 0.50 0.90 0.75 0.60
TD-ARACNE (Zoppoli et al., 2010) 0.60 - 0.37 0.46 0.75 - 0.50 0.60
BANJO (Yu et al., 2004) 0.38 0.88 0.60 0.46 0.33 0.90 0.67 0.44
ALG (Noman and Iba, 2007) 0.76 0.56 0.38 0.57 0.80 0.75 0.57 0.67

network, although the performance metrics for MMC-GRN and MMD-GRN are not the best among all

the methods available, they are close to the best values. For 800 iterations and 200000 time steps

of RK4 per function evaluation, MMC-GRN required 106 hours. The network with similar level of

accuracy is achieved by MMD-GRN in 68 hours. In other words, MMD-GRN is 55.88% faster than

MMC-GRN.

While MMD-GRN is more biologically relevant than MMC-GRN, the performance metrics for IRMA

network for these two models is very similar. It may be noted that among the five genes of IRMA

network, three genes, namely ASH1, CBF1 and GAL80 regulate only single genes. The other two

genes, GAL4 and SWI5 have two outgoing arcs. Due to the fewer number of genes in the network

and also because there are only two genes in the network that regulate multiple genes, we believe

these to be the cause of observing similar performance metrics for IRMA network when inferred using

MMC-GRN and MMD-GRN models.

Similar evaluations for IRMA OFF dataset is shown in Table 3. Considering both the original and

simplified networks, the sensitivity (=1.00) is the best for both MMC-GRN and MMD-GRN. Similarly

considering both the original and simplified networks, F-score is the best among all the methods for

MMD-GRN and the second best for MMC-GRN. The other metrics for both MMC-GRN and MMD-GRN

are close to the best values. It may be noted that the evaluation metric F which represents the trade-

off between false positives and false negatives comes out to be the best among all in most of the cases.

This is an indication of robustness and effectiveness of the proposed method. In summary, MMD-GRN
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(a) Directed Unsigned (b) Undirected Unsigned

Figure 8 Unsigned forms of IRMA network used in GRN inference evaluations

shows the best performance in terms of sensitivity and F-score among all the methods compared for

IRMA except for original network reconstructed using ON dataset.

Some of the recent GRN models have used both the datasets and showed the inference accuracies.

We have made use of the results from both the datasets and the repeated regulations in both the re-

sults are considered for inference. For the purpose of comparison, we have considered the network in

two forms; i.e., directed and undirected networks as shown in Figure 8. In both these forms, neither

the sign of regulation (i.e. activation and inhibition) nor the possibility of self-regulations is consid-

ered. We have compared our results using both ON and OFF datasets of IRMA with various recent

models shown in Table 4. It may be noted that considering the undirected and unsigned network,

both MMC-GRN and MMD-GRN models outperform all other methods in terms of all performance

metrics. Considering the directed and unsigned network, both the models show the best specificity

and precision among all the approaches. Moreover, the sensitivity and F-score are close to the best

values and the second best among all the methods.

4.2. SOS DNA Repair System in Escherichia coli

SOS DNA repair mechanism is a well-studied bacterial process, discovered by Miroslav Radman in

mid-1970s (Friedberg, 2008). As this process is in response to the signal of DNA-damage, it is termed

SOS response after the naval ‘Save Our Souls’ distress signal (Erill et al., 2007). The system represents

the set of genes involved in repairing the DNA when any damage occurs. Although it has been shown

that over a thousand genes are involved in SOS DNA damage response system of Escherichia coli (E.
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Table 4 The experimental results of MMC-GRN and MMD-GRN for IRMA network using both ON and OFF
datasets

Undirected Unsigned Directed Unsigned
Method Sn Sp Pr F Sn Sp Pr F
MMD-GRN (best) 0.86 1.00 1.00 0.92 0.71 0.89 0.83 0.77
MMC-GRN 0.86 1.00 1.00 0.92 0.71 0.89 0.83 0.77
ELM-GRNNminer (Rubiolo et al., 2018) 1.00 0.00 0.78 0.88 0.75 0.82 0.67 0.71
BGL_prior (Fan et al., 2017) - - - - 0.63 0.75 0.63 0.63
MRMSn (Liu et al., 2016) 0.71 0.67 0.83 0.77 - - - -
ProFoGRN (Ceccarelli et al., 2015) 0.86 0.67 0.86 0.86 0.71 0.86 0.83 0.78
MIDER (Villaverde et al., 2014) 0.71 0.67 0.83 0.77 0.38 0.75 0.50 0.43
BPDS (Vera-Licona et al., 2014) 0.71 0.67 0.83 0.77 0.63 0.83 0.71 0.67
OKVAR-Boost (Lim et al., 2013) 0.71 0.67 0.83 0.77 0.63 0.58 0.50 0.56
TDSS (Chowdhury et al., 2013) 0.57 1.00 1.00 0.73 0.50 1.00 1.00 0.67
DELDBN (Li et al., 2011) 0.86 0.33 0.75 0.80 0.88 0.75 0.70 0.78
BANJO (Yu et al., 2004) - - - - 0.63 0.75 0.63 0.63

coli) (Khil and Camerini-Otero, 2002), the significant genes in the network are considered to be less

than 40 (Fernández de Henestrosa et al., 2002).

Among the significant genes of SOS response in E. coli, lexA and recA are considered as the primary

genes of the entire network (Little and Mount, 1982). The most explored subnetwork of the system

is an eight-gene network consisting of the primary genes, lexA and recA, and their target genes, uvrD,

umuD, uvrA, uvrY, ruvA and polB. Ronen et al. (2002) conducted experiments by damaging DNA using

ultraviolet (UV) radiation and reported the expression data of these eight genes. The data consists of

four sets of gene expression data, with 50 samples each at intervals of 6 minutes.

A six gene subnetwork, which excludes the genes uvrY and ruvA, is also vastly studied for model-

ing and inference problems where the exclusion of those two genes are for not exhibiting adequate

changes in the expression levels. Yang et al. (2012) came up with a gold standard of regulations in

the six-gene-subnetwork of the SOS response network of E. coli from the literature. The gold standard

is shown in Table 5.

For the sake of comparison, we have used the data from the experiment with UV intensity 20

J/m2 (Yang et al., 2012). The best of the experimental results for the proposed MMD-GRN model is

compared with other reported results. The evaluation metrics are calculated comparing the network
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Table 5 The gold-standard for regulations in six-gene subnetwork of the SOS system in E. coli (Yang et al.,
2012)

Gene uvrD lexA umuD recA uvrA polB
uvrD 0 -1 -1 +1 +1 0
lexA 0 -1 -1 +1 0 0
umuD 0 -1 -1 +1 0 0
recA 0 -1 -1 +1 0 0
uvrA +1 -1 -1 +1 0 0
polB 0 -1 -1 +1 0 0

Table 6 The experimental results (best values) for SOS DNA repair system in E. coli

Signed Unsigned
Method Sn Sp Pr F Sn Sp Pr F
MMD-GRN 0.38 0.70 0.50 0.43 0.47 0.82 0.75 0.58
ELM-GRNNminer (Rubiolo et al., 2018) - - - - 0.37 0.94 0.75 0.45
TDSS (Chowdhury et al., 2013) 0.32 0.88 0.75 0.44 0.35 0.94 0.88 0.50
REGARD (Chowdhury et al., 2012) 0.26 0.88 0.71 0.38 0.30 0.94 0.86 0.44
Kimura et al. (2009) 0.08 0.61 0.10 0.09 0.40 0.88 0.80 0.53
S-Tree (Cho et al., 2006) 0.30 0.94 0.86 0.44 0.30 0.94 0.86 0.44
NGnet (Kimura et al., 2008) 0.26 0.82 0.63 0.37 0.30 0.88 0.75 0.43

inferred with the gold-standard shown in Table 5. The results are compared with other methods in

Table 6.

Considering a signed network, our proposed MMD-GRN model has performed better than NGnet,

REGARD and Kimura et al. in terms of the most important metric, F-score. Considering an unsigned

network, MMD-GRN outperforms all other methods mentioned in the table. In many real-life prob-

lems, the prediction of a directed network is critical to understand the genes influencing the network.

4.3. In Silico Networks

4.3.1. Five and Twenty Gene Networks

A small five-gene in silico network having eight regulatory arcs and a 20-gene synthetic network pos-

sessing 22 regulatory arcs are considered. Following DREAM4 settings of GeneNetWeaver, (Schaffter

et al., 2011) an in silico benchmarking software, for each network, ten datasets having 21 time sam-

ples each are generated. The simulations are run for inference from both the datasets. All the arcs are
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Table 7 Th experimental results (best values) for five gene in silico network

MMC-GRN MMD-GRN
Input Data Sn Sp F Time (s) Sn Sp F Time (s)
0% Noise 1.0 1.0 1.0 851.2 1.0 1.0 1.0 805.4
5% Noise 1.0 1.0 1.0 851.6 1.0 1.0 1.0 806.8

7.5% Noise 1.0 0.94 0.94 860.4 1.0 0.94 0.94 810.1
10% Noise 1.0 0.82 0.84 862.3 0.86 0.89 0.80 812.2

Table 8 The experimental (best values) results for twenty gene in silico network

MMC-GRN MMD-GRN
Input Data Sn Sp Pr F Sn Sp Pr F
0% Noise 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
5% Noise 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

7.5% Noise 0.95 0.98 0.69 0.80 0.95 0.98 0.69 0.80
10% Noise 0.90 0.97 0.62 0.73 0.90 0.97 0.62 0.73

inferred correctly with direction and sign, i.e., the values of all the evaluation metrics are obtained as

exactly ’one’, for both the networks using both the models. Different levels of Gaussian noise are then

introduced in the data and the network is inferred from noisy data by the proposed method. For both

the networks, the results remain the same for 5% noise. However, some false regulations are inferred

for the noise levels above 7.5%. However, the deterioration in inference is low. The experimental

results are presented in Tables 7 and 8. The simulations required less time for MMD-GRN compared

to MMC-GRN.

4.3.2. 50-Gene Subnetwork of Yeast

A subnetwork of size 50 is extracted from the gene network of yeast using the in silico benchmarking

software, GeneNetWeaver (Schaffter et al., 2011). This is a highly sparse network, shown in Figure 9,

having a total of 80 regulatory interactions among the genes.

The datasets are generated using the standard ‘DREAM4 settings’ providing 10 datasets of 21

samples each at a time interval of 50 units. We reconstructed the network from the generated datasets

using the proposed MMD-GRN model. For the sake of comparison, we have used the BANJO (Bayesian

Network Inference using Java Objects) software to infer the network from the same datasets. The

results are shown in Table 9.
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Figure 9 A 50-gene subnetwork of yeast generated by GeneNetWeaver (Schaffter et al., 2011)

Table 9 The experimental results (best values) for 50-gene subnetwork of yeast

Method Sn Sp Pr F
MMD-GRN 0.44 0.98 0.44 0.44

BANJO (Yu et al., 2004) 0.02 0.98 0.04 0.03

30



Page 31 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

In terms of all performance metrics, BANJO shows very poor performance except for specificity

which is the same for both the methods. The proposed MMD-GRN model performs much better than

BANJO. The poor performance of BANJO for the network in Figure 9 may be due to its higher extent of

sparsity. The scale-free topology of real-life genetic networks (Albert, 2005) illustrates that the GRNs

are highly sparse in nature. The results presented for the 50-gene highly sparse network demonstrates

the potential of MMD-GRN model for real-life problems of genetic network inference.

5. Conclusions

In this paper, we have proposed a novel model using Michaelis-Menten kinetics for inferring gene reg-

ulatory networks. The efficacy of the proposed approach is demonstrated by inferring not only small

but also medium scale networks. The proposed coupled model MMC-GRN considers the strength

of regulation by a gene to be the same for all the genes it regulates. To overcome this, we further

propose the decoupled model, MMD-GRN. The decoupling makes the model more realistic by al-

lowing regulatory strength to be different for different genes. Further, the decoupling reduces the

computational complexity and makes the algorithm run faster. The effectiveness of decoupled model,

MMD-GRN is is studied using different datasets of various sizes. The results show the superiority of

Michaelis-Menten based models over other existing approaches for well known evaluation metrics,

i.e., sensitivity, specificity, precision and F-score. The model provides a novel paradigm which can

be extended for modeling and analysis of various biochemical systems such as signal transduction

processes and various metabolic pathways.

It is being increasingly acknowledged that stochasticity is very important in gene regulatory pro-

cesses. Recently, Pulkkinen and Metzler (2015) proposed a Variance-corrected Michaelis-Menten

equation that predicts transient rates of single-enzyme reactions and response times in bacterial gene-

regulation. This facilitates implementation of accurate rates of biochemical reactions even in the

presence of large fluctuations. As future work, the Variance Corrected MM equation can be used to

further underpin the proposed MM approach. Further, the model can be further studied for recon-

struction of protein-protein interaction (PPI) networks. Another future work would be incorporation

of cooperativity. Cooperative binding of transcription factors is best modeled by Hill kinetics. The
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proposed model can be easily upgraded to include Hill kinetics.
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