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Abstract 

In this paper we present a mathematical solution that allows the elimination rate-constant or 

half life of a drug to be estimated from a single blood drug measurement. This is of great utility 

in clinical areas involving care of criticallly ill or vulnerable patients, where providing more than 

one blood sample can involve significant risks.  The calculations used in our approach, based 

solely on a single sample, do not require complex pharmacokinetic software, but instead can be 

simply performed at the patient’s bedside using standard personal computing tools.  The 

proposed method allows a personalised estimate of the drug’s half life, which is preferable to 

using population averages, or using estimates based on proxy markers of lagging organ 

function, which are both indirect and generally inaccurate for a patient with confounding 

factors. 
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Introduction 

 

Pharmacokinetics is the study of how drugs are absorbed, distributed, metabolised, and 

eliminated from the human body. It is principally a mathematical subject that involves the 

development of models that describe the way the concentration of a drug in the blood changes 

with time. When applied clinically, pharmacokinetics allows clinicians to devise dosing regimens 

that ensure blood (or, more precisely, blood plasma) concentrations of a drug are maintained 

within the therapeutic window.  

 

A pharmacokinetic parameter of practical utility to clinicians is the elimination rate-constant, 

𝑘. This is the rate at which a given drug is eliminated from the blood. Closely related to the 

elimination constant is the drug’s half-life, 𝑡1/2, which is the time it takes for a drug’s plasma 

concentration to fall to half its initial value. The drug’s half-life is given by 𝑡1/2 = ln(2)/𝑘, 

where ln(2) ≈ 0.693 is the natural logarithm of 2. In what follows, we shall refer solely to the 

elimination elimination rate-constant, 𝑘, rather than the half-life, 𝑡1/2, which contains 

identical information. 

 

The elimination rate constant, k, can be used, for example, to directly determine the time it 

takes the plasma concentration of a drug to fall from one given value to another value.  In the 

case of a drug overdose for example, k can be used to determine when the concentration of a 

drug will fall out of the toxic range.  Knowledge of k can also be used to determine how long it 

will take for the plasma concentration to reach a therapeutic level during initial dosing, thereby 
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providing information to clinicans and patients about when they may expect to see a beneficial 

response to a drug.  Other clinically useful parameters are related to the elimination rate 

constant, k.  For example, a drug’s clearance, 𝐶𝑙, is the product of 𝑘 and the apparent 

volume of distribution, 𝑉.  The clearance can be used to calculate maintenance doses and 

dosage intervals for any drug, but is routinely used to tailor doses for patients taking drugs of 

the highest level of risk, due to their toxicity profile.  These include established drugs such as 

digoxin, vancomycin, gentamicin and theophylline. However, application to other drug classes 

such as sedatives, analgesics, anaesthetics and biological therapies is also useful in certain 

clinical scenarios.  It is therefore clear that an accurate knowledge of 𝑘 (or equivalently 𝑡1/2) 

is of clinical importance and, when used in specific cases, can increase the chances of a safe and 

effective treatment. 

 

Estimates of 𝑘 can be obtained directly from the literature for a range of drugs.  However, 

these have typically been derived from large population datasets, and an individual’s ‘true’ (or 

personal) value can deviate substantially from such estimates.  For example, in one study 

involving infusion of digoxin to healthy volunteers, the measured half-life of the drug ranged 

from 33.2 to 51.6 hours, with a coefficient of variation of 16% [1].  Generally, there is 

appreciable inter- and intra- patient variability in the many physiological, environmental, 

pathological and genetic factors that determine the elimination rate constant, k.  For example, 

smoking can decrease the half-life of theophylline by a factor of 0.64 [2].  Even meat cooked 

on charcoal can increase theophylline clearance [3].  Genetic polymorphisms in mixed function 

oxidases can also lead to high variability in the clearance of warfarin, another high risk drug [4].  
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Thus for a specific drug, in a particular individual, their personal 𝑘 can be appreciably different 

from the value quoted in the literature.   

 

There are a number of ways to obtain the true 𝑘 for an individual patient, but these typically 

involve taking multiple plasma samples at accurately recorded times. This is seldom feasible in a 

clinical setting, where taking blood samples: (i) carry risks to both the patient and practitioner, 

(ii) are expensive, and (iii) are resource intensive.  Importantly, in some vulnerable patient 

groups, for example premature neonates, it is simply not possible to take sufficient (i.e.,  

multiple) quantities of blood for a complete analysis. As a consequence, researchers have 

developed models which incorporate physiological measurements from an individual patient 

(e.g. creatinine clearance, ideal body weight) to provide more accurate, individualised 

estimates of 𝑘, without the need of multiple blood samples. However, this approach still 

carries a potentially significant degree of error in the estimate of 𝑘, and can lead to the design 

of an inappropriate dosage regimen, with concomitant risks. Furthermore, there are few 

examples of models, that are used routinely in clinical practice, that are able to account for 

more subtle factors that effect drug elimination, such as drug interactions, or genetic 

polymorphisms. 

 

A viable approach, which may provide more accurate estimates of 𝑘, compared to models built 

using physiological surrogates alone, is a personalised approach based on a single plasma drug 

concentration measurement of an individual patient. Despite only a single measurement, the 

data it carries provides key information about the pharmacokinetics of the drug in the 
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particular patient, and may thus improve the accuracy of the estimate. Current 

pharmacokinetic models however, only allow for the determination of 𝑘 from a single 

measurement under two circumstances: (i) when a single plasma concentration is taken at 

steady state during drug delivery by continuous infusion, or (ii) when a single trough plasma 

concentration is taken immediately prior to the next scheduled dose, for a drug delivered by 

intermittent dosing that has reached steady state [4]. These pharmacokinetic approaches thus 

have strong limitations on when a single plasma concentration measurement can be used to 

estimate 𝑘.  

 

In this paper, we set out a mathematical approach which addresses the problem of how a single 

plasma drug concentration measurement can be used to determine an individual patient’s 

elimination constant, 𝑘, with the advantages listed above. With this mathematical approach, 

we are able to expand the number of scenarios for which data, from a single plasma drug 

concentration measurement, can be used to predict 𝑘 in patients. These scenarios include 

estimating 𝑘 from a single plasma concentration that is taken: 

  

1. at any time post drug-administration (i.e. during the exponential elimination period), 

assuming the drug concentration reached steady state during drug administration 

2. at any time during the initial drug-administration period (up to, and including steady state)  

3. at any time post drug administration, during an exponential decay period, without assuming 

the drug concentration had reached steady state.  
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We will show how this mathematical approach is compatible with previous estimates of 𝑘 

(based on multiple measurements of plasma concentration) that have been calculated in 

published studies. We discuss how the proposed approach could be of practical benefit to 

patients in both a clinical setting, and in clinical trails.  
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2. Results 

 

2.1 Model derivation 

 

2.1.1 Scenario 1: estimating 𝒌 from a single plasma sample taken at any time post drug 

administration, assuming plasma drug concentration had reached steady state 

 

Let us consider a drug, say 𝑋, that is administered to a patient by continuous infusion. If the 

drug follows a first order elimination process after infusion has stopped, then the plasma 

concentration of 𝑋 will fall exponentially (see red part of curve, Figure 1).  

 

 

Figure 1 
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Figure 1 Caption: Relationship between plasma concentration and time during the continuous 

infusion, steady-state period (black line), and the post drug-administration exponential decay 

period (red line).   A plasma concentration measurement that is taken at any time t after 

drug administration has ceased (red line), written Ct, can be used to predict the elimination 

rate constant, 𝒌, using Eq. (4). In the figure, we have R = dose rate, V = apparent volume of 

distribution, k = elimination rate constant, t = time since administration ceased, and Css = 

plasma drug concentration at steady state. 

--------------------------------------------------------------------------------- 

 

To derive our results, let us first consider the case where there is no drug administration 

occurring. With the initial plasma concentration at time 0 denoted by 𝐶0, and the plasma 

concentration at a later time, 𝑡, denoted by 𝐶𝑡, the rate at which the plasma concentration 

falls is determined by 𝑘 according to the equation 

 

 𝐶𝑡 = 𝐶0𝑒−𝑘𝑡. (1) 

 

We shall refer to 𝐶0 as the reference or initial value. 

 

To estimate 𝑘, knowledge of the plasma concentrations are required at at least two times. 

Indeed, when only two plasma concentrations are available, say at times 0 and 𝑡, taking the 

natural logarithm of Eq. (1) and rearranging the result allows determination of 𝑘, as 𝑘 =

−ln(𝐶𝑡/𝐶0)/𝑡. Alternatively, if multiple plasma concentrations are available over the drug 
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elimination period, then a linear function of t can fitted to a ln(𝐶𝑡) vs. t plot, to obtain an 

estimate of 𝑘. 

 

However, our objective is to estimate 𝑘 from knowledge of only a single, post administration 

plasma drug concentration value at time 𝑡 (namely 𝐶𝑡), rather than carrying out any curve 

fitting or other procedures. Our objective can be achieved under the two conditions: (i) that 

drug administration occurred for times prior to time 0 and was stopped at time 0, (ii) the 

plasma concentration of the drug achieved a steady state value of 𝐶𝑠𝑠 prior to time 0, and 

hence at time 0, the plasma concentration was the steady state value, 𝐶𝑠𝑠. Then the plasma 

concentration of drug 𝑋 at any positive time 𝑡 (written 𝐶𝑡) follows from Eq. (1) when the 

reference (or initial) value 𝐶0  is replaced by 𝐶𝑠𝑠. This leads to 

 

 𝐶𝑡 = 𝐶𝑠𝑠𝑒−𝑘𝑡. (2) 

 

Importantly, 𝐶𝑠𝑠 is not an unknown quantity but is related to the following data: the rate of 

drug administration (𝑅), the apparent volume of distribution (𝑉), and the elimination rate 

constant (𝑘).  See Table 1 for a list of key pharmacokinetic parameters we use in this work. 

The balance between drug elimination and drug administration in the steady state leads to 

𝑅/𝑉 = 𝑘𝐶𝑠𝑠 which is an equation that yields a steady state plasma concentration of X of 

 

 𝐶𝑠𝑠 =
𝑅

𝑉𝑘
 (3) 
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Parameter Description Units 

k Elimination rate constant hr-1 

V Apparent volume of distribution L 

R Dose rate mg/hr 

Css Plasma drug concentration at steady state mg/L 

Ct Plasma drug concentration at time t mg/L 

t Time since drug administration stopped / started hr 

t0* Duration of infusion hr 

t1* Time since drug administration stopped  hr 

 

Table 1.  Key pharmacokinetic parameters. The starred times (*) are used in Eq. (7). 

 

Equation (3) allows Eq. (2) to be written as 
𝑅𝑡

𝑉𝐶𝑡
= 𝑘𝑡𝑒𝑘𝑡, which takes the form 𝑦 = 𝑥𝑒𝑥 and is 

an equation that does not have an elementary solution for 𝑥. However such an equation can 

be solved in terms of a special function, known as the Lambert 𝑊 function, whose properties 

are fully known, with the solution of 𝑦 = 𝑥𝑒𝑥 given by 𝑥 = 𝑊(𝑦) [1]. Using the Lambert 𝑊 

function allows the equation 
𝑅𝑡

𝑉𝐶𝑡
= 𝑘𝑡𝑒𝑘𝑡 to be solved for 𝑘, with the following result, for the 

particular scenario considered:  

 𝑘 =
1

𝑡
𝑊 (

𝑅𝑡

𝑉𝐶𝑡
). (4) 
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This1 is an explicit result for 𝑘, for a drug, in an individual patient, in terms of the known 

parameters 𝑉 and 𝑅, and the single measured value of the plasma concentration of the drug 

at time 𝑡, namely 𝐶𝑡. 

 

While the right-hand-side of Eq. (4) appears to be time-dependent, we note that as long as 𝐶𝑡 

has the exponential form in Eq. (2), the value of k predicted by Eq. (4) is a constant, 

independent of the time, t. Results analogous to Eq. (4), that we shall present later, also have 

the time appearing on the right-hand-side of the equation, but again yield time-independent 

values of k. 

 

   

 

 

                                                      
1 There are implementations of the Lambert 𝑊 function in many numerical software packages, such as Maple, Mathematica, Matlab and R. In 
addition, in Eq. (5.9) in the paper by Corless et. al., a straightforward and rapidly converging iterative method is given to determine the value of 

the Lambert 𝑊 function. Using this method in Matlab, we found that starting with the initial value 𝑤0 = 0 typically required less than 10 

iterations to obtain a result that is accurate to machine precision (𝑂(10−16)). 
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2.1.2 Scenario 2: estimating 𝒌 from a single plasma sample taken during the initial drug 

administration period 

 

Let us now consider the plasma concentration of drug 𝑋 in a patient during an infusion of the 

drug, which started at time 0. During the initial dosing period, the plasma concentration 

increases from 0, at time 0, towards the steady state concentration 𝐶𝑠𝑠 (Eq. (3)) according to 

the equation 

 𝐶𝑡 = 𝐶𝑠𝑠(1 − 𝑒−𝑘𝑡). (5) 

 

This equation allows the plasma concentration at any time 𝑡 since drug administration 

commenced, namely 𝐶𝑡, to be predicted from joint knowledge of 𝑘 and the steady state 

plasma drug concentration. An illustration of the behaviour of the concentration of drug 𝑋 

with time is given in Figure 2. 
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Figure 2 

Figure 2 Caption: Relationship between plasma concentration and time during the initial 

drug-administration period up to steady-state being reached. A plasma concentration, which 

is taken at any time during drug administration (red line), and written Ct, can be used to 

predict 𝒌 using Eq. (6).  The blue line shows the steady state concentration. In the figure, 

we have R = dose rate, V = apparent volume of distribution, k = elimination rate constant, t = 

time since administration ceased, and Css = plasma drug concentration at steady state. 

--------------------------------------------------------------------------------- 

 

In  Appendix A we show that Eq. (5) allows determination of 𝑘 from knowledge of only a 

single plasma concentration at an arbitrary time, 𝑡, since drug commencement, namely 𝐶𝑡. 

The result for 𝑘 is again expressed in terms of the rate of drug administration, 𝑅, the 

apparent volume of distribution, 𝑉, and the Lambert 𝑊 function: 

 

 𝑘 =
𝑅

𝑉𝐶𝑡
+

1

𝑡
𝑊 (−

𝑅𝑡

𝑉𝐶𝑡
𝑒

−
𝑅𝑡

𝑉𝐶𝑡). (6) 
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2.1.3 Scenario 3: estimating 𝒌 from a single plasma sample taken at any time post drug 

administration, without assuming plasma drug concentration had reached steady state 

 

In the first scenario (above), we considered a dosing regimen where, after steady-state had 

been reached, dosing was ceased, and the plasma concentration of drug 𝑋 subsequently 

declined exponentially with time. We saw how a plasma sample taken during this period of 

exponential decay could then be used to estimate 𝑘 using the Lambert 𝑊 function, along 

with the parameters 𝑅 and 𝑉. But what if steady-state had not been reached? 

 

For the purpose of addressing this particular problem, which we term Scenario 3, we will 

assume that: (i) the infusion of drug 𝑋 started at time 0 and lasted for a time interval of 𝑡1, 

at which time drug administration ceased; (ii) after a further time-interval of 𝑡0, i.e., post drug 

administration, a single plasma sample was taken. Thus the sample was actually taken at time 

𝑡1 + 𝑡0 after initial drug commencement - see Figure 3.  
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Figure 3 

Figure 3 Caption: Estimating 𝒌 from a post administration plasma drug concentration 

assuming the plasma concentration has not reached steady state. In this scenario, drug 

infusion took place from time 0 to time t1 (black line) and steady state was not reached by the 

time infusion of the drug ceased (time t1). A concentration measurement was made a time t0 

after cessation of drug infusion (red line), with value 𝑪𝒕𝟏
, and this can be used to predict 𝒌 

using Eq. (7).  In the figure, k = elimination rate constant, t1 = duration of infusion, t0 = time 

since infusion stopped, 𝑪𝒕𝟏
 = plasma drug concentration at time infusion stopped, 𝑪𝒕𝟎

 = 

plasma drug concentration at a time t0 after infusion stopped. 

--------------------------------------------------------------------------------- 

 

We write 𝐶𝑡0
 for the measured plasma concentration of the sample taken after infusion 

cessation. We can use similar reasoning to that used in the first two scenarios, as explained in  

Appendix B and illustrated in Figure 3, to determine a formula for 𝑘. In particular, in  

Appendix B we show that 𝑘 can be expressed in terms of a function of two variables 𝑇0 and 

𝑇1, written 𝐾(𝑇0, 𝑇1), according to 
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 𝑘 =
𝑅

𝐶𝑡0𝑉
𝐾 (

𝑅𝑡0

𝐶𝑡0𝑉
,

𝑅𝑡1

𝐶𝑡0𝑉
) (7) 

 

where 𝐾 ≡ 𝐾(𝑇0, 𝑇1) obeys the non-linear equation 1 = (1 − 𝑒−𝐾𝑇1)𝑒−𝐾𝑇0/𝐾. 

 

Unlike the previous scenarios, an exact result for 𝑘 for Scenario 3 cannot generally be found. 

However, a numerical value for 𝑘 may be straightforwardly obtained. The numerical method 

to find 𝑘 is: (i) first evaluate the quantities 𝑇0 =
𝑅𝑡0

𝐶𝑡0𝑉
 and 𝑇1 =

𝑅𝑡1

𝐶𝑡0𝑉
 ;  (ii) for these values of 

𝑇0 and 𝑇1, determine the value of 𝐾(𝑇0, 𝑇1) by numerically solving the equation 1 =

(1 − 𝑒−𝐾𝑇1)𝑒−𝐾𝑇0/𝐾 for 𝐾 (see  Appendix B for a method of solution); (iii) by Eq. (7) the 

value of 𝑘 follows as 
𝑅

𝐶𝑡0𝑉
 times the numerical value of 𝐾 found. In Table 2, we give 

numerical results for the function 𝐾(𝑇0, 𝑇1), that appears in Eq. (7), for a range of values of 𝑇0 

and 𝑇1. 
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Table 2 

Table 2 Caption: Numerical values of the function 𝑲(𝑻𝟎, 𝑻𝟏), which appears in Eq. (7) for the 

rate constant, under Scenario 3. This table contains numerical values of the function 

𝑲(𝑻𝟎, 𝑻𝟏) for a set of different values of 𝑻𝟎 and 𝑻𝟏. The function 𝑲(𝑻𝟎, 𝑻𝟏) is defined for 

𝑻𝟎 ≥ 𝟎 but only for 𝑻𝟏 > 𝟏 (see  Appendix B for details). 

--------------------------------------------------------------------------------- 
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The result of Eq. (7) indicates that from a single plasma measurement under Scenario 3, the 

elimination rate constant, 𝑘, can be numerically determined, and the problem is thus fully 

solved. To complement the numerical results of Table 2, and give insight into the behaviour of 

𝑘, we give analytical approximations of 𝐾(𝑇0, 𝑇1) in  Appendix B. 
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2.2 Application of the results derived for 𝒌 to three cases described in the literature 

 

The results of the three scenarios, derived above, can be used to estimate 𝑘 from a single 

plasma drug concentration measurement under different conditions of drug administration. We 

shall consider three specific cases that were published in the literature involving drugs upon 

which therapeutic drug monitoring is clinically necessary. 

 

 Case 1 Theophylline, where a plasma drug measurement was taken post drug 

administration, assuming steady state was reached. This is an example of Scenario 1. 

 Case 2 Cyclosporin, where a plasma drug measurement was taken during the initial dosing 

period, prior to achievement of steady state. This is an example of Scenario 2. 

 Case 3 Theophylline, where a plasma drug measurement was taken post drug 

administration, without the steady state having been reached. This is an example of 

Scenario 3. 

 

We obtain estimates of 𝑘, that arise from a single plasma drug concentration measurement, 

and compare these to estimates generated from the original research, through established 

experimental methods. Where possible, we also relate our estimates of 𝑘 to pharmacokinetic 

models that are clinically used to predict 𝑘 using population data. We go on to describe how 

our results may be used both clinically and experimentally in the future. 
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2.2.1 Case 1: Theophylline - post drug administration, assuming steady state was reached 

 

Theophylline is a therapeutically important drug that continues to play an integral role in the 

treatment of a range of inflammatory respiratory conditions such as asthma and chronic 

obstructive pulmonary disease [5]. It is a dimethylated xanthine that is structurally related to 

compounds such as caffeine and theobromine. Its precise mechanism of action remains unclear 

but has activity at adenosine receptors, and is an inhibitor of phosphodiesterase. 

 

Despite its therapeutic effects, theophylline also provokes a number of toxic reactions at 

plasma concentrations that close to those required for its positive bronchodilator effects. Small 

variations in a patient’s ability to eliminate the drug from the plasma can therefore lead to 

serious adverse effects being observed. As a consequence, it is standard clinical practice to 

monitor adverse effects and plasma concentrations of theophylline, and to calculate, using 

pharmacokinetic models, suitable dosing regimens that take into consideration clinical variables 

that are associated with reduced clearance such as cardiac function, liver dysfunction, ideal 

body weight and smoking behaviour.  

 

To test the validity of the exact result of Eq. (4), we have utilised data from a publication by 

Jonkman et al. (1991) [6] in which the authors tested the effect of caffeine on the 

pharmacokinetics of intravenous theophylline.  In their study, a group of n = 8 patients were 

administered theophylline for 24 hours by continuous intravenous infusion; this is substantially 

more time than necessary to reach the steady state, and plasma concentrations recorded in the 
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study prior to termination of dosing confirmed that the steady state had been reached.  Post-

dose theophylline concentrations were measured every 2 hours for a period of 36 hours.  The 

trial itself was a cross-over design in which the same n = 8 individuals subsequently went on to 

receive a second intravenous infusion of thophylline, albeit this time whilst co-administered 

caffeine.  The paper compared these two groups to establish if caffeine affected the 

elimination rate of theophylline.  The paper did not provide details of the plasma 

concentrations of theophylline for each individual patient vs. time, but did give the mean, 

across all patients, of the theoplylline concentrations at each time.  Additionally, the paper 

gave experimentally determined estimates of V and k for each individual, along with the mean 

values for these quantities over the group, which we write as 𝑉̅ and 𝑘̅, respectively.  A plot 

of the mean concentration vs. time is shown in Figure 4A.   

 

To compare our results with the experimentally determined mean 𝑘 (i.e., 𝑘̅), we adopted the 

following procedure, which was motivated by Eq. (4).  

For each of the 15 times used in [6] we calculated the quantity 𝑘̂ defined by 

 

          𝑘̂ =
1

𝑡
𝑊 (

𝑅𝑡

𝑉 ̅̅ ̅̅ 𝐶𝑡
̅̅ ̅)         (8) 

 

where 𝐶𝑡̅ is the mean concentration at time t and we set 𝑉̅ equal to 0.5 mg/kg × (mean 

actual body weight for the group) [7]. The quantity 𝑘̂ in Eq. (8) is an estimate of 𝑘̅, but it does 

not directly follow from Eq. (4), since Eq. (4) relates quantities of a single individual and not 

average quantities. Nonetheless the quantity 𝑘̂ is a plausible construct and in Fig. 4 Bi and 4Bii 
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we plot 𝑘̂ as red or blue dots, and we comment (below) on possible errors associated with 

using 𝑘̂ as an estimate of 𝑘̅.  

 

We have also compared our estimates of the mean value of k to those predicted using the 

following population-based pharmacokinetic model that is currently used in clinical practice [7] 

 

 𝑘𝑡ℎ𝑒𝑜 =
0.04×𝐼𝐵𝑊×𝑓1×𝑓2......𝑓𝑛

𝑉
. (9) 

 

In this equation, 𝑘𝑡ℎ𝑒𝑜 = predicted value of 𝑘 for theophylline, 𝑉 = volume of distribution, 

𝐼𝐵𝑊 = patient’s ideal body weight, 𝑓𝑛 = patient/disease/lifestyle factors, that scale 𝑘 

according to the influence of that factor on drug elimination (for example, cardiac failure has 

𝑓 = 0.5, hence if cardiac failure is present, it reduces the estimate of 𝑘 to 50% of its value in 

the absence of cardiac failure). 
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Figure 4 
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Figure 4 Caption: Application of Eq. (4) to published data (Jonkman et al [6]) on theophylline. 

Panel A: Plots of data from [6] showing exponential decline of theophylline in the plasma 

concentration over time in patients without co-administered caffeine (red) and with co-

administered caffeine (blue). Data have been fitted with a single exponential curve.  Panel 

Bi: Properties of theophylline without co-administered caffeine. We plot the estimate 𝒌̂ of 

the mean elimination rate-constant following from Eq. (8) as red dots. The dashed red line 

indicates the experimentally determined mean value of this constant, 𝒌̅, and the shaded 

area gives its standard deviation. The dashed black line indicates the estimated value of 𝒌 

from a population-based pharmacokinetic model given in Eq. (9). Panel Bii: Properties of 

theophylline with co-administered caffeine.  We plot the estimate 𝒌̂ (Eq. (8)) as blue dots. 

The dashed blue line indicates the experimentally determined mean value of k, namely 𝒌̅, 

and the shaded area gives its standard deviation. In the figure we use the abbreviation ABW 

for actual body weight. 

 

--------------------------------------------------------------------------------- 

From Fig. 4Bi and 4Bii, it can be seen that the majority of values of 𝑘̂ (following from Eq. (8)) 

fall within one standard deviation of the experimentally determined 𝑘̅.  Additionally, 

however, we note that the values of 𝑘̂ for different times in Fig. 4 can be seen to 

underestimate the values of 𝑘̅ in both the control and caffeine groups.  

 

To understand if this moderately small bias is related to the form of our estimate of 𝑘̅, namely 

𝑘̂ (Eq. (8)), which amongst other things depends on the mean concentration of the drug, we 
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performed the following simulation.   

 

We fixed the dose rate, R, but for each individual we randomly generated statistically 

independent normally distributed values of k and V. For individual i we write these values as 𝑘𝑖  

and 𝑉𝑖, respectively, and we used these values to calculate 𝐶𝑡
(𝑖)

, the concentration of the drug 

in individual i at time t according to Eq. (2) . Application of Eq. (4) to each 𝐶𝑡
(𝑖)

, for any t, 

produced the exact result for 𝑘𝑖, as expected. However, when we used our estimate 𝑘̂ of Eq. 

(8), we found a small but consistent underestimate of 𝑘̅ at all times. Furthermore, the 𝑘̂ 

values obtained also contain some time dependence (data not shown).  

This simulation study may explain some of the underestimate of 𝑘̅ that occurs by using 𝑘̂ in 

its place. 

 

Two other factors may also contribute to the underestimate of 𝑘̅. First, the value for V used in 

our analysis was based on the mean actual body weight of participants in the Jonkman paper.  

As theophylline in reasonably hydrophilic, V should ideally be estimated using ideal (or lean) 

body weight. Using actual body weight typically overestimates V, resulting in an underestimate 

of k.  As no data regarding patient’s height was presented in the original paper we were 

unable to calculate ideal body weight.  Second, in both arms of the study, a single bolus 

loading dose of theophylline was administered prior to commencing the continuous 

intravenous infusion.  This dose was not factored in to our ‘dose rate’, R, as it should have 

been cleared before the intravenous infusion was stopped.  However, there is a possibility 

that a small amount of this loading dose was still present during the early plasma 
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measurements, which would have also led to a small underestimate of k (due to a slight 

increase in R). 

 

Despite the moderately small bias in our estimates of k, it nevertheless appears that they are 

more accurate than the estimate made using the pharmacokinetic model described above (Eq. 

(8)) that is currently used in clinical practice.   This may be because our approach only utilises 

the patient parameter 𝑉, which shows relatively little patient-to-patient variation. The 

elimination rate, 𝑘, on the other hand shows considerable patient-to-patient variation due to 

multiple factors which of necessity have to be incorporated into traditional population based 

pharmacokinetic models. Indeed, the more 𝑓𝑛 factors present in Eq. (8), the less accurate the 

estimate is likely to be, due to accumulation of errors from different factors in the final answer. 

 

Figure 4Bii illustrates how estimates of the mean value of 𝑘, using our model, predicted the 

value within one standard deviation of the experimentally determined mean value, for all post 

drug administration times in the theophylline plus caffeine group. What is of particular interest 

here is that no pharmacokinetic prediction of 𝑘 can be currently made using Eq. (9) due to the 

fact that there is no population data to reflect the impact of theophylline - caffeine interaction. 

It should also be noted that justification for basing Eq. (4) on an exponential function is 

reflected by the reasonable match of a single exponential to the data in Fig 4A.  
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2.2.2 Case 2: Cyclosporin - during the initial dosing period 

 

Cyclosporin is another example of a drug that has a narrow therapeutic window. It is an 

immunosuppressant that is most commonly used to prevent organ rejection after transplant 

surgery [8]. To reduce the risk of toxicity, blood cyclosporin levels are routinely monitored. In 

the following application of Eq. (6) we have used data presented in a paper by Gupta et al. 

(1987) [9] in which the pharmacokinetics of a constant rate cylosporin infusion were 

determined in patients that had undergone renal transplant surgery. 

 

The initial part of the study involved administering cyclosporin to 5 patients, at a dose rate of 

𝑅 = 7 mg/kg/day over a 72 hour period.  Blood cyclosporin measurements vs. time are only 

presented for 𝑛 = 1 patients, but nevertheless, we have applied our model of predicting 𝑘 

with a single blood concentration measurement to these data and compared them to the 

experimentally determined 𝑘 in the paper. For the purpose of this exercise we used the 𝑉 

provided in the paper for this individual patient (patient 5).  
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Figure 5 

Figure 5 Caption: Application of Eq. (6) of Scenario 𝟐 to published data (Gupta et al, 1987 

[9]). The elimination rate constant 𝒌 has been estimated using single plasma concentrations 

taken at various times during the period of constant-rate cyclosporin (7 mg/kg/day). The 

shaded grey area represents the theoretical alpha distribution phase of cyclosporin. It 

appears however that the alpha distribution phase may be extended in this patient 

--------------------------------------------------------------------------------- 

 

As seen in Figure 5, our estimation of 𝑘 using Eq. (6) is reasonably accurate for samples taken 

at all times >18 hours post-infusion. However, at earlier sampling times the accuracy of the 

estimate is heavily biased towards lower than expected values of k.  One simple reason for 

this observation could be that during the early stages of administration the drug had not fully 

equilibrated with other non-vascular compartments, during a period of time referred to as the 

alpha-distribution phase [10].  This would lead to higher than expected values of Ct, resulting 

in an underestimate of k. However, published data suggest that the alpha-distribution phase of 
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cyclosporin should be complete within approximately 5 hours (grey shaded area in Figure 5) 

and it is clear from Figure 5 that bias in our estimate exceeds this time. 

 

In an attempt to understand what factors, other than a prolonged alpha-distribution phase, 

may have influenced the bias at early times, we generated concentration vs. time curves for a 

drug with an arbitary dose rate of 1 mg/hr, an arbitary volume of distribution, V, of 1 L, and a 

value of k of 0.05 hr-1 (i.e., similar to that of cyclosporin).  The Ct values were generated using 

Eq. (5), where 𝐶𝑠𝑠 =
𝑅

𝑉𝑘
.  First, we used these concentration values to estimate k using Eq. (6), 

which we found to be exact.  Next, to see if an intrinsic error in the drug assay procedure may 

have contributed to the bias, we applied a ±6% error to the values of Ct, and repeated our 

estimations of k using Eq. (6) (±6% is the reported measurement error in the ciclosporin assay 

[11]).  This error led to a large bias in k at early measurement times, which behaves 

exponentially (Figure 6A) and converges to the true value of k ± 6% error as the time of 

measurement increases.  Repeating this procedure with a range of k-values, the level of bias 

at any particular time was found to be inversely proportional to the k value of the drug (Figure 

6B).  With regards to our estimated k for ciclosporin, in Figure 6A we see that the level of bias 

in the estimate k reduces exponentially with the time of measurement to a point at 

approximately 27 hours where the estimated k is within ~10% of the true k value.  This is in 

accordance with the time at which we observe our estimated k in Figure 5 to approach the 

experimentally determined k.  Additional analyses are provided in the Appendix C, to 

determine an optimal time to sample Ct to ensure a minimal level of bias.  
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Following green text seems to be taking the paper a bit away from straight comparison of 

model and data. 

 

 

 

Figure 6 

Figure 6 Caption. Bias in the estimation of ‘k’ using Equation (6) on simulated data.  Panel A:  

Relationship between the estimated ‘k’ and the time of measurement when there is a ±6% 

error in plasma drug concentration measurement. Dotted lines indicate 10% level of bias.  

Panel B: Relationship between the ratio of observed to true k when there is a ±6% error in C, 

and the time of measurement. The data is shown for different values of the true k.  

--------------------------------------------------------------------------------- 
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2.2.3 Case 3: Theophylline - post dosing without the steady state having been reached 

  

In this final example, we have selected a study in which theophylline was administered 

intravenously at a dose rate of 𝑅 = 9 mg/kg/hr, over a period of 30 mins, in two groups of 

patients: a group co-administered placebo, and a group co-administered levothyroxine [12]. 

Following the intravenous infusion of theophylline, plasma samples were analysed at several 

times over the next 50 hours. The study subsequently compared pharmacokinetic parameters 

(e.g. 𝑘) to determine if an interaction between the two drugs existed. As the duration of the 

infusion in this study was only 30 mins, the plasma concentration will not have established the 

steady state concentration by the time the infusion was stopped (it would take approximately 

40 hours of continuous infusion to reach steady state). This means that we are unable to use 

Eq. (4) to estimate 𝑘 from a single plasma concentration measurement. We therefore utilised 

Eq. (7) of Scenario 3.  

 

As can be seen from Figure 7, a reasonably accurate 𝑘 was estimated (i.e. within the standard 

deviation of the 𝑘 calculated as part of the study) when plasma samples taken at times 

between 5.5 hours and 48 hours were used in both groups. At times prior to this, the 

estimates deviate substantially from the 𝑘 values calculated as part of the study.  Again, this 

may be due to an alpha-distribution phase, which was not included in our analysis. 
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Figure 7 
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Figure 7 Caption: Estimation of 𝒌 using a single post dose plasma drug concentration, when 

steady state has not been achieved. Panel A: Plot of plasma concentration vs. time in 

theophylline ± levothyroxine groups extracted from a paper by Gisclon et al. [12]. Plasma 

concentrations of theophylline were measured at times following cessation of a 30 min 

infusion of theophylline at a dose of 9 mg/kg/hr. Panels Bi and Bii: In this example, Eq. (7) of 

Scenario 𝟑 has been applied to the data reproduced in Panel A (where Panel Bi represents 

the patient group receiveing theophylline and placebo, and Panel Bii represents the patient 

group taking theophylline and levothyroxine).  The coloured dots, and shaded area indicate 

the mean 𝒌, and standard deviation around the mean 𝒌, respectively, that were calculated 

during the study. The dashed black lines indicate the estimates of 𝒌 using the population-

based PK equation (Eq. (8)). The volume of distribution, 𝑽, used in the calculations was 0.5 

𝑳/𝒌𝒈. 

--------------------------------------------------------------------------------- 

 

As in the previous case, in order to determine a) what factors influence this bias, and to identify 

an optimal measurement time to obtain an accurate estimate of k we performed a series of 

investigations similar to those discssued above.  In these investigations, we produced a series 

of concentration values vs. time using the following equation: 𝐶𝑡 =
𝑅

𝑉𝑘
(1 − 𝑒−𝑘𝑡1)𝑒−𝑘𝑡0.  The 

initial infusion time (t1) was set to 0.5 hr (i.e. identical to t1 in the Gisclon paper), R was set to 1 

mg/hr, V was set to 1 L, and k to 0.08 hr-1.  As in case 2, when we used these concentration 

values to predict k at each time we found the equations produced exact results.  Next we 

applied a ±6% error to each of the concentrations and re-ran our estimation using Eq. (7).  As 



 35 

in case 2, we found a simlar relationship between bias and the measurement time (Figure 8A), 

that was dependent upon k (Figure 8Bi).  However the reduced far quicklier in this scenario.  

In fact, by increasing the value of t1 the level of bias reduces until a point at which bias is 

negliable. In Figure 8A the level of bias reduces exponentially with the time of measurement; at 

6.8 hours the estimated k is within ~10% of the true k, which is in accordance with the bias 

observed in our estimates in Figure 7B.  Additional analyses are provided in Appendix C, to 

determine an optimal time to sample Ct to ensure a minimal level of bias.    

 

 

Figure 8 

Figure 8 Caption. Bias in the estimation of k using Equation (7).  Panel A: Relationship 

between the estimated k and the time of measurement when a ±6% error exists in the 

plasma drug concentration measurement.  Dotted lines indicate 10% level of bias.  Panel B: 

Relationship between the ratio of observed to true k when there is a ±6% error in C , and the 

time of measurement.  Data is shown different values of true ‘k’.  
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3 Discussion 

 

The gold standard for achieving a full evaluation of pharmacokinetic parameters remains a 

careful measurement of plasma levels of the drug under investigation at multiple times.  With 

a complete and accurate determination of the elimination of a drug from the plasma, important 

pharmacokinetic parameters such as the elimination rate constant (𝑘) or volume of distribution 

(𝑉) can be accurately determined. Whilst this approach is valuable in the clinical laboratory, it is 

an impractical approach in the normal clinical setting. Taking multiple blood samples is a 

problem for at-risk patient groups such as premature neonates who have a very low circulatory 

volume, or patients where obtaining venous access is difficult, or dangerous. In addition, kinetic 

parameters obtained under laboratory conditions, often in young healthy male volunteers, may 

not be reflective of sick, frail and elderly patients. For this reason, using population data to 

estimate patient plasma drug concentrations can often be an unreliable guide [13], especially is 

they include parameters that provide an estimation of renal function [14].  Correction of 

kinetic parameters such as drug clearance (𝐶𝑙) by multiplying by a standard correction factor 

can go some way to rectifying this problem, but often vulnerable patients with multiple co-

morbidities end up with a calculated clearance that is not reflective of the true value. 

 

Consider, as an example, a frail elderly 45 Kg female patient, who smokes, has congestive 

cardiac failure and severe obstructive pulmonary disease, who has been prescribed 

theophylline. Based on population data her clearance should be 1.8 L/ hr, but this has to be 

modified by a factor of 1.6 because she smokes, by 0.4 because she has congestive cardiac 
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failure and by 0.8 because she has severe obstructive pulmonary disease, yielding a clearance 

of 0.92 L/hr. Multiplication by so many factors, which may or may not be fully applicable to our 

patient, ultimately makes the estimate unreliable [7]. What is required is a personalised 

estimate of the patient’s own clearance. 

 

Clearance is equal to the elimination rate constant (𝑘) multiplied by the volume of distribution 

(𝑉), and is sensitive to multiple pathophysiological changes observed in patients. This is 

because the elimination rate constant is a composite rate constant derived from hepatic 

metabolism (𝑘ℎ𝑒𝑝𝑎𝑡𝑖𝑐), renal excretion (𝑘𝑟𝑒𝑛𝑎𝑙), biliary excretion (𝑘𝑏𝑖𝑙) plus other routes of 

elimination (𝑘𝑜𝑡ℎ𝑒𝑟). The volume of distribution is more predictable, being largely dependent on 

ideal body weight. Estimating the elimination rate constant (𝑘) of a drug in a patient with just 

one blood sample will help the clinician develop a personalized medicine approach to 

vulnerable patients. 

 

Our approach minimizes the need to utilize population data to estimate 𝑘; we only rely on 

population data to estimate 𝑉, and then 𝑘 can be reliably estimated for the patient with just 

one blood sample measurement that is taken at a known time. We have used this approach on 

historic studies to illustrate the utility and the current limitations of our approach. The 

estimated 𝑘 values obtained agree reasonably with the values obtained historically using 

standard drug-time profile measurements. 

 

The estimated 𝑘 has a tendency to be underestimated in plasma samples taken soon after the 
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last dose of the drug (Figures 5 and 6) but seems to improve with time. This may be a reflection 

of a prolonged alpha distribution phase which is observed in drugs which are best described by 

a two-compartment rather than the one compartment model used in this paper [10]. A two-

compartment model is used where the administered drug takes time to distribute throughout 

the body. Thus, there is an initial volume of distribution (𝑉𝑖) and a total volume distribution 

(𝑉𝑑). Because we estimate 𝑘 from 𝑉 and a plasma sample, any uncertainty around 𝑉 will 

affect our estimate of 𝑘. For most drugs, however, a one-compartment model is sufficient to 

describe the plasma concentration time-course, and for drugs where the alpha distribution 

phase is important, (e.g., digoxin) sampling at a later time will improve the estimate of 𝑘. 

 

The approach presented in this work will be useful in a number of settings, especially in clinical 

areas where patients require close monitoring and have unstable organ function, for example, 

intensive care units. The advantages for its application in such settings include the following. 

Firstly, it gives a more reliable estimate of drug clearance for patients with multiple pathologies 

and does not rely on proxy or lagging markers of hepatic and renal function. Secondly, it could 

potentially reduce the need for repeated samples to be analysed as part of a traditional 

therapeutic drug monitoring regimen. Thirdly, by accurately determining 𝑘, these models 

allows the prediction of when a patient will completely (99.9%) clear a drug from the body, and 

determines when a drug concentration will reach steady state. This time is approximately equal 

to 5/𝑘. 

 

Another area where this model could be useful is in the clinical trial setting. Here, there is an 
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opportunity for the clinical burden, cost, and danger associated with taking multiple blood 

samples to be reduced by utilising these models.  In terms of cost, and regular access to drug 

assaying facilities this approach may also be of value in developing countries, or in field 

hospitals for example. 

 

Our mathematical modelling approach does, however, have some practical drawbacks and 

limitations. The first of which is that it currently cannot be used with orally administered drugs, 

because the proportion of orally administered drug that enters the systemic circulation 

(bioavailability) in the individual patient is unknown.  Data from the literature could of course 

be used, but this may introduce an additional source of error into the estimate.  Secondly, 

accurate recordings of timing in relation to plasma sampling and drug cessation is important. 

Thirdly, this approach is currently restricted to continuous infusion. Nonetheless, for clinicians 

struggling with the use of drugs with a low therapeutic index, in a high intensity situation, the 

model will help in clinical decision making. 
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4. Methods 

 

4.1 Literature search 

 

Our mathematical models were tested on patient data published in the literature, which was 

searched using the National Library of Medicine search engine Pubmed. We restricted our 

literature search to the following commonly used drugs with a low therapeutic index: 

theophylline, cyclosporin, digoxin, and vancomycin. These drugs typically necessitate the 

application of therapeutic drug monitoring, and require a working knowledge of the elimination 

rate constant. 

 

Our literature search was further refined to manuscripts (or the associated supplementary 

material) that provided either raw data on plasma concentration vs. time of these drugs, or 

plots where the data could be easily extracted. The plasma concentration vs. time data also had 

to reflect at lease one of the three scenarios for which our models are applicable: (1) the 

exponential decay period following steady state (2) the initial dosing period, and (3) an 

exponential decay following a period of drug administration during which the plasma 

concentration had not reached steady state. The publication also had to provide information 

regarding the dose rate, volume of distribution, patient weight, and time of plasma sampling. 

Estimated values for 𝑘 using the equations outlined in this manuscript were then compared to 

𝑘 values generated experimentally in the selected paper. 
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The manuscripts which met these criteria were in excess of 20 years old. It was not possible to 

contact authors to obtain raw data, as they had ceased publishing. 

 

4.2 Data analysis 

 

Estimates of 𝑘 using our mathematical models were presented in graphical form in Graphpad 

Prism v6.00.  
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Key Points 

 

 The elimination rate constant, k, is a parameter which can be used by clinicians to design 

suitable dosage regimens for high-risk drugs.  It describes the rate at which a drug is 

eliminated from the body, and is dependent upon both drug, and patient factors.  

Unfortunately, it is currently impractical to obtain a ‘personal’ k for each patient that uses 

multiple-blood samples, and estimates which use population data, or lagging proxy markers, 

are error-prone.  

 Our study therefore asked the following question: can a single plasma drug concentration 

measurement be used to estimate a patient’s ‘personal’ elimination rate constant? 

 Our study describes a mathematical method which can be used to calculate k using a single 

plasma drug concentration that reflects intrinsic drug and patient factors.  This model may 

be adopted by clinicians working in areas where high-risk drugs are used, for example, 

intensive care units, to ensure the safe and effective use of medicines. 
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Appendices 

 

Appendix A 

 

In this appendix we give the mathematical details of determining 𝑘 from Eq. (5) of the main 

text, which for convenience we have reproduced here: 𝐶𝑡 =
𝑅

𝑉𝑘
(1 − 𝑒−𝑘𝑡). We begin by 

isolating 𝑒−𝑘𝑡 with the result 𝑒−𝑘𝑡 = 1 −
𝑉𝑘𝐶𝑡

𝑅
 and this equation can be rewritten as 

𝑒𝑘𝑡 (1 −
𝑉𝑘𝐶𝑡

𝑅
) = 1 which in turn is equivalent to (𝑘𝑡 −

𝑅𝑡

𝑉𝐶𝑡
) 𝑒𝑘𝑡 = −

𝑅𝑡

𝑉𝐶𝑡
. Multiplying the left 

and right sides by 𝑒
−

𝑅𝑡

𝑉𝐶𝑡 yields (𝑘𝑡 −
𝑅𝑡

𝑉𝐶𝑡
) 𝑒

𝑘𝑡−
𝑅𝑡

𝑉𝐶𝑡 = −
𝑅𝑡

𝑉𝐶𝑡
𝑒

−
𝑅𝑡

𝑉𝐶𝑡. This equation is of the form 

𝑥𝑒𝑥 = 𝑦 and the relevant solution for 𝑥 is 𝑥 = 𝑊(𝑦) where 𝑊(𝑦) is (the principal branch 

of) the Lambert 𝑊 function [15]. We thus obtain 𝑘𝑡 −
𝑅𝑡

𝑉𝐶𝑡
= 𝑊 (−

𝑅𝑡

𝑉𝐶𝑡
𝑒

−
𝑅𝑡

𝑉𝐶𝑡) which yields 

the result 𝑘 =
𝑅

𝑉𝐶𝑡
+

1

𝑡
𝑊 (−

𝑅𝑡

𝑉𝐶𝑡
𝑒

−
𝑅𝑡

𝑉𝐶𝑡) that is given in the main text. 
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Appendix B 

 

In this appendix we provide the arguments leading to the equation that governs 𝑘 in a 

scenario where a single plasma sample is taken at a time post drug administration, without 

assuming plasma drug concentration has reached steady state. We then derive the general 

form for the solution of 𝑘 that solves this equation. For analytical insight, we present an 

approximation for 𝑘. 

 

To begin, we note that during drug administration, which takes place from time 0 to time 𝑡1, 

the plasma concentration of the drug rises from 0 to the value 
𝑅

𝑉𝑘
(1 − 𝑒−𝑘𝑡1), where 𝑅 is the 

dose rate, 𝑉 is the apparent volume of distribution, and 𝑘 is the elimination rate constant. 

After drug administration ceases, the plasma concentration of the drug decreases 

exponentially, at a rate of 𝑘. Thus at a further time 𝑡0 after cessation of drug administration 

(i.e., at a time 𝑡1 + 𝑡0 after initial drug administration), the plasma concentration is written as 

𝐶𝑡0
 (a more consistent, but cumbersome notation that we do not adopt would be 𝐶𝑡1+𝑡0

) and 

is given by 𝐶𝑡0
=

𝑅

𝑉𝑘
(1 − 𝑒−𝑘𝑡1)𝑒−𝑘𝑡0. We rewrite this equation as 

 

 1 =
(1−𝑒−𝑘𝑡1)𝑒−𝑘𝑡0

(
𝑉𝐶𝑡0𝑘

𝑅
)

 (B1) 

  

and for the purpose of solving this equation, we work with the scaled quantities 
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 𝐾 =
𝐶𝑡0𝑉𝑘

𝑅
,    𝑇0 =

𝑅𝑡0

𝐶𝑡0𝑉
,    𝑇1 =

𝑅𝑡1

𝐶𝑡0𝑉
. (B2) 

  

Eq. (B1) then becomes 

 1 =
(1−𝑒−𝐾𝑇1)

𝐾
𝑒−𝐾𝑇0 . (B3) 

 

This equation involves only 𝐾, 𝑇0 and 𝑇1, and hence shows that 𝐾 depends only on 𝑇0 and 

𝑇1 and no other quantities. We can therefore write 

 

 𝐾 = 𝐾(𝑇0, 𝑇1). (B4) 

 

It follows that underlying the problem of determining 𝑘 is the function 𝐾(𝑇0, 𝑇1) that 

depends on two variables. Given the form of 𝐾(𝑇0, 𝑇1), the result for 𝑘, for arbitrary values of 

𝑅, 𝑉, 𝐶𝑡, 𝑡0 and 𝑡1 is, via Eqs. (B2) and (B4), 

 

 𝑘 =
𝑅

𝐶𝑡0𝑉
𝐾 (

𝑅𝑡0

𝐶𝑡0𝑉
,

𝑅𝑡1

𝐶𝑡0𝑉
). (B5) 

 

The function 𝐾 = 𝐾(𝑇0, 𝑇1), which obeys Eq. (B3), does not have a solution in terms of known 

functions. In the absence of an exact solution of 𝐾(𝑇0, 𝑇1) we2 can determine its value 

numerically. 

                                                      
2 We only know the form of 𝐾(𝑇0, 𝑇1) in the special cases 𝐾(𝑇0, ∞) = 𝑊(𝑇0)/𝑇0, which corresponds to the result for Scenario 1, and 
𝐾(0, 𝑇1) = 1 + 𝑊(−𝑇1𝑒−𝑇1)/𝑇1, which corresponds to the result for Scenario 2. 
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Before we discuss the numerical approach, we need to note that 𝐾(𝑇0, 𝑇1) is defined for all 

𝑇0 ≥ 0 but only for  

 𝑇1 > 1. (B6) 

 

To see this, we rewrite Eq. (B3) as 1 = 𝑇1
1−𝑒−𝐾𝑇1

𝐾𝑇1
𝑒−𝐾𝑇0 and using (i) 

1−𝑒−𝑥

𝑥
< 1 (which 

applies for 𝑥 > 0), and (ii) 𝑒−𝐾𝑇0 ≤ 1 yields 1 = 𝑇1
1−𝑒−𝐾𝑇1

𝐾𝑇1
𝑒−𝐾𝑇0 < 𝑇1, thereby indicating 

the restriction on 𝑇1 of Eq. (B6). 

 

For the numerical approach, we proceed as follows. 

 

Given values of 𝑡1 and 𝑡0, we first evaluate the quantities 𝑇0 =
𝑅𝑡0

𝐶𝑡0𝑉
 and 𝑇1 =

𝑅𝑡1

𝐶𝑡0𝑉
. For these 

values of 𝑇0 and 𝑇1 we determine the value of 𝐾(𝑇0, 𝑇1) by numerically solving Eq. (B3) for 

𝐾. This may be achieved using standard numerical software packages, or by proceeding with an 

iterative approach, using the simplest method [1]. That is, with 𝑓(𝐾) = 𝐾 − (1 − 𝑒−𝐾𝑇1)𝑒−𝐾𝑇0 

and 𝑓1(𝐾) = 𝑑𝑓(𝐾)/𝑑𝐾 = 1 + 𝑇0𝑒−𝐾𝑇0 − (𝑇1 + 𝑇0)𝑒−𝐾(𝑇1+𝑇0) we iteratively look for the 

solution of 𝑓(𝐾) = 0 using the Newton method3 𝐾𝑗+1 = 𝐾𝑗 − 𝑓(𝐾𝑗)/𝑓1(𝐾𝑗). In practise, an 

initial value of 𝐾0 = 0.5 worked satisfactorily (there was reasonably rapid convergence) for 

0.02 ≤ 𝑇0 ≤ 50 and 1.02 ≤ 𝑇1 ≤ 50, and we could terminate the iteration when, e.g., 𝐾𝑗+1 

                                                      
3 The Newton method is, with 𝑓(𝐾) = 𝐾 − (1 − 𝑒−𝐾𝑇1)𝑒−𝐾𝑇0 and 𝑓

1
(𝐾) = 𝑑𝑓(𝐾)/𝑑𝐾 = 1 + 𝑇0𝑒

−𝐾𝑇0 − (𝑇1 + 𝑇0)𝑒
−𝐾(𝑇1+𝑇0)

 given by 

iterating 𝐾𝑗+1 = 𝐾𝑗 − 𝑓(𝐾𝑗)/𝑓
1
(𝐾𝑗). 
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differed from 𝐾𝑗 by less than 10−10. 

  

In addition to the numerical results, some analytical insights into 𝑘 may be gained from 

approximations of 𝐾(𝑇0, 𝑇1). We consider two distinct approximations. 
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Approximation 1 

To derive an first approximation of 𝐾(𝑇0, 𝑇1), we start with Eq. (B3), and write it in the form 

𝑒𝐾𝑇0 = 𝑇1
1−𝑒−𝐾𝑇1

𝐾𝑇1
 which then yields 

 𝐾𝑇0 = ln(𝑇1) + ln (
1−𝑒−𝐾𝑇1

𝐾𝑇1
). (B7) 

  

Assuming 𝐾𝑇1 is small (≪ 1) we expand the term ln (
1−𝑒−𝐾𝑇1

𝐾𝑇1
) on the right hand side of Eq. 

(B3) in powers of 𝐾𝑇1 and obtain ln (
1−𝑒−𝐾𝑇1

𝐾𝑇1
) = −

𝐾𝑇1

2
+

(𝐾𝑇1)2

24
−

(𝐾𝑇1)4

2880
+. .. . The smallness 

of the coefficient of (𝐾𝑇1)4 suggests that a good approximation of ln (
1−𝑒−𝐾𝑇1

𝐾𝑇1
) is the 

quadratic function ln (
1−𝑒−𝐾𝑇1

𝐾𝑇1
) ≃ −

𝐾𝑇1

2
+

(𝐾𝑇1)2

24
. This yields the following approximation for 

Eq. (B7): 

 𝐾𝑇0 = ln(𝑇1) −
𝐾𝑇1

2
+

(𝐾𝑇1)2

24
 (B8) 

 

which is a quadratic equation in 𝐾. Solving Eq. (B8) for 𝐾, we use the smaller root, which 

correctly yields 𝐾 = 0 when 𝑇1 = 1, to obtain the approximation of 𝐾(𝑇0, 𝑇1) that we write 

as 𝐾1(𝑇0, 𝑇1), and is given by 
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 𝐾1(𝑇0, 𝑇1) =
6

𝑇1
2 [(2𝑇0 + 𝑇1) − √(2𝑇0 + 𝑇1)2 −

2

3
𝑇1

2ln(𝑇1)] 

  

 =
4ln(𝑇1)

(2𝑇0+𝑇1)+√(2𝑇0+𝑇1)2−
2

3
𝑇1

2ln(𝑇1)

. (B9) 

  

We give values of 𝐾1(𝑇0, 𝑇1) in Table S1. 

 

Table S1 

Table S1 Caption: For a range of different values of 𝑇0 and 𝑇1, this table contains results for 

two approximations of the function 𝐾(𝑇0, 𝑇1), written 𝐾1(𝑇0, 𝑇1) and 𝐾2(𝑇0, 𝑇1). These are 

given in Eqs. (B9) and (B13), respectively. For comparison, the table also contains the 
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corresponding exact values of 𝐾(𝑇0, 𝑇1). Note that those entries of the table labelled 

“complex”, correspond to when the approximation yielded a complex number, and hence 

cannot be used. 

--------------------------------------------------------------------------------- 

 

Approximation 2 

Another approximation of 𝐾(𝑇0, 𝑇1) can be obtained by writing Eq. (B3) as 

 

 𝐾𝑇0𝑒𝐾𝑇0 = 𝑇0(1 − 𝑒−𝐾𝑇1) (B10) 

  

We note that given 𝑦 = 𝑥𝑒𝑥 with 𝑥 ≥ −1, an equivalent statement is 𝑥 = 𝑊(𝑦) where 

𝑊(𝑥) is (the principal branch of) the Lambert 𝑊 function [1]. Thus we can write Eq. (B10) in 

the equivalent form 

 𝐾 =
1

𝑇0
𝑊(𝑇0(1 − 𝑒−𝐾𝑇1)). (B11) 

  

This is not an explicit solution for 𝐾 ≡ 𝐾(𝑇0, 𝑇1) because 𝐾 appears on both sides of the 

equation. It should be noted, however, that the value of 𝐾, assuming drug infusion was 

continued until a steady state level of the drug was effectively reached, corresponds to setting 

𝑇1 = ∞ in Eq. (B11). This leads to 𝐾(𝑇0, ∞) = 𝑊(𝑇0)/𝑇0 which is an explicit solution for 𝐾 

that holds in this special case. We shall write the explicit form for 𝐾 that holds when the 

steady state level of the drug in the body is achieved 
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 𝐾𝑠𝑠(𝑇0) ≡ 𝐾(𝑇0, ∞) =
1

𝑇0
𝑊(𝑇0). (B12) 

 

For large but non-infinite values of 𝑇1 a plausible approximation for 𝐾 is to set 𝐾 = 𝐾𝑠𝑠(𝑇0) 

on the right hand side of Eq. (B11). This leads to our second approximation of 𝐾(𝑇0, 𝑇1), that 

we write as 𝐾2(𝑇0, 𝑇1), and is given by 

 

 𝐾2(𝑇0, 𝑇1) =
1

𝑇0
𝑊 (𝑇0(1 − 𝑒−𝐾𝑠𝑠(𝑇0)𝑇1)) 

  

 =
1

𝑇0
𝑊 (𝑇0(1 − 𝑒−𝑊(𝑇0)𝑇1/𝑇0)). (B13) 

 

We give values of 𝐾1(𝑇0, 𝑇1) in Table S1.   

 

From Table S1 we can see the quality of the approximations for different 𝑇0 and 𝑇1. The use 

of 𝐾1(𝑇0, 𝑇1) for 𝑇1 < 4.5 and4 𝐾2(𝑇0, 𝑇1) for 𝑇1 ≥ 4.5 works tolerably well - see Table S1. 

This suggests a single (combined) approximation for 𝐾(𝑇0, 𝑇1) that is given by 

 

 𝐾𝑎𝑝𝑝𝑟𝑜𝑥(𝑇0, 𝑇1) ≃ {
𝐾1(𝑇0, 𝑇1), 𝑇1 < 4.5

𝐾2(𝑇0, 𝑇1), 𝑇1 ≥ 4.5
 (B14) 

 

                                                      
4 The value 𝑇1 = 4.5 for the upper 𝑇1 value of validity of 𝐾1 is not completely arbitrary; we note that in Eq. (B9), the argument of the 

square root will not go negative for all 𝑇0 ≥ 0 if 𝑇1
2

−
2

3
𝑇1

2
ln(𝑇1) ≥ 0. This corresponds to ln(𝑇1) ≤ 3/2 i.e., 𝑇1 ≤ 𝑒

3/2
≃ 4.5. 
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and we give this single approximation in Table S2. 

   

 

Table S2 

Table S2 Caption: Single approximation of the function 𝐾(𝑇0, 𝑇1), written 𝐾∗𝑎𝑝𝑝𝑟𝑜𝑥(𝑇0, 𝑇1), is 

given in Eq. (B14). This table contains values of 𝐾∗𝑎𝑝𝑝𝑟𝑜𝑥(𝑇0, 𝑇1) for some different values of 

𝑇0 and 𝑇1. The table also contains the corresponding exact values of 𝐾(𝑇0, 𝑇1) and the 

percentage error in the approximate values. 

--------------------------------------------------------------------------------- 

We note that in terms of the original quantities, we have 𝑘 =
𝑅

𝐶𝑡0𝑉
𝐾 (

𝑅𝑡0

𝐶𝑡0𝑉
,

𝑅𝑡1

𝐶𝑡0𝑉
) and using 

𝐾𝑎𝑝𝑝𝑟𝑜𝑥(𝑇0, 𝑇1) of Eq. (B14) then yields an approximation for 𝑘. 
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Appendix C 

 

With the knowledge that the bias in our estimate of k in case Case 2 is dependent upon both 

the intrinsic error in measuring Ct, and the drug’s k, it raises the question: is there an optimal 

time for taking a single measurement of Ct in order to estimate k, within a certain, agreed level 

of error.  If we presume that an acceptable level of error would be within ±5% of the ±6% 

error used above (which is equal to an approximate overall error of ±10%) we can identify the 

time at which the estimate of k using Eq. (6) reaches this acceptable level of error, and look at 

the releationship between this time, and the true value of k.  A plot of this optimal 

measurement time vs. half-life (which is 0.693/k), reveals a linear relationship (Figure 6C), with 

a slope of approximately 2.  The equation of the resulting plot can be used to identify the 

optimal time to take a single measurement for any drug (Figure S1) as long as a rough estimate 

of t1/2 (i.e. 0.693/k) is known.  The rough estimate of t1/2 could of course come from the 

literature.  We have chosen to express the relationship in terms of t1/2 as k is typically reported 

in this form in the literature.  The optimal time to take a single measurement of cyclosporin 

(with a previously reported k of 0.05 hr-1) in order to estimate k using Eq. (6) would be 27 hours, 

which is in accordance with the data presented in Figure 5.  It must be noted however, that 

this relationship is dependent upon the intrinsic error of the assay and any interpatient 

variability, and may need to be adjusted for less accurate assay methods. 
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Figure S1 

 

Figure S1 Caption:  Plot showing linear relationship between the optimal measurement time 

and a drug’s half-life (t1/2) to ensure a <10% error and a drug’s t1/2, when estimating k using 

Eq. (6) (i.e. during the initial stages of drug administration up to steady state). 

 

In Case 3, we performed a similar analysis in an attempt to find an optimal measurement time 

to estimate k with a ±10% overall error.  In doing so, we found a linear relationship between k 

and the optimal measurement time such that 0.8 x t1/2 should estimate k with <10% error 

(Figure S2). 
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Figure S2 

 

Figure S2 caption: Plot showing linear relationship between the optimal measurement time 

and a drug’s half-life (t1/2) to ensure a <10% error and a drug’s t1/2, when estimating k using 

Eq. (7) (i.e. follow drug administration assuming steady state has not been reached). 

 

 

 


