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Abstract

This article investigates selfish behavior in games where players are embedded
in a social context. A framework is presented which allows us to measure the
Windfall of Friendship, i.e., how much players benefit (compared to purely
selfish environments) if they care about the welfare of their friends in the
social network graph. As a case study, a virus inoculation game is examined.
We analyze the corresponding Nash equilibria and show that the Windfall
of Friendship can never be negative. However, we find that if the valuation
of a friend is independent of the total number of friends, the social welfare
may not increase monotonically with the extent to which players care for
each other; intriguingly, in the corresponding scenario where the relative
importance of a friend declines, the Windfall is monotonic again. This article
also studies convergence of best-response sequences. It turns out that in
social networks, convergence times are typically higher and hence constitute
a price of friendship. While such phenomena may be known on an anecdotal
level, our framework allows us to quantify these effects analytically. Our
formal insights on the worst case equilibria are complemented by simulations
shedding light onto the structure of other equilibria.
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1. Introduction

Social networks have existed for thousands of years, but it was not until
recently that researchers have started to gain scientific insights into phenom-
ena like the small world property. The rise of the Internet has enabled people
to connect with each other in new ways and to find friends sharing the same
interests from all over the planet. A social network on the Internet can mani-
fest itself in various forms. For instance, on Facebook, people maintain virtual
references to their friends. The contacts stored on mobile phones or email
clients form a social network as well. The analysis of such networks—both
their static properties as well as their evolution over time—is an interesting
endeavor, as it reveals many aspects of our society in general.

A classic tool to model human behavior is game theory. It has been a
fruitful research field in economics and sociology for many years. Recently,
computer scientists have started to use game theory methods to shed light
onto the complexities of today’s highly decentralized networks. Game the-
oretic models traditionally assume that people act autonomously and are
steered by the desire to maximize their benefits (or utility). Under this as-
sumption, it is possible to quantify the performance loss of a distributed
system compared to situations where all participants collaborate perfectly.
A widely studied measure which captures this loss of social welfare is the
Price of Anarchy (PoA). Even though these concepts can lead to important
insights in many environments, we believe that in some situations, the un-
derlying assumptions do not reflect reality well enough. One such example
are social networks: most likely people act less selfishly towards their friends
than towards complete strangers. Such altruistic behavior is typically not
considered in game-theoretic models.

In this article, we propose a game theoretic framework for social networks.
Social networks are not only attractive to their participants, e.g., it is well-
known that the user profiles are an interesting data source for the PR industry
to provide tailored advertisements. Moreover, social network graphs can also
be exploited for attacks, e.g., email viruses using the users’ address books
for propagating, worms spreading on mobile phone networks and over the
Internet telephony tool Skype have been reported (e.g., [12]). This article
investigates rational inoculation strategies against such viruses from our game
theoretic perspective, and studies the propagation of such viruses on the
social network.
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1.1. Our Contribution

This article makes a first step to combine two active threads of research:
social networks and game theory. We introduce a framework taking into
consideration that people may care about the well-being of their friends.
In particular, we define the Windfall of Friendship (WoF) which captures
to what extent the social welfare improves in social networks compared to
purely selfish systems.

In order to demonstrate our framework, as a case study, we provide a
game-theoretic analysis of a virus inoculation game. Concretely, we assume
that the players have the choice between inoculating by buying anti-virus
software and risking infection. As expected, our analysis reveals that the
players in this game always benefit from caring about the other participants
in the social network rather than being selfish. Intriguingly, however, we
find that the Windfall of Friendship may not increase monotonically with
stronger relationships. Despite the phenomenon being an “ever-green” in
political debates, to the best of our knowledge, this is the first article to
quantify this effect formally.

This article derives upper and lower bounds on the Windfall of Friendship
in simple graphs. For example, we show that the Windfall of Friendship
in a complete graph is at most 4/3; this is tight in the sense that there
are problem instances where the situation can indeed improve this much.
Moreover, we show that in star graphs, friendship can help to eliminate
undesirable equilibria. Generally, we discover that even in simple graphs the
Windfall of Friendship can attain a large spectrum of values, from constant
ratios up to Θ(n), n being the network size, which is asymptotically maximal
for general graphs.

Also an alternative friendship model is discussed in this article where the
relative importance of an individual friend declines with a larger number of
friends. While the Windfall of Friendship is still positive, we show that the
non-monotonicity result is no longer applicable. Moreover, it is proved that in
both models, computing the best and the worst friendship Nash equilibrium
is NP-hard.

The paper also initiates the discussion of implications on convergence. We
give a potential function argument to show convergence of best-response se-
quences in various models and for simple, cyclic graphs. Moreover, we report
on our simulations which indicate that the convergence times are typically
higher in social contexts, and hence constitute a certain price of friendship.
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Finally, to complement our formal analysis of the worst equilibria, simu-
lation results for average case equilibria are discussed.

1.2. Organization

The remainder of this article is organized as follows. Section 2 reviews
related work and Section 3 formally introduces our model and framework.
The Windfall of Friendship on general graphs and on special graphs is studied
in Sections 4 and 5 respectively. Section 6 discusses an alternative model
where the relative importance of a friend declines if the total number of
friends increases. Aspects of best-response convergence and implications are
considered in Section 7. We report on simulations in Section 8. Finally, we
conclude the article in Section 9.

2. Related Work

Social networks are a fascinating topic not only in social sciences, but
also in ethnology, and psychology. The advent of social networks on the
Internet, e.g., Facebook, LinkedIn, MySpace, Orkut, or Xing, to name but a
few, heralded a new kind of social interactions, and the mere scale of online
networks and the vast amount of data constitute an unprecedented treasure
for scientific studies. The topological structure of these networks and the
dynamics of the user behavior has a mathematical and algorithmic dimension,
and has raised the interest of mathematicians and engineers accordingly.

The famous small world experiment [29] conducted by Stanley Milgram
1967 has gained attention by the algorithm community [21] and inspired
research on topics such as decentralized search algorithms [22, 27], routing
on social networks [13, 21, 26] and the identification of communities [11, 33].
The dynamics of epidemic propagation of information or diseases has been
studied from an algorithmic perspective as well [23, 25]. Knowledge on effects
of this cascading behavior is useful to understand phenomena as diverse as
word-of-mouth effects, the diffusion of innovation, the emergence of bubbles
in a financial market, or the rise of a political candidate. It can also help to
identify sets of influential players in networks where marketing is particularly
efficient (viral marketing). For a good overview on economic aspects of social
networks, we refer the reader to [6], which, i.a., compares random graph
theory with game theoretic models for the formation of social networks.

Recently, game theory has also received much attention by computer
scientists. This is partly due to the various actors and stake-holders who
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influence the decentralized growth of the Internet: game theory is a useful
tool to gain insights into the Internet’s socio-economic complexity. Many
aspects have been studied from a game-theoretic point of view, e.g., routing
[35, 36], multicast transmissions [10], or network creation [9, 31]. Moreover,
computer scientists are interested in the algorithmic problems offered by
game theory, e.g., on the existence of pure equilibria [34].

This article applies game theory to social networks where players are not
completely selfish and autonomous but have friends about whose well-being
they care to some extent. We demonstrate our mathematical framework
with a virus inoculation game on social graphs. There is a large body of
literature on the propagation of viruses [4, 14, 19, 20, 37]. Miscellaneous
misuse of social networks has been reported, e.g., email viruses1 have used
address lists to propagate to the users’ friends. Similar vulnerabilities have
been exploited to spread worms on the mobile phone network [12] and on the
Internet telephony tool Skype2.

There already exists interesting work on game theoretic and epidemic
models of propagation in social networks. For instance, Montanari and
Saberi [30] attend to a game theoretic model for the diffusion of an innovation
in a network and characterize the rate of convergence as a function of graph
structure. The authors highlight crucial differences between game theoretic
and epidemic models and find that the spread of viruses, new technologies,
and new political or social beliefs do not have the same viral behavior.

The articles closest to ours are [2, 32]. Our model is inspired by Asp-
nes et al. [2]. The authors apply a classic game-theoretic analysis and show
that selfish systems can be very inefficient, as the Price of Anarchy is Θ(n),
where n is the total number of players. They show that computing the
social optimum is NP-hard and give a reduction to the combinatorial prob-
lem sum-of-squares partition. They also present a O(log2 n) approximation.
Moscibroda et al. [32] have extended this model by introducing malicious
players in the selfish network. This extension facilitates the estimation of
the robustness of a distributed system to malicious attacks. They also find
that in a non-oblivious model, intriguingly, the presence of malicious players
may actually improve the social welfare. In a follow-up work [24] which gen-

1E.g., the Outlook worm Worm.ExploreZip.
2See http://news.softpedia.com/news/Skype-Attacked-By-Fast-Spreading-Virus-

52039.shtml.
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eralizes the social context of [32] to arbitrary bilateral relationships, it has
been shown that there is no such phenomenon in a simple network creation
game. The Windfall of Malice has also been studied in the context of conges-
tion games [3] by Babaioff et al. In contrast to these papers, our focus here
is on social graphs where players are concerned about their friends’ benefits.

There is other literature on game theory where players are influenced by
their neighbors. In graphical economics [16, 18], an undirected graph is given
where an edge between two players denotes that free trade is allowed between
the two parties, where the absence of such an edge denotes an embargo or an
other restricted form of direct trade. The payoff of a player is a function of
the actions of the players in its neighborhood only. In contrast to our work,
a different equilibrium concept is used and no social aspects are taken into
consideration.

Note that the nature of game theory on social networks also differs from
cooperative games (e.g., [5]) where each coalition C ⊆ 2V of players V has
a certain characteristic cost or payoff function f : 2V → R describing the
collective payoff the players can gain by forming the coalition. In contrast
to cooperative games, the “coalitions” are fixed, and a player participates in
the “coalitions” of all its neighbors.

A preliminary version of this article appeared at ACM EC 2008 [28], and
there have been several interesting results related to our work since then.
For example, [8] studies auctions with spite and altruism among bidders, and
presents explicit characterizations of Nash equilibria for first-price auctions
with random valuations and arbitrary spite/altruism matrices, and for first
and second price auctions with arbitrary valuations and so-called regular
social networks (players have same out-degree). By rounding a natural linear
program with region-growing techniques, Chen et al. [7] present a better,
O(log z)-approximation for the best vaccination strategy in the original model
of [2], where z is the support size of the outbreak distribution. Moreover,
the effect of autonomy is investigated: a benevolent authority may suggest
which players should be vaccinated, and the authors analyze the “Price of
Opting Out” under partially altruistic behavior; they show that with positive
altruism, Nash equilibria may not exist, but that the price of opting out is
bounded.

We extend the conference version of this article [28] in several respects.
The two most important additions concern relative friendship and conver-
gence. We study an additional model where the relative importance of a
neighbor declines with the total number of friends and find that while friend-
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ship is still always beneficial, the non-monotonicity result no longer applies:
unlike in the absolute friendship model, the Windfall of Friendship can only
increase with stronger social ties. In addition, we initiate the study of con-
vergence issues in the social network. It turns out that it takes longer until
an equilibrium is reached compared to purely selfish environments and hence
constitutes a price of friendship. We present a potential function argument
to prove convergence in some simple cyclic networks, and complement our
study with simulations on Kleinberg graphs. We believe that the existence of
and convergence to social equilibria are exciting questions for future research
(see also the related fields of player-specific utilities [1] and local search com-
plexity [39]). Finally, there are several minor changes, e.g., we improve the
bound in Theorem 4.4 from n > 7 to n > 3.

3. Model

This section introduces our framework. In order to gain insights into the
Windfall of Friendship, we study a virus inoculation game on a social graph.
We present the model of this game and we show how it can be extended to
incorporate social aspects.

3.1. Virus Inoculation Game

The virus inoculation game was introduced by [2]. We are given an undi-
rected network graph G = (V,E) of n = |V | players (or nodes) pi ∈ V ,
for i = 1, . . . , n, who are connected by a set of edges (or links) E. Every
player has to decide whether it wants to inoculate (e.g., purchase and install
anti-virus software) which costs C, or whether it prefers saving money and
facing the risk of being infected. We assume that being infected yields a
damage cost of L (e.g., a computer is out of work for L days). In other
words, an instance I of a game consists of a graph G = (V,E), the inoc-
ulation cost C and a damage cost L. We introduce a variable ai for every
player pi denoting pi’s chosen strategy. Namely, ai = 1 describes that player
pi is protected whereas for a player pj willing to take the risk, aj = 0. In the
following, we will assume that aj ∈ {0, 1}, that is, we do not allow players to
mix (i.e., use probabilistic distributions over) their strategies. These choices
are summarized by the strategy profile, the vector ~a = (a1, . . . , an). After
the players have made their decisions, a virus spreads in the network. The
propagation model is as follows. First, one player p of the network is chosen
uniformly at random as a starting point. If this player is inoculated, there
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is no damage and the process terminates. Otherwise, the virus infects p and
all unprotected neighbors of p. The virus now propagates recursively to their
unprotected neighbors. Hence, the more insecure players are connected, the
more likely they are to be infected. The vulnerable region (set of players) in
which an insecure player pi lies is referred to as pi’s attack component.

We only consider a limited region of the parameter space to avoid trivial
cases. If the cost C is too large, no player will inoculate, resulting in a totally
insecure network and therefore all players eventually will be infected. On the
other hand, if C << L, the best strategy for all players is to inoculate. Thus,
we will assume that C ≤ L and C > L/n in the following.

In our game, a player has the following expected cost:

Definition 3.1 (Actual Individual Cost).
The actual individual cost of a player pi is defined as

ca(i,~a) = ai · C + (1− ai)L ·
ki
n

where ki denotes the size of pi’s attack component. If pi is inoculated, ki
stands for the size of the attack component that would result if pi became
insecure. In the following, let c0

a(i,~a) refer to the actual cost of an insecure
and c1

a(i,~a) to the actual cost of a secure player pi.

The total social cost of a game is defined as the sum of the cost of all
participants: Ca(~a) =

∑
pi∈V ca(i,~a).

Classic game theory assumes that all players act selfishly, i.e., each player
seeks to minimize its individual cost. In order to study the impact of such
selfish behavior, the solution concept of a Nash equilibrium (NE) is used. A
Nash equilibrium is a strategy profile where no selfish player can unilaterally
reduce its individual cost given the strategy choices of the other players. We
can think of Nash equilibria as the stable strategy profiles of games with
selfish players. We will only consider pure Nash equilibria in this article, i.e.,
players cannot use random distributions over their strategies but must decide
whether they want to inoculate or not.

In a pure Nash equilibrium, it must hold for each player pi that given
a strategy profile ~a ∀pi ∈ V, ∀ai : ca(i,~a) ≤ ca(i, (a1, . . . , 1 − ai, . . . , an)),
implying that player pi cannot decrease its cost by choosing an alternative
strategy 1− ai. In order to quantify the performance loss due to selfishness,
the (not necessarily unique) Nash equilibria are compared to the optimum
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situation where all players collaborate. To this end we consider the Price of
Anarchy (PoA), i.e., the ratio of the social cost of the worst Nash equilibrium
divided by the optimal social cost for a problem instance I. More formally,
PoA(I) = maxNE CNE(I)/COPT (I).

3.2. Social Networks

Our model for social networks is as follows. We define a Friendship Factor
F which captures the extent to which players care about their friends, i.e.,
about the players adjacent to them in the social network. More formally, F is
the factor by which a player pi takes the individual cost of its neighbors into
account when deciding for a strategy. F can assume any value between 0 and
1. F = 0 implies that the players do not consider their neighbors’ cost at all,
whereas F = 1 implies that a player values the well-being of its neighbors to
the same extent as its own. Let Γ(pi) denote the set of neighbors of a player
pi. Moreover, let Γsec(pi) ⊆ Γ(pi) be the set of inoculated neighbors, and
Γsec(pi) = Γ(pi) \ Γsec(pi) the remaining insecure neighbors.

We distinguish between a player’s actual cost and a player’s perceived
cost. A player’s actual individual cost is the expected cost arising for each
player defined in Definition 3.1 used to compute a game’s social cost. In
our social network, the decisions of our players are steered by the players’
perceived cost.

Definition 3.2 (Perceived Individual Cost).
The perceived individual cost of a player pi is defined as

cp(i,~a) = ca(i,~a) + F ·
∑

pj∈Γ(pi)

ca(j,~a).

In the following, we write c0
p(i,~a) to denote the perceived cost of an insecure

player pi and c1
p(i,~a) for the perceived cost of an inoculated player.

This definition entails a new notion of equilibrium. We define a friendship
Nash equilibrium (FNE) as a strategy profile ~a where no player can reduce its
perceived cost by unilaterally changing its strategy given the strategies of the
other players. Formally, ∀pi ∈ V, ∀ai : cp(i,~a) ≤ cp(i, (a1, . . . , 1−ai, . . . , an)).
Given this equilibrium concept, we define the Windfall of Friendship Υ.

Definition 3.3 (Windfall of Friendship (WoF)). The Windfall of Friendship
Υ(F, I) is the ratio of the social cost of the worst Nash equilibrium for I and
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the social cost of the worst friendship Nash equilibrium for I:

Υ(F, I) =
maxNE CNE(I)

maxFNE CFNE(F, I)

Υ(F, I) > 1 implies the existence of a real windfall in the system, whereas
Υ(F, I) < 1 denotes that the social cost can become greater in social graphs
than in purely selfish environments.

4. General Analysis

In this section we characterize friendship Nash equilibria and derive gen-
eral results on the Windfall of Friendship for the virus propagation game in
social networks. It has been shown [2] that in classic Nash equilibria (F = 0),
an attack component can never consist of more than Cn/L insecure players.
A similar characteristic also holds for friendship Nash equilibria. As every
player cares about its neighbors, the maximal attack component size in which
an insecure player pi still does not inoculate depends on the number of pi’s
insecure neighbors and the size of their attack components. Therefore, it
differs from player to player. We have the following helper lemma.

Lemma 4.1. The player pi will inoculate if and only if the size of its attack
component is

ki >
Cn/L+ F ·

∑
pj∈Γsec(pi)

kj

1 + F |Γsec(pi)|
,

where the kjs are the attack component sizes of pi’s insecure neighbors as-
suming pi is secure.

Proof. Player pi will inoculate if and only if this choice lowers the perceived
cost. By Definition 3.2, the perceived individual cost of an inoculated player
is

c1
p(i,~a) = C + F

|Γsec(pi)|C +
∑

pj∈Γsec(pi)

L
kj
n


and for an insecure player we have

c0
p(i,~a) = L

ki
n

+ F

(
|Γsec(pi)|C + |Γsec(pi)|L

ki
n

)
.
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For pi to prefer to inoculate it must hold that

c0
p(i,~a) > c1

p(i,~a) ⇔

L
ki
n

+ F · |Γsec(pi)|L
ki
n

> C + F ·
∑

pj∈Γsec(pi)

L
kj
n
⇔

L
ki
n

(1 + F |Γsec(pi)|) > C +
FL

n
·

∑
pj∈Γsec(pi)

kj ⇔

ki(1 + F |Γsec(pi)|) > Cn/L+ F ·
∑

pj∈Γsec(pi)

kj ⇔

ki >
Cn/L+ F ·

∑
pj∈Γsec(pi)

kj

1 + F |Γsec(pi)|
.

A pivotal question is of course whether social networks where players
care about their friends yield better equilibria than selfish environments.
The following theorem answers this questions affirmatively: the worst FNE
costs never more than the worst NE.

Theorem 4.2. For all instances of the virus inoculation game and 0 ≤ F ≤
1, it holds that

1 ≤ Υ(F, I) ≤ PoA(I)

Proof. The proof idea for Υ(F, I) ≥ 1 is the following: for an instance I we
consider an arbitrary FNE with F > 0. Given this equilibrium, we show the
existence of a NE with larger social cost (according to [2], our best response
strategy always converges). Let ~a be any (e.g., the worst) FNE in the social
model. If ~a is also a NE in the same instance with F = 0 then we are done.
Otherwise there is at least one player pi that prefers to change its strategy.
Assume pi is insecure but favors inoculation. Therefore pi’s attack component
has on the one hand to be of size at least k′i > Cn/L [2] and on the other
hand of size at most k′′i = (Cn/L + F ·

∑
pj∈Γsec(pi)

kj)/(1 + F |Γsec(pi)|) ≤
(Cn/L+F |Γsec(pi)|(k′′i −1))/(1+F |Γsec(pi)|) ⇔ k′′i ≤ Cn/L−F |Γsec(pi)| (cf
Lemma 4.1). This is impossible and yields a contradiction to the assumption
that in the selfish network, an additional player wants to inoculate.

It remains to study the case where pi is secure in the FNE but prefers to be
insecure in the NE. Observe that, since every player has the same preference
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on the attack component’s size when F = 0, a newly insecure player cannot
trigger other players to inoculate. Furthermore, only the players inside pi’s
attack component are affected by this change. The total cost of this attack
component increases by at least

x =
ki
n
L− C︸ ︷︷ ︸
pi

+
∑

pj∈Γsec(pi)

(
ki
n
L− kj

n
L

)
︸ ︷︷ ︸
pi’s insecure neighbors

=
ki
n
L− C +

L

n
(|Γsec(pi)|ki −

∑
pj∈Γsec(pi)

kj).

Applying Lemma 4.1 guarantees that∑
pj∈Γsec(pi)

kj ≤
ki(1 + F |Γsec(pi)|)− Cn/L

F
.

This results in

x ≥ L

n

(
|Γsec(pi)|ki −

ki(1 + F |Γsec(pi)|)− Cn/L
F

)
=

kiL

n
(1− 1

F
)− C(1− 1

F
) > 0,

since a player only gives up its protection if C > kiL
n

. If more players are
unhappy with their situation and become vulnerable, the cost for the NE
increases further. In conclusion, there exists a NE for every FNE with F ≥ 0
for the same instance which is at least as expensive.

The upper bound for the WoF, i.e., PoA(I) ≥ Υ(F, I), follows directly
from the definitions: while the PoA is the ratio of the NE’s social cost divided
by the social optimum, Υ(F, I) is the ratio between the cost of the NE and
the FNE. As the FNE’s cost must be at least as large as the social optimum
cost the claim follows.

Remark 4.3. Note that Aspnes et al. [2] proved that the Price of Anarchy
never exceeds the size of the network, i.e., n ≥ PoA(I). Consequently, the
Windfall of Friendship cannot be larger than n due to Theorem 4.2.

The above result leads to the question of whether the Windfall of Friend-
ship grows monotonically with stronger social ties, i.e., with larger friendship
factors F . Intriguingly, this is not the case.
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Theorem 4.4. For all networks with more than three players, there exist
game instances where Υ(F, I) does not grow monotonically in F .

Proof. We give a counter example for the star graph Sn which has one center
player and n−1 leaf players. Consider two friendship factors, Fl and Fs where
Fl > Fs. We show that for the large friendship factor Fl, there exists a FNE,
FNE1, where only the center player and one leaf player remain insecure.
For the same setting but with a small friendship factor Fs, at least two leaf
players will remain insecure, which will trigger the center player to inoculate,
yielding a FNE, FNE2, where only the center player is secure.

Consider FNE1 first. Let c be the insecure center player, let l1 be the
insecure leaf player, and let l2 be a secure leaf player. In order for FNE1 to
constitute a Nash equilibrium, the following conditions must hold:

player c :
2L

n
+

2FlL

n
< C +

FlL

n

player l1 :
2L

n
+

2FlL

n
< C +

FlL

n

player l2 : C +
2FlL

n
<

3L

n
+

3FlL

n
For FNE2, let c be the insecure center player, let l1 be one of the two

insecure leaf players, and let l2 be a secure leaf player. In order for the leaf
players to be happy with their situation but for the center player to prefer
to inoculate, it must hold that:

player c : C +
2FsL

n
<

3L

n
+

6FsL

n

player l1 :
3L

n
+

3FsL

n
< C +

2FsL

n

player l2 : C +
3FsL

n
<

4L

n
+

4FsL

n
Now choose C := 5L/(2n) + FlL/n (note that due to our assumption

that n > 3, C < L). This yields the following conditions: Fl > Fs + 1/2,
Fl < Fs + 3/2, and Fl < 4Fs + 1/2. These conditions are easily fulfilled,
e.g., with Fl = 3/4 and Fs = 1/8. Observe that the social cost of the first
FNE (for Fl) is Cost(Sn,~aFNE1) = (n− 2)C + 4L/n, whereas for the second
FNE (for Fs) Cost(Sn,~aFNE2) = C + (n− 1)L/n. Thus, Cost(Sn,~aFNE1)−
Cost(Sn,~aFNE2) = (n−3)C−(n−5)L/n > 0 as we have chosen C > 5L/(2n)
and as, due to our assumption, n > 3. This concludes the proof.
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Reasoning about best and worst Nash equilibria raises the question of
how difficult it is to compute such equlibria. We can generalize the proof
given in [2] and show that computing the most economical and the most
expensive FNE is hard for any friendship factor.

Theorem 4.5. Computing the best and the worst pure FNE is NP-complete
for any F ∈ [0, 1].

Proof. We prove this theorem by a reduction from two NP-hard problems,
Vertex Cover [17] and Independent Dominating Set [15]. Concretely,
for the decision version of the problem, we show that answering the question
whether there exists a FNE costing less than k, or more than k respectively,
is at least as hard as solving vertex cover or independent dominating set.
Note that verifying whether a proposed solution is correct can be done in
polynomial time, hence the problems are indeed in NP .

Fix some graph G = (V,E) and set C = 1 and L = n/1.5. We show that
the following two conditions are necessary and sufficient for a FNE: (a) all
neighbors of an insecure player are secure, and (b) every inoculated player has
at least one insecure neighbor. Due to our assumption that C > L/n, condi-
tion (b) is satisfied in all FNE. To see that condition (a) holds as well, assume
the contrary, i.e., an attack component of size at least two. An insecure player
pi in this attack component bears the cost ki

n
L+F (|Γsec(pi)|C+|Γsec(pi)|kin L).

Changing its strategy reduces its cost by at least ∆i = ki
n
L+F |Γsec(pi)|kin L−

C − F |Γsec(pi)|ki−1
n
L = ki

n
L + F |Γsec(pi)| 1nL − C. By our assumption that

ki ≥ 2, and hence |Γsec(pi)| ≥ 1, it holds that ∆i > 0, resulting in pi becom-
ing secure. Hence, condition (a) holds in any FNE as well. For the opposite
direction assume that an insecure player wants to change its strategy even
though (a) and (b) are true. This is impossible because in this case (b)
would be violated because this player does not have any insecure neighbors.
An inoculated player would destroy (a) by adopting another strategy. Thus
(a) and (b) are sufficient for a FNE.

We now argue that G has a vertex cover of size k if and only if the
virus game has a FNE with k or fewer secure players, or equivalently an
equilibrium with social cost at most Ck+(n−k)L/n, as each insecure player
must be in a component of size 1 and contributes exactly L/n expected cost.
Given a minimal vertex cover V ′ ⊆ V , observe that installing the software on
all players in V ′ satisfies condition (a) because V ′ is a vertex cover and (b)
because V ′ is minimal. Conversely, if V ′ is the set of secure players in a FNE,
then V ′ is a vertex cover by condition (a) which is minimal by condition (b).
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For the worst FNE, we consider an instance of the independent domi-
nating set problem. Given an independent dominating set V ′, installing the
software on all players except the players in V ′ satisfies condition (a) because
V ′ is independent and (b) because V ′ is a dominating set. Conversely, the
insecure players in any FNE are independent by condition (a) and dominat-
ing by condition (b). This shows that G has an independent dominating
set of size at most k if and only if it has a FNE with at least n − k secure
players.

5. Windfall for Special Graphs

While the last section has presented general results on equilibria in social
networks and the Windfall of Friendship, we now present upper and lower
bounds on the Windfall of Friendship for concrete topologies, namely the
complete graph Kn and the star graph Sn.

5.1. Complete Graphs

In order to initiate the study of the Windfall of Friendship, we consider a
very simple topology, the complete graph Kn where all players are connected
to each other. First consider the classic setting where players do not care
about their neighbors (F = 0). We have the following result:

Lemma 5.1. In the graph Kn, there are two Nash equilibria with social cost

NE1: Cost(Kn,~aNE1) = C(n− dCn/Le+ 1) + L/n(dCn/Le − 1)2,

and

NE2: Cost(Kn,~aNE2) = C(n− bCn/Lc) + L/n(bCn/Lc)2.

If dCn/Le − 1 = bCn/Lc, there is only one Nash equilibrium.

Proof. Let ~a be a NE. Consider an inoculated player pi and an insecure player
pj, and hence ca(i,~a) = C and ca(j,~a) = L

kj
n

, where kj is the total number
of insecure players in Kn. In order for pi to remain inoculated, it must hold
that C ≤ (kj +1)L/n, so kj ≥ dCn/L−1e; for pj to remain insecure, it holds
that kjL/n ≤ C, so kj ≤ bCn/Lc. As the total social cost in Kn is given by
Cost(Kn,~a) = (n− kj)C + k2

jL/n, the claim follows.

Observe that the equilibrium size of the attack component is roughly twice
the size of the attack component of the social optimum, as Cost(Kn,~a) =
(n− kj)C + k2

jL/n is minimized for kj = Cn/2L.
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Lemma 5.2. In the social optimum for Kn, the size of the attack component
is either b1

2
Cn/Lc or d1

2
Cn/Le, yielding a total social cost of

Cost(Kn,~aOPT) = (n− b1
2
Cn/Lc)C + (b1

2
Cn/Lc)2L

n

or

Cost(Kn,~aOPT) = (n− d1
2
Cn/Le)C + (d1

2
Cn/Le)2L

n
.

In order to compute the Windfall of Friendship, the friendship Nash equi-
libria in social networks have to be identified.

Lemma 5.3. In Kn, there are two friendship Nash equilibria with social cost

FNE1: Cost(Kn,~aFNE1) = C

(
n−

⌈
Cn/L− 1

1 + F

⌉)
+ L/n

(⌈
Cn/L− 1

1 + F

⌉)2

,

and

FNE2: Cost(Kn,~aFNE2) = C

(
n−

⌊
Cn/L + F

1 + F

⌋)
+ L/n

(⌊
Cn/L + F

1 + F

⌋)2

.

If d(Cn/L− 1)/(1 + F )e = b(Cn/L+ F )/(1 + F )c, there is only one FNE.

Proof. According to Lemma 4.1, in a FNE, a player pi remains secure if
otherwise the component had size at least ki = kj + 1 ≥ (Cn/L+Fk2

j )/(1 +
Fkj) where kj is the number of insecure players. This implies that kj ≥
d(Cn/L − 1)/(1 + F )e. Dually, for an insecure player pj it holds that kj ≤
(Cn/L+F (kj−1)2)/(1+F (kj−1)) and therefore kj ≤ b(Cn/L+F )/(1+F )c.
Given these bounds on the total number of insecure players in a FNE, the
social cost can be obtained by substituting kj in Cost(Kn,~a) = (n− kj)C +
k2
jL/n. As the difference between the upper and the lower bound for kj is at

most 1, there are at most two equilibria and the claim follows.

Given the characteristics of the different equilibria, we have the following
theorem.

Theorem 5.4. In Kn, the Windfall of Friendship is at most Υ(F, I) = 4/3
for an arbitrary network size. This is tight in the sense that there are indeed
instances where the worst FNE is a factor 4/3 better than the worst NE.
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Proof. Upper Bound. We first derive the upper bound on Υ(F, I).

Υ(F, I) =
Cost(Kn,~aNE)

Cost(Kn,~aFNE)

≤
Cost(Kn,~aNE)

Cost(Kn,~aOPT)

≤
(n− dCn/L− 1e)C + (bCn/Lc)2 L

n

(n− 1
2
Cn/L)C + (1

2
Cn/L)2 L

n

as the optimal social cost (cf Lemma 5.2) is smaller or equal to the social
cost of any FNE. Simplifying this expression yields

Υ(F, I) ≤ n(1− C/L)C + C2n/L

n(1− 1
2
C/L)C + 1

4
C2n/L

=
1

1− 1
4
C/L

.

This term is maximized for L = C, implying that Υ(F, I) ≤ 4/3, for arbitrary
n.

Lower Bound. We now show that the ratio between the equilibria cost
reaches 4/3.

There exists exactly one social optimum of cost Ln/2 + (n/2)2L/n =
3nL/4 for even n and C = L by Lemma 5.2. For F = 1 this is also the
only friendship Nash equilibrium due to Lemma 5.3. In the selfish game
however the Nash equilibrium has fewer inoculated players and is of cost nL
(see Lemma 5.1). Since these are the only Nash equilibria they constitute
the worst equilibria and the ratio is

Υ(F, I) =
Cost(Kn,~aNE)

Cost(Kn,~aFNE)
=

nL

3/4nL
= 4/3.

To conclude our analysis of Kn, observe that friendship Nash equilibria
always exist in complete graphs, and that in environments where one player
at a time is given the chance to change its strategy in a best response manner
quickly results in such an equilibrium as all players have the same preferences.

5.2. Star

While the analysis of Kn was simple, it turns out that already slightly
more sophisticated graphs are challenging. In the following, we investigate
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the Windfall of Friendship in star graphs Sn. Note that in Sn, the social
welfare is maximized if the center player inoculates and all other players do
not. The total inoculation cost then is C and the attack components are all
of size 1, yielding a total social cost of Cost(Sn,~aOPT) = C + (n− 1)L/n.

Lemma 5.5. In the social optimum of the star graph Sn, only the center
player is inoculated. The social cost is

Cost(Sn,~aOPT) = C + (n− 1)L/n.

The situation where only the center player is inoculated also constitutes
a NE. However, there are more Nash equilibria.

Lemma 5.6. In the star graph Sn, there are at most three Nash equilibria
with social cost

NE1: Cost(Sn,~aNE1) = C + (n− 1)L/n,

NE2: Cost(Sn,~aNE2) = C(n− dCn/Le+ 1) + L/n(dCn/Le − 1)2,

and

NE3: Cost(Sn,~aNE3) = C(n− bCn/Lc) + L/n(bCn/Lc)2.

If Cn/L /∈ N, only two equilibria exist.

Proof. If the center player is the only secure player, changing its strategy
costs L but saves only C. When a leaf player becomes secure, its cost changes
from L/n to C. These changes are unprofitable, and the social cost of this
NE is Cost(Sn,~aNE1) = C + (n− 1)L/n.

For the other Nash equilibria the center player is not inoculated. Let the
number of insecure leaf players be n0. In order for a secure player to remain
secure, it must hold that C ≤ (n0 + 2)L/n, and hence n0 ≥ dCn/L − 2e.
For an insecure player to remain insecure, it must hold that (1 + n0)L/n ≤
C, thus n0 ≤ bCn/L − 1c. Therefore, we can conclude that there are at
most two Nash equilibria, one with dCn/L− 1e and one with bCn/Lc many
insecure players. The total social cost follows by substituting n0 in the total
social cost function. Finally, observe that if Cn/L ∈ N and Cn/L > 3, all
three equilibria exist in parallel; if Cn/L /∈ N, NE2 and NE3 become one
equilibrium.

Let us consider the social network scenario again.
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Lemma 5.7. In Sn, there are at most three friendship Nash equilibria with
social cost

FNE1: Cost(Sn,~aFNE1) = C + (n− 1)L/n,

FNE2: Cost(Sn,~aFNE2) = C(n− dCn/L− F e+ 1) + L/n(dCn/L− F e − 1)2,

and

FNE3: Cost(Sn,~aFNE3) = C(n− bCn/L− F c) + L/n(bCn/L− F c)2.

If Cn/L− F /∈ N, at most 2 friendship Nash equilibria exist.

Proof. First, observe that having only an inoculated center player constitutes
a FNE. In order for the center player to remain inoculated, it must hold that
C+F (n−1)L 1

n
≤ nL/n+F (n−1)Ln

n
= L+F (n−1)L. All leaf players remain

insecure as long as L/n+FC ≤ C+FC ⇔ L/n ≤ C. These conditions are
always true, and we have Cost(Sn,~aFNE1) = C + (n − 1)L/n.If the center
player is not inoculated, we have n0 insecure and n− n0 − 1 inoculated leaf
players. In order for a secure leaf player to remain secure, it is necessary
that C + F n0+1

n
L ≤ n0+2

n
L + F n0+2

n
L, so n0 ≥ dCn/L − F e − 2. For an

insecure leaf player, it must hold that n0+1
n
L + F n0+1

n
L ≤ C + F n0

n
L, so

n0 ≤ bCn/L− F c − 1. The claim follows by substitution.

Note that there are instances where FNE1 is the only friendship Nash
equilibrium. We already made use of this phenomenon in Section 4 to show
that Υ(F, I) is not monotonically increasing in F . The next lemma states
under which circumstances this is the case.

Lemma 5.8. In Sn, there is a unique FNE equivalent to the social optimum
if and only if

bCn/L− F c − b 1

2F
(
√

1− 4F (1− Cn/L)− 1)c − 2 ≥ 0

Proof. Sn has only one FNE if and only if every (insecure) leaf player is
content with its chosen strategy but the insecure center player would rather
inoculate. In order for an insecure leaf player to remain insecure we have
n0 ≤ bCn/L − 1 − F c and the insecure center player wants to inoculate if
and only if

C + F (n− n0 − 1)C + Fn0
1

n
L < (n0 + 1)

L

n
+ F (n− n0 − 1)C + Fn0

n0 + 1

n
L,

which is equivalent to Fn2
0 + n0 + 1 − Cn/L > 0. This implies that n0 ≥

b 1
2F

(
√

1− 4F (1− Cn/L)− 1) + 1c. Therefore there is only one FNE if and

only if there exists an integer n0 such that b 1
2F

(
√

1− 4F (1− Cn/L)− 1) +
1c ≤ n0 ≤ bCn/L− 1− F c.
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Given the characterization of the various equilibria, the Windfall of Friend-
ship can be computed.

Theorem 5.9. If b 1
2F

(
√

1− 4F (1− Cn/L) − 1)c + 2 − bCn/L − F c ≤ 0,
the Windfall of Friendship is

Υ(F, I) ≥ (n− 2)C + L/n

C + (n− 1)L/n
, else Υ(F, I) ≤ n+ 1

n− 3
.

Proof. According to Lemma 5.8, the friendship Nash equilibrium is unique
and hence equivalent to the social optimum if

bCn/L− F c − b 1

2F
(
√

1− 4F (1− Cn/L)− 1)c − 2 ≥ 0.

On the other hand, observe that there always exist sub-optimal Nash equi-
libria where the center player is not inoculated. Hence, we have

Υ(F, I) =
Cost(Sn,~aNE)

Cost(Sn,~aFNE)
=

Cost(Sn,~aNE)

Cost(Sn,~aOPT)

≥ (n− bCn/L− 1c)C + (dCn/Le − 1)2L/n

C + (n− 1)L/n

≥ C(n− 2) + L/n

C + (n− 1)L/n
.

Otherwise, i.e., if there exist friendship Nash equilibria with an insecure
center player, an upper bound for the WoF can be computed

Υ(F, I) =
Cost(Sn,~aNE)

Cost(Sn,~aFNE)

≤ (n− dCn/L− 1e)C + (bCn/Lc)2L/n

(n− bCn/L− F c)C + (dCn/L− 1− F e)2L/n

≤ (n+ 1)C

nC + FC − 2C(1 + F ) + (1 + F )2L/n

<
(n+ 1)C

C(n+ F − 2(1 + F ))
<

n+ 1

n− 3
.
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Theorem 5.9 reveals that caring about the cost incurred by friends is
particularly helpful to reach more desirable equilibria. In large star networks,
the social welfare can be much higher than in Nash equilibria: in particular,
the Windfall of Friendship can increase linearly in n, and hence indeed be
asymptotically as large as the Price of Anarchy. However, if bCn/L− F c −
b 1

2F
(
√

1− 4F (1− Cn/L) − 1)c − 2 ≥ 0 does not hold, social networks are
not much better than purely selfish systems: the maximal gain is constant.

Finally observe that in stars friendship Nash equilibria always exist and
can be computed efficiently (in linear time) by any best response strategy.

5.3. Discussion

This section has focused on a small set of very simple topologies only
and we regard the derived results as a first step towards more complex graph
classes such as Kleinberg graphs featuring the small-world property. Inter-
estingly, however, our findings have implications for general topologies. We
could show that even in simple graphs such as the star graph, the Windfall of
Friendship can assume all possible values, from constant ratios up to ratios
linear in n. This is asymptotically maximal for general graphs as well since
the Price of Anarchy is bounded by n [2].

6. On Relative Equilibria

In the model we have studied so far, the actual cost of each friend—
weighted by a factor F—is added to a player’s perceived cost. This describes
a situation where friends are taken into account individually and indepen-
dently of each other. However, one could imagine scenarios where the relative
importance of a friend decreases with the total number of friends, that is, a
player with many friends may care less about the welfare of a specific friend
compared to a player who only has one or two friends. This motivates an
alternative approach to describe perceived costs:

Definition 6.1 (Relative Perceived Cost).
The relative perceived individual cost of a player pi is defined as

cr(i,~a) = ca(i,~a) + F ·
∑

pj∈Γ(pi)
ca(j,~a)

|Γ(pi)|
.

In the following, we write c0
r(i,~a) to denote the relative perceived cost of an

insecure player pi and c1
r(i,~a) for the relative perceived cost of an inoculated

player.
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We will refer to an FNE equilibrium with respect to relative perceived
costs by rFNE.

It turns out that while relative equilibria have similar properties as regular
friendship equilibria and most of our techniques are still applicable, there
are some crucial differences. Let us first consider the size of the attack
components under rFNE.

Lemma 6.2. The player pi will inoculate if and only if the size of its attack
component is

ki >
|Γ(pi)| · Cn/L+ F ·

∑
pj∈Γsec(pi)

kj

|Γ(pi)|+ F |Γsec(pi)|
,

where the kjs are the attack component sizes of pi’s insecure neighbors as-
suming pi is secure.

Proof. Player pi will inoculate if and only if this choice lowers the relative
perceived individual cost. By Definition 6.1, the relative perceived individual
costs of an inoculated player are

c1
r(i,~a) = C + F/|Γ(pi)| ·

|Γsec(pi)|C +
∑

pj∈Γsec(pi)

L
kj
n


and for an insecure player we have

c0
p(i,~a) = L

ki
n

+ F/|Γ(pi)| ·
(
|Γsec(pi)|C + |Γsec(pi)|L

ki
n

)
.

Thus, for pi to prefer to inoculate it must hold that

c0
p(i,~a) > c1

p(i,~a) ⇔

ki >
Cn/L+ F/|Γ(pi)| ·

∑
pj∈Γsec(pi)

kj

1 + F/|Γ(pi)| · |Γsec(pi)|
.

Not surprisingly, we can show that friendship is always beneficial also
with respect to relative perceived costs.

Theorem 6.3. For all instances of the virus inoculation game and 0 ≤ F ≤
1, it holds that

1 ≤ Υ(F, I) ≤ PoA(I)

also in the relative cost model.
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Proof. Again, the upper bound for the WoF, i.e., PoA(I) ≥ Υ(F, I), follows
directly from the definitions (see also proof of Lemma 4.2). For Υ(F, I) ≥
1 we start from a rFNE ~a (defined with relative costs) with F > 0 and
show that a best response execution yields a Nash equilibrium ~a′ with cost
Ca(~a) ≤ Ca(~a

′). If ~a is also a NE in the same instance with F = 0 then we
are done. Otherwise there is at least one player pi that prefers to change its
strategy. If pi is insecure but favors inoculation, pi’s attack component has
on the one hand to be of size at least k′i > Cn/L [2] (otherwise there is not
reason for pi to become secure) and on the other hand of size at most k′′i =
(|Γ(pi)| ·Cn/L+F ·

∑
pj∈Γsec(pi)

kj)/(|Γ(pi)|+F · |Γsec(pi)|) ≤ (|Γ(pi)| ·Cn/L+

F ·|Γsec(pi)|(k′′i −1))/(|Γ(pi)|+F ·|Γsec(pi)|) so k′′i ≤ |Γ(pi)|·Cn/L−F |Γsec(pi)|
(cf Lemma 6.2), yielding a contradiction. What if pi is secure in the rFNE but
prefers to be insecure in the NE? Since every player has the same preference
on the attack component’s size when F = 0, a newly insecure player cannot
trigger other players to inoculate. Furthermore, only the players inside pi’s
attack component are affected by this change. The total cost of this attack
component increases by at least (see also the proof of Lemma 4.2)

x =
ki
n
L− C +

L

n
(|Γsec(pi)|ki −

∑
pj∈Γsec(pi)

kj).

Applying Lemma 6.2 guarantees that∑
pj∈Γsec(pi)

kj ≤
ki(1 + F/|Γ(pi)| · |Γsec(pi)|)− Cn/L

F/|Γ(pi)|
.

This results in

x ≥ L

n

(
|Γsec(pi)|ki −

ki(1 + F/|Γ(pi)| · |Γsec(pi)|)− Cn/L
F/|Γ(pi)|·

)
=

kiL

n

(
1− 1

F/|Γ(pi)|·

)
− C

(
1− 1

F/|Γ(pi)|·

)
> 0,

since a player only gives up its protection if C > kiL
n

. If more players are
unhappy with their situation and become vulnerable, the cost for the NE
increases further. In conclusion, there exists a NE for every FNE with F ≥ 0
for the same instance which is at least as expensive.

Interestingly, however, the phenomenon of a non-monotonic welfare in-
crease with larger F does no longer hold in the star graph Sn. To see this,

23



note that there are only at most two distinct rFNE in Sn (apart from the
trivial situations where all players are either insecure or secure): the “good
equilibrium” where the center player is secure and all the leave players inse-
cure, and the “bad equilibrium” where the center is insecure and a fraction
of the leaves secure. The following theorem shows that the example of The-
orem 4.4 for FNE is no longer true for rFNE.

Theorem 6.4. The Windfall of Friendship is monotonic in F for Sn under
the relative cost model.

Proof. Consider a friendship factor F . Clearly, the equilibrium where only
the center player is secure always exists (w.l.o.g., we focus on “reasonable
values” C and L). When is there an equilibrium where the center is insecure?
Consider such an equilibrium where x leave players are insecure. In order for
this to constitute an equilibrium, it must hold for the center player that:

(x + 1)L

n
+

F

n− 1
· (x + 1)L

n
+

F · C · (n− x− 1)

n− 1
< C +

F

n− 1
· x · L

n
+

F · C · (n− x− 1)

n− 1

⇔ (x + 1)L

n
+

F

n− 1
· L
n

< C

On the other hand, for an insecure leaf player we have:

(x+ 1)L

n
+
FL(x+ 1)

n
< C +

FLx

n

⇔ (x+ 1)L

n
+
FL

n
< C

Unlike in the FNE scenario, the center player is less likely to inoculate, i.e.,
leaf players inoculate first. Thus, a larger F can only render the existence of
such an equilibrium more unlikely.

Finally, note that the hardness result of Theorem 4.5 is also applicable
to relative FNEs.

Theorem 6.5. Computing the best and the worst pure rFNE is NP-complete
for any F ∈ [0, 1].

Proof. (Sketch) Again, deciding the existence of a rFNE with cost less than
k or more than k is at least as hard as solving the vertex cover or inde-
pendent dominating set problem, respectively. Note that verifying whether
a proposed solution is correct can be done in polynomial time, hence the
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problems are indeed in NP . The proof is similar to Theorem 4.5, and
we only point out the difference for condition (a): an insecure player pi
in the attack component bears the cost ki/n · L + F |Γsec(pi)|C + |Γsec(pi)| ·
(kiL/n)/|Γ(pi)|, and changing its strategy reduces the cost by at least ∆i =
kiL/n + F |Γsec(pi)|kiL/(|Γ(pi)|n) − C − F |Γsec(pi)|(ki − 1)L/(|Γ(pi)|n) =
kiL/n − C + FL|Γsec(pi)|/(|Γ(pi)|n). By our assumption that ki ≥ 2, and
hence |Γsec(pi)| ≥ 1, it holds that ∆i > 0, resulting in pi becoming secure.

7. Convergence

According to Lemma 4.2 and Lemma 6.3, the social context can only im-
prove the overall welfare of the players, both in the absolute and the relative
friendship model. However, there are implications beyond the players’ wel-
fare in the equilibria: in social networks, the dynamics of how the equilibria
are reached is different.

In [2], Aspnes et al. have shown that best-response behavior quickly leads
to some pure Nash equilibrium, from any initial situation. Their potential
function argument however relies on a “symmetry” of the players in the sense
insecure players in the same attack component have the same cost. This no
longer holds in the social context where different players take into account
their neighborhood: a player with four insecure neighbors is more likely to
inoculate than a player with just one, secure neighbor. Thus, the distinction
between “big” and “small” components used in [2] cannot be applied, as
different players require a different threshold.

Nevertheless, convergence can be shown in certain scenarios. For example,
the hardness proofs of Lemmas 4.5 and 6.5 imply that equilibria always exist
in the corresponding areas of the parameter space, and it is easy to see that
the equilibria are also reached by best-response sequences. Similarly, in the
star and complete networks, best-response sequences converge in linear time.
Linear convergence time also happens in more complex, cyclic graphs. For
example, consider the cycle graph Cn where each player is connected to one
left and one right neighbor in a circular fashion. To prove best response
convergence from arbitrary initial states, we distinguish between an initial
phase where certain structural invariants are established, and a second phase
where a potential function argument can be applied with respect to the view
of only one type of players. Each event when one player is given the chance
to perform a best response is called a round.
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Theorem 7.1. From any initial state and in the cycle graph Cn, a best
response round-robin sequence results in an equilibrium after O(n) changes,
both in case of absolute and relative friendship equilibria.

Proof. After two round-robin phases where each player is given the chance
to make a best response twice (at most 2n changes or rounds), it holds that
an insecure player p1 which is adjacent to a secure player p2 cannot become
secure: since p1 preferred to be insecure at some time t, the only reason to
become secure again is the event that a player p3 becomes insecure in p1’s
attack component at time t′ > t; however, since p1 has a secure neighbor
p2 and hence p3 can only have more insecure neighbors than p1, p3 cannot
prefer a larger attack component than p1, which yields a contradiction to
the assumption that p1 becomes secure while its neighbor p2 is still secure.
Moreover, by the same arguments, there cannot be three consecutive secure
players.

Therefore, in the best response rounds after the two initial phases, there
are the following cases. Case (A): a secure player having two insecure neigh-
bors becomes insecure; Case (B): a secure player with one secure neighbor
becomes insecure; and Case (C): an insecure player with two insecure neigh-
bors becomes secure.

In order to prove convergence, the following potential function Φ is used:

Φ(~a) =
∑

A∈Sbig(~a)

|A| −
∑

A∈Ssmall(~a)

|A|

where the attack components A in Sbig contain more than t = nC/(FL) −
L/F + 1 players and the attack components A in Ssmall contain at most t
players in case of absolute friendship equilibria; for relative friendship equi-
libria we use t = 2Cn/(FL) − 2L/F + 1. In other words, the threshold t
to distinguish between small and big components is chosen with respect to
players having two insecure neighbors ; in case of absolute FNEs:

C + F · L · (t− 1)

n
=
t · L
n

+ 2F · L · t
n
⇔ Cn

FL
− L

F
+ 1 = t

and in case of relative FNEs:

C + F/2 · L · (t− 1)

n
=
t · L
n

+ F · L · t
n
⇔ 2Cn

FL
− 2L

F
+ 1 = t

Note that it holds that −n ≤ Φ(~a) ≤ n,∀ ~a. We now show that Case (A)
and (C) reduce Φ(~a) by at least one unit in each best response. Moreover,
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Case (B) can increase the potential by at most one. However, since we
have shown that Case (B) incurs less than n times, the claim follows by an
amortization argument. Case (A): In this case, a new insecure player p1 is
added to an attack component in Ssmall. Case (B): A new insecure player
p1 is added to an attack component in Ssmall or to an attack component in
Sbig (since p1 is “on the edge” of the attack component, it prefers a larger
attack component). Case (C): An insecure player is removed from an attack
component in Sbig.

The proof of Theorem 7.1 can be adapted to show linear convergence in
general 2-degree networks where players have degree at most two. In order
to gain deeper insights into the convergence behavior, we conducted several
experiments.

8. Simulations

This section briefly reports on the simulations conducted on Kleinberg
graphs (using clustering exponent α = 2). Although the existence of equi-
libria and the best-response convergence time complexity for general graphs
remain an open question, during the thousands of experiments, we did not en-
counter a single instance which did not converge. Moreover, our experiments
indicate that the initial configuration (i.e., the set of secure and insecure
players) as well as the relationship of L to C typically has a negligible effect
on the convergence time, and hence, unless stated otherwise, the following
experiments assume an initially completely insecure network and C = 1 and
L = 4. All experiments are repeated 100 times over different Kleinberg
graphs.

All our experiments showed a positive Windfall of Friendship that in-
creases monotonically in F , both for the relative and the absolute friendship
model. Figure 1 shows a typical result. Maybe surprisingly, it turns out that
the windfall of friendship is often not due to a higher fraction of secure play-
ers, but rather the fact that the secure players are located at strategically
more beneficial locations (see also Figure 2). We can conclude that there is a
windfall of friendship not only for the worst but also for “average equilibria”.

The box plots in Figure 3 give a more detailed picture of the cost for
F ∈ {0, 1}. The overall cost of pure NE is typically higher than the cost of
rFNE which is in turn higher than the cost of FNE.
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0.1 802.6842 403.8947
0.2 741.4211 399.1053
0.3 698.4737 400.3158
0.4 667.1579 405.6842
0.5 646.7895 407.9474
0.6 616.3684 410
0.7 600.8947 409.2105
0.8 584.7895 415.8421
0.9 569.8421 416.7368

1 563.9474 419.6842

F Convergence
0 3000

0

200

400

600

800

1000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1       F
F

Average Social Cost (n=1000)

Cost

# Secure Players

Figure 1: Average social cost and average number of secure players as a function of F ,
in the FNE resulting from round-robin best response sequences starting from an initially
completely insecure graph.

Besides social cost, we are mainly interested in convergence times. We
find that while the convergence time typically increases already for a small
F > 0, the magnitude of F plays a minor role. Figure 4 shows the typical
convergence times as a function of F . Notice that the convergence time
more than doubles when changing from the selfish to the social model but is
roughly constant for all values of F .

9. Conclusion

This article presented a framework to study and quantify the effects of
game-theoretic behavior in social networks. This framework allows us to
formally describe and understand phenomena which are often well-known on
an anecdotal level. For instance, we find that the Windfall of Friendship
is always positive, and that players embedded in a social context may be
subject to longer convergence times. Moreover, interestingly, we find that the
Windfall of Friendship does not always increase monotonically with stronger
social ties.

We believe that our work opens interesting directions for future research.
We have focused on a virus inoculation game, and additional insights must
be gained by studying alternative and more general games such as potential
games, or games that do and do not exhibit a Braess paradox. Also the
implications on the games’ dynamics need to be investigated in more detail,
and it will be interesting to take into consideration behavioral models beyond
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Figure 2: Number of secure players in different models using L = 16: friendship often does
not increase the number but yields better locations of the secure players.

equilibria (e.g., [38]). Finally, it may be interesting to study scenarios where
players care not only about their friends but also, to a smaller extent, about
friends of friends.

What about practical implications? One intuitive takeaway of our work
is that in case of large benefits of social behavior, it may make sense to de-
sign distributed systems where neighboring players have good relationships.
However, if the resulting convergence times are large and the price of the
dynamics higher than the possible gains, such connections should be dis-
couraged. Our game-theoretic tools can be used to compute these benefits
and convergence times, and may hence be helpful during the design phase of
such a system.
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